1
|
Rayêe D, Meier UT, Eliscovich C, Cvekl A. Nucleolar ribosomal RNA synthesis continues in differentiating lens fiber cells until abrupt nuclear degradation required for ocular lens transparency. RNA Biol 2025; 22:1-16. [PMID: 40126102 PMCID: PMC11959900 DOI: 10.1080/15476286.2025.2483118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Cellular differentiation requires highly coordinated action of all three transcriptional systems to produce rRNAs, mRNAs and various 'short' and 'long' non-coding RNAs by RNA Polymerase I, II and III systems, respectively. RNA Polymerase I catalyzes transcription of about 400 copies of mammalian rDNA genes, generating 18S, 5.8S and 28S rRNA molecules. Lens fiber cell differentiation is a unique process to study transcriptional mechanisms of individual crystallin genes as their very high transcriptional outputs are directly comparable only to globin genes in erythrocytes. Importantly, both terminally differentiated lens fiber cells and mammalian erythrocytes degrade their nuclei through different mechanisms. In lens, the generation of the organelle-free zone (OFZ) includes the degradation of mitochondria, endoplasmic reticulum, Golgi apparatus and nuclei. Here, using RNA fluorescence in situ hybridization (FISH), we evaluated nascent rRNA transcription, located in the nucleoli, during the process of mouse lens fiber cell differentiation. Lens fiber cell nuclei undergo morphological changes including chromatin condensation prior to their denucleation. Remarkably, nascent rRNA transcription persists in all nuclei that are in direct proximity of the OFZ. Additionally, changes in both nuclei and nucleoli shape were evaluated via immunofluorescence detection of fibrillarin, nucleolin, UBF and other proteins. These studies demonstrate for the first time that highly condensed lens fiber cell nuclei have the capacity to support nascent rRNA transcription. Thus, we propose that 'late' production of rRNA molecules and consequently of ribosomes increases crystallin protein synthesis machinery within the mature lens fibers.
Collapse
Affiliation(s)
- Danielle Rayêe
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - U. Thomas Meier
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carolina Eliscovich
- Departments of Medicine (Hepatology) and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aleš Cvekl
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Duot M, Coomson SY, Shrestha SK, Nagulla MVMK, Audic Y, Barve RA, Huang H, Gautier-Courteille C, Paillard L, Lachke SA. Transcriptome Meta-Analysis Uncovers Cell-Specific Regulatory Relationships in Embryonic, Juvenile, Adult, and Aged Mouse Lens Epithelium and Fibers. Invest Ophthalmol Vis Sci 2025; 66:42. [PMID: 40238114 PMCID: PMC12011134 DOI: 10.1167/iovs.66.4.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Purpose The lens transcriptome has been examined using microarrays and RNA-sequencing (RNA-seq). These omics data are the basis of the bioinformatics web-resource iSyTE that has identified new genes involved in lens development and cataract. The lens predominantly contains epithelial and fiber cells, and yet, presently, iSyTE is based on whole lens data. To gain cell-specific regulatory insights, we meta-analyzed isolated epithelium and fiber transcriptomes from embryonic/postnatal, adult and aged lenses. Methods Mouse lens epithelium and fiber transcriptome public datasets at embryonic (E) and postnatal (P) stages E12.5, E14.5, E16.5, E18.5, P0.5, P0, P5, P13, and age one month, three months, six months, and two years were analyzed. Microarray or RNA-seq data were analyzed by appropriate methods and compared to other resources (e.g., Cat-Map, CompBio). Results Across all RNA-seq datasets examined, 2466 genes are differentially expressed between epithelium and fibers, of which 106 are cataract-linked. Gene ontology enrichment validates epithelial and fiber expression, corroborating the meta-analysis. Whole embryonic-body-in silico subtraction and other analyses identify several new high-priority epithelial- and/or fiber-enriched genes (e.g., Casz1, Ell2). Furthermore, new insights into cell-specific regulatory processes at distinct stages are identified (e.g., ribonucleoprotein regulation in E12.5 epithelium). Finally, this data is made accessible at iSyTE (https://research.bioinformatics.udel.edu/iSyTE/). Conclusions This spatiotemporal transcriptome meta-analysis comprehensively informs on epithelium- and fiber-specific regulatory processes in developing, adult and aged lenses. Notably, it includes the first description of an embryonic stage (i.e., E12.5) representing early primary fiber differentiation, thus informing on the initial transcriptome changes as lens cell-types are readily distinguishable.
Collapse
Affiliation(s)
- Matthieu Duot
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France
| | - Sarah Y. Coomson
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Sanjaya K. Shrestha
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | | | - Yann Audic
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France
| | - Ruteja A. Barve
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
| | - Carole Gautier-Courteille
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France
| | - Luc Paillard
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
3
|
Nakao Y, Okamoto K, Tazawa I, Nishijima T, Furuno N, Sakuma T, Yamamoto T, Takeuchi T, Hayashi T. Effect of Cdk1 gene disruption on cell cycle progression in newt cells. Dev Growth Differ 2025; 67:85-93. [PMID: 39776058 DOI: 10.1111/dgd.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Cyclin-dependent kinases (CDKs) are key regulators of cell cycle progression, in conjunction with cyclins. The cyclin-CDK system is highly conserved among eukaryotes, and CDK1 is considered essential for progression through the M phase. However, the extent to which cell cycle progression depends on CDK1 varies between cell types. Therefore, a range of cell types must be analyzed to comprehensively elucidate the role of CDK1. Cdk1-knockout mice exhibit lethality at an early developmental stage, specifically before the differentiation of various cell types. The aim of the present study was to characterize the effects of CDK1 deficiency in amphibian newts. Cdk1 was disrupted by injecting fertilized newt eggs with CRISPR/Cas9, and the resulting effects on embryonic development and cell proliferation were then evaluated. In both wild-type and Cdk1-crispant newt embryos, CDK1 protein was either stored in the egg until late embryogenesis or potentially derived from maternal mRNA, which may also be stored during this period. The embryos survived to the hatching stage, during which the cells responsible for forming the basic organs differentiated. To further characterize the long-term effects of Cdk1 knockout, parabiosis experiments were conducted using wild-type embryos and Cdk1 crispants. The results suggested that an endocycle occurred in the crispant larvae, as evidenced by increases in the size of several types of cells. It is anticipated that studies using newts will provide further insights into the role of Cdk1 in regulating the cell cycle.
Collapse
Affiliation(s)
- Yuta Nakao
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kazuko Okamoto
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ichiro Tazawa
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tatsuro Nishijima
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Nobuaki Furuno
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tetsushi Sakuma
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Hiroshima University Genome Editing Center, Higashi-Hiroshima, Japan
| | - Takashi Takeuchi
- Department of Biomedical Sciences, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Toshinori Hayashi
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
4
|
Rayêe D, Meier UT, Eliscovich C, Cvekl A. Continuous nucleolar ribosomal RNA synthesis in differentiating lens fiber cells until abrupt nuclear degradation required for ocular lens transparency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619434. [PMID: 39484610 PMCID: PMC11526875 DOI: 10.1101/2024.10.21.619434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Cellular differentiation requires highly coordinate action of all three transcriptional systems to produce rRNAs, mRNAs, and various "short" and "long" non-coding RNAs by RNA Polymerase I, II, and III systems, respectively. The RNA Polymerase I catalyzes transcription of about 400 copies of rDNA genes generating 18S, 5.8S, and 28S rRNA molecules from the individual primary transcript. Lens fiber cell differentiation is a unique process to study transcriptional mechanisms of individual crystallin genes as their very high transcriptional outputs are directly comparable only to globin genes in erythrocytes. Importantly, both terminally differentiated lens fiber cells and mammalian erythrocytes degrade their nuclei though by different mechanisms. In lens, generation of organelle-free zone (OFZ) includes degradation of mitochondria, endoplasmic reticulum, Golgi apparatus, and nuclei; nevertheless, very little is known about their nucleoli and rRNA transcription. Here, using RNA fluorescence in situ hybridization (FISH) we evaluated nascent rRNA transcription during the entire process of lens fiber cell differentiation. The lens fiber cell nuclei undergo morphological changes prior their denucleation, including chromatin condensation; remarkably, the nascent rRNA transcription persists in all nuclei next to the OFZ. The changes in both nuclei and nucleoli shape and microarchitecture were evaluated by immunofluorescence to detect fibrillarin, nucleolin, UBF, and other nuclear proteins. These studies demonstrate for the first time that highly condensed lens fiber cell nuclei have the capacity to support rRNA transcription. Thus, "late" production of rRNA molecules and consequently the ribosomes contribute to the terminal translational mechanisms to produce maximal quantities of the crystallin proteins.
Collapse
|
5
|
Mahiny D, Hauck L, Premsingh B, Grothe D, Billia F. Cdk1 Deficiency Extends the Postnatal Window of Cardiomyocyte Proliferation and Restores Cardiac Function after Myocardial Infarction. Int J Mol Sci 2024; 25:10824. [PMID: 39409153 DOI: 10.3390/ijms251910824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) is a master regulator of the G2-M transition between DNA replication and cell division. This study investigates the regulation of cardiomyocyte (CM) proliferation during the early neonatal period and following ischemic injury in adult mice. We analyzed cell cycle dynamics with the assessment of DNA synthesis, and cytokinesis in murine hearts during the first 15 days after birth. A distinct proliferative block was observed at 1 day, followed by a second wave of DNA synthesis at 4 days, leading to CM binucleation (CMBN) by day 5. Genome-wide mRNA profiling revealed the differential expression of cell cycle regulatory genes during this period, with a downregulation of factors involved in cell division and mitosis. The loss of Cdk1 impaired CMBN but extended the neonatal CM proliferation window until day 10 post-birth. In adult hearts, the cardiac-specific ablation of Cdk1 triggered CM proliferation post-myocardial-infarction (MI) in specific zones, driven by the activation of EGFR1 signaling and suppression of the anti-proliferative p38 and p53 signaling. This was accompanied by restoration of fractional shortening, mitochondrial function, and decreased reactive oxygen species. Additionally, cardiac hypertrophy was mitigated, and survival rates post-MI were increased in Cdk1-knockout mice. These findings reveal a novel role of Cdk1 in regulating cell cycle exit and re-entry in differentiated CMs and offer insights into potential strategies for cardiac repair.
Collapse
Affiliation(s)
- Donya Mahiny
- Toronto General Hospital Research Institute, 100 College St., Toronto, ON M5G 1L7, Canada
| | - Ludger Hauck
- Toronto General Hospital Research Institute, 100 College St., Toronto, ON M5G 1L7, Canada
| | - Benny Premsingh
- Toronto General Hospital Research Institute, 100 College St., Toronto, ON M5G 1L7, Canada
| | - Daniela Grothe
- Toronto General Hospital Research Institute, 100 College St., Toronto, ON M5G 1L7, Canada
| | - Filio Billia
- Toronto General Hospital Research Institute, 100 College St., Toronto, ON M5G 1L7, Canada
- Division of Cardiology, University Health Network (UHN), 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
| |
Collapse
|
6
|
Despin-Guitard E, Rosa VS, Plunder S, Mathiah N, Van Schoor K, Nehme E, Merino-Aceituno S, Egea J, Shahbazi MN, Theveneau E, Migeotte I. Non-apical mitoses contribute to cell delamination during mouse gastrulation. Nat Commun 2024; 15:7364. [PMID: 39198421 PMCID: PMC11358383 DOI: 10.1038/s41467-024-51638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
During the epithelial-mesenchymal transition driving mouse embryo gastrulation, cells divide more frequently at the primitive streak, and half of those divisions happen away from the apical pole. These observations suggest that non-apical mitoses might play a role in cell delamination. We aim to uncover and challenge the molecular determinants of mitosis position in different regions of the epiblast through computational modeling and pharmacological treatments of embryos and stem cell-based epiblast spheroids. Blocking basement membrane degradation at the streak has no impact on the asymmetry in mitosis frequency and position. By contrast, disturbance of the actomyosin cytoskeleton or cell cycle dynamics elicits ectopic non-apical mitosis and shows that the streak region is characterized by local relaxation of the actomyosin cytoskeleton and less stringent regulation of cell division. These factors are essential for normal dynamics at the streak and favor cell delamination from the epiblast.
Collapse
Affiliation(s)
- Evangéline Despin-Guitard
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Viviane S Rosa
- MRC Laboratory of Molecular Biology, CB2 0QH, Cambridge, UK
| | - Steffen Plunder
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
| | - Navrita Mathiah
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Kristof Van Schoor
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Eliana Nehme
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Sara Merino-Aceituno
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
| | - Joaquim Egea
- Molecular and Developmental Neurobiology, Dept. Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Rovira Roure 80, 25198, Lleida, Spain
| | | | - Eric Theveneau
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Isabelle Migeotte
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium.
| |
Collapse
|
7
|
Camerino M, Chang W, Cvekl A. Analysis of long-range chromatin contacts, compartments and looping between mouse embryonic stem cells, lens epithelium and lens fibers. Epigenetics Chromatin 2024; 17:10. [PMID: 38643244 PMCID: PMC11031936 DOI: 10.1186/s13072-024-00533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/08/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Nuclear organization of interphase chromosomes involves individual chromosome territories, "open" and "closed" chromatin compartments, topologically associated domains (TADs) and chromatin loops. The DNA- and RNA-binding transcription factor CTCF together with the cohesin complex serve as major organizers of chromatin architecture. Cellular differentiation is driven by temporally and spatially coordinated gene expression that requires chromatin changes of individual loci of various complexities. Lens differentiation represents an advantageous system to probe transcriptional mechanisms underlying tissue-specific gene expression including high transcriptional outputs of individual crystallin genes until the mature lens fiber cells degrade their nuclei. RESULTS Chromatin organization between mouse embryonic stem (ES) cells, newborn (P0.5) lens epithelium and fiber cells were analyzed using Hi-C. Localization of CTCF in both lens chromatins was determined by ChIP-seq and compared with ES cells. Quantitative analyses show major differences between number and size of TADs and chromatin loop size between these three cell types. In depth analyses show similarities between lens samples exemplified by overlaps between compartments A and B. Lens epithelium-specific CTCF peaks are found in mostly methylated genomic regions while lens fiber-specific and shared peaks occur mostly within unmethylated DNA regions. Major differences in TADs and loops are illustrated at the ~ 500 kb Pax6 locus, encoding the critical lens regulatory transcription factor and within a larger ~ 15 Mb WAGR locus, containing Pax6 and other loci linked to human congenital diseases. Lens and ES cell Hi-C data (TADs and loops) together with ATAC-seq, CTCF, H3K27ac, H3K27me3 and ENCODE cis-regulatory sites are shown in detail for the Pax6, Sox1 and Hif1a loci, multiple crystallin genes and other important loci required for lens morphogenesis. The majority of crystallin loci are marked by unexpectedly high CTCF-binding across their transcribed regions. CONCLUSIONS Our study has generated the first data on 3-dimensional (3D) nuclear organization in lens epithelium and lens fibers and directly compared these data with ES cells. These findings generate novel insights into lens-specific transcriptional gene control, open new research avenues to study transcriptional condensates in lens fiber cells, and enable studies of non-coding genetic variants linked to cataract and other lens and ocular abnormalities.
Collapse
Affiliation(s)
- Michael Camerino
- The Departments Genetics, Albert Einstein College of Medicine, NY10461, Bronx, USA
| | - William Chang
- Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, NY10461, Bronx, USA
| | - Ales Cvekl
- The Departments Genetics, Albert Einstein College of Medicine, NY10461, Bronx, USA.
- Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, NY10461, Bronx, USA.
| |
Collapse
|
8
|
Weinberg J, Whitcomb E, Bohm A, Chekkilla UK, Taylor A. The E3 ligase SMURF1 stabilizes p27 via UbcH7 catalyzed K29-linked ubiquitin chains to promote cell migration SMURF1-UbcH7 K29 ubiquitination of p27 and cell migration. J Biol Chem 2024; 300:105693. [PMID: 38301893 PMCID: PMC10897894 DOI: 10.1016/j.jbc.2024.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Ubiquitination is a key regulator of protein stability and function. The multifunctional protein p27 is known to be degraded by the proteasome following K48-linked ubiquitination. However, we recently reported that when the ubiquitin-conjugating enzyme UbcH7 (UBE2L3) is overexpressed, p27 is stabilized, and cell cycle is arrested in multiple diverse cell types including eye lens, retina, HEK-293, and HELA cells. However, the ubiquitin ligase associated with this stabilization of p27 remained a mystery. Starting with an in vitro ubiquitination screen, we identified RSP5 as the yeast E3 ligase partner of UbcH7 in the ubiquitination of p27. Screening of the homologous human NEDD4 family of E3 ligases revealed that SMURF1 but not its close homolog SMURF2, stabilizes p27 in cells. We found that SMURF1 ubiquitinates p27 with K29O but not K29R or K63O ubiquitin in vitro, demonstrating a strong preference for K29 chain formation. Consistent with SMURF1/UbcH7 stabilization of p27, we also found that SMURF1, UbcH7, and p27 promote cell migration, whereas knockdown of SMURF1 or UbcH7 reduces cell migration. We further demonstrated the colocalization of SMURF1/p27 and UbcH7/p27 at the leading edge of migrating cells. In sum, these results indicate that SMURF1 and UbcH7 work together to produce K29-linked ubiquitin chains on p27, resulting in the stabilization of p27 and promoting its cell-cycle independent function of regulating cell migration.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research Human Nutrition Research Center on Aging Tufts University
| | - Elizabeth Whitcomb
- Laboratory for Nutrition and Vision Research Human Nutrition Research Center on Aging Tufts University
| | - Andrew Bohm
- Laboratory for Nutrition and Vision Research Human Nutrition Research Center on Aging Tufts University
| | - Uday Kumar Chekkilla
- Laboratory for Nutrition and Vision Research Human Nutrition Research Center on Aging Tufts University
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research Human Nutrition Research Center on Aging Tufts University.
| |
Collapse
|
9
|
Brennan L, Disatham J, Menko AS, Kantorow M. Multiomic analysis implicates FOXO4 in genetic regulation of chick lens fiber cell differentiation. Dev Biol 2023; 504:25-37. [PMID: 37722500 PMCID: PMC10843493 DOI: 10.1016/j.ydbio.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < -0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation.
Collapse
Affiliation(s)
- Lisa Brennan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Joshua Disatham
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marc Kantorow
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
10
|
Tanaka T, Miyakoshi Y, Kobayashi Y, Xiaolong S, Daiyang Y, Ochi H, Sato S, Kato T, Yoshii T, Okawa A, Kaldis P, Inose H. Regulation of Osteoblast to Osteocyte Differentiation by Cyclin-Dependent Kinase-1. Adv Biol (Weinh) 2023; 7:e2300136. [PMID: 37424388 DOI: 10.1002/adbi.202300136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/16/2023] [Indexed: 07/11/2023]
Abstract
Osteocytes have recently been identified as a new regulator of bone remodeling, but the detailed mechanism of their differentiation from osteoblasts remains unclear. The purpose of this study is to identify cell cycle regulators involved in the differentiation of osteoblasts into osteocytes and determine their physiological significance. The study uses IDG-SW3 cells as a model for the differentiation from osteoblasts to osteocytes. Among the major cyclin-dependent kinases (Cdks), Cdk1 is most abundantly expressed in IDG-SW3 cells, and its expression is down-regulated during differentiation into osteocytes. Inhibition of CDK1 activity reduces IDG-SW3 cell proliferation and differentiation into osteocytes. Osteocyte and Osteoblast-specific Cdk1 knockout in mice (Dmp1-Cdk1KO ) results in trabecular bone loss. Pthlh expression increases during differentiation, but inhibiting CDK1 activity reduces Pthlh expression. Parathyroid hormone-related protein concentration is reduced in the bone marrow of Dmp1-Cdk1KO mice. Four weeks of Parathyroid hormone administration partially recovers the trabecular bone loss in Dmp1-Cdk1KO mice. These results demonstrate that Cdk1 plays an essential role in the differentiation from osteoblast to osteocyte and the acquisition and maintenance of bone mass. The findings contribute to a better understanding of the mechanisms of bone mass regulation and can help develop efficient therapeutic strategies for osteoporosis treatment.
Collapse
Affiliation(s)
- Tomoyuki Tanaka
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
- Department of Orthopaedic Surgery, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya-shi, Saitama, 343-8555, Japan
| | - Yuri Miyakoshi
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Yutaka Kobayashi
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Sun Xiaolong
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Yu Daiyang
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Hiroki Ochi
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama, 359-8555, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University Hospital, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Tsuyoshi Kato
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Toshitaka Yoshii
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Atsushi Okawa
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC) Box 50332, Malmö, SE-202 13, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Malmö, SE-202 13, Sweden
| | - Hiroyuki Inose
- Department of Orthopaedic Surgery, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya-shi, Saitama, 343-8555, Japan
- Department of Orthopedic and Trauma Research, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| |
Collapse
|
11
|
Gheyas R, Menko AS. The involvement of caspases in the process of nuclear removal during lens fiber cell differentiation. Cell Death Discov 2023; 9:386. [PMID: 37865680 PMCID: PMC10590423 DOI: 10.1038/s41420-023-01680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
The terminal differentiation of lens fiber cells involves elimination of their organelles, which must occur while still maintaining their functionality throughout a lifetime. Removal of non-nuclear organelles is accomplished through induction of autophagy following the spatiotemporal suppression of the PI3K/Akt signaling axis. However, blocking this pathway is not alone sufficient to induce removal of fiber cell nuclei. While the final steps in fiber cell nuclear elimination are highlighted by the appearance of TUNEL-positive nuclei, which are associated with activation of the lens-specific DNaseIIβ, there are many steps in the process that precede the appearance of double stranded DNA breaks. We showed that this carefully regulated process, including the early changes in nuclear morphology resulting in nuclear condensation, cleavage of lamin B, and labeling by pH2AX, is reminiscent of the apoptotic process associated with caspase activation. Multiple caspases are known to be expressed and activated during lens cell differentiation. In this study, we investigated the link between two caspase downstream targets associated with apoptosis, ICAD, whose cleavage by caspase-3 leads to activation of CAD, a DNase that can create both single- and double-stranded DNA cleavages, and lamin B, a primary component of the nuclear lamina. We discovered that the specific inhibition of caspase-3 activation prevents both lamin B and DNA cleavage. Inhibiting caspase-3 did not prevent nuclear condensation or removal of the nuclear membrane. In contrast, a pan-caspase inhibitor effectively suppressed condensation of fiber cell nuclei during differentiation. These studies provide evidence that caspases play an important role in the process of removing fiber cell nuclei during lens differentiation.
Collapse
Affiliation(s)
- Rifah Gheyas
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, US
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, US.
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, US.
| |
Collapse
|
12
|
Giannone AA, Sellitto C, Rosati B, McKinnon D, White TW. Single-Cell RNA Sequencing Analysis of the Early Postnatal Mouse Lens Epithelium. Invest Ophthalmol Vis Sci 2023; 64:37. [PMID: 37870847 PMCID: PMC10599162 DOI: 10.1167/iovs.64.13.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose The lens epithelium maintains the overall health of the organ. We used single-cell RNA sequencing (scRNA-seq) technology to assess transcriptional heterogeneity between cells in the postnatal day 2 (P2) epithelium and identify distinct epithelial cell subtypes. Analysis of these data was used to better understand lens growth, differentiation, and homeostasis on P2. Methods scRNA-seq on P2 mouse lenses was performed using the 10x Genomics Chromium Single Cell 3' Kit (v3.1) and short-read Illumina sequencing. Sequence alignment and preprocessing of data were conducted using 10x Genomics Cell Ranger software. Seurat was employed for preprocessing, quality control, dimensionality reduction, and cell clustering, and Monocle was utilized for trajectory analysis to understand the developmental progression of the lens cells. CellChat and GO analyses were used to explore cell-cell communication networks and signaling interactions. Results Lens epithelial cells (LECs) were divided into seven subclusters, classified by specific gene markers. The expression of crystallin, cell-cycle, and metabolic genes was not uniform, indicating distinct functional roles of LECs. Trajectory analysis predicted a bifurcation of differentiating and cycling cells from an Igfbp5+ progenitor pool. We also identified heterogeneity in signaling molecules and pathways, suggesting that cycling and progenitor subclusters have prominent roles in coordinating crosstalk. Conclusions scRNA-seq corroborated many known markers of epithelial differentiation and proliferation while providing further insight into the pathways and genes directing these processes. Interestingly, we demonstrated that the developing epithelium can be divided into distinct subpopulations. These clusters reflect the transcriptionally diverse roles of the epithelium in proliferation, signaling, and maintenance.
Collapse
Affiliation(s)
- Adrienne A. Giannone
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Caterina Sellitto
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Barbara Rosati
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook University, Stony Brook, New York, United States
- Veterans Affairs Medical Center, Northport, New York, United States
| | - David McKinnon
- Department of Neurobiology and Behavior, Stony Brook University School of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Thomas W. White
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook University, Stony Brook, New York, United States
| |
Collapse
|
13
|
Tsissios G, Theodoroudis-Rapp G, Chen W, Sallese A, Smucker B, Ernst L, Chen J, Xu Y, Ratvasky S, Wang H, Del Rio-Tsonis K. Characterizing the lens regeneration process in Pleurodeles waltl. Differentiation 2023; 132:15-23. [PMID: 37055300 PMCID: PMC10493237 DOI: 10.1016/j.diff.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Aging and regeneration are heavily linked processes. While it is generally accepted that regenerative capacity declines with age, some vertebrates, such as newts, can bypass the deleterious effects of aging and successfully regenerate a lens throughout their lifetime. RESULTS Here, we used Spectral-Domain Optical Coherence Tomography (SD-OCT) to monitor the lens regeneration process of larvae, juvenile, and adult newts. While all three life stages were able to regenerate a lens through transdifferentiation of the dorsal iris pigment epithelial cells (iPECs), an age-related change in the kinetics of the regeneration process was observed. Consistent with these findings, iPECs from older animals exhibited a delay in cell cycle re-entry. Furthermore, it was observed that clearance of the extracellular matrix (ECM) was delayed in older organisms. CONCLUSIONS Collectively, our results suggest that although lens regeneration capacity does not decline throughout the lifespan of newts, the intrinsic and extrinsic cellular changes associated with aging alter the kinetics of this process. By understanding how these changes affect lens regeneration in newts, we can gain important insights for restoring the age-related regeneration decline observed in most vertebrates.
Collapse
Affiliation(s)
- Georgios Tsissios
- Department of Biology Miami University, Oxford, OH, USA; Center for Visual Sciences at Miami University, Oxford, OH, USA; Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | | | - Weihao Chen
- Center for Visual Sciences at Miami University, Oxford, OH, USA; Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA; Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Anthony Sallese
- Department of Biology Miami University, Oxford, OH, USA; Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Byran Smucker
- Center for Visual Sciences at Miami University, Oxford, OH, USA; Department of Statistics, Miami University, Oxford, OH, USA
| | - Lake Ernst
- Department of Biology Miami University, Oxford, OH, USA
| | - Junfan Chen
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Yiqi Xu
- Department of Biology Miami University, Oxford, OH, USA
| | - Sophia Ratvasky
- Department of Biology Miami University, Oxford, OH, USA; Center for Visual Sciences at Miami University, Oxford, OH, USA; Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Hui Wang
- Center for Visual Sciences at Miami University, Oxford, OH, USA; Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Katia Del Rio-Tsonis
- Department of Biology Miami University, Oxford, OH, USA; Center for Visual Sciences at Miami University, Oxford, OH, USA; Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA.
| |
Collapse
|
14
|
Li H, Gao L, Du J, Ma T, Li W, Ye Z, Li Z. Impacts of autophagy on the formation of organelle-free zone during the lens development. Mol Biol Rep 2023; 50:4551-4564. [PMID: 36877352 DOI: 10.1007/s11033-023-08323-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
The thorough degeneration of organelles in the core of the lens is certainly a hallmark event during the lens development. Organelles degradation in the terminal differentiation process of lens fiber cells to form an organelle-free zone is critical for lens maturation and transparency. Several mechanisms have been proposed to expand our understanding of lens organelles degradation, including apoptotic pathways, the participation of ribozyme, proteolytic enzyme and phospholipase A and acyltransferase, and the newly discovered roles for autophagy. Autophagy is a lysosome-dependent degradation reaction during which the "useless" cellular components are degraded and recycled. These cellular components, such as incorrectly folded proteins, damaged organelles and other macromolecules, are first engulfed by the autophagosome before being further delivered to lysosomes for degradation. Although autophagy has been recognized involving in organelle degradation of the lens, the detailed functions remain to be discovered. Recent advances have revealed that autophagy not only plays a vital role in the intracellular quality control of the lens but is also involved in the degradation of nonnuclear organelles in the process of lens fiber cell differentiation. Herein, we first review the potential mechanisms of organelle-free zone formation, then discuss the roles of autophagy in intracellular quality control and cataract formation, and finally substantially summarize the potential involvement of autophagy in the development of organelle-free zone formation.
Collapse
Affiliation(s)
- Hongyu Li
- Medical School of Chinese PLA, Beijing, China.,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Lixiong Gao
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Jinlin Du
- Medical School of Chinese PLA, Beijing, China.,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Tianju Ma
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Wen Li
- Medical School of Chinese PLA, Beijing, China.,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China.
| | - Zhaohui Li
- Medical School of Chinese PLA, Beijing, China. .,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
15
|
Liton PB, Boesze-Battaglia K, Boulton ME, Boya P, Ferguson TA, Ganley IG, Kauppinnen A, Laurie GW, Mizushima N, Morishita H, Russo R, Sadda J, Shyam R, Sinha D, Thompson DA, Zacks DN. AUTOPHAGY IN THE EYE: FROM PHYSIOLOGY TO PATHOPHYSOLOGY. AUTOPHAGY REPORTS 2023; 2:2178996. [PMID: 37034386 PMCID: PMC10078619 DOI: 10.1080/27694127.2023.2178996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/26/2023] [Indexed: 03/05/2023]
Abstract
Autophagy is a catabolic self-degradative pathway that promotes the degradation and recycling of intracellular material through the lysosomal compartment. Although first believed to function in conditions of nutritional stress, autophagy is emerging as a critical cellular pathway, involved in a variety of physiological and pathophysiological processes. Autophagy dysregulation is associated with an increasing number of diseases, including ocular diseases. On one hand, mutations in autophagy-related genes have been linked to cataracts, glaucoma, and corneal dystrophy; on the other hand, alterations in autophagy and lysosomal pathways are a common finding in essentially all diseases of the eye. Moreover, LC3-associated phagocytosis, a form of non-canonical autophagy, is critical in promoting visual cycle function. This review collects the latest understanding of autophagy in the context of the eye. We will review and discuss the respective roles of autophagy in the physiology and/or pathophysiology of each of the ocular tissues, its diurnal/circadian variation, as well as its involvement in diseases of the eye.
Collapse
Affiliation(s)
- Paloma B. Liton
- Departments of Ophthalmology & Pathology, Duke School of Medicine, Duke University, Durham, NC 27705, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Patricia Boya
- Department of Neuroscience and Movement Science. Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Thomas A. Ferguson
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Anu Kauppinnen
- Faculty of Health and Sciences, School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Gordon W. Laurie
- Departments of Cell Biology, Ophthalmology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 113-0033, Japan
| | - Hideaki Morishita
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 113-0033, Japan
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Glaucoma Unit, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Jaya Sadda
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Debasish Sinha
- Department of Ophthalmology, Cell Biology, and Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debra A. Thompson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David N. Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Taylor A, Gu Y, Chang ML, Yang W, Francisco S, Rowan S, Bejarano E, Pruitt S, Zhu L, Weiss G, Brennan L, Kantorow M, Whitcomb EA. Repurposing a Cyclin-Dependent Kinase 1 (CDK1) Mitotic Regulatory Network to Complete Terminal Differentiation in Lens Fiber Cells. Invest Ophthalmol Vis Sci 2023; 64:6. [PMID: 36734965 PMCID: PMC9907369 DOI: 10.1167/iovs.64.2.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/22/2022] [Indexed: 02/04/2023] Open
Abstract
Purpose During lens fiber cell differentiation, organelles are removed in an ordered manner to ensure lens clarity. A critical step in this process is removal of the cell nucleus, but the mechanisms by which this occurs are unclear. In this study, we investigate the role of a cyclin-dependent kinase 1 (CDK1) regulatory loop in controlling lens fiber cell denucleation (LFCD). Methods We examined lens differentiation histologically in two different vertebrate models. An embryonic chick lens culture system was used to test the role of CDK1, cell division cycle 25 (CDC25), WEE1, and PP2A in LFCD. Additionally, we used three mouse models that express high levels of the CDK inhibitor p27 to test whether increased p27 levels affect LFCD. Results Using chick lens organ cultures, small-molecule inhibitors of CDK1 and CDC25 inhibit LFCD, while inhibiting the CDK1 inhibitory kinase WEE1 potentiates LFCD. Additionally, treatment with an inhibitor of PP2A, which indirectly inhibits CDK1 activity, also increased LFCD. Three different mouse models that express increased levels of p27 through different mechanisms show impaired LFCD. Conclusions Here we define a conserved nonmitotic role for CDK1 and its upstream regulators in controlling LFCD. We find that CDK1 functionally interacts with WEE1, a nuclear kinase that inhibits CDK1 activity, and CDC25 activating phosphatases in cells where CDK1 activity must be exquisitely regulated to allow for LFCD. We also provide genetic evidence in multiple in vivo models that p27, a CDK1 inhibitor, inhibits lens growth and LFCD.
Collapse
Affiliation(s)
- Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Yumei Gu
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
| | - Min-Lee Chang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
| | - Wenxin Yang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
| | - Sarah Francisco
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
| | - Sheldon Rowan
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Eloy Bejarano
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
| | - Steven Pruitt
- Roswell Park Cancer Institute, Buffalo, New York, United States
| | - Liang Zhu
- Albert Einstein College of Medicine, New York City, New York, United States
| | - Grant Weiss
- Department of Neuroscience Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Lisa Brennan
- Florida Atlantic University, Boca Raton, Florida, United States
| | - Marc Kantorow
- Florida Atlantic University, Boca Raton, Florida, United States
| | - Elizabeth A. Whitcomb
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
| |
Collapse
|
17
|
Weinberg J, Gaur M, Swaroop A, Taylor A. Proteostasis in aging-associated ocular disease. Mol Aspects Med 2022; 88:101157. [PMID: 36459837 PMCID: PMC9742340 DOI: 10.1016/j.mam.2022.101157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
18
|
D’Antin JC, Tresserra F, Barraquer RI, Michael R. Soemmerring's Rings Developed around IOLs, in Human Donor Eyes, Can Present Internal Transparent Areas. Int J Mol Sci 2022; 23:13294. [PMID: 36362082 PMCID: PMC9656497 DOI: 10.3390/ijms232113294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 02/09/2024] Open
Abstract
Soemmerring's rings consist of a ring of lens epithelial derived cells that grow along the periphery of an aphakic lens capsule, or around an intraocular lens. These rings when visualized frontally, appear opaque, however, in some cases the cells that compose these rings are organized in the same fashion as those in normal transparent adult lenses. Thus, our purpose was to test whether any part of the adult Soemmerring's ring could be transparent and how this related to morphological factors. To study this, 16 Soemmerring's rings were extracted from donor eye globes. After imaging, they were thickly sectioned sagittally in order to analyze the degrees of transparency of different areas. All samples were also histologically analyzed using alpha smooth muscle actin, Vimentin, wheat germ agglutinin and DAPI. Our results showed that many samples had some transparent areas, mostly towards the center of their cross-section. Of the factors that we analyzed, only lens fiber organization at the bow region and an increased area of mature lens fiber cells had a significant relation to the degree of transparency at the center. Thus, we can conclude that as Soemmerring's rings mature, they can develop organized and transparent areas of lens cells.
Collapse
Affiliation(s)
- Justin Christopher D’Antin
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, 08021 Barcelona, Spain
- Centro de Oftalmología Barraquer, 08021 Barcelona, Spain
| | - Francesc Tresserra
- Department of Pathology, Institut Universitari Dexeus, 08028 Barcelona, Spain
| | - Rafael I. Barraquer
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, 08021 Barcelona, Spain
- Centro de Oftalmología Barraquer, 08021 Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Ralph Michael
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, 08021 Barcelona, Spain
- Centro de Oftalmología Barraquer, 08021 Barcelona, Spain
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), Leipzig University, 04109 Leipzig, Germany
| |
Collapse
|
19
|
Perepelina K, Zaytseva A, Khudiakov A, Neganova I, Vasichkina E, Malashicheva A, Kostareva A. LMNA mutation leads to cardiac sodium channel dysfunction in the Emery-Dreifuss muscular dystrophy patient. Front Cardiovasc Med 2022; 9:932956. [PMID: 35935653 PMCID: PMC9355377 DOI: 10.3389/fcvm.2022.932956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Pathogenic variants in the LMNA gene are known to cause laminopathies, a broad range of disorders with different clinical phenotypes. LMNA genetic variants lead to tissue-specific pathologies affecting various tissues and organs. Common manifestations of laminopathies include cardiovascular system abnormalities, in particular, cardiomyopathies and conduction disorders. In the present study, we used induced pluripotent stem cells from a patient carrying LMNA p.R249Q genetic variant to create an in vitro cardiac model of laminopathy. Induced pluripotent stem cell-derived cardiomyocytes with LMNA p.R249Q genetic variant showed a decreased sodium current density and an impaired sodium current kinetics alongside with changes in transcription levels of cardiac-specific genes. Thus, we obtained compelling in vitro evidence of an association between LMNA p.R249Q genetic variant and cardiac-related abnormalities.
Collapse
Affiliation(s)
- Kseniya Perepelina
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint-Petersburg, Russia
- Department of Embryology, Faculty of Biology, St Petersburg State University, Saint-Petersburg, Russia
| | - Anastasia Zaytseva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint-Petersburg, Russia
- Laboratory of Biophysics of Synaptics Processes, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Aleksandr Khudiakov
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Irina Neganova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Elena Vasichkina
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Anna Malashicheva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint-Petersburg, Russia
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Anna Kostareva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint-Petersburg, Russia
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
20
|
Sun Y, Wang X, Chen B, Huang M, Ma P, Xiong L, Huang J, Chen J, Huang S, Liu Y. TFEB-Mediated Lysosomal Restoration Alleviates High Glucose-Induced Cataracts Via Attenuating Oxidative Stress. Invest Ophthalmol Vis Sci 2022; 63:26. [PMID: 35758908 PMCID: PMC9248753 DOI: 10.1167/iovs.63.6.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Diabetic cataract (DC) is a visual disorder arising from diabetes mellitus (DM). Autophagy, a prosurvival intracellular process through lysosomal fusion and degradation, has been implicated in multiple diabetic complications. Herein, we performed in vivo and in vitro assays to explore the specific roles of the autophagy-lysosome pathway in DC. Methods Streptozotocin-induced DM and incubation in high glucose (HG) led to rat lens opacification. Protein Simple Wes, Western blot, and immunoassay were utilized to investigate autophagic changes in lens epithelial cells (LECs) and lens fiber cells (LFCs). RNA-sequencing (RNA-seq) was performed to explore genetic changes in the lenses of diabetic rats. Moreover, autophagy-lysosomal functions were examined using lysotracker, Western blot, and immunofluorescence analyses in HG-cultured primary rabbit LECs. Results First, DM and HG culture led to fibrotic LECs, swelling LFCs, and eventually cataracts. Further analysis showed aberrant autophagic degradation in LECs and LFCs during cataract formation. RNA-seq data revealed that the differentially expressed genes (DEGs) were enriched in the lysosome pathway. In primary LECs, HG treatment resulted in decreased transcription factor EB (TFEB) and cathepsin B (CTSB) activity, and increased lysosomal size and pH values. Moreover, TFEB-mediated dysfunctional lysosomes resulted from excessive oxidative stress in LECs under HG conditions. Furthermore, TFEB activation by curcumin analog C1 alleviated HG-induced cataracts through enhancing lysosome biogenesis and activating protective autophagy, thereby attenuating HG-mediated oxidative damage. Conclusions In summary, we first identified that ROS-TFEB-dependent lysosomal dysfunction contributed to autophagy blockage in HG-induced cataracts. Additionally, TFEB-mediated lysosomal restoration might be a promising therapeutic method for preventing and treating DC through mitigating oxidative stress.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Baoxin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Mi Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Pengjuan Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Lang Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jingqi Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jieping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Shan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
21
|
Zhao M, Mei T, Shang B, Zou B, Lian Q, Xu W, Wu K, Lai Y, Liu C, Wei L, Zhu J, Zhang K, Liu Y, Zhao L. Defect of LSS Disrupts Lens Development in Cataractogenesis. Front Cell Dev Biol 2021; 9:788422. [PMID: 34926465 PMCID: PMC8675080 DOI: 10.3389/fcell.2021.788422] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022] Open
Abstract
Congenital cataract is one of the leading causes of blindness in children worldwide. About one-third of congenital cataracts are caused by genetic defects. LSS, which encodes lanosterol synthase, is a causal gene for congenital cataracts. LSS is critical in preventing abnormal protein aggregation of various cataract-causing mutant crystallins; however, its roles in lens development remain largely unknown. In our study, we generated a mouse model harboring Lss G589S mutation, which is homologous to cataract-causing G588S mutation in human LSS. LssG589S/G589S mice exhibited neonatal lethality at postal day 0 (P0), whereas these mice showed severe opacity in eye lens. Also, we found that cataract was formed at E17.5 after we examined the opacity of embryonic lens from E13.5 to E18.5. Moreover, disrupted lens differentiation occurred at E14.5 prior to formation of the opacity of eye lens, shown as delayed differentiation of lens secondary fiber and disordered lens fiber organization. In addition, RNA-seq analysis indicated that cholesterol synthesis signaling pathways were significantly downregulated. Overall, our findings provide clear evidence that a mouse model harboring a homozygous Lss G589S mutation can recapitulate human congenital cataract. Our study points out that LSS functions as a critical determinant of lens development, which will contribute to better understanding LSS defects in cataractogenesis and developing therapies for cataracts.
Collapse
Affiliation(s)
- Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Tingfang Mei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bizhi Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qing Lian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.,Dongguan Guangming Ophthalmic Hospital, Dongguan, China
| | - Wenchang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuhua Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chujun Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jie Zhu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kang Zhang
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology and University Hospital, Macau, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
22
|
Rowan S, Jiang S, Francisco SG, Pomatto LCD, Ma Z, Jiao X, Campos MM, Aryal S, Patel SD, Mahaling B, Riazuddin SA, Duh EJ, Lachke SA, Hejtmancik JF, de Cabo R, FitzGerald PG, Taylor A. Aged Nrf2-Null Mice Develop All Major Types of Age-Related Cataracts. Invest Ophthalmol Vis Sci 2021; 62:10. [PMID: 34882206 PMCID: PMC8665303 DOI: 10.1167/iovs.62.15.10] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Age-related cataracts affect the majority of older adults and are a leading cause of blindness worldwide. Treatments that delay cataract onset or severity have the potential to delay cataract surgery, but require relevant animal models that recapitulate the major types of cataracts for their development. Unfortunately, few such models are available. Here, we report the lens phenotypes of aged mice lacking the critical antioxidant transcription factor Nfe2l2 (designated as Nrf2 −/−). Methods Three independent cohorts of Nrf2 −/− and wild-type C57BL/6J mice were evaluated for cataracts using combinations of slit lamp imaging, photography of freshly dissected lenses, and histology. Mice were fed high glycemic diets, low glycemic diets, regular chow ad libitum, or regular chow with 30% caloric restriction. Results Nrf2 −/− mice developed significant opacities between 11 and 15 months and developed advanced cortical, posterior subcapsular, anterior subcapsular, and nuclear cataracts. Cataracts occurred similarly in male mice fed high or low glycemic diets, and were also observed in 21-month male and female Nrf2 −/− mice fed ad libitum or 30% caloric restriction. Histological observation of 18-month cataractous lenses revealed significant disruption to fiber cell architecture and the retention of nuclei throughout the cortical region of the lens. However, fiber cell denucleation and initiation of lens differentiation was normal at birth, with the first abnormalities observed at 3 months. Conclusions Nrf2 −/− mice offer a tool to understand how defective antioxidant signaling causes multiple forms of cataract and may be useful for screening drugs to prevent or delay cataractogenesis in susceptible adults.
Collapse
Affiliation(s)
- Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States.,Department of Ophthalmology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, United States.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, United States
| | - Shuhong Jiang
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
| | - Sarah G Francisco
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
| | - Laura C D Pomatto
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, Maryland, United States
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Maria M Campos
- NEI Histology Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Shaili D Patel
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Binapani Mahaling
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - S Amer Riazuddin
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Elia J Duh
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, Maryland, United States
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States
| | - Allen Taylor
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States.,Department of Ophthalmology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, United States.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, United States
| |
Collapse
|
23
|
Wu W, Lois N, Prescott AR, Brown AP, Van Gerwen V, Tassignon MJ, Richards SA, Saunter CD, Jarrin M, Quinlan RA. The importance of the epithelial fibre cell interface to lens regeneration in an in vivo rat model and in a human bag-in-the-lens (BiL) sample. Exp Eye Res 2021; 213:108808. [PMID: 34762932 DOI: 10.1016/j.exer.2021.108808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
Human lens regeneration and the Bag-in-the-Lens (BIL) surgical treatment for cataract both depend upon lens capsule closure for their success. Our studies suggest that the first three days after surgery are critical to their long-term outcomes. Using a rat model of lens regeneration, we evidenced lens epithelial cell (LEC) proliferation increased some 50 fold in the first day before rapidly declining to rates observed in the germinative zone of the contra-lateral, un-operated lens. Cell multi-layering at the lens equator occurred on days 1 and 2, but then reorganised into two discrete layers by day 3. E- and N-cadherin expression preceded cell polarity being re-established during the first week. Aquaporin 0 (AQP0) was first detected in the elongated cells at the lens equator at day 7. Cells at the capsulotomy site, however, behaved very differently expressing the epithelial mesenchymal transition (EMT) markers fibronectin and alpha-smooth muscle actin (SMA) from day 3 onwards. The physical interaction between the apical surfaces of the anterior and posterior LECs from day 3 after surgery preceded cell elongation. In the human BIL sample fibre cell formation was confirmed by both histological and proteome analyses, but the cellular response is less ordered and variable culminating in Soemmerring's ring (SR) formation and sometimes Elschnig's pearls. This we evidence for lenses from a single patient. No bow region or recognisable epithelial-fibre cell interface (EFI) was evident and consequently the fibre cells were disorganised. We conclude that lens cells require spatial and cellular cues to initiate, sustain and produce an optically functional tissue in addition to capsule integrity and the EFI.
Collapse
Affiliation(s)
- Weiju Wu
- Department of Biosciences, South Road, Durham University, Durham, DH1 3LE, England, UK
| | - Noemi Lois
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, Northern Ireland, UK.
| | - Alan R Prescott
- Dundee Imaging Facility & Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Adrian P Brown
- Department of Biosciences, South Road, Durham University, Durham, DH1 3LE, England, UK
| | - Veerle Van Gerwen
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Marie-José Tassignon
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Shane A Richards
- School of Natural Sciences, University of Tasmania, Hobart TAS, Australia
| | | | - Miguel Jarrin
- Department of Biosciences, South Road, Durham University, Durham, DH1 3LE, England, UK
| | - Roy A Quinlan
- Department of Biosciences, South Road, Durham University, Durham, DH1 3LE, England, UK.
| |
Collapse
|
24
|
Malashicheva A, Perepelina K. Diversity of Nuclear Lamin A/C Action as a Key to Tissue-Specific Regulation of Cellular Identity in Health and Disease. Front Cell Dev Biol 2021; 9:761469. [PMID: 34722546 PMCID: PMC8548693 DOI: 10.3389/fcell.2021.761469] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
A-type lamins are the main structural components of the nucleus, which are mainly localized at the nucleus periphery. First of all, A-type lamins, together with B-type lamins and proteins of the inner nuclear membrane, form a stiff structure-the nuclear lamina. Besides maintaining the nucleus cell shape, A-type lamins play a critical role in many cellular events, such as gene transcription and epigenetic regulation. Nowadays it is clear that lamins play a very important role in determining cell fate decisions. Various mutations in genes encoding A-type lamins lead to damages of different types of tissues in humans, collectively known as laminopathies, and it is clear that A-type lamins are involved in the regulation of cell differentiation and stemness. However, the mechanisms of this regulation remain unclear. In this review, we discuss how A-type lamins can execute their regulatory role in determining the differentiation status of a cell. We have summarized recent data focused on lamin A/C action mechanisms in regulation of cell differentiation and identity development of stem cells of different origin. We also discuss how this knowledge can promote further research toward a deeper understanding of the role of lamin A/C mutations in laminopathies.
Collapse
Affiliation(s)
- Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Kseniya Perepelina
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
25
|
Gaudette BT, Roman CJ, Ochoa TA, Gómez Atria D, Jones DD, Siebel CW, Maillard I, Allman D. Resting innate-like B cells leverage sustained Notch2/mTORC1 signaling to achieve rapid and mitosis-independent plasma cell differentiation. J Clin Invest 2021; 131:e151975. [PMID: 34473651 DOI: 10.1172/jci151975] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Little is known about how cells regulate and integrate distinct biosynthetic pathways governing differentiation and cell division. For B lineage cells it is widely accepted that activated cells must complete several rounds of mitosis before yielding antibody-secreting plasma cells. However, we report that marginal zone (MZ) B cells, innate-like naive B cells known to generate plasma cells rapidly in response to blood-borne bacteria, generate functional plasma cells despite cell-cycle arrest. Further, short-term Notch2 blockade in vivo reversed division-independent differentiation potential and decreased transcript abundance for numerous mTORC1- and Myc-regulated genes. Myc loss compromised plasma cell differentiation for MZ B cells, and reciprocally induced ectopic mTORC1 signaling in follicular B cells enabled division-independent differentiation and plasma cell-affiliated gene expression. We conclude that ongoing in situ Notch2/mTORC1 signaling in MZ B cells establishes a unique cellular state that enables rapid division-independent plasma cell differentiation.
Collapse
Affiliation(s)
| | - Carly J Roman
- The Department of Pathology and Laboratory Medicine and
| | - Trini A Ochoa
- The Department of Pathology and Laboratory Medicine and
| | - Daniela Gómez Atria
- The Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Derek D Jones
- The Department of Pathology and Laboratory Medicine and
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech Inc., South San Francisco, California, USA
| | - Ivan Maillard
- The Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Allman
- The Department of Pathology and Laboratory Medicine and
| |
Collapse
|
26
|
Chen W, Tsissios G, Sallese A, Smucker B, Nguyen AT, Chen J, Wang H, Del Rio-Tsonis K. In Vivo Imaging of Newt Lens Regeneration: Novel Insights Into the Regeneration Process. Transl Vis Sci Technol 2021; 10:4. [PMID: 34383878 PMCID: PMC8362625 DOI: 10.1167/tvst.10.10.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose To establish optical coherence tomography (OCT) as an in vivo imaging modality for investigating the process of newt lens regeneration. Methods Spectral-domain OCT was employed for in vivo imaging of the newt lens regeneration process. A total of 37 newts were lentectomized and followed by OCT imaging over the course of 60 to 80 days. Histological images were obtained at several time points to compare with the corresponding OCT images. Volume measurements were also acquired. Results OCT can identify the key features observed in corresponding histological images based on the scattering differences from various eye tissues, such as the cornea, intact and regenerated lens, and the iris. Lens volume measurements from three-dimensional OCT images showed that the regenerating lens size increased linearly until 60 days post-lentectomy. Conclusions Using OCT imaging, we were able to track the entire process of newt lens regeneration in vivo for the first time. Three-dimensional OCT images allowed us to volumetrically quantify and visualize the dynamic spatial relationships between tissues during the regeneration process. Our results establish OCT as anin vivo imaging modality to track/analyze the entire lens regeneration process from the same animal. Translational Relevance Lens regeneration in newts represents a unique example of vertebrate tissue plasticity. Investigating the cellular and morphological events that govern this extraordinary process in vivo will advance our understanding and shed light on developing new therapies to treat blinding disorders in higher vertebrates.
Collapse
Affiliation(s)
- Weihao Chen
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Georgios Tsissios
- Department of Biology Miami University, Oxford, OH, USA.,Center for Visual Sciences at Miami University, Oxford, OH, USA.,Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Anthony Sallese
- Department of Biology Miami University, Oxford, OH, USA.,Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Byran Smucker
- Center for Visual Sciences at Miami University, Oxford, OH, USA.,Department of Statistics, Miami University, Oxford, OH, USA
| | - Anh-Thu Nguyen
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Junfan Chen
- Department of Chemistry and Biochemistry, Miami University, Oxford OH, USA
| | - Hui Wang
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA.,Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Katia Del Rio-Tsonis
- Department of Biology Miami University, Oxford, OH, USA.,Center for Visual Sciences at Miami University, Oxford, OH, USA.,Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| |
Collapse
|
27
|
Mechanisms of organelle elimination for lens development and differentiation. Exp Eye Res 2021; 209:108682. [PMID: 34214522 DOI: 10.1016/j.exer.2021.108682] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/03/2021] [Accepted: 06/19/2021] [Indexed: 12/23/2022]
Abstract
A hallmark feature of lens development and differentiation is the complete elimination of organelles from the center of the eye lens. A long unanswered question in lens biology is what are the mechanisms that control the elimination of organelles during the terminal remodeling program to form mature lens fiber cells? Recent advances have expanded our understanding of these mechanisms including newly discovered signaling pathways, proteasomal regulators, autophagy proteins, transcription factors and the hypoxic environment of the lens itself. These recent discoveries suggest that distinct mechanisms coordinate the elimination of the nucleus, mitochondria, endoplasmic reticulum and Golgi apparatus during lens fiber cell differentiation. Since regulation of organelle number and distribution is also a feature of the terminal remodeling programs of more complex cell-types and tissues, these advances are likely to impact a wide-variety of fields.
Collapse
|
28
|
Cvekl A, Eliscovich C. Crystallin gene expression: Insights from studies of transcriptional bursting. Exp Eye Res 2021; 207:108564. [PMID: 33894228 DOI: 10.1016/j.exer.2021.108564] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 01/26/2023]
Abstract
Cellular differentiation is marked by temporally and spatially regulated gene expression. The ocular lens is one of the most powerful mammalian model system since it is composed from only two cell subtypes, called lens epithelial and fiber cells. Lens epithelial cells differentiate into fiber cells through a series of spatially and temporally orchestrated processes, including massive production of crystallins, cellular elongation and the coordinated degradation of nuclei and other organelles. Studies of transcriptional and posttranscriptional gene regulatory mechanisms in lens provide a wide range of opportunities to understand global molecular mechanisms of gene expression as steady-state levels of crystallin mRNAs reach very high levels comparable to globin genes in erythrocytes. Importantly, dysregulation of crystallin gene expression results in lens structural abnormalities and cataracts. The mRNA life cycle is comprised of multiple stages, including transcription, splicing, nuclear export into cytoplasm, stabilization, localization, translation and ultimate decay. In recent years, development of modern mRNA detection methods with single molecule and single cell resolution enabled transformative studies to visualize the mRNA life cycle to generate novel insights into the sequential regulatory mechanisms of gene expression during embryogenesis. This review is focused on recent major advancements in studies of transcriptional bursting in differentiating lens fiber cells, analysis of nascent mRNA expression from bi-directional promoters, transient nuclear accumulation of specific mRNAs, condensation of chromatin prior lens fiber cell denucleation, and outlines future studies to probe the interactions of individual mRNAs with specific RNA-binding proteins (RBPs) in the cytoplasm and regulation of translation and mRNA decay.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and VIsual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Carolina Eliscovich
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
29
|
Ping X, Cheng Y, Bao J, Shi K, Zou J, Shentu X. KPNA4 is involved in cataract formation via the nuclear import of p53. Gene 2021; 786:145621. [PMID: 33798680 DOI: 10.1016/j.gene.2021.145621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/26/2021] [Indexed: 11/29/2022]
Abstract
KPNA4 (also called importin-α3) belongs to the importin α adaptor proteins family, which orchestrates classical nuclear transport processes, importin-α/importin-β1 pathway, and involves in cellular homeostasis. Disruption of balanced transport pathways may result in ectopic nuclear proteins and eventually cause diseases, mainly under the situation of cellular stress, such as oxidative stress. Little evidence is available on its cellular functions for high specific expression in lens. We firstly studied the role of KPNA4 in cataract formation. Lens defects were observed at an early age in kpna4 gene knockout zebrafish, generated by the CRISPR/Cas9 system. Those phenotype, including cloudy center part of the lens, via bright field microscopy, and the thinning of the LE layer, wider space between the adjacent LE and LF cells, irregular cells morphology and the increased number of holes inside the LE cells, which were detected by transmission electron microscopy, recapitulate the clinical features of cataract patients. As the p53-specific adaptor of the nuclear import, KPNA4 upregulated with the same pattern of p53 in hydrogen peroxide-induced apoptosis in human lens epithelia cells. Furthermore, the loss of Kpna4 resulted in the accumulation of p53 in the center of lens. Taken together, we showed that KPNA4 was involved in the formation of cataract, likely by mediating p53 nuclear transport.
Collapse
Affiliation(s)
- Xiyuan Ping
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310009, China
| | - Yalan Cheng
- Ninghai First Hospital, Ningbo 315600, China
| | - Jing Bao
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310009, China
| | - Kexin Shi
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310009, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xingchao Shentu
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310009, China.
| |
Collapse
|
30
|
Tu C, Li H, Liu X, Wang Y, Li W, Meng L, Wang W, Li Y, Li D, Du J, Lu G, Lin G, Tan YQ. TDRD7 participates in lens development and spermiogenesis by mediating autophagosome maturation. Autophagy 2021; 17:3848-3864. [PMID: 33618632 DOI: 10.1080/15548627.2021.1894058] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In humans, TDRD7 (tudor domain containing 7) mutations lead to a syndrome combining congenital cataracts (CCs) and non-obstructive azoospermia (NOA), characterized by abnormal lens development and spermiogenesis. However, the molecular mechanism underlying TDRD7's functions in eye and testicular development are still largely unknown. Here, we show that the depletion of this gene in mice and humans resulted in the accumulation of autophagosomes and the disruption of macroautophagic/autophagic flux. The disrupted autophagic flux in tdrd7-deficient mouse embryonic fibroblasts (MEFs) was caused by a failure of autophagosome fusion with lysosomes. Furthermore, transcriptome analysis and biochemical assays showed that TDRD7 might directly bind to Tbc1d20 mRNAs and downregulate its expression, which is a key regulator of autophagosome maturation, resulting in the disruption of autophagosome maturation. In addition, we provide evidence to show that TDRD7-mediated autophagosome maturation maintains lens transparency by facilitating the removal of damaged proteins and organelles from lens fiber cells and the biogenesis of acrosome. Altogether, our results showed that TDRD7 plays an essential role in the maturation of autophagosomes and that tdrd7 deletion results in eye defects and testicular abnormalities in mice, implicating disrupted autophagy might be the mechanism that contributes to lens development and spermiogenesis defects in human.Abbreviations: CB: chromatoid bodies; CC: congenital cataract; CTSD: cathepsin D; DMSO: dimethyl sulfoxide; LAMP1: lysosomal-associated membrane protein 1; LECs: lens epithelial cells; MAP1LC3/LC3/Atg8: microtubule-associated protein 1 light chain 3; MEFs: mouse embryonic fibroblasts; NOA: non-obstructive azoospermia; OFZ: organelle-free zone; RG: RNA granules; SQSTM1/p62: sequestosome 1; TBC1D20: TBC1 domain family member 20; TDRD7: tudor domain containing 7; TEM: transmission electron microscopy; WT: wild type.
Collapse
Affiliation(s)
- Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Haiyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Xuyang Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Ying Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lanlan Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Weili Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Dongyan Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
31
|
Santa P, Garreau A, Serpas L, Ferriere A, Blanco P, Soni C, Sisirak V. The Role of Nucleases and Nucleic Acid Editing Enzymes in the Regulation of Self-Nucleic Acid Sensing. Front Immunol 2021; 12:629922. [PMID: 33717156 PMCID: PMC7952454 DOI: 10.3389/fimmu.2021.629922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Detection of microbial nucleic acids by the innate immune system is mediated by numerous intracellular nucleic acids sensors. Upon the detection of nucleic acids these sensors induce the production of inflammatory cytokines, and thus play a crucial role in the activation of anti-microbial immunity. In addition to microbial genetic material, nucleic acid sensors can also recognize self-nucleic acids exposed extracellularly during turn-over of cells, inefficient efferocytosis, or intracellularly upon mislocalization. Safeguard mechanisms have evolved to dispose of such self-nucleic acids to impede the development of autoinflammatory and autoimmune responses. These safeguard mechanisms involve nucleases that are either specific to DNA (DNases) or RNA (RNases) as well as nucleic acid editing enzymes, whose biochemical properties, expression profiles, functions and mechanisms of action will be detailed in this review. Fully elucidating the role of these enzymes in degrading and/or processing of self-nucleic acids to thwart their immunostimulatory potential is of utmost importance to develop novel therapeutic strategies for patients affected by inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Pauline Santa
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Anne Garreau
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | | | - Patrick Blanco
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Immunology and Immunogenetic Department, Bordeaux University Hospital, Bordeaux, France
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Vanja Sisirak
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| |
Collapse
|
32
|
Zhang C, Balbo B, Ma M, Zhao J, Tian X, Kluger Y, Somlo S. Cyclin-Dependent Kinase 1 Activity Is a Driver of Cyst Growth in Polycystic Kidney Disease. J Am Soc Nephrol 2021; 32:41-51. [PMID: 33046531 PMCID: PMC7894654 DOI: 10.1681/asn.2020040511] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/03/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Mutations in PKD1 and PKD2, which encode the transmembrane proteins polycystin-1 and polycystin-2, respectively, cause autosomal dominant polycystic kidney disease (ADPKD). Polycystins are expressed in the primary cilium, and disrupting cilia structure significantly slows ADPKD progression following inactivation of polycystins. The cellular mechanisms of polycystin- and cilia-dependent cyst progression in ADPKD remain incompletely understood. METHODS Unbiased transcriptional profiling in an adult-onset Pkd2 mouse model before cysts formed revealed significant differentially expressed genes (DEGs) in Pkd2 single-knockout kidneys, which were used to identify candidate pathways dysregulated in kidneys destined to form cysts. In vivo studies validated the role of the candidate pathway in the progression of ADPKD. Wild-type and Pkd2/Ift88 double-knockout mice that are protected from cyst growth served as controls. RESULTS The RNASeq data identified cell proliferation as the most dysregulated pathway, with 15 of 241 DEGs related to cell cycle functions. Cdk1 appeared as a central component in this analysis. Cdk1 expression was similarly dysregulated in Pkd1 models of ADPKD, and conditional inactivation of Cdk1 with Pkd1 markedly improved the cystic phenotype and kidney function compared with inactivation of Pkd1 alone. The Pkd1/Cdk1 double knockout blocked cyst cell proliferation that otherwise accompanied Pkd1 inactivation alone. CONCLUSIONS Dysregulation of Cdk1 is an early driver of cyst cell proliferation in ADPKD due to Pkd1 inactivation. Selective targeting of cyst cell proliferation is an effective means of slowing ADPKD progression caused by inactivation of Pkd1.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Bruno Balbo
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Ming Ma
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Jun Zhao
- Department of Pathology, Yale University, New Haven, Connecticut,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut
| | - Xin Tian
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Yuval Kluger
- Department of Pathology, Yale University, New Haven, Connecticut,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut,Program in Applied Mathematics, Yale University, New Haven, Connecticut
| | - Stefan Somlo
- Department of Internal Medicine, Yale University, New Haven, Connecticut,Department of Genetics, Yale University, New Haven, Connecticut
| |
Collapse
|
33
|
Costello MJ, Gilliland KO, Mohamed A, Schey KL, Johnsen S, Brennan LA, Kantorow M. Novel mitochondrial derived Nuclear Excisosome degrades nuclei during differentiation of prosimian Galago (bush baby) monkey lenses. PLoS One 2020; 15:e0241631. [PMID: 33180800 PMCID: PMC7660580 DOI: 10.1371/journal.pone.0241631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/16/2020] [Indexed: 11/18/2022] Open
Abstract
The unique cellular organization and transparent function of the ocular lens depend on the continuous differentiation of immature epithelial cells on the lens anterior surface into mature elongated fiber cells within the lens core. A ubiquitous event during lens differentiation is the complete elimination of organelles required for mature lens fiber cell structure and transparency. Distinct pathways have been identified to mediate the elimination of non-nuclear organelles and nuclei. Recently, we reported the discovery of a unique structure in developing fiber cells of the chick embryo lens, called the Nuclear Excisosome, that is intractably associated with degrading nuclei during lens fiber cell differentiation. In the chick lens, the Nuclear Excisosome is derived from projections of adjacent cells contacting the nuclear envelope during nuclear elimination. Here, we demonstrate that, in contrast to the avian model, Nuclear Excisosomes in a primate model, Galago (bush baby) monkeys, are derived through the recruitment of mitochondria to form unique linear assemblies that define a novel primate Nuclear Excisosome. Four lenses from three monkeys aged 2–5 years were fixed in formalin, followed by paraformaldehyde, then processed for Airyscan confocal microscopy or transmission electron microscopy. For confocal imaging, fluorescent dyes labelled membranes, carbohydrate in the extracellular space, filamentous actin and nuclei. Fiber cells from Galago lenses typically displayed prominent linear structures within the cytoplasm with a distinctive cross-section of four membranes and lengths up to 30 μm. The outer membranes of these linear structures were observed to attach to the outer nuclear envelope membrane to initiate degradation near the organelle-free zone. The origin of these unique structures was mitochondria in the equatorial epithelium (not from plasma membranes of adjacent cells as in the chick embryo model). Early changes in mitochondria appeared to be the collapse of the cristae and modification of one side of the mitochondrial outer membrane to promote accumulation of protein in a dense cluster. As a mitochondrion surrounded the dense protein cluster, an outer mitochondrial membrane enclosed the protein to form a core and another outer mitochondrial membrane formed the outermost layer. The paired membranes of irregular texture between the inner core membrane and the outer limiting membrane appeared to be derived from modified mitochondrial cristae. Several mitochondria were involved in the formation and maturation of these unique complexes that apparently migrated around the fulcrum into the cytoplasm of nascent fiber cells where they were stabilized until the nuclear degradation was initiated. Thus, unlike in the chick embryo, the Galago lenses degraded nuclear envelopes with a Nuclear Excisosome derived from multiple mitochondria in the epithelium that formed novel linear assemblies in developing fiber cells. These findings suggest that recruitment of distinct structures is required for Nuclear Excisosome formation in different species.
Collapse
Affiliation(s)
- M Joseph Costello
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Kurt O Gilliland
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Ashik Mohamed
- Ophthalmic Biophysics, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Kevin L Schey
- Biochemistry Department, Vanderbilt University, Nashville, TN, United States of America
| | - Sönke Johnsen
- Biology Department, Duke University, Durham, NC, United States of America
| | - Lisa A Brennan
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, United States of America
| | - Marc Kantorow
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, United States of America
| |
Collapse
|
34
|
Liu Z, Wang R, Lin H, Liu Y. Lens regeneration in humans: using regenerative potential for tissue repairing. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1544. [PMID: 33313289 PMCID: PMC7729322 DOI: 10.21037/atm-2019-rcs-03] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The crystalline lens is an important optic element in human eyes. It is transparent and biconvex, refracting light and accommodating to form a clear retinal image. The lens originates from the embryonic ectoderm. The epithelial cells at the lens equator proliferate, elongate and differentiate into highly aligned lens fiber cells, which are the structural basis for maintaining the transparency of the lens. Cataract refers to the opacity of the lens. Currently, the treatment of cataract is to remove the opaque lens and implant an intraocular lens (IOL). This strategy is inappropriate for children younger than 2 years, because a developing eyeball is prone to have severe complications such as inflammatory proliferation and secondary glaucoma. On the other hand, the absence of the crystalline lens greatly affects visual function rehabilitation. The researchers found that mammalian lenses possess regenerative potential. We identified lens stem cells through linear tracking experiments and designed a minimally invasive lens-content removal surgery (MILS) to remove the opaque lens material while preserving the lens capsule, stem cells and microenvironment. In infants with congenital cataract, functional lens regeneration in situ can be observed after MILS, and the prognosis of visual function is better than that of traditional surgery. Because of insufficient regenerative ability in humans, the morphology and volume of the regenerated lens cannot reach the level of a normal lens. The activation, proliferation and differentiation of lens stem cells and the alignment of lens fibers are regulated by epigenetic factors, growth factors, transcription factors, immune system and other signals and their interactions. The construction of appropriate microenvironment can accelerate lens regeneration and improve its morphology. The therapeutic concept of MILS combined with microenvironment manipulation to activate endogenous stem cells for functional regeneration of organs in situ can be extended to other tissues and organs with strong self-renewal and repair ability.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ruixin Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Hypoxia regulates the degradation of non-nuclear organelles during lens differentiation through activation of HIF1a. Exp Eye Res 2020; 198:108129. [PMID: 32628953 DOI: 10.1016/j.exer.2020.108129] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/05/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
Formation of the eye lens depends on the continuous differentiation of lens epithelial cells into lens fiber cells. To attain their mature structure and transparent function, nascent lens fiber cells must complete a precise cellular remodeling program hallmarked by the complete elimination of organelles to form the core lens organelle-free zone (OFZ). Lacking a blood supply, the lens resides in a hypoxic environment that results in a decreasing oxygen concentration from the lens surface to the lens core. This oxygen gradient results in a hypoxic microenvironment in the region of the lens where immature lens fiber cells initiate loss of organelles to form the core OFZ. These features of the lens suggest a potential role for low lens oxygen levels in the regulation of organelle degradation and other events critical for mature lens fiber cell formation. Hypoxia activates the master regulator of the hypoxic response, hypoxia-inducible factor 1a (HIF1a) that regulates hypoxia-responsive genes. To identify a potential role for hypoxia and HIF1a in the elimination of organelles during lens fiber cell maturation, we tested the requirement for hypoxia in the degradation of non-nuclear organelles in ex vivo cultured embryonic chick lenses by monitoring the degradation of mitochondria (MT), Golgi apparatus (GA) and endoplasmic reticulum (ER) under conditions of low (1% O2) and high (21% O2) oxygen. We also examined the requirement for HIF1a activation for elimination of these organelles under the same conditions using a specific HIF1a activator (DMOG) and a specific HIF1a inhibitor (chetomin) and examined the requirements for hypoxia and HIF1a for regulating transcription of BNIP3L that we previously showed to be required for elimination of non-nuclear lens organelles. We used ChIP-qPCR to confirm direct binding of HIF1a to the 5' untranslated region of the BNIP3L gene. Finally, we examined the effects of expressing an oxygen insensitive mutant form of HIF1a (P402A/P565A) and BNIP3L on non-nuclear organelle degradation. Our data demonstrate that hypoxia and HIF1a are required for the degradation of non-nuclear organelles during lens fiber cell formation and that they regulate this process by governing BNIP3L transcription. Our results also provide evidence that hypoxia and HIF1a are essential for achieving mature lens structure.
Collapse
|
36
|
Lamin A/C Mechanotransduction in Laminopathies. Cells 2020; 9:cells9051306. [PMID: 32456328 PMCID: PMC7291067 DOI: 10.3390/cells9051306] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanotransduction translates forces into biological responses and regulates cell functionalities. It is implicated in several diseases, including laminopathies which are pathologies associated with mutations in lamins and lamin-associated proteins. These pathologies affect muscle, adipose, bone, nerve, and skin cells and range from muscular dystrophies to accelerated aging. Although the exact mechanisms governing laminopathies and gene expression are still not clear, a strong correlation has been found between cell functionality and nuclear behavior. New theories base on the direct effect of external force on the genome, which is indeed sensitive to the force transduced by the nuclear lamina. Nuclear lamina performs two essential functions in mechanotransduction pathway modulating the nuclear stiffness and governing the chromatin remodeling. Indeed, A-type lamin mutation and deregulation has been found to affect the nuclear response, altering several downstream cellular processes such as mitosis, chromatin organization, DNA replication-transcription, and nuclear structural integrity. In this review, we summarize the recent findings on the molecular composition and architecture of the nuclear lamina, its role in healthy cells and disease regulation. We focus on A-type lamins since this protein family is the most involved in mechanotransduction and laminopathies.
Collapse
|
37
|
Zhang J, Cui WW, Du C, Huang Y, Pi X, Guo W, Wang J, Huang W, Chen D, Li J, Li H, Zhang J, Ma Y, Mu H, Zhang S, Liu M, Cui X, Hu Y. Knockout of DNase1l1l abrogates lens denucleation process and causes cataract in zebrafish. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165724. [PMID: 32061775 DOI: 10.1016/j.bbadis.2020.165724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Removal of nuclei in lens fiber cells is required for organelle-free zone (OFZ) formation during lens development. Defect in degradation of nuclear DNA leads to cataract formation. DNase2β degrades nuclear DNA of lens fiber cells during lens differentiation in mouse. Hsf4 is the principal heat shock transcription factor in lens and facilitates the lens differentiation. Knockout of Hsf4 in mouse and zebrafish resulted in lens developmental defect that was characterized by retaining of nuclei in lens fiber cells. In previous in vitro studies, we found that Hsf4 promoted DNase2β expression in human and mouse lens epithelial cells. In this study, it was found that, instead of DNase2β, DNase1l1l is uniquely expressed in zebrafish lens and was absent in Hsf4-/- zebrafish lens. Using CRISPR-Cas9 technology, a DNase1l1l knockout zebrafish line was constructed, which developed cataract. Deletion of DNase1l1l totally abrogated lens primary and secondary fiber cell denucleation process, whereas had little effect on the clearance of other organelles. The transcriptional regulation of DNase1l1l was dramatically impaired in Hsf4-/- zebrafish lens. Rescue of DNase1l1l mRNA into Hsf4-/- zebrafish embryos alleviated its defect in lens fiber cell denucleation. Our results in vivo demonstrated that DNase1l1l is the primary DNase responsible for nuclear DNA degradation in lens fiber cells, and Hsf4 can transcriptionally activate DNase1l1l expression in zebrafish.
Collapse
Affiliation(s)
- Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Wen-Wen Cui
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Chunxiao Du
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Yuwen Huang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiahui Pi
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Wenya Guo
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Jungai Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Weikang Huang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Danling Chen
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Jing Li
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Hongmei Mu
- Kaifeng Key Lab of Myopia and Cataract, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Shuman Zhang
- Huaihe Hospital of Henan University, Kaifeng, China
| | - Mugen Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China.
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China; Kaifeng Key Lab of Myopia and Cataract, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China.
| |
Collapse
|
38
|
Wesley CC, Mishra S, Levy DL. Organelle size scaling over embryonic development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e376. [PMID: 32003549 DOI: 10.1002/wdev.376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
39
|
Martynova E, Zhao Y, Xie Q, Zheng D, Cvekl A. Transcriptomic analysis and novel insights into lens fibre cell differentiation regulated by Gata3. Open Biol 2019; 9:190220. [PMID: 31847788 PMCID: PMC6936257 DOI: 10.1098/rsob.190220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gata3 is a DNA-binding transcription factor involved in cellular differentiation in a variety of tissues including inner ear, hair follicle, kidney, mammary gland and T-cells. In a previous study in 2009, Maeda et al. (Dev. Dyn.238, 2280–2291; doi:10.1002/dvdy.22035) found that Gata3 mutants could be rescued from midgestational lethality by the expression of a Gata3 transgene in sympathoadrenal neuroendocrine cells. The rescued embryos clearly showed multiple defects in lens fibre cell differentiation. To determine whether these defects were truly due to the loss of Gata3 expression in the lens, we generated a lens-specific Gata3 loss-of-function model. Analogous to the previous findings, our Gata3 null embryos showed abnormal regulation of cell cycle exit during lens fibre cell differentiation, marked by reduction in the expression of the cyclin-dependent kinase inhibitors Cdkn1b/p27 and Cdkn1c/p57, and the retention of nuclei accompanied by downregulation of Dnase IIβ. Comparisons of transcriptomes between control and mutated lenses by RNA-Seq revealed dysregulation of lens-specific crystallin genes and intermediate filament protein Bfsp2. Both Cdkn1b/p27 and Cdkn1c/p57 loci are occupied in vivo by Gata3, as well as Prox1 and c-Jun, in lens chromatin. Collectively, our studies suggest that Gata3 regulates lens differentiation through the direct regulation of the Cdkn1b/p27and Cdkn1c/p57 expression, and the direct/or indirect transcriptional control of Bfsp2 and Dnase IIβ.
Collapse
Affiliation(s)
- Elena Martynova
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yilin Zhao
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qing Xie
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Deyou Zheng
- Departments of Genetics, Neurology, and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ales Cvekl
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
40
|
Al Jord A, Spassky N, Meunier A. Motile ciliogenesis and the mitotic prism. Biol Cell 2019; 111:199-212. [PMID: 30905068 DOI: 10.1111/boc.201800072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Motile cilia of epithelial multiciliated cells transport vital fluids along organ lumens to promote essential respiratory, reproductive and brain functions. Progenitors of multiciliated cells undergo massive and coordinated organelle remodelling during their differentiation for subsequent motile ciliogenesis. Defects in multiciliated cell differentiation lead to severe cilia-related diseases by perturbing cilia-based flows. Recent work designated the machinery of mitosis as the orchestrator of the orderly progression of differentiation associated with multiple motile cilia formation. By examining the events leading to motile ciliogenesis with a methodological prism of mitosis, we contextualise and discuss the recent findings to broaden the spectrum of questions related to the differentiation of mammalian multiciliated cells.
Collapse
Affiliation(s)
- Adel Al Jord
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS 7241 INSERM U1050, PSL Research University, Paris, 75005, France
| | - Nathalie Spassky
- Institut de Biologie de l'École Normale Supérieure (IBENS), Paris Sciences et Lettres (PSL) Research University, Paris, F-75005, France.,CNRS, UMR 8197, Paris, F-75005, France.,INSERM, U1024, Paris, F-75005, France
| | - Alice Meunier
- Institut de Biologie de l'École Normale Supérieure (IBENS), Paris Sciences et Lettres (PSL) Research University, Paris, F-75005, France.,CNRS, UMR 8197, Paris, F-75005, France.,INSERM, U1024, Paris, F-75005, France
| |
Collapse
|
41
|
Limi S, Senecal A, Coleman R, Lopez-Jones M, Guo P, Polumbo C, Singer RH, Skoultchi AI, Cvekl A. Transcriptional burst fraction and size dynamics during lens fiber cell differentiation and detailed insights into the denucleation process. J Biol Chem 2018; 293:13176-13190. [PMID: 29959226 DOI: 10.1074/jbc.ra118.001927] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/11/2018] [Indexed: 01/05/2023] Open
Abstract
Genes are transcribed in irregular pulses of activity termed transcriptional bursts. Cellular differentiation requires coordinated gene expression; however, it is unknown whether the burst fraction (i.e. the number of active phases of transcription) or size/intensity (the number of RNA molecules produced within a burst) changes during cell differentiation. In the ocular lens, the positions of lens fiber cells correlate precisely with their differentiation status, and the most advanced cells degrade their nuclei. Here, we examined the transcriptional parameters of the β-actin and lens differentiation-specific α-, β-, and γ-crystallin genes by RNA fluorescent in situ hybridization (FISH) in the lenses of embryonic day (E) E12.5, E14.5, and E16.5 mouse embryos and newborns. We found that cellular differentiation dramatically alters the burst fraction in synchronized waves across the lens fiber cell compartment with less dramatic changes in burst intensity. Surprisingly, we observed nascent transcription of multiple genes in nuclei just before nuclear destruction. Nuclear condensation was accompanied by transfer of nuclear proteins, including histone and nonhistone proteins, to the cytoplasm. Although lens-specific deletion of the chromatin remodeler SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (Smarca5/Snf2h) interfered with denucleation, persisting nuclei remained transcriptionally competent and exhibited changes in both burst intensity and fraction depending on the gene examined. Our results uncover the mechanisms of nascent transcriptional control during differentiation and chromatin remodeling, confirm the burst fraction as the major factor adjusting gene expression levels, and reveal transcriptional competence of fiber cell nuclei even as they approach disintegration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert H Singer
- Anatomy and Structural Biology.,Cell Biology.,Neuroscience, and
| | | | - Ales Cvekl
- From the Departments of Genetics, .,Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
42
|
Brennan LA, McGreal-Estrada R, Logan CM, Cvekl A, Menko AS, Kantorow M. BNIP3L/NIX is required for elimination of mitochondria, endoplasmic reticulum and Golgi apparatus during eye lens organelle-free zone formation. Exp Eye Res 2018; 174:173-184. [PMID: 29879393 DOI: 10.1016/j.exer.2018.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/10/2018] [Accepted: 06/03/2018] [Indexed: 01/22/2023]
Abstract
The formation and life-long growth of the ocular lens depends on the continuous differentiation of lens epithelial cells into lens fiber cells. To achieve their mature structure and transparent function, newly formed lens fiber cells undergo a series of cellular remodeling events including the complete elimination of cellular organelles to form the lens organelle-free zone (OFZ). To date, the mechanisms and requirements for organelle elimination by lens fiber cells remain to be fully elucidated. In previous studies, we detected the presence of mitochondria contained within autophagolysosomes throughout human and chick lenses suggesting that proteins targeting mitochondria for degradation by mitophagy could be required for the elimination of mitochondria during OFZ formation. Consistently, high-throughput RNA sequencing of microdissected embryonic chick lenses revealed that expression of a protein that targets mitochondria for elimination during erythrocyte formation, called BCL2 interacting protein 3-like (BNIP3L/NIX), peaks in the region of lens where organelle elimination occurs. To examine the potential role for BNIP3L in the elimination of mitochondria during lens fiber cell remodeling, we analyzed the expression pattern of BNIP3L in newborn mouse lenses, the effect of its deletion on organelle elimination and its co-localization with lens organelles. We demonstrate that the expression pattern of BNIP3L in the mouse lens is consistent with it playing an important role in the elimination of mitochondria during lens fiber cell organelle elimination. Importantly, we demonstrate that deletion of BNIP3L results in retention of mitochondria during lens fiber cell remodeling, and, surprisingly, that deletion of BNIP3L also results in the retention of endoplasmic reticulum and Golgi apparatus but not nuclei. Finally, we show that BNIP3L localizes to the endoplasmic reticulum and Golgi apparatus of wild-type newborn mouse lenses and is contained within mitochondria, endoplasmic reticulum and Golgi apparatus isolated from adult mouse liver. These data identify BNIP3L as a novel requirement for the elimination of mitochondria, endoplasmic reticulum and Golgi apparatus during lens fiber cell remodeling and they suggest a novel function for BNIP3L in the regulation of endoplasmic reticulum and Golgi apparatus populations in the lens and non-lens tissues.
Collapse
Affiliation(s)
- Lisa A Brennan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Rebecca McGreal-Estrada
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Caitlin M Logan
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Marc Kantorow
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|
43
|
Siddam AD, Gautier-Courteille C, Perez-Campos L, Anand D, Kakrana A, Dang CA, Legagneux V, Méreau A, Viet J, Gross JM, Paillard L, Lachke SA. The RNA-binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development. PLoS Genet 2018; 14:e1007278. [PMID: 29565969 PMCID: PMC5889275 DOI: 10.1371/journal.pgen.1007278] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 04/06/2018] [Accepted: 02/26/2018] [Indexed: 11/18/2022] Open
Abstract
Opacification of the ocular lens, termed cataract, is a common cause of blindness. To become transparent, lens fiber cells undergo degradation of their organelles, including their nuclei, presenting a fundamental question: does signaling/transcription sufficiently explain differentiation of cells progressing toward compromised transcriptional potential? We report that a conserved RNA-binding protein Celf1 post-transcriptionally controls key genes to regulate lens fiber cell differentiation. Celf1-targeted knockout mice and celf1-knockdown zebrafish and Xenopus morphants have severe eye defects/cataract. Celf1 spatiotemporally down-regulates the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 by interacting with its 5' UTR and mediating translation inhibition. Celf1 deficiency causes ectopic up-regulation of p21Cip1. Further, Celf1 directly binds to the mRNA of the nuclease Dnase2b to maintain its high levels. Together these events are necessary for Cdk1-mediated lamin A/C phosphorylation to initiate nuclear envelope breakdown and DNA degradation in fiber cells. Moreover, Celf1 controls alternative splicing of the membrane-organization factor beta-spectrin and regulates F-actin-crosslinking factor Actn2 mRNA levels, thereby controlling fiber cell morphology. Thus, we illustrate new Celf1-regulated molecular mechanisms in lens development, suggesting that post-transcriptional regulatory RNA-binding proteins have evolved conserved functions to control vertebrate oculogenesis.
Collapse
Affiliation(s)
- Archana D. Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE, United States of America
| | - Carole Gautier-Courteille
- Institut de Génétique et Développement de Rennes, Université de Rennes 1, CNRS UMR6290, Rennes, France
| | - Linette Perez-Campos
- Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
- Department of Molecular Biosciences, University of Texas, Austin, TX, United States of America
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, United States of America
| | - Atul Kakrana
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States of America
| | - Christine A. Dang
- Department of Biological Sciences, University of Delaware, Newark, DE, United States of America
| | - Vincent Legagneux
- Institut de Génétique et Développement de Rennes, Université de Rennes 1, CNRS UMR6290, Rennes, France
| | - Agnès Méreau
- Institut de Génétique et Développement de Rennes, Université de Rennes 1, CNRS UMR6290, Rennes, France
| | - Justine Viet
- Institut de Génétique et Développement de Rennes, Université de Rennes 1, CNRS UMR6290, Rennes, France
| | - Jeffrey M. Gross
- Department of Molecular Biosciences, University of Texas, Austin, TX, United States of America
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Luc Paillard
- Institut de Génétique et Développement de Rennes, Université de Rennes 1, CNRS UMR6290, Rennes, France
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, United States of America
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States of America
| |
Collapse
|
44
|
Abstract
DNA degradation is critical to healthy organism development and survival. Two nuclease families that play key roles in development and in disease are the Dnase1 and Dnase2 families. While these two families were initially characterized by biochemical function, it is now clear that multiple enzymes in each family perform similar, non-redundant roles in many different tissues. Most Dnase1 and Dnase2 family members are poorly characterized, yet their elimination can lead to a wide range of diseases, including lethal anemia, parakeratosis, cataracts and systemic lupus erythematosus. Therefore, understanding these enzyme families represents a critical field of emerging research. This review explores what is currently known about Dnase1 and Dnase2 family members, highlighting important questions about the structure and function of family members, and how their absence translates to disease.
Collapse
Affiliation(s)
- Peter A Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
45
|
Cavalheiro GR, Matos-Rodrigues GE, Zhao Y, Gomes AL, Anand D, Predes D, de Lima S, Abreu JG, Zheng D, Lachke SA, Cvekl A, Martins RAP. N-myc regulates growth and fiber cell differentiation in lens development. Dev Biol 2017; 429:105-117. [PMID: 28716713 DOI: 10.1016/j.ydbio.2017.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/07/2017] [Accepted: 07/05/2017] [Indexed: 11/26/2022]
Abstract
Myc proto-oncogenes regulate diverse cellular processes during development, but their roles during morphogenesis of specific tissues are not fully understood. We found that c-myc regulates cell proliferation in mouse lens development and previous genome-wide studies suggested functional roles for N-myc in developing lens. Here, we examined the role of N-myc in mouse lens development. Genetic inactivation of N-myc in the surface ectoderm or lens vesicle impaired eye and lens growth, while "late" inactivation in lens fibers had no effect. Unexpectedly, defective growth of N-myc-deficient lenses was not associated with alterations in lens progenitor cell proliferation or survival. Notably, N-myc-deficient lens exhibited a delay in degradation of DNA in terminally differentiating lens fiber cells. RNA-sequencing analysis of N-myc-deficient lenses identified a cohort of down-regulated genes associated with fiber cell differentiation that included DNaseIIβ. Further, an integrated analysis of differentially expressed genes in N-myc-deficient lens using normal lens expression patterns of iSyTE, N-myc-binding motif analysis and molecular interaction data from the String database led to the derivation of an N-myc-based gene regulatory network in the lens. Finally, analysis of N-myc and c-myc double-deficient lens demonstrated that these Myc genes cooperate to drive lens growth prior to lens vesicle stage. Together, these findings provide evidence for exclusive and cooperative functions of Myc transcription factors in mouse lens development and identify novel mechanisms by which N-myc regulates cell differentiation during eye morphogenesis.
Collapse
Affiliation(s)
- Gabriel R Cavalheiro
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel E Matos-Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anielle L Gomes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Danilo Predes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Silmara de Lima
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jose G Abreu
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA; Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rodrigo A P Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
46
|
Zhang T, Zhang X, Han K, Zhang G, Wang J, Xie K, Xue Q, Fan X. Analysis of long noncoding RNA and mRNA using RNA sequencing during the differentiation of intramuscular preadipocytes in chicken. PLoS One 2017; 12:e0172389. [PMID: 28199418 PMCID: PMC5310915 DOI: 10.1371/journal.pone.0172389] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/03/2017] [Indexed: 02/04/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate metabolic tissue development and function, including adipogenesis. However, little is known about the function and profile of lncRNAs in intramuscular preadipocyte differentiation in chicken. Here, we identified lncRNAs in chicken intramuscular preadipocytes at different differentiation stages using RNA sequencing. A total of 1,311,382,604 clean reads and 25,435 lncRNAs were obtained from 12 samples. In total, 7,433 differentially expressed genes (4,698 lncRNAs and 2,735 mRNAs) were identified by pairwise comparison. These 7,433 differentially expressed genes were grouped into 11 clusters based on their expression patterns by K-means clustering. Using Weighted Gene Coexpression Network Analysis, we identified four stage-specific modules positively related to I0, I2, I4, and I6 stages and two stage-specific modules negatively related to I0 and I2 stages, respectively. Many well-known and novel pathways associated with intramuscular preadipocyte differentiation were identified. We also identified hub genes in each stage-specific module and visualized them in Cytoscape. Our analysis revealed many highly-connected genes, including XLOC_058593, BMP3, MYOD1, and LAMP3. This study provides a valuable resource for chicken lncRNA study and improves our understanding of the biology of preadipocyte differentiation in chicken.
Collapse
Affiliation(s)
- Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Xiangqian Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Kunpeng Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
- * E-mail:
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Qian Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Xiaomei Fan
- Vazyme Biotech Co.,Ltd., Economic and Technological Development Zone, Nanjing, Jiangsu, China
| |
Collapse
|
47
|
Identification and Ultrastructural Characterization of a Novel Nuclear Degradation Complex in Differentiating Lens Fiber Cells. PLoS One 2016; 11:e0160785. [PMID: 27536868 PMCID: PMC4990417 DOI: 10.1371/journal.pone.0160785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/25/2016] [Indexed: 01/18/2023] Open
Abstract
An unresolved issue in structural biology is how the encapsulated lens removes membranous organelles to carry out its role as a transparent optical element. In this ultrastructural study, we establish a mechanism for nuclear elimination in the developing chick lens during the formation of the organelle-free zone. Day 12-15 chick embryo lenses were examined by high-resolution confocal light microscopy and thin section transmission electron microscopy (TEM) following fixation in 10% formalin and 4% paraformaldehyde, and then processing for confocal or TEM as described previously. Examination of developing fiber cells revealed normal nuclei with dispersed chromatin and clear nucleoli typical of cells in active ribosome production to support protein synthesis. Early signs of nuclear degradation were observed about 300 μm from the lens capsule in Day 15 lenses where the nuclei display irregular nuclear stain and prominent indentations that sometimes contained a previously undescribed macromolecular aggregate attached to the nuclear envelope. We have termed this novel structure the nuclear excisosome. This complex by confocal is closely adherent to the nuclear envelope and by TEM appears to degrade the outer leaflet of the nuclear envelope, then the inner leaflet up to 500 μm depth. The images suggest that the nuclear excisosome separates nuclear membrane proteins from lipids, which then form multilamellar assemblies that stain intensely in confocal and in TEM have 5 nm spacing consistent with pure lipid bilayers. The denuded nucleoplasm then degrades by condensation and loss of structure in the range 600 to 700 μm depth producing pyknotic nuclear remnants. None of these stages display any classic autophagic vesicles or lysosomes associated with nuclei. Uniquely, the origin of the nuclear excisosome is from filopodial-like projections of adjacent lens fiber cells that initially contact, and then appear to fuse with the outer nuclear membrane. These filopodial-like projections appear to be initiated with a clathrin-like coat and driven by an internal actin network. In summary, a specialized cellular organelle, the nuclear excisosome, generated in part by adjacent fiber cells degrades nuclei during fiber cell differentiation and maturation.
Collapse
|
48
|
He S, Limi S, McGreal RS, Xie Q, Brennan LA, Kantorow WL, Kokavec J, Majumdar R, Hou H, Edelmann W, Liu W, Ashery-Padan R, Zavadil J, Kantorow M, Skoultchi AI, Stopka T, Cvekl A. Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation. Development 2016; 143:1937-47. [PMID: 27246713 PMCID: PMC4920164 DOI: 10.1242/dev.135285] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/21/2016] [Indexed: 12/30/2022]
Abstract
Ocular lens morphogenesis is a model for investigating mechanisms of cellular differentiation, spatial and temporal gene expression control, and chromatin regulation. Brg1 (Smarca4) and Snf2h (Smarca5) are catalytic subunits of distinct ATP-dependent chromatin remodeling complexes implicated in transcriptional regulation. Previous studies have shown that Brg1 regulates both lens fiber cell differentiation and organized degradation of their nuclei (denucleation). Here, we employed a conditional Snf2h(flox) mouse model to probe the cellular and molecular mechanisms of lens formation. Depletion of Snf2h induces premature and expanded differentiation of lens precursor cells forming the lens vesicle, implicating Snf2h as a key regulator of lens vesicle polarity through spatial control of Prox1, Jag1, p27(Kip1) (Cdkn1b) and p57(Kip2) (Cdkn1c) gene expression. The abnormal Snf2h(-/-) fiber cells also retain their nuclei. RNA profiling of Snf2h(-/) (-) and Brg1(-/-) eyes revealed differences in multiple transcripts, including prominent downregulation of those encoding Hsf4 and DNase IIβ, which are implicated in the denucleation process. In summary, our data suggest that Snf2h is essential for the establishment of lens vesicle polarity, partitioning of prospective lens epithelial and fiber cell compartments, lens fiber cell differentiation, and lens fiber cell nuclear degradation.
Collapse
Grants
- R01 EY012200 NEI NIH HHS
- R01 CA079057 NCI NIH HHS
- R01 DK096266 NIDDK NIH HHS
- R01 GM116143 NIGMS NIH HHS
- R01 EY013022 NEI NIH HHS
- R01 CA076329 NCI NIH HHS
- T32 GM007491 NIGMS NIH HHS
- R56 CA079057 NCI NIH HHS
- R01 EY014237 NEI NIH HHS
- 001 World Health Organization
- R01 EY022645 NEI NIH HHS
- Grant support: R01 EY012200 (AC), EY014237 (AC), EY014237-7S1 (AC), EY013022 (MK), CA079057 (AIS), EY022645 (WL), T32 GM007491 (SL), GACR: P305/12/1033 (TS, JK), UNCE: 204021 (TS, JK), and an unrestricted grant from Research to Prevent Blindness to the Department of Ophthalmology and Visual Sciences. TS is member of the BIOCEV ? Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (CZ.1.05/1.1.00/02.0109) supported by the European Regional Development Fund. The Israel Science Foundation 610/10, the Israel Ministry of Science 36494, the Ziegler Foundation and the Binational Science Foundation (2013016) to RAP.
Collapse
Affiliation(s)
- Shuying He
- Department of Ophthalmology & Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Saima Limi
- Department of Ophthalmology & Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rebecca S McGreal
- Department of Ophthalmology & Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qing Xie
- Department of Ophthalmology & Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lisa A Brennan
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Wanda Lee Kantorow
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Juraj Kokavec
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
| | - Romit Majumdar
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Harry Hou
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei Liu
- Department of Ophthalmology & Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Jiri Zavadil
- Department of Pathology and NYU Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016, USA Mechanisms of Carcinogenesis Section, International Agency for Research on Cancer, Lyon Cedex 08 69372, France
| | - Marc Kantorow
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tomas Stopka
- First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
| | - Ales Cvekl
- Department of Ophthalmology & Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
49
|
Rowan S, Chang ML, Reznikov N, Taylor A. Disassembly of the lens fiber cell nucleus to create a clear lens: The p27 descent. Exp Eye Res 2016; 156:72-78. [PMID: 26946072 DOI: 10.1016/j.exer.2016.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/11/2016] [Accepted: 02/29/2016] [Indexed: 01/04/2023]
Abstract
The eye lens is unique among tissues: it is transparent, does not form tumors, and the majority of its cells degrade their organelles, including their cell nuclei. A mystery for over a century, there has been considerable recent progress in elucidating mechanisms of lens fiber cell denucleation (LFCD). In contrast to the disassembly and reassembly of the cell nucleus during mitosis, LFCD is a unidirectional process that culminates in destruction of the fiber cell nucleus. Whereas p27Kip1, the cyclin-dependent kinase inhibitor, is upregulated during formation of LFC in the outermost cortex, in the inner cortex, in the nascent organelle free zone, p27Kip1 is degraded, markedly activating cyclin-dependent kinase 1 (Cdk1). This process results in phosphorylation of nuclear Lamins, dissociation of the nuclear membrane, and entry of lysosomes that liberate DNaseIIβ (DLAD) to cleave chromatin. Multiple cellular pathways, including the ubiquitin proteasome system and the unfolded protein response, converge on post-translational regulation of p27Kip1. Mutations that impair these pathways are associated with congenital cataracts and loss of LFCD. These findings highlight new regulatory nodes in the lens and suggest that we are close to understanding this fascinating terminal differentiation process. Such knowledge may offer a new means to confront proliferative diseases including cancer.
Collapse
Affiliation(s)
- Sheldon Rowan
- Tufts University JM-USDA Human Nutrition Research Center on Aging, Laboratory of Nutrition and Vision Research, 711 Washington Street Boston, MA, 02111, USA.
| | - Min-Lee Chang
- Tufts University JM-USDA Human Nutrition Research Center on Aging, Laboratory of Nutrition and Vision Research, 711 Washington Street Boston, MA, 02111, USA.
| | - Natalie Reznikov
- Imperial College London, Depart of Materials, Prince Consort Road, South Kensington, London, SW7 2AZ, UK.
| | - Allen Taylor
- Tufts University JM-USDA Human Nutrition Research Center on Aging, Laboratory of Nutrition and Vision Research, 711 Washington Street Boston, MA, 02111, USA.
| |
Collapse
|
50
|
Vuković LD, Jevtić P, Edens LJ, Levy DL. New Insights into Mechanisms and Functions of Nuclear Size Regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:1-59. [PMID: 26940517 DOI: 10.1016/bs.ircmb.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear size is generally maintained within a defined range in a given cell type. Changes in cell size that occur during cell growth, development, and differentiation are accompanied by dynamic nuclear size adjustments in order to establish appropriate nuclear-to-cytoplasmic volume relationships. It has long been recognized that aberrations in nuclear size are associated with certain disease states, most notably cancer. Nuclear size and morphology must impact nuclear and cellular functions. Understanding these functional implications requires an understanding of the mechanisms that control nuclear size. In this review, we first provide a general overview of the diverse cellular structures and activities that contribute to nuclear size control, including structural components of the nucleus, effects of DNA amount and chromatin compaction, signaling, and transport pathways that impinge on the nucleus, extranuclear structures, and cell cycle state. We then detail some of the key mechanistic findings about nuclear size regulation that have been gleaned from a variety of model organisms. Lastly, we review studies that have implicated nuclear size in the regulation of cell and nuclear function and speculate on the potential functional significance of nuclear size in chromatin organization, gene expression, nuclear mechanics, and disease. With many fundamental cell biological questions remaining to be answered, the field of nuclear size regulation is still wide open.
Collapse
Affiliation(s)
- Lidija D Vuković
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Lisa J Edens
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America.
| |
Collapse
|