1
|
Wang Y, Wang Y, Zhu Y, Yu P, Zhou F, Zhang A, Gu Y, Jin R, Li J, Zheng F, Yu A, Ye D, Xu Y, Liu YJ, Saw TB, Hu G, Lim CT, Yu FX. Angiomotin cleavage promotes leader formation and collective cell migration. Dev Cell 2025; 60:101-118.e7. [PMID: 39389053 DOI: 10.1016/j.devcel.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/22/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Collective cell migration (CCM) is involved in multiple biological processes, including embryonic morphogenesis, angiogenesis, and cancer invasion. However, the molecular mechanisms underlying CCM, especially leader cell formation, are poorly understood. Here, we show that a signaling pathway regulating angiomotin (AMOT) cleavage plays a role in CCM, using mammalian epithelial cells and mouse models. In a confluent epithelial monolayer, full-length AMOT localizes at cell-cell junctions and limits cell motility. After cleavage, the C-terminal fragment of AMOT (AMOT-CT) translocates to the cell-matrix interface to promote the maturation of focal adhesions (FAs), generate traction force, and induce leader cell formation. Meanwhile, decreased full-length AMOT at cell-cell junctions leads to tissue fluidization and coherent migration of cell collectives. Hence, the cleavage of AMOT serves as a molecular switch to generate polarized contraction, promoting leader cell formation and CCM.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yebin Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yuwen Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Pengcheng Yu
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Fanhui Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Anlan Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yuan Gu
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ruxin Jin
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jin Li
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Fengyun Zheng
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Aijuan Yu
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Dan Ye
- Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yan-Jun Liu
- Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Thuan Beng Saw
- Research Center for Industries of the Future and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Boutillon A. Organizing collective cell migration through guidance by followers. C R Biol 2023; 346:117-126. [PMID: 38095130 DOI: 10.5802/crbiol.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
Morphogenesis, wound healing, and some cancer metastases rely on the collective migration of groups of cells. In these processes, guidance and coordination between cells and tissues are critical. While strongly adherent epithelial cells have to move collectively, loosely organized mesenchymal cells can migrate as individual cells. Nevertheless, many of them migrate collectively. This article summarizes how migratory reactions to cell-cell contacts, also called "contact regulation of locomotion" behaviors, organize mesenchymal collective cell migration. It focuses on one recently discovered mechanism called "guidance by followers", through which a cell is oriented by its immediate followers. In the gastrulating zebrafish embryo, during embryonic axis elongation, this phenomenon is responsible for the collective migration of the leading tissue, the polster, and its guidance by the following posterior axial mesoderm. Such guidance of migrating cells by followers ensures long-range coordination of movements and developmental robustness. Along with other "contact regulation of locomotion" behaviors, this mechanism contributes to organizing collective migration of loose populations of cells.
Collapse
|
3
|
Tang D, Lu Y, Zuo N, Yan R, Wu C, Wu L, Liu S, He Y. The H3K27 demethylase controls the lateral line embryogenesis of zebrafish. Cell Biol Toxicol 2023; 39:1137-1152. [PMID: 34716527 PMCID: PMC10406677 DOI: 10.1007/s10565-021-09669-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Kdm6b, a specific histone 3 lysine 27 (H3K27) demethylase, has been reported to be implicated in a variety of developmental processes including cell differentiation and cell fate determination and multiple organogenesis. Here, we regulated the transcript level of kdm6bb to study the potential role in controlling the hearing organ development of zebrafish. METHODS A morpholino antisense oligonucleotide (MO) strategy was used to induce Kdm6b deficiency; immunohistochemical staining and in situ hybridization analysis were conducted to figure out the morphologic alterations and embryonic mechanisms. RESULTS Kdm6bb is expressed in the primordium and neuromasts at the early stage of zebrafish embryogenesis, suggesting a potential function of Kdm6b in the development of mechanosensory organs. Knockdown of kdm6bb severely influences the cell migration and proliferation in posterior lateral line primordium, abates the number of neuromasts along the trunk, and mRNA-mediated rescue test can partially renew the neuromasts. Loss of kdm6bb might be related to aberrant expressions of chemokine genes encompassing cxcl12a and cxcr4b/cxcr7b in the migrating primordium. Moreover, inhibition of kdm6bb reduces the expression of genes in Fgf signaling pathway, while it increases the axin2 and lef1 expression level of Wnt/β-catenin signaling during the migrating stage. CONCLUSIONS Collectively, our results revealed that Kdm6b plays an essential role in guiding the migration of primordium and in regulating the deposition of zebrafish neuromasts by mediating the gene expression of chemokines and Wnt and Fgf signaling pathway. Since histone methylation and demethylation are reversible, targeting Kdm6b may present as a novel therapeutic regimen for hearing disorders.
Collapse
Affiliation(s)
- Dongmei Tang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Yitong Lu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Na Zuo
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Renchun Yan
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Cheng Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Lijuan Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Shaofeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China.
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
| |
Collapse
|
4
|
Campanale JP, Montell DJ. Who's really in charge: Diverse follower cell behaviors in collective cell migration. Curr Opin Cell Biol 2023; 81:102160. [PMID: 37019053 PMCID: PMC10744998 DOI: 10.1016/j.ceb.2023.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
Collective cell migrations drive morphogenesis, wound healing, and cancer dissemination. Cells located at the front are considered leaders while those behind them are defined topologically as followers. Leader cell behaviors, including chemotaxis and their coupling to followers, have been well-studied and reviewed. However, the contributions of follower cells to collective cell migration represent an emerging area of interest. In this perspective, we highlight recent research into the broadening array of follower cell behaviors found in moving collectives. We describe examples of follower cells that possess cryptic leadership potential and followers that lack that potential but contribute in diverse and sometimes surprising ways to collective movement, even steering from behind. We highlight collectives in which all cells both lead and follow, and a few passive passengers. The molecular mechanisms controlling follower cell function and behavior are just emerging and represent an exciting frontier in collective cell migration research.
Collapse
Affiliation(s)
- Joseph P Campanale
- Molecular, Cellular and Developmental Biology, University of California Santa Barbara
| | - Denise J Montell
- Molecular, Cellular and Developmental Biology, University of California Santa Barbara.
| |
Collapse
|
5
|
Limbach LE, Penick RL, Casseday RS, Hyland MA, Pontillo EA, Ayele AN, Pitts KM, Ackerman SD, Harty BL, Herbert AL, Monk KR, Petersen SC. Peripheral nerve development in zebrafish requires muscle patterning by tcf15/paraxis. Dev Biol 2022; 490:37-49. [PMID: 35820658 DOI: 10.1016/j.ydbio.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
The vertebrate peripheral nervous system (PNS) is an intricate network that conveys sensory and motor information throughout the body. During development, extracellular cues direct the migration of axons and glia through peripheral tissues. Currently, the suite of molecules that govern PNS axon-glial patterning is incompletely understood. To elucidate factors that are critical for peripheral nerve development, we characterized the novel zebrafish mutant, stl159, that exhibits abnormalities in PNS patterning. In these mutants, motor and sensory nerves that develop adjacent to axial muscle fail to extend normally, and neuromasts in the posterior lateral line system, as well as neural crest-derived melanocytes, are incorrectly positioned. The stl159 genetic lesion lies in the basic helix-loop-helix (bHLH) transcription factor tcf15, which has been previously implicated in proper development of axial muscles. We find that targeted loss of tcf15 via CRISPR-Cas9 genome editing results in the PNS patterning abnormalities observed in stl159 mutants. Because tcf15 is expressed in developing muscle prior to nerve extension, rather than in neurons or glia, we predict that tcf15 non-cell-autonomously promotes peripheral nerve patterning in zebrafish through regulation of extracellular patterning cues. Our work underscores the importance of muscle-derived factors in PNS development.
Collapse
Affiliation(s)
| | - Rocky L Penick
- Department of Neuroscience, Kenyon College, Gambier, OH, USA
| | - Rudy S Casseday
- Department of Neuroscience, Kenyon College, Gambier, OH, USA
| | | | | | - Afomia N Ayele
- Department of Neuroscience, Kenyon College, Gambier, OH, USA
| | | | - Sarah D Ackerman
- Department of Developmental Biology, Washington University in St. Louis, MO, USA
| | - Breanne L Harty
- Department of Developmental Biology, Washington University in St. Louis, MO, USA
| | - Amy L Herbert
- Department of Developmental Biology, Washington University in St. Louis, MO, USA
| | - Kelly R Monk
- Department of Developmental Biology, Washington University in St. Louis, MO, USA
| | - Sarah C Petersen
- Department of Neuroscience, Kenyon College, Gambier, OH, USA; Department of Biology, Kenyon College, Gambier, OH, USA; Department of Developmental Biology, Washington University in St. Louis, MO, USA.
| |
Collapse
|
6
|
Insall RH, Paschke P, Tweedy L. Steering yourself by the bootstraps: how cells create their own gradients for chemotaxis. Trends Cell Biol 2022; 32:585-596. [DOI: 10.1016/j.tcb.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
|
7
|
Rear traction forces drive adherent tissue migration in vivo. Nat Cell Biol 2022; 24:194-204. [PMID: 35165417 PMCID: PMC8868490 DOI: 10.1038/s41556-022-00844-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022]
|
8
|
Félix RC, Anjos L, Costa RA, Letsiou S, Power DM. Cartilage Acidic Protein a Novel Therapeutic Factor to Improve Skin Damage Repair? Mar Drugs 2021; 19:md19100541. [PMID: 34677440 PMCID: PMC8536980 DOI: 10.3390/md19100541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
Fish skin has been gaining attention due to its efficacy as a human-wound-treatment product and to identify factors promoting its enhanced action. Skin fibroblasts have a central role in maintaining skin integrity and secrete extra cellular matrix (ECM) proteins, growth factors and cytokines to rapidly repair lesions and prevent further damage or infection. The effects on scratch repair of the ubiquitous but poorly characterized ECM protein, cartilage acidic protein 1 (CRTAC1), from piscine and human sources were compared using a zebrafish SJD.1 primary fibroblast cell line. A classic in vitro cell scratch assay, immunofluorescence, biosensor and gene expression analysis were used. Our results demonstrated that the duplicate sea bass Crtac1a and Crtac1b proteins and human CRTAC-1A all promoted SJD.1 primary fibroblast migration in a classic scratch assay and in an electric cell impedance sensing assay. The immunofluorescence analysis revealed that CRTAC1 enhanced cell migration was most likely caused by actin-driven cytoskeletal changes and the cellular transcriptional response was most affected in the early stage (6 h) of scratch repair. In summary, our results suggest that CRTAC1 may be an important factor in fish skin promoting damage repair.
Collapse
Affiliation(s)
- Rute Castelo Félix
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology Group, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.A.); (R.A.C.)
- Correspondence: (R.C.F.); (D.M.P.)
| | - Liliana Anjos
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology Group, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.A.); (R.A.C.)
| | - Rita Alves Costa
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology Group, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.A.); (R.A.C.)
| | - Sophia Letsiou
- Laboratory of Biochemistry, Scientific Affairs, APIVITA SA, Industrial Park of Markopoulo Mesogaias, Markopoulo Attikis, 19003 Athens, Greece;
| | - Deborah Mary Power
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology Group, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.A.); (R.A.C.)
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (R.C.F.); (D.M.P.)
| |
Collapse
|
9
|
Lu P, Lu Y. Born to Run? Diverse Modes of Epithelial Migration. Front Cell Dev Biol 2021; 9:704939. [PMID: 34540829 PMCID: PMC8448196 DOI: 10.3389/fcell.2021.704939] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Bundled with various kinds of adhesion molecules and anchored to the basement membrane, the epithelium has historically been considered as an immotile tissue and, to migrate, it first needs to undergo epithelial-mesenchymal transition (EMT). Since its initial description more than half a century ago, the EMT process has fascinated generations of developmental biologists and, more recently, cancer biologists as it is believed to be essential for not only embryonic development, organ formation, but cancer metastasis. However, recent progress shows that epithelium is much more motile than previously realized. Here, we examine the emerging themes in epithelial collective migration and how this has impacted our understanding of EMT.
Collapse
Affiliation(s)
- Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
10
|
Dries R, Lange A, Heiny S, Berghaus KI, Bastmeyer M, Bentrop J. Cell Proliferation and Collective Cell Migration During Zebrafish Lateral Line System Development Are Regulated by Ncam/Fgf-Receptor Interactions. Front Cell Dev Biol 2021; 8:591011. [PMID: 33520983 PMCID: PMC7841142 DOI: 10.3389/fcell.2020.591011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022] Open
Abstract
The posterior lateral line system (pLLS) of aquatic animals comprises small clustered mechanosensory organs along the side of the animal. They develop from proneuromasts, which are deposited from a migratory primordium on its way to the tip of the tail. We here show, that the Neural Cell Adhesion Molecule Ncam1b is an integral part of the pathways initiating and regulating the development of the pLLS in zebrafish. We find that morpholino-knockdowns of ncam1b (i) reduce cell proliferation within the primordium, (ii) reduce the expression of Fgf target gene erm, (iii) severely affect proneuromast formation, and (iv) affect primordium migration. Ncam1b directly interacts with Fgf receptor Fgfr1a, and a knockdown of fgfr1a causes similar phenotypic changes as observed in ncam1b-morphants. We conclude that Ncam1b is involved in activating proliferation by triggering the expression of erm. In addition, we demonstrate that Ncam1b is required for the expression of chemokine receptor Cxcr7b, which is crucial for directed primordial migration. Finally, we show that the knockdown of ncam1b destabilizes proneuromasts, suggesting a further function of Ncam1b in strengthening the cohesion of proneuromast cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Joachim Bentrop
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
11
|
A hybrid integro-differential model for the early development of the zebrafish posterior lateral line. J Theor Biol 2021; 514:110578. [PMID: 33417902 DOI: 10.1016/j.jtbi.2020.110578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/22/2022]
Abstract
The aim of this work is to provide a mathematical model to describe the early stages of the embryonic development of zebrafish posterior lateral line (PLL). In particular, we focus on evolution of PLL proto-organ (said primordium), from its formation to the beginning of the cyclical behavior that amounts in the assembly of immature proto-neuromasts towards its caudal edge accompanied by the deposition of mature proto-neuromasts at its rostral region. Our approach has an hybrid integro-differential nature, since it integrates a microscopic/discrete particle-based description for cell dynamics and a continuous description for the evolution of the spatial distribution of chemical substances (i.e., the stromal-derived factor SDF1a and the fibroblast growth factor FGF10). Boolean variables instead implement the expression of molecular receptors (i.e., Cxcr4/Cxcr7 and fgfr1). Cell phenotypic transitions and proliferation are included as well. The resulting numerical simulations show that the model is able to qualitatively and quantitatively capture the evolution of the wild-type (i.e., normal) embryos as well as the effect of known experimental manipulations. In particular, it is shown that cell proliferation, intercellular adhesion, FGF10-driven dynamics, and a polarized expression of SDF1a receptors are all fundamental for the correct development of the zebrafish posterior lateral line.
Collapse
|
12
|
Dalle Nogare DE, Natesh N, Vishwasrao HD, Shroff H, Chitnis AB. Zebrafish Posterior Lateral Line primordium migration requires interactions between a superficial sheath of motile cells and the skin. eLife 2020; 9:58251. [PMID: 33237853 PMCID: PMC7688310 DOI: 10.7554/elife.58251] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
The Zebrafish Posterior Lateral Line primordium migrates in a channel between the skin and somites. Its migration depends on the coordinated movement of its mesenchymal-like leading cells and trailing cells, which form epithelial rosettes, or protoneuromasts. We describe a superficial population of flat primordium cells that wrap around deeper epithelialized cells and extend polarized lamellipodia to migrate apposed to the overlying skin. Polarization of lamellipodia extended by both superficial and deeper protoneuromast-forming cells depends on Fgf signaling. Removal of the overlying skin has similar effects on superficial and deep cells: lamellipodia are lost, blebs appear instead, and collective migration fails. When skinned embryos are embedded in Matrigel, basal and superficial lamellipodia are recovered; however, only the directionality of basal protrusions is recovered, and migration is not rescued. These observations support a key role played by superficial primordium cells and the skin in directed migration of the Posterior Lateral Line primordium.
Collapse
Affiliation(s)
- Damian E Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Naveen Natesh
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, United States
| | - Hari Shroff
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, United States.,Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
13
|
Colombi A, Scianna M, Preziosi L. Collective migration and patterning during early development of zebrafish posterior lateral line. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190385. [PMID: 32713304 DOI: 10.1098/rstb.2019.0385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The morphogenesis of zebrafish posterior lateral line (PLL) is a good predictive model largely used in biology to study cell coordinated reorganization and collective migration regulating pathologies and human embryonic processes. PLL development involves the formation of a placode formed by epithelial cells with mesenchymal characteristics which migrates within the animal myoseptum while cyclically assembling and depositing rosette-like clusters (progenitors of neuromast structures). The overall process mainly relies on the activity of specific diffusive chemicals, which trigger collective directional migration and patterning. Cell proliferation and cascade of phenotypic transitions play a fundamental role as well. The investigation on the mechanisms regulating such a complex morphogenesis has become a research topic, in the last decades, also for the mathematical community. In this respect, we present a multiscale hybrid model integrating a discrete approach for the cellular level and a continuous description for the molecular scale. The resulting numerical simulations are then able to reproduce both the evolution of wild-type (i.e. normal) embryos and the pathological behaviour resulting form experimental manipulations involving laser ablation. A qualitative analysis of the dependence of these model outcomes from cell-cell mutual interactions, cell chemical sensitivity and internalization rates is included. The aim is first to validate the model, as well as the estimated parameter values, and then to predict what happens in situations not tested yet experimentally. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Annachiara Colombi
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Marco Scianna
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
14
|
Abstract
As the crucial non-cellular component of tissues, the extracellular matrix (ECM) provides both physical support and signaling regulation to cells. Some ECM molecules provide a fibrillar environment around cells, while others provide a sheet-like basement membrane scaffold beneath epithelial cells. In this Review, we focus on recent studies investigating the mechanical, biophysical and signaling cues provided to developing tissues by different types of ECM in a variety of developing organisms. In addition, we discuss how the ECM helps to regulate tissue morphology during embryonic development by governing key elements of cell shape, adhesion, migration and differentiation. Summary: This Review discusses our current understanding of how the extracellular matrix helps guide developing tissues by influencing cell adhesion, migration, shape and differentiation, emphasizing the biophysical cues it provides.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| |
Collapse
|
15
|
Dalle Nogare D, Chitnis AB. NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium. Semin Cell Dev Biol 2019; 100:186-198. [PMID: 31901312 DOI: 10.1016/j.semcdb.2019.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 01/25/2023]
Abstract
Interactions between primordium cells and their environment determines the self-organization of the zebrafish posterior Lateral Line primordium as it migrates under the skin from the ear to the tip of the tail forming and depositing neuromasts to spearhead formation of the posterior Lateral Line sensory system. In this review we describe how the NetLogo agent-based programming environment has been used in our lab to visualize and explore how self-generated chemokine gradients determine collective migration, how the dynamics of Wnt signaling can be used to predict patterns of neuromast deposition, and how previously defined interactions between Wnt and Fgf signaling systems have the potential to determine the periodic formation of center-biased Fgf signaling centers in the wake of a shrinking Wnt system. We also describe how NetLogo was used as a database for storing and visualizing the results of in toto lineage analysis of all cells in the migrating primordium. Together, the models illustrate how this programming environment can be used in diverse ways to integrate what has been learnt from biological experiments about the nature of interactions between cells and their environment, and explore how these interactions could potentially determine emergent patterns of cell fate specification, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium.
Collapse
Affiliation(s)
- Damian Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD USA
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD USA.
| |
Collapse
|
16
|
Mishra AK, Campanale JP, Mondo JA, Montell DJ. Cell interactions in collective cell migration. Development 2019; 146:146/23/dev172056. [PMID: 31806626 DOI: 10.1242/dev.172056] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Collective cell migration is the coordinated movement of a physically connected group of cells and is a prominent driver of development and metastasis. Interactions between cells within migrating collectives, and between migrating cells and other cells in the environment, play key roles in stimulating motility, steering and sometimes promoting cell survival. Similarly, diverse heterotypic interactions and collective behaviors likely contribute to tumor metastasis. Here, we describe a sampling of cells that migrate collectively in vivo, including well-established and newer examples. We focus on the under-appreciated property that many - perhaps most - collectively migrating cells move as cooperating groups of distinct cell types.
Collapse
Affiliation(s)
- Abhinava K Mishra
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Joseph P Campanale
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - James A Mondo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
17
|
Capuana L, Boström A, Etienne-Manneville S. Multicellular scale front-to-rear polarity in collective migration. Curr Opin Cell Biol 2019; 62:114-122. [PMID: 31756576 DOI: 10.1016/j.ceb.2019.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 10/25/2022]
Abstract
Collective cell migration does not only reflect the migration of cells at a similar speed and in the same direction, it also implies the emergence of new properties observed at the level of the cell group. This collective behavior relies on interactions between the cells and the establishment of a hierarchy amongst cells with leaders driving the group of followers. Here, we make the parallel between the front-to-rear polarity axis in single cell and the front-to-rear multicellular-scale polarity of a migrating collective which established through exchange of biochemical and mechanical information from the front to the rear and vice versa. Such multicellular-scale polarity gives the migrating group the possibility to better sense and adapt to energy, biochemical and mechanical constraints and facilitates migration over long distances in complex and changing environments.
Collapse
Affiliation(s)
- Lavinia Capuana
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Astrid Boström
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France; School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France.
| |
Collapse
|
18
|
Wei L, Al Oustah A, Blader P, Roussigné M. Notch signaling restricts FGF pathway activation in parapineal cells to promote their collective migration. eLife 2019; 8:46275. [PMID: 31498774 PMCID: PMC6733574 DOI: 10.7554/elife.46275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022] Open
Abstract
Coordinated migration of cell collectives is important during embryonic development and relies on cells integrating multiple mechanical and chemical cues. Recently, we described that focal activation of the FGF pathway promotes the migration of the parapineal in the zebrafish epithalamus. How FGF activity is restricted to leading cells in this system is, however, unclear. Here, we address the role of Notch signaling in modulating FGF activity within the parapineal. While Notch loss-of-function results in an increased number of parapineal cells activating the FGF pathway, global activation of Notch signaling decreases it; both contexts result in defects in parapineal migration and specification. Decreasing or increasing FGF signaling in a Notch loss-of-function context respectively rescues or aggravates parapineal migration defects without affecting parapineal cells specification. We propose that Notch signaling controls the migration of the parapineal through its capacity to restrict FGF pathway activation to a few leading cells.
Collapse
Affiliation(s)
- Lu Wei
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Amir Al Oustah
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Patrick Blader
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Myriam Roussigné
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| |
Collapse
|
19
|
Norden C, Lecaudey V. Collective cell migration: general themes and new paradigms. Curr Opin Genet Dev 2019; 57:54-60. [PMID: 31430686 DOI: 10.1016/j.gde.2019.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 11/16/2022]
Abstract
Collective cell migration plays essential roles in embryogenesis and also contributes to disease states. Recent years have seen immense progress in understanding mechanisms and overarching concepts of collective cell migration. Self-organization of moving groups emerges as an important common feature. This includes self-generating gradients, internal chemotaxis or mechanotaxis and contact-dependent polarization within migrating cell groups. Here, we will discuss these concepts and their applications to classical models of collective cell migration. Further, we discuss new models and paradigms of collective cell migration and elaborate on open questions and future challenges. Answering these questions will help to expand our appreciation of this exciting theme in developmental cell biology and contribute to the understanding of disease states.
Collapse
Affiliation(s)
- Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany.
| | - Virginie Lecaudey
- Department of Developmental Biology of Vertebrates, Institute for Cell Biology and Neuroscience, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
20
|
Macabenta F, Stathopoulos A. Sticking to a plan: adhesion and signaling control spatial organization of cells within migrating collectives. Curr Opin Genet Dev 2019; 57:39-46. [PMID: 31404788 DOI: 10.1016/j.gde.2019.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 01/23/2023]
Abstract
Collective cell migration is required in a vast array of biological phenomena, including organogenesis and embryonic development. The mechanisms that underlie collective cell migration not only involve the morphogenetic changes associated with single cell migration, but also require the maintenance of cell-cell junctions during movement. Additionally, cell shape changes and polarity must be coordinated in a multicellular manner in order to preserve directional movement in the migrating cohort, and often relates to multiple functions of common signaling pathways. In this review, we summarize the current understanding of the mechanisms underlying higher order tissue organization during migration, with particular focus on the interplay between cell adhesion and signaling that we propose can be tuned to support different types of collective movements.
Collapse
Affiliation(s)
- Frank Macabenta
- California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, United States.
| | - Angelike Stathopoulos
- California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, United States.
| |
Collapse
|
21
|
Abstract
Neural crest cells are a transient embryonic cell population that migrate collectively to various locations throughout the embryo to contribute a number of cell types to several organs. After induction, the neural crest delaminates and undergoes an epithelial-to-mesenchymal transition before migrating through intricate yet characteristic paths. The neural crest exhibits a variety of migratory behaviors ranging from sheet-like mass migration in the cephalic regions to chain migration in the trunk. During their journey, neural crest cells rely on a range of signals both from their environment and within the migrating population for navigating through the embryo as a collective. Here we review these interactions and mechanisms, including chemotactic cues of neural crest cells' migration.
Collapse
Affiliation(s)
- András Szabó
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom;
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
22
|
Colucci-Guyon E, Batista AS, Oliveira SDS, Blaud M, Bellettini IC, Marteyn BS, Leblanc K, Herbomel P, Duval R. Ultraspecific live imaging of the dynamics of zebrafish neutrophil granules by a histopermeable fluorogenic benzochalcone probe. Chem Sci 2019; 10:3654-3670. [PMID: 30996961 PMCID: PMC6432617 DOI: 10.1039/c8sc05593a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/12/2019] [Indexed: 12/13/2022] Open
Abstract
Neutrophil granules (NGs) are key components of the innate immune response and mark the development of neutrophilic granulocytes in mammals. However, there has been no specific fluorescent vital stain up to now to monitor their dynamics within a whole live organism. We rationally designed a benzochalcone fluorescent probe (HAB) featuring high tissue permeability and optimal photophysics such as elevated quantum yield, pronounced solvatochromism and target-induced fluorogenesis. Phenotypic screening identified HAB as the first cell- and organelle-specific small-molecule fluorescent tracer of NGs in live zebrafish larvae, with no labeling of other cell types or organelles. HAB staining was independent of the state of neutrophil activation, labeling NGs of both resting and phagocytically active neutrophils with equal specificity. By high-resolution live imaging, we documented the dynamics of HAB-stained NGs during phagocytosis. Upon zymosan injection, labeled NGs were rapidly recruited to the forming phagosomes. Despite being a reversible ligand, HAB could not be displaced by high concentrations of pharmacologically relevant competing chalcones, indicating that this specific labeling was the result of the HAB's precise physicochemical signature rather than a general feature of chalcones. However, one of the competitors was discovered as a promising interstitial fluorescent tracer illuminating zebrafish histology, similarly to BODIPY-ceramide. As a yellow-emitting histopermeable vital stain, HAB functionally and spectrally complements most genetically incorporated fluorescent tags commonly used in live zebrafish biology, holding promise for the study of neutrophil-dependent responses relevant to human physiopathology such as developmental defects, inflammation and infection. Furthermore, HAB intensely labeled isolated live human neutrophils at the level of granulated subcellular structures consistent with human NGs, suggesting that the labeling of NGs by HAB is not restricted to the zebrafish model but also relevant to mammalian systems.
Collapse
Affiliation(s)
- Emma Colucci-Guyon
- Institut Pasteur , Unité Macrophages et Développement de l'Immunité , Paris , 75015 , France .
- CNRS , UMR 3738 , Paris , France
| | - Ariane S Batista
- Nanotechnology Engineering Program , Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia - COPPE , Universidade Federal do Rio de Janeiro , Rio de Janeiro , 21941-972 , Brazil
| | | | - Magali Blaud
- LCRB , CNRS , Université Paris 5 , Sorbonne Paris Cité , Paris , 75006 , France
| | - Ismael C Bellettini
- Departamento de Ciências Exatas e Educaçao , Universidade Federal de Santa Catarina , Blumenau , 89036-256 , Brazil
| | - Benoit S Marteyn
- Institut Pasteur , Unité de Pathogénie Microbienne Moléculaire , Paris , 75015 , France
- INSERM , UMR 786 , Paris , France
| | - Karine Leblanc
- BioCIS , CNRS , Université Paris-Sud 11 , Châtenay-Malabry , 92290 , France
| | - Philippe Herbomel
- Institut Pasteur , Unité Macrophages et Développement de l'Immunité , Paris , 75015 , France .
- CNRS , UMR 3738 , Paris , France
| | - Romain Duval
- MERIT , IRD , Université Paris 5 , Sorbonne Paris Cité , Paris , 75006 , France .
| |
Collapse
|
23
|
Khalil AA, de Rooij J. Cadherin mechanotransduction in leader-follower cell specification during collective migration. Exp Cell Res 2019; 376:86-91. [PMID: 30633881 DOI: 10.1016/j.yexcr.2019.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 01/23/2023]
Abstract
Collective invasion drives the spread of multicellular cancer groups, into the normal tissue surrounding several epithelial tumors. Collective invasion recapitulates various aspects of the multicellular organization and collective migration that take place during normal development and repair. Collective migration starts with the specification of leader cells in which a polarized, migratory phenotype is established. Leader cells initiate and organize the migration of follower cells, to allow the group of cells to move as a cohesive and polarized unit. Leader-follower specification is essential for coordinated and directional collective movement. Forces exerted by cohesive cells represent key signals that dictate multicellular coordination and directionality. Physical forces originate from the contraction of the actomyosin cytoskeleton, which is linked between cells via cadherin-based cell-cell junctions. The cadherin complex senses and transduces fluctuations in forces into biochemical signals that regulate processes like cell proliferation, motility and polarity. With cadherin junctions being maintained in most collective movements the cadherin complex is ideally positioned to integrate mechanical information into the organization of collective cell migration. Here we discuss the potential roles of cadherin mechanotransduction in the diverse aspects of leader versus follower cell specification during collective migration and neoplastic invasion.
Collapse
Affiliation(s)
- Antoine A Khalil
- Dept. Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Stratenum 3.231, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Johan de Rooij
- Dept. Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Stratenum 3.231, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
24
|
Loss of CXCL12/CXCR4 signalling impacts several aspects of cardiovascular development but does not exacerbate Tbx1 haploinsufficiency. PLoS One 2018; 13:e0207251. [PMID: 30408103 PMCID: PMC6224166 DOI: 10.1371/journal.pone.0207251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/26/2018] [Indexed: 11/19/2022] Open
Abstract
The CXCL12-CXCR4 pathway has crucial roles in stem cell homing and maintenance, neuronal guidance, cancer progression, inflammation, remote-conditioning, cell migration and development. Recently, work in chick suggested that signalling via CXCR4 in neural crest cells (NCCs) has a role in the 22q11.2 deletion syndrome (22q11.2DS), a disorder where haploinsufficiency of the transcription factor TBX1 is responsible for the major structural defects. We tested this idea in mouse models. Our analysis of genes with altered expression in Tbx1 mutant mouse models showed down-regulation of Cxcl12 in pharyngeal surface ectoderm and rostral mesoderm, both tissues with the potential to signal to migrating NCCs. Conditional mutagenesis of Tbx1 in the pharyngeal surface ectoderm is associated with hypo/aplasia of the 4th pharyngeal arch artery (PAA) and interruption of the aortic arch type B (IAA-B), the cardiovascular defect most typical of 22q11.2DS. We therefore analysed constitutive mouse mutants of the ligand (CXCL12) and receptor (CXCR4) components of the pathway, in addition to ectodermal conditionals of Cxcl12 and NCC conditionals of Cxcr4. However, none of these typical 22q11.2DS features were detected in constitutively or conditionally mutant embryos. Instead, duplicated carotid arteries were observed, a phenotype recapitulated in Tie-2Cre (endothelial) conditional knock outs of Cxcr4. Previous studies have demonstrated genetic interaction between signalling pathways and Tbx1 haploinsufficiency e.g. FGF, WNT, SMAD-dependent. We therefore tested for possible epistasis between Tbx1 and the CXCL12 signalling axis by examining Tbx1 and Cxcl12 double heterozygotes as well as Tbx1/Cxcl12/Cxcr4 triple heterozygotes, but failed to identify any exacerbation of the Tbx1 haploinsufficient arch artery phenotype. We conclude that CXCL12 signalling via NCC/CXCR4 has no major role in the genesis of the Tbx1 loss of function phenotype. Instead, the pathway has a distinct effect on remodelling of head vessels and interventricular septation mediated via CXCL12 signalling from the pharyngeal surface ectoderm and second heart field to endothelial cells.
Collapse
|
25
|
Adameyko I. Supracellular contractions propel migration. Science 2018; 362:290-291. [PMID: 30337397 DOI: 10.1126/science.aav3376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden. .,Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
26
|
Left/right asymmetric collective migration of parapineal cells is mediated by focal FGF signaling activity in leading cells. Proc Natl Acad Sci U S A 2018; 115:E9812-E9821. [PMID: 30282743 PMCID: PMC6196547 DOI: 10.1073/pnas.1812016115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ability of cells to collectively interpret surrounding environmental signals underpins their capacity to coordinate their migration in various contexts, including embryonic development and cancer metastasis. One tractable model for studying collective migration is the parapineal, a left-sided group of neurons that arises from bilaterally positioned precursors that undergo a collective migration to the left side of the brain. In zebrafish, the migration of these cells requires Fgf8 and, in this study, we resolve how FGF signaling correlates with-and impacts the migratory dynamics of-the parapineal cell collective. The temporal and spatial dynamics of an FGF reporter transgene reveal that FGF signaling is activated in only few parapineal cells usually located at the leading edge of the parapineal during its migration. Overexpressing a constitutively active Fgf receptor compromises parapineal migration in wild-type embryos, while it partially restores both parapineal migration and mosaic expression of the FGF reporter transgene in fgf8 -/- mutant embryos. Focal activation of FGF signaling in few parapineal cells is sufficient to promote the migration of the whole parapineal collective. Finally, we show that asymmetric Nodal signaling contributes to the restriction and leftwards bias of FGF pathway activation. Our data indicate that the first overt morphological asymmetry in the zebrafish brain is promoted by FGF pathway activation in cells that lead the collective migration of the parapineal to the left. This study shows that cell-state differences in FGF signaling in front versus rear cells is required to promote migration in a model of FGF-dependent collective migration.
Collapse
|
27
|
CXCL12 and MYC control energy metabolism to support adaptive responses after kidney injury. Nat Commun 2018; 9:3660. [PMID: 30202007 PMCID: PMC6131511 DOI: 10.1038/s41467-018-06094-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/15/2018] [Indexed: 01/12/2023] Open
Abstract
Kidney injury is a common complication of severe disease. Here, we report that injuries of the zebrafish embryonal kidney are rapidly repaired by a migratory response in 2-, but not in 1-day-old embryos. Gene expression profiles between these two developmental stages identify cxcl12a and myca as candidates involved in the repair process. Zebrafish embryos with cxcl12a, cxcr4b, or myca deficiency display repair abnormalities, confirming their role in response to injury. In mice with a kidney-specific knockout, Cxcl12 and Myc gene deletions suppress mitochondrial metabolism and glycolysis, and delay the recovery after ischemia/reperfusion injury. Probing these observations in zebrafish reveal that inhibition of glycolysis slows fast migrating cells and delays the repair after injury, but does not affect the slow cell movements during kidney development. Our findings demonstrate that Cxcl12 and Myc facilitate glycolysis to promote fast migratory responses during development and repair, and potentially also during tumor invasion and metastasis.
Collapse
|
28
|
Wang Y, Han Y, Xu P, Ding S, Li G, Jin H, Meng Y, Meng A, Jia S. prpf4 is essential for cell survival and posterior lateral line primordium migration in zebrafish. J Genet Genomics 2018; 45:443-453. [DOI: 10.1016/j.jgg.2018.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/20/2018] [Accepted: 05/17/2018] [Indexed: 11/16/2022]
|
29
|
Zinn-Björkman L, Adler FR. Modeling factors that regulate cell cooperativity in the zebrafish posterior lateral line primordium. J Theor Biol 2018; 444:93-99. [PMID: 29470991 DOI: 10.1016/j.jtbi.2018.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 01/10/2023]
Abstract
Collective cell migration is an integral part of organismal development. We consider migration of the zebrafish primordium during development of the posterior lateral line, a sensory system that detects water movement patterns. Experiments have shown that the chemokine ligand CXCL12a and its receptors CXCR4b and CXCR7b are key players for driving migration of the primordium, while FGF signaling helps maintain cohesion. In this work, we formulate a mathematical model of a laser ablated primordium separated into two smaller cell collectives: a leading collective that responds to local CXCL12a levels and a trailing collective that migrates up a local FGF gradient. Our model replicates recent experimental results, while also predicting a "runaway" behavior when FGF gradient response is inhibited. We also use our model to estimate diffusion coefficients of CXCL12a and FGF in the lateral line.
Collapse
Affiliation(s)
- Leif Zinn-Björkman
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112, United States.
| | - Frederick R Adler
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112, United States; School of Biology, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
30
|
Sonavane PR, Wang C, Dzamba B, Weber GF, Periasamy A, DeSimone DW. Mechanical and signaling roles for keratin intermediate filaments in the assembly and morphogenesis of Xenopus mesendoderm tissue at gastrulation. Development 2017; 144:4363-4376. [PMID: 28982683 PMCID: PMC5769636 DOI: 10.1242/dev.155200] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
The coordination of individual cell behaviors is a crucial step in the assembly and morphogenesis of tissues. Xenopus mesendoderm cells migrate collectively along a fibronectin (FN) substrate at gastrulation, but how the adhesive and mechanical forces required for these movements are generated and transmitted is unclear. Traction force microscopy (TFM) was used to establish that traction stresses are limited primarily to leading edge cells in mesendoderm explants, and that these forces are balanced by intercellular stresses in follower rows. This is further reflected in the morphology of these cells, with broad lamellipodial protrusions, mature focal adhesions and a gradient of activated Rac1 evident at the leading edge, while small protrusions, rapid turnover of immature focal adhesions and lack of a Rac1 activity gradient characterize cells in following rows. Depletion of keratin (krt8) with antisense morpholinos results in high traction stresses in follower row cells, misdirected protrusions and the formation of actin stress fibers anchored in streak-like focal adhesions. We propose that maintenance of mechanical integrity in the mesendoderm by keratin intermediate filaments is required to balance stresses within the tissue to regulate collective cell movements.
Collapse
Affiliation(s)
- Pooja R Sonavane
- Department of Cell Biology, School of Medicine, University of Virginia Health System, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Chong Wang
- Department of Cell Biology, School of Medicine, University of Virginia Health System, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Bette Dzamba
- Department of Cell Biology, School of Medicine, University of Virginia Health System, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Gregory F Weber
- Department of Cell Biology, School of Medicine, University of Virginia Health System, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Ammasi Periasamy
- Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Douglas W DeSimone
- Department of Cell Biology, School of Medicine, University of Virginia Health System, P.O. Box 800732, Charlottesville, VA 22908, USA
| |
Collapse
|
31
|
Dalle Nogare D, Chitnis AB. A framework for understanding morphogenesis and migration of the zebrafish posterior Lateral Line primordium. Mech Dev 2017; 148:69-78. [PMID: 28460893 PMCID: PMC10993927 DOI: 10.1016/j.mod.2017.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
A description of zebrafish posterior Lateral Line (pLL) primordium development at single cell resolution together with the dynamics of Wnt, FGF, Notch and chemokine signaling in this system has allowed us to develop a framework to understand the self-organization of cell fate, morphogenesis and migration during its early development. The pLL primordium migrates under the skin, from near the ear to the tip of the tail, periodically depositing neuromasts. Nascent neuromasts, or protoneuromasts, form sequentially within the migrating primordium, mature, and are deposited from its trailing end. Initially broad Wnt signaling inhibits protoneuromast formation. However, protoneuromasts form sequentially in response to FGF signaling, starting from the trailing end, in the wake of a progressively shrinking Wnt system. While proliferation adds to the number of cells, the migrating primordium progressively shrinks as its trailing cells stop moving and are deposited. As it shrinks, the length of the migrating primordium correlates with the length of the leading Wnt system. Based on these observations we show how measuring the rate at which the Wnt system shrinks, the proliferation rate, the initial size of the primordium, its speed, and a few additional parameters allows us to predict the pattern of neuromast formation and deposition by the migrating primordium in both wild-type and mutant contexts. While the mechanism that links the length of the leading Wnt system to that of the primordium remains unclear, we discuss how it might be determined by access to factors produced in the leading Wnt active zone that are required for collective migration of trailing cells. We conclude by reviewing how FGFs, produced in response to Wnt signaling in leading cells, help determine collective migration of trailing cells, while a polarized response to a self-generated chemokine gradient serves as an efficient mechanism to steer primordium migration along its relatively long journey.
Collapse
Affiliation(s)
- Damian Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA.
| |
Collapse
|
32
|
Venhuizen JH, Zegers MM. Making Heads or Tails of It: Cell-Cell Adhesion in Cellular and Supracellular Polarity in Collective Migration. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027854. [PMID: 28246177 DOI: 10.1101/cshperspect.a027854] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Collective cell migration is paramount to morphogenesis and contributes to the pathogenesis of cancer. To migrate directionally and reach their site of destination, migrating cells must distinguish a front and a rear. In addition to polarizing individually, cell-cell interactions in collectively migrating cells give rise to a higher order of polarity, which allows them to move as a supracellular unit. Rather than just conferring adhesion, emerging evidence indicates that cadherin-based adherens junctions intrinsically polarize the cluster and relay mechanical signals to establish both intracellular and supracellular polarity. In this review, we discuss the various functions of adherens junctions in polarity of migrating cohorts.
Collapse
Affiliation(s)
- Jan-Hendrik Venhuizen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Mirjam M Zegers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
33
|
Theveneau E, Linker C. Leaders in collective migration: are front cells really endowed with a particular set of skills? F1000Res 2017; 6:1899. [PMID: 29152225 PMCID: PMC5664975 DOI: 10.12688/f1000research.11889.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2017] [Indexed: 12/21/2022] Open
Abstract
Collective cell migration is the coordinated movement emerging from the interaction of at least two cells. In multicellular organisms, collective cell migration is ubiquitous. During development, embryonic cells often travel in numbers, whereas in adults, epithelial cells close wounds collectively. There is often a division of labour and two categories of cells have been proposed: leaders and followers. These two terms imply that followers are subordinated to leaders whose proposed broad range of actions significantly biases the direction of the group of cells towards a specific target. These two terms are also tied to topology. Leaders are at the front while followers are located behind them. Here, we review recent work on some of the main experimental models for collective cell migration, concluding that leader-follower terminology may not be the most appropriate. It appears that not all collectively migrating groups are driven by cells located at the front. Moreover, the qualities that define leaders (pathfinding, traction forces and matrix remodelling) are not specific to front cells. These observations indicate that the terms leaders and followers are not suited to every case. We think that it would be more accurate to dissociate the function of a cell from its position in the group. The position of cells can be precisely defined with respect to the direction of movement by purely topological terms such as "front" or "rear" cells. In addition, we propose the more ample and strictly functional definition of "steering cells" which are able to determine the directionality of movement for the entire group. In this context, a leader cell represents only a specific case in which a steering cell is positioned at the front of the group.
Collapse
Affiliation(s)
- Eric Theveneau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Claudia Linker
- Randall Division of Cell & Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
34
|
Abstract
Perception of the environment in vertebrates relies on a variety of neurosensory mini-organs. These organs develop via a multi-step process that includes placode induction, cell differentiation, patterning and innervation. Ultimately, cells derived from one or more different tissues assemble to form a specific mini-organ that exhibits a particular structure and function. The initial building blocks of these organs are epithelial cells that undergo rearrangements and interact with neighbouring tissues, such as neural crest-derived mesenchymal cells and sensory neurons, to construct a functional sensory organ. In recent years, advances in in vivo imaging methods have allowed direct observation of these epithelial cells, showing that they can be displaced within the epithelium itself via several modes. This Review focuses on the diversity of epithelial cell behaviours that are involved in the formation of small neurosensory organs, using the examples of dental placodes, hair follicles, taste buds, lung neuroendocrine cells and zebrafish lateral line neuromasts to highlight both well-established and newly described modes of epithelial cell motility.
Collapse
Affiliation(s)
- Marika Kapsimali
- Institute of Biology of the Ecole Normale Supérieure, IBENS, Paris 75005, France .,INSERM U1024, Paris 75005, France.,CNRS UMR 8197, Paris 75005, France
| |
Collapse
|
35
|
Abstract
Migrating cells can influence the direction of their own migration by metabolizing chemoattractants present in their environment. This is illustrated by the dispersal of melanoma cells, which break down lysophosphatidic acid and generate a gradient with increasing concentrations of lysophosphatidic acid distant from the tumor. Melanoma cells can then disperse away from the tumor as they migrate in the self-generated lysophosphatidic acid gradient. Thus, dispersal of tumor cells during invasion of the surrounding stroma might be driven by chemotaxis of cells along self-generated chemoattractant gradients.
Collapse
Affiliation(s)
- Christina H Stuelten
- National Institutes of Health, National Cancer Institute, Laboratory of Cellular and Molecular Biology, 37 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
36
|
Toro-Tapia G, Villaseca S, Leal JI, Beyer A, Fuentealba J, Torrejón M. Xenopus as a model organism to study heterotrimeric G-protein pathway during collective cell migration of neural crest. Genesis 2017; 55. [PMID: 28095644 DOI: 10.1002/dvg.23008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/03/2023]
Abstract
Collective cell migration is essential in many fundamental aspects of normal development, like morphogenesis, organ formation, wound healing, and immune responses, as well as in the etiology of severe pathologies, like cancer metastasis. In spite of the huge amount of data accumulated on cell migration, such a complex process involves many molecular actors, some of which still remain to be functionally characterized. One of these signals is the heterotrimeric G-protein pathway that has been studied mainly in gastrulation movements. Recently we have reported that Ric-8A, a GEF for Gα proteins, plays an important role in neural crest migration in Xenopus development. Xenopus neural crest cells, a highly migratory embryonic cell population induced at the border of the neural plate that migrates extensively in order to differentiate in other tissues during development, have become a good model to understand the dynamics that regulate cell migration. In this review, we aim to provide sufficient evidence supporting how useful Xenopus model with its different tools, such as explants and transplants, paired with improved in vivo imaging techniques, will allow us to tackle the multiple signaling mechanisms involved in neural crest cell migration.
Collapse
Affiliation(s)
- G Toro-Tapia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - S Villaseca
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - J I Leal
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - A Beyer
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - J Fuentealba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - M Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| |
Collapse
|
37
|
Abstract
Cell polarization is a key step in the migration, development, and organization of eukaryotic cells, both at the single cell and multicellular level. Research on the mechanisms that give rise to polarization of a given cell, and organization of polarity within a tissue has led to new understanding across cellular and developmental biology. In this review, we describe some of the history of theoretical and experimental aspects of the field, as well as some interesting questions and challenges for the future.
Collapse
Affiliation(s)
- Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, USA
| | | |
Collapse
|
38
|
Knutsdottir H, Zmurchok C, Bhaskar D, Palsson E, Dalle Nogare D, Chitnis AB, Edelstein-Keshet L. Polarization and migration in the zebrafish posterior lateral line system. PLoS Comput Biol 2017; 13:e1005451. [PMID: 28369079 PMCID: PMC5393887 DOI: 10.1371/journal.pcbi.1005451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 04/17/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022] Open
Abstract
Collective cell migration plays an important role in development. Here, we study the posterior lateral line primordium (PLLP) a group of about 100 cells, destined to form sensory structures, that migrates from head to tail in the zebrafish embryo. We model mutually inhibitory FGF-Wnt signalling network in the PLLP and link tissue subdivision (Wnt receptor and FGF receptor activity domains) to receptor-ligand parameters. We then use a 3D cell-based simulation with realistic cell-cell adhesion, interaction forces, and chemotaxis. Our model is able to reproduce experimentally observed motility with leading cells migrating up a gradient of CXCL12a, and trailing (FGF receptor active) cells moving actively by chemotaxis towards FGF ligand secreted by the leading cells. The 3D simulation framework, combined with experiments, allows an investigation of the role of cell division, chemotaxis, adhesion, and other parameters on the shape and speed of the PLLP. The 3D model demonstrates reasonable behaviour of control as well as mutant phenotypes.
Collapse
Affiliation(s)
- Hildur Knutsdottir
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - Cole Zmurchok
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dhananjay Bhaskar
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eirikur Palsson
- Department of Biology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Damian Dalle Nogare
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Ajay B. Chitnis
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Leah Edelstein-Keshet
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Camley BA, Rappel WJ. Physical models of collective cell motility: from cell to tissue. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:113002. [PMID: 28989187 PMCID: PMC5625300 DOI: 10.1088/1361-6463/aa56fe] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this article, we review physics-based models of collective cell motility. We discuss a range of techniques at different scales, ranging from models that represent cells as simple self-propelled particles to phase field models that can represent a cell's shape and dynamics in great detail. We also extensively review the ways in which cells within a tissue choose their direction, the statistics of cell motion, and some simple examples of how cell-cell signaling can interact with collective cell motility. This review also covers in more detail selected recent works on collective cell motion of small numbers of cells on micropatterns, in wound healing, and the chemotaxis of clusters of cells.
Collapse
|
40
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
41
|
Abstract
During embryonic development, tissues undergo major rearrangements that lead to germ layer positioning, patterning, and organ morphogenesis. Often these morphogenetic movements are accomplished by the coordinated and cooperative migration of the constituent cells, referred to as collective cell migration. The molecular and biomechanical mechanisms underlying collective migration of developing tissues have been investigated in a variety of models, including border cell migration, tracheal branching, blood vessel sprouting, and the migration of the lateral line primordium, neural crest cells, or head mesendoderm. Here we review recent advances in understanding collective migration in these developmental models, focusing on the interaction between cells and guidance cues presented by the microenvironment and on the role of cell–cell adhesion in mechanical and behavioral coupling of cells within the collective.
Collapse
Affiliation(s)
- Elena Scarpa
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| |
Collapse
|
42
|
Migration of Founder Epithelial Cells Drives Proper Molar Tooth Positioning and Morphogenesis. Dev Cell 2016; 35:713-24. [PMID: 26702830 DOI: 10.1016/j.devcel.2015.11.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/19/2015] [Accepted: 11/24/2015] [Indexed: 02/05/2023]
Abstract
The proper positioning of organs during development is essential, yet little is known about the regulation of this process in mammals. Using murine tooth development as a model, we have found that cell migration plays a central role in positioning of the organ primordium. By combining lineage tracing, genetic cell ablation, and confocal live imaging, we identified a migratory population of Fgf8-expressing epithelial cells in the embryonic mandible. These Fgf8-expressing progenitors furnish the epithelial cells required for tooth development, and the progenitor population migrates toward a Shh-expressing region in the mandible, where the tooth placode will initiate. Inhibition of Fgf and Shh signaling disrupted the oriented migration of cells, leading to a failure of tooth development. These results demonstrate the importance of intraepithelial cell migration in proper positioning of an initiating organ.
Collapse
|
43
|
Venero Galanternik M, Navajas Acedo J, Romero-Carvajal A, Piotrowski T. Imaging collective cell migration and hair cell regeneration in the sensory lateral line. Methods Cell Biol 2016; 134:211-56. [PMID: 27312495 DOI: 10.1016/bs.mcb.2016.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The accessibility of the lateral line system and its amenability to long-term in vivo imaging transformed the developing lateral line into a powerful model system to study fundamental morphogenetic events, such as guided migration, proliferation, cell shape changes, organ formation, organ deposition, cell specification and differentiation. In addition, the lateral line is not only amenable to live imaging during migration stages but also during postembryonic events such as sensory organ tissue homeostasis and regeneration. The robust regenerative capabilities of the mature, mechanosensory lateral line hair cells, which are homologous to inner ear hair cells and the ease with which they can be imaged, have brought zebrafish into the spotlight as a model to develop tools to treat human deafness. In this chapter, we describe protocols for long-term in vivo confocal imaging of the developing and regenerating lateral line.
Collapse
Affiliation(s)
- M Venero Galanternik
- Stowers Institute for Medical Research, Kansas City, MO, United States; University of Utah, Salt Lake City, UT, United States
| | - J Navajas Acedo
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - A Romero-Carvajal
- Stowers Institute for Medical Research, Kansas City, MO, United States; University of Utah, Salt Lake City, UT, United States
| | - T Piotrowski
- Stowers Institute for Medical Research, Kansas City, MO, United States; University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
44
|
Mayor R, Etienne-Manneville S. The front and rear of collective cell migration. Nat Rev Mol Cell Biol 2016; 17:97-109. [PMID: 26726037 DOI: 10.1038/nrm.2015.14] [Citation(s) in RCA: 565] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Collective cell migration has a key role during morphogenesis and during wound healing and tissue renewal in the adult, and it is involved in cancer spreading. In addition to displaying a coordinated migratory behaviour, collectively migrating cells move more efficiently than if they migrated separately, which indicates that a cellular interplay occurs during collective cell migration. In recent years, evidence has accumulated confirming the importance of such intercellular communication and exploring the molecular mechanisms involved. These mechanisms are based both on direct physical interactions, which coordinate the cellular responses, and on the collective cell behaviour that generates an optimal environment for efficient directed migration. The recent studies have described how leader cells at the front of cell groups drive migration and have highlighted the importance of follower cells and cell-cell communication, both between followers and between follower and leader cells, to improve the efficiency of collective movement.
Collapse
Affiliation(s)
- Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sandrine Etienne-Manneville
- Institut Pasteur, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
45
|
Bird S, Tafalla C. Teleost Chemokines and Their Receptors. BIOLOGY 2015; 4:756-84. [PMID: 26569324 PMCID: PMC4690017 DOI: 10.3390/biology4040756] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/20/2015] [Accepted: 11/03/2015] [Indexed: 12/14/2022]
Abstract
Chemokines are a superfamily of cytokines that appeared about 650 million years ago, at the emergence of vertebrates, and are responsible for regulating cell migration under both inflammatory and physiological conditions. The first teleost chemokine gene was reported in rainbow trout in 1998. Since then, numerous chemokine genes have been identified in diverse fish species evidencing the great differences that exist among fish and mammalian chemokines, and within the different fish species, as a consequence of extensive intrachromosomal gene duplications and different infectious experiences. Subsequently, it has only been possible to establish clear homologies with mammalian chemokines in the case of some chemokines with well-conserved homeostatic roles, whereas the functionality of other chemokine genes will have to be independently addressed in each species. Despite this, functional studies have only been undertaken for a few of these chemokine genes. In this review, we describe the current state of knowledge of chemokine biology in teleost fish. We have mainly focused on those species for which more research efforts have been made in this subject, specifically zebrafish (Daniorerio), rainbow trout (Oncorhynchusmykiss) and catfish (Ictaluruspunctatus), outlining which genes have been identified thus far, highlighting the most important aspects of their expression regulation and addressing any known aspects of their biological role in immunity. Finally, we summarise what is known about the chemokine receptors in teleosts and provide some analysis using recently available data to help characterise them more clearly.
Collapse
Affiliation(s)
- Steve Bird
- Biomedical Unit, School of Science, University of Waikato, Waikato 3240, New Zealand.
| | - Carolina Tafalla
- Animal Health Research Center (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos, Madrid 28130, Spain.
| |
Collapse
|
46
|
Xiang W, Zhang D, Montell DJ. Tousled-like kinase regulates cytokine-mediated communication between cooperating cell types during collective border cell migration. Mol Biol Cell 2015; 27:12-9. [PMID: 26510500 PMCID: PMC4694751 DOI: 10.1091/mbc.e15-05-0327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/19/2015] [Indexed: 11/26/2022] Open
Abstract
Tousled-like kinase is required for signaling between polar cells and border cells in the Drosophila ovary, thus controlling their collective migration. Tlk knockdown in polar cells inhibits cytokine expression without affecting polar cell fate or viability. This study shows novel, cell type–specific functions for this ubiquitous nuclear protein. Collective cell migration is emerging as a major contributor to normal development and disease. Collective movement of border cells in the Drosophila ovary requires cooperation between two distinct cell types: four to six migratory cells surrounding two immotile cells called polar cells. Polar cells secrete a cytokine, Unpaired (Upd), which activates JAK/STAT signaling in neighboring cells, stimulating their motility. Without Upd, migration fails, causing sterility. Ectopic Upd expression is sufficient to stimulate motility in otherwise immobile cells. Thus regulation of Upd is key. Here we report a limited RNAi screen for nuclear proteins required for border cell migration, which revealed that the gene encoding Tousled-like kinase (Tlk) is required in polar cells for Upd expression without affecting polar cell fate. In the absence of Tlk, fewer border cells are recruited and motility is impaired, similar to inhibition of JAK/STAT signaling. We further show that Tlk in polar cells is required for JAK/STAT activation in border cells. Genetic interactions further confirmed Tlk as a new regulator of Upd/JAK/STAT signaling. These findings shed light on the molecular mechanisms regulating the cooperation of motile and nonmotile cells during collective invasion, a phenomenon that may also drive metastatic cancer.
Collapse
Affiliation(s)
- Wenjuan Xiang
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106 Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106
| |
Collapse
|
47
|
Szabó A, Mayor R. Cell traction in collective cell migration and morphogenesis: the chase and run mechanism. Cell Adh Migr 2015; 9:380-3. [PMID: 26267782 DOI: 10.1080/19336918.2015.1019997] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Directional collective cell migration plays an important role in development, physiology, and disease. An increasing number of studies revealed key aspects of how cells coordinate their movement through distances surpassing several cell diameters. While physical modeling and measurements of forces during collective cell movements helped to reveal key mechanisms, most of these studies focus on tightly connected epithelial cultures. Less is known about collective migration of mesenchymal cells. A typical example of such behavior is the migration of the neural crest cells, which migrate large distances as a group. A recent study revealed that this persistent migration is aided by the interaction between the neural crest and the neighboring placode cells, whereby neural crest chase the placodes via chemotaxis, but upon contact both populations undergo contact inhibition of locomotion and a rapid reorganization of cellular traction. The resulting asymmetric traction field of the placodes forces them to run away from the chasers. We argue that this chase and run interaction may not be specific only to the neural crest system, but could serve as the underlying mechanism for several morphogenetic processes involving collective cell migration.
Collapse
Affiliation(s)
- András Szabó
- a Department of Cell and Developmental Biology ; University College London ; London UK
| | - Roberto Mayor
- a Department of Cell and Developmental Biology ; University College London ; London UK
| |
Collapse
|
48
|
Stonko DP, Manning L, Starz-Gaiano M, Peercy BE. A mathematical model of collective cell migration in a three-dimensional, heterogeneous environment. PLoS One 2015; 10:e0122799. [PMID: 25875645 PMCID: PMC4395426 DOI: 10.1371/journal.pone.0122799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/13/2015] [Indexed: 12/30/2022] Open
Abstract
Cell migration is essential in animal development, homeostasis, and disease progression, but many questions remain unanswered about how this process is controlled. While many kinds of individual cell movements have been characterized, less effort has been directed towards understanding how clusters of cells migrate collectively through heterogeneous, cellular environments. To explore this, we have focused on the migration of the border cells during Drosophila egg development. In this case, a cluster of different cell types coalesce and traverse as a group between large cells, called nurse cells, in the center of the egg chamber. We have developed a new model for this collective cell migration based on the forces of adhesion, repulsion, migration and stochastic fluctuation to generate the movement of discrete cells. We implement the model using Identical Math Cells, or IMCs. IMCs can each represent one biological cell of the system, or can be aggregated using increased adhesion forces to model the dynamics of larger biological cells. The domain of interest is filled with IMCs, each assigned specific biophysical properties to mimic a diversity of cell types. Using this system, we have successfully simulated the migration of the border cell cluster through an environment filled with larger cells, which represent nurse cells. Interestingly, our simulations suggest that the forces utilized in this model are sufficient to produce behaviors of the cluster that are observed in vivo, such as rotation. Our framework was developed to capture a heterogeneous cell population, and our implementation strategy allows for diverse, but precise, initial position specification over a three- dimensional domain. Therefore, we believe that this model will be useful for not only examining aspects of Drosophila oogenesis, but also for modeling other two or three-dimensional systems that have multiple cell types and where investigating the forces between cells is of interest.
Collapse
Affiliation(s)
- David P. Stonko
- Department of Mathematics and Statistics, University of Maryland Baltimore County, MD, USA
| | - Lathiena Manning
- Department of Biological Sciences, University of Maryland Baltimore County, MD, USA
| | | | - Bradford E. Peercy
- Department of Mathematics and Statistics, University of Maryland Baltimore County, MD, USA
- * E-mail:
| |
Collapse
|
49
|
Bussmann J, Raz E. Chemokine-guided cell migration and motility in zebrafish development. EMBO J 2015; 34:1309-18. [PMID: 25762592 DOI: 10.15252/embj.201490105] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/04/2015] [Indexed: 12/29/2022] Open
Abstract
Chemokines are vertebrate-specific, structurally related proteins that function primarily in controlling cell movements by activating specific 7-transmembrane receptors. Chemokines play critical roles in a large number of biological processes and are also involved in a range of pathological conditions. For these reasons, chemokines are at the focus of studies in developmental biology and of clinically oriented research aimed at controlling cancer, inflammation, and immunological diseases. The small size of the zebrafish embryos, their rapid external development, and optical properties as well as the large number of eggs and the fast expansion in genetic tools available make this model an extremely useful one for studying the function of chemokines and chemokine receptors in an in vivo setting. Here, we review the findings relevant to the role that chemokines play in the context of directed single-cell migration, primarily in neutrophils and germ cells, and compare it to the collective cell migration of the zebrafish lateral line. We present the current knowledge concerning the formation of the chemokine gradient, its interpretation within the cell, and the molecular mechanisms underlying the cellular response to chemokine signals during directed migration.
Collapse
Affiliation(s)
- Jeroen Bussmann
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands Gorlaeus Laboratories, Department of Molecular Cell Biology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Erez Raz
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| |
Collapse
|
50
|
Venero Galanternik M, Kramer KL, Piotrowski T. Heparan Sulfate Proteoglycans Regulate Fgf Signaling and Cell Polarity during Collective Cell Migration. Cell Rep 2015; 10:414-428. [PMID: 25600875 PMCID: PMC4531098 DOI: 10.1016/j.celrep.2014.12.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/17/2014] [Accepted: 12/17/2014] [Indexed: 12/21/2022] Open
Abstract
Collective cell migration is a highly regulated morphogenetic movement during embryonic development and cancer invasion that involves the precise orchestration and integration of cell-autonomous mechanisms and environmental signals. Coordinated lateral line primordium migration is controlled by the regulation of chemokine receptors via compartmentalized Wnt/β-catenin and fibroblast growth factor (Fgf) signaling. Analysis of mutations in two exostosin glycosyltransferase genes (extl3 and ext2) revealed that loss of heparan sulfate (HS) chains results in a failure of collective cell migration due to enhanced Fgf ligand diffusion and loss of Fgf signal transduction. Consequently, Wnt/β-catenin signaling is activated ectopically, resulting in the subsequent loss of the chemokine receptor cxcr7b. Disruption of HS proteoglycan (HSPG) function induces extensive, random filopodia formation, demonstrating that HSPGs are involved in maintaining cell polarity in collectively migrating cells. The HSPGs themselves are regulated by the Wnt/β-catenin and Fgf pathways and thus are integral components of the regulatory network that coordinates collective cell migration with organ specification and morphogenesis.
Collapse
Affiliation(s)
- Marina Venero Galanternik
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Kenneth L Kramer
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
| | - Tatjana Piotrowski
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|