1
|
Liu X, Ye L, Ding Y, Gong W, Qian H, Jin K, Niu Y, Zuo Q, Song J, Han W, Chen G, Li B. Role of PI3K/AKT signaling pathway involved in self-renewing and maintaining biological properties of chicken primordial germ cells. Poult Sci 2024; 103:104140. [PMID: 39173217 PMCID: PMC11379996 DOI: 10.1016/j.psj.2024.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Avian primordial germ cells (PGCs) are important culture cells for the production of transgenic chickens and preservation of the genetic resources of endangered species; however, culturing these cells in vitro proves challenging. Although the proliferation of chicken PGCs is dependent on insulin, the underlying molecular mechanisms remain unclear. In the present study, we explored the expression of the PI3K/AKT signaling pathway in PGCs, investigated its effects on PGC self-renewal and biological properties, and identified the underlying mechanisms. Our findings indicated that although supplementation with the PI3K/AKT activator IGF-1 failed to promote proliferation under the assessed culture conditions, the PI3K/AKT inhibitor LY294002 resulted in retarded cell proliferation and reduced expression of germ cell-related markers. We further demonstrated that inhibition of PI3K/AKT regulates the cell cycle and promotes apoptosis in PGCs by activating the expression of BAX and inhibiting that of Bcl-2. These findings indicated that the PI3K/AKT pathway is required for cell renewal, apoptosis, and maintenance of the reproductive potential in chicken PGCs. This study aimed to provide a theoretical basis for the optimization and improvement of a culture system for chicken PGCs and provide insights into the self-renewal of vertebrate PGCs as well as potential evolutionary changes in this unique cell population.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Liu Ye
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ying Ding
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wei Gong
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongwu Qian
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, MA 20742, USA
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences Poultry Institute of Jiangsu, Yangzhou 225003, China
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| |
Collapse
|
2
|
Okamura D, Kohara A, Chigi Y, Katayama T, Sharif J, Wu J, Ito-Matsuoka Y, Matsui Y. p38 MAPK as a gatekeeper of reprogramming in mouse migratory primordial germ cells. Front Cell Dev Biol 2024; 12:1410177. [PMID: 38911025 PMCID: PMC11191381 DOI: 10.3389/fcell.2024.1410177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
Mammalian germ cells are derived from primordial germ cells (PGCs) and ensure species continuity through generations. Unlike irreversible committed mature germ cells, migratory PGCs exhibit a latent pluripotency characterized by the ability to derive embryonic germ cells (EGCs) and form teratoma. Here, we show that inhibition of p38 mitogen-activated protein kinase (MAPK) by chemical compounds in mouse migratory PGCs enables derivation of chemically induced Embryonic Germ-like Cells (cEGLCs) that do not require conventional growth factors like LIF and FGF2/Activin-A, and possess unique naïve pluripotent-like characteristics with epiblast features and chimera formation potential. Furthermore, cEGLCs are regulated by a unique PI3K-Akt signaling pathway, distinct from conventional naïve pluripotent stem cells described previously. Consistent with this notion, we show by performing ex vivo analysis that inhibition of p38 MAPK in organ culture supports the survival and proliferation of PGCs and also potentially reprograms PGCs to acquire indefinite proliferative capabilities, marking these cells as putative teratoma-producing cells. These findings highlight the utility of our ex vivo model in mimicking in vivo teratoma formation, thereby providing valuable insights into the cellular mechanisms underlying tumorigenesis. Taken together, our research underscores a key role of p38 MAPK in germ cell development, maintaining proper cell fate by preventing unscheduled pluripotency and teratoma formation with a balance between proliferation and differentiation.
Collapse
Affiliation(s)
- Daiji Okamura
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Aoi Kohara
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yuta Chigi
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Tomoka Katayama
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yumi Ito-Matsuoka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Imai A, Matsuda K, Niimi Y, Suzuki A. Loss of Dead end1 induces testicular teratomas from primordial germ cells that failed to undergo sexual differentiation in embryonic testes. Sci Rep 2023; 13:6398. [PMID: 37076592 PMCID: PMC10115811 DOI: 10.1038/s41598-023-33706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/18/2023] [Indexed: 04/21/2023] Open
Abstract
Spontaneous testicular teratomas (STTs) are tumours comprising a diverse array of cell and tissue types, which are derived from pluripotent stem-like cells called embryonal carcinoma cells (ECCs). Although mouse ECCs originate from primordial germ cells (PGCs) in embryonic testes, the molecular basis underlying ECC development remains unclear. This study shows that the conditional deletion of mouse Dead end1 (Dnd1) from migrating PGCs leads to STT development. In Dnd1-conditional knockout (Dnd1-cKO) embryos, PGCs colonise the embryonic testes but fail to undergo sexual differentiation; subsequently, ECCs develop from a portion of the PGCs. Transcriptomic analyses reveal that PGCs not only fail to undergo sexual differentiation but are also prone to transformation into ECCs by upregulating the expression of marker genes for primed pluripotency in the testes of Dnd1-cKO embryos. Thus, our results clarify the role of Dnd1 in developing STTs and developmental process of ECC from PGC, providing novel insights into pathogenic mechanisms of STTs.
Collapse
Affiliation(s)
- Atsuki Imai
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Kazuya Matsuda
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Yuki Niimi
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
- Research & Development Group, Center for Exploratory Research, Hitachi, Ltd., Kobe, Hyogo, Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan.
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
4
|
Hainaut M, Clarke HJ. Germ cells of the mammalian female: A limited or renewable resource? Biol Reprod 2021; 105:774-788. [PMID: 34114006 DOI: 10.1093/biolre/ioab115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/12/2022] Open
Abstract
In many non-mammalian organisms, a population of germ-line stem cells supports continuing production of gametes during most or all the life of the individual, and germ-line stem cells are also present and functional in male mammals. Traditionally, however, they have been thought not to exist in female mammals, who instead generate all their germ cells during fetal life. Over the last several years, this dogma has been challenged by several reports, while supported by others. We describe and compare these conflicting studies with the aim of understanding how they came to opposing conclusions. We first consider studies that, by examining marker-gene expression, the fate of genetically marked cells, and consequences of depleting the oocyte population, addressed whether ovaries of post-natal females contain oogonial stem cells (OSC) that give rise to new oocytes. We next discuss whether ovaries contain cells that, even if inactive under physiological conditions, nonetheless possess OSC properties that can be revealed through cell-culture. We then examine studies of whether cells harvested after long-term culture of cells obtained from ovaries can, following transplantation into ovaries of recipient females, give rise to oocytes and offspring. Finally, we note studies where somatic cells have been re-programmed to acquire a female germ-cell fate. We conclude that the weight of evidence strongly supports the traditional interpretation that germ-line stem cells do not exist post-natally in female mammals. However, the ability to generate germ cells from somatic cells in vitro establishes a method to generate new gametes from cells of post-natal mammalian females.
Collapse
Affiliation(s)
- Mathilde Hainaut
- Department of Obstetrics and Gynecology, McGill University and Research Institute of the McGill University Health Centre, Montreal Canada
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University and Research Institute of the McGill University Health Centre, Montreal Canada
| |
Collapse
|
5
|
Borkowska M, Leitch HG. Mouse Primordial Germ Cells: In Vitro Culture and Conversion to Pluripotent Stem Cell Lines. Methods Mol Biol 2021; 2214:59-73. [PMID: 32944903 DOI: 10.1007/978-1-0716-0958-3_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of the gametes. Despite decades of research, in vitro culture of PGCs remains a major challenge and has previously relied on undefined components such as serum and feeders. Notably, PGCs cultured for extended periods do not maintain their lineage identity but instead undergo conversion to form pluripotent stem cell lines called embryonic germ (EG) cells in response to LIF/STAT3 signaling. Here we report both established and new methodologies to derive EG cells, in a range of different conditions. We show that basic fibroblast growth factor is not required for EG cell conversion. We detail the steps taken in our laboratory to systematically remove complex components and establish a fully defined protocol that allows efficient conversion of isolated PGCs to pluripotent EG cells. In addition, we demonstrate that PGCs can adhere and proliferate in culture without the support of feeder cells or serum. This may well suggest novel approaches to establishing short-term culture of PGCs in defined conditions.
Collapse
Affiliation(s)
- Malgorzata Borkowska
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Harry G Leitch
- MRC London Institute of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
6
|
Gross-Thebing T, Raz E. Dead end and Detour: The function of the RNA-binding protein Dnd in posttranscriptional regulation in the germline. Curr Top Dev Biol 2020; 140:181-208. [DOI: 10.1016/bs.ctdb.2019.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Clotaire DZJ, Wei Y, Yu X, Ousman T, Hua J. Functions of promyelocytic leukaemia zinc finger (Plzf) in male germline stem cell development and differentiation. Reprod Fertil Dev 2019; 31:1315-1320. [PMID: 31009592 DOI: 10.1071/rd18252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 02/16/2019] [Indexed: 01/12/2023] Open
Abstract
Promyelocytic leukaemia zinc finger (Plzf), also known as zinc finger and BTB domain containing 16 (ZBTB16) or zinc-finger protein 145 (ZFP145), is a critical zinc finger protein of male germline stem cells (mGSCs). Multiple lines of evidence indicate that Plzf has a central role in the development, differentiation and maintenance of many stem cells, including mGSCs, and Plzf has been validated as an essential transcription factor for mammalian testis development and spermatogenesis. This review summarises current literature focusing on the significance of Plzf in maintaining and regulating self-renewal and differentiation of mGSCs, especially goat mGSCs. The review summarises evidence of the specificity of Plzf expression in germ cell development stage, the known functions of Plzf and the microRNA-mediated mechanisms that control Plzf expression in mGSCs.
Collapse
Affiliation(s)
- Daguia Zambe John Clotaire
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; and Laboratoire des sciences Agronomiques et Biologiques pour le Développement (LASBAD), Faculty of Science, University of Bangui, Bangui, 999111, Central Africa
| | - Yudong Wei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuwei Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tamgue Ousman
- Department of Biochemistry, University of Douala, Douala, 999108, Cameroon
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; and Corresponding author
| |
Collapse
|
8
|
Takehara A, Matsui Y. Shortened G1 phase of cell cycle and decreased histone H3K27 methylation are associated with AKT-induced enhancement of primordial germ cell reprogramming. Dev Growth Differ 2019; 61:357-364. [PMID: 31199000 DOI: 10.1111/dgd.12621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 01/15/2023]
Abstract
Primordial germ cells (PGCs) are reprogrammed into pluripotent embryonic germ cells (EGCs) under specific culture conditions, but the detailed mechanisms of PGC reprogramming have not yet been fully clarified. Previous studies have demonstrated that AKT, an important intracellular signaling molecule, promotes reprogramming of PGCs into EGCs. Because AKT likely inhibits p53 functions to enhance PGC reprogramming, and p53 negatively regulates cell cycle progression, we analyzed cell cycle changes in PGCs following AKT activation and found that the ratio of PGCs in the G1/G0 phase was decreased while that of PGCs in the G2/M phase was increased after AKT activation.
We also showed that the expression of the CDK inhibitor p27kip1, which prevents the G1‐S transition and is transcriptionally activated by p53, was significantly downregulated by AKT activation. The results suggested that the characteristic cell cycle changes of PGCs by AKT activation are, at least in part, due to decreased expression of p27kip1 . We also investigated changes in histone H3K27 tri-methylation (H3K27me3) by AKT activation in PGCs, because we previously found that decreased H3K27me3 was involved in PGC reprogramming via upregulation of cyclin D1. We observed that AKT activation in PGCs resulted in H3K27 hypomethylation. In addition, DZNeP, an inhibitor of the H3K27 trimethyl transferase Ezh2, stimulated EGC formation. These results together suggested that AKT activation promotes G1-S transition and downregulates H3K27me3 to enhance PGC reprogramming.
Collapse
Affiliation(s)
- Asuka Takehara
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
An Y, Sekinaka T, Tando Y, Okamura D, Tanaka K, Ito-Matsuoka Y, Takehara A, Yaegashi N, Matsui Y. Derivation of pluripotent stem cells from nascent undifferentiated teratoma. Dev Biol 2018; 446:43-55. [PMID: 30529251 DOI: 10.1016/j.ydbio.2018.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 01/19/2023]
Abstract
Teratomas are tumors consisting of components of the three germ layers that differentiate from pluripotent stem cells derived from germ cells. In the normal mouse testis, teratomas rarely form, but a deficiency in Dead-end1 (Dnd1) in mice with a 129/Sv genetic background greatly enhances teratoma formation. Thus, DND1 is crucial for suppression of teratoma development from germ cells. In the Dnd1 mutant testis, nascent teratoma cells emerge at E15.5. To understand the nature of early teratoma cells, we established cell lines in the presence of serum and leukemia inhibitory factor (LIF) from teratoma-forming cells in neonatal Dnd1 mutant testis. These cells, which we designated cultured Dnd1 mutant germ cells (CDGCs), were morphologically similar to embryonic stem cells (ESCs) and could be maintained in the naïve pluripotent condition. In addition, the cells expressed pluripotency genes including Oct4, Nanog, and Sox2; differentiated into cells of the three germ layers in culture; and contributed to chimeric mice. The expression levels of pluripotency genes and global transcriptomes in CDGCs as well as these cells' adaption to culture conditions for primed pluripotency suggested that their pluripotent status is intermediate between naïve and primed pluripotency. In addition, the teratoma-forming cells in the neonatal testis from which CDGCs were derived also showed gene expression profiles intermediate between naïve and primed pluripotency. The results suggested that germ cells in embryonic testes of Dnd1 mutants acquire the intermediate pluripotent status during the course of conversion into teratoma cells.
Collapse
Affiliation(s)
- Yuri An
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan; Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Tamotsu Sekinaka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Yukiko Tando
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Daiji Okamura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, Japan
| | - Keiko Tanaka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yumi Ito-Matsuoka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Asuka Takehara
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan; Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan; The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chuo-ku, Tokyo, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University School of Medicine, Sendai, Miyagi, Japan.
| |
Collapse
|
10
|
Identification of KLF9 and BCL3 as transcription factors that enhance reprogramming of primordial germ cells. PLoS One 2018; 13:e0205004. [PMID: 30286177 PMCID: PMC6171932 DOI: 10.1371/journal.pone.0205004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022] Open
Abstract
Primordial germ cells (PGCs) are precursors of eggs and sperm. Although PGCs are unipotent cells in vivo, they are reprogrammed into pluripotent stem cells (PSCs), also known as embryonic germ cells (EGCs), in the presence of leukemia inhibitory factor and basic fibroblast growth factor (bFGF) in vitro. However, the molecular mechanisms responsible for their reprogramming are not fully understood. Here we show identification of transcription factors that mediate PGC reprogramming. We selected genes encoding transcription factors or epigenetic regulatory factors whose expression was significantly different between PGCs and PSCs with in silico analysis and RT-qPCR. Among the candidate genes, over-expression (OE) of Bcl3 or Klf9 significantly enhanced PGC reprogramming. Notably, EGC formation was stimulated by Klf9-OE even without bFGF. G-protein-coupled receptor signaling-related pathways, which are involved in PGC reprogramming, were enriched among genes down-regulated by Klf9-OE, and forskolin which activate adenylate cyclase, rescued repressed EGC formation by knock-down of Klf9, suggesting a molecular linkage between KLF9 and such signaling.
Collapse
|
11
|
Gu W, Mochizuki K, Otsuka K, Hamada R, Takehara A, Matsui Y. Dnd1-mediated epigenetic control of teratoma formation in mouse. Biol Open 2018; 7:bio032318. [PMID: 29378702 PMCID: PMC5829515 DOI: 10.1242/bio.032318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/02/2018] [Indexed: 01/16/2023] Open
Abstract
Spontaneous testicular teratoma develops from primordial germ cells (PGCs) in embryos; however, the molecular mechanisms underlying teratoma formation are not fully understood. Mutation of the dead-end 1 (Dnd1) gene, which encodes an RNA-binding protein, drastically enhances teratoma formation in the 129/Sv mouse strain. To elucidate the mechanism of Dnd1 mutation-induced teratoma formation, we focused on histone H3 lysine 27 (H3K27) trimethylation (me3), and found that the levels of H3K27me3 and its responsible methyltransferase, enhancer of zeste homolog 2 (Ezh2), were decreased in the teratoma-forming cells of Dnd1 mutant embryos. We also showed that Dnd1 suppressed miR-26a-mediated inhibition of Ezh2 expression, and that Dnd1 deficiency resulted in decreased H3K27me3 of a cell-cycle regulator gene, Ccnd1 In addition, Ezh2 expression or Ccnd1 deficiency repressed the reprogramming of PGCs into pluripotent stem cells, which mimicked the conversion of embryonic germ cells into teratoma-forming cells. These results revealed an epigenetic molecular linkage between Dnd1 and the suppression of testicular teratoma formation.
Collapse
Affiliation(s)
- Wei Gu
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Laboratory of Germ Cell Development, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kentaro Mochizuki
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Laboratory of Germ Cell Development, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo 100-0004, Japan
| | - Kei Otsuka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Ryohei Hamada
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Asuka Takehara
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo 100-0004, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Laboratory of Germ Cell Development, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo 100-0004, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
12
|
Differentiation of Mouse Primordial Germ Cells into Functional Oocytes In Vitro. Ann Biomed Eng 2017; 45:1608-1619. [PMID: 28243826 PMCID: PMC5489615 DOI: 10.1007/s10439-017-1815-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/15/2017] [Indexed: 01/01/2023]
Abstract
Various complex molecular events in oogenesis cannot be observed in vivo. As a bioengineering technique for female reproductive tissues, in vitro culture systems for female germ cells have been used to analyze oogenesis and preserve germ cells for over 20 years. Recently, we have established a new methodological approach for the culture of primordial germ cells (PGCs) and successfully obtained offspring. Our PGC culture system will be useful to clarify unresolved mechanisms of fertility and sterility from the beginning of mammalian oogenesis, before meiosis. This review summarizes the history of culture methods for mammalian germ cells, our current in vitro system, and future prospects for the culture of germ cells.
Collapse
|
13
|
Tagami T, Miyahara D, Nakamura Y. Avian Primordial Germ Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1001:1-18. [PMID: 28980226 DOI: 10.1007/978-981-10-3975-1_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Germ cells transmit genetic information to the next generation through gametogenesis. Primordial germ cells (PGCs) are the first germ-cell population established during development, and are the common origins of both oocytes and spermatogonia. Unlike in other species, PGCs in birds undergo blood circulation to migrate toward the genital ridge, and are one of the major biological properties of avian PGCs. Germ cells enter meiosis and arrest at prophase I during embryogenesis in females, whereas in males they enter mitotic arrest during embryogenesis and enter meiosis only after birth. In chicken, gonadal sex differentiation occurs as early as embryonic day 6, but meiotic initiation of female germ cells starts from a relatively late stage (embryonic day 15.5). Retinoic acid controls meiotic entry in developing chicken gonads through the expressions of retinaldehyde dehydrogenase 2, a major retinoic acid synthesizing enzyme, and cytochrome P450 family 26, subfamily B member 1, a major retinoic acid-degrading enzyme. The other major biological property of avian PGCs is that they can be propagated in vitro for the long term, and this technique is useful for investigating proliferation mechanisms. The main factor involved in chicken PGC proliferation is fibroblast growth factor 2, which activates the signaling of MEK/ERK and thus promotes the cell cycle and anti-apoptosis. Furthermore, the activation of PI3K/Akt signaling is indispensable for the proliferation and survival of chicken PGCs.
Collapse
Affiliation(s)
- Takahiro Tagami
- Institute of Livestock Grassland Science, NARO, Ibaraki, Japan.
| | - Daichi Miyahara
- Institute of Livestock Grassland Science, NARO, Ibaraki, Japan
- Shinshu University, Ueda, Japan
| | | |
Collapse
|
14
|
Wang C, Deng Y, Chen F, Zhu P, Wei J, Luo C, Lu F, Yang S, Shi D. Basic fibroblast growth factor is critical to reprogramming buffalo (Bubalus bubalis) primordial germ cells into embryonic germ stem cell-like cells. Theriogenology 2016; 91:112-120. [PMID: 28215675 DOI: 10.1016/j.theriogenology.2016.12.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 12/01/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
Primordial germ cells (PGCs) are destined to form gametes in vivo, and they can be reprogrammed into pluripotent embryonic germ (EG) cells in vitro. Buffalo PGC have been reported to be reprogrammed into EG-like cells, but the identities of the major signaling pathways and culture media involved in this derivation remain unclear. Here, the effects of basic fibroblast growth factor (bFGF) and downstream signaling pathways on the reprogramming of buffalo PGCs into EG-like cells were investigated. Results showed bFGF to be critical to buffalo PGCs to dedifferentiate into EG-like cells (20 ng/mL is optimal) with many characteristics of pluripotent stem cells, including alkaline phosphatase (AP) activity, expression of pluripotency marker genes such as OCT4, NANOG, SOX2, SSEA-1, CDH1, and TRA-1-81, and the capacity to differentiate into all three embryonic germ layers. After chemically inhibiting pathways or components downstream of bFGF, data showed that inhibition of the PI3K/AKT pathway led to significantly lower EG cell derivation, while inhibition of P53 activity resulted in an efficiency of EG cell derivation comparable to that in the presence of bFGF. These results suggest that the role of bFGF in PGC-derived EG-like cell generation is mainly due to the activation of the PI3K/AKT/P53 pathway, in particular, the inhibition of P53 function.
Collapse
Affiliation(s)
- Caizhu Wang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China; Reproductive Medicine Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yanfei Deng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Feng Chen
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Peng Zhu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jingwei Wei
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Chan Luo
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Fenghua Lu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Sufang Yang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.
| | - Deshun Shi
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.
| |
Collapse
|
15
|
Sekita Y, Nakamura T, Kimura T. Reprogramming of germ cells into pluripotency. World J Stem Cells 2016; 8:251-259. [PMID: 27621759 PMCID: PMC4999652 DOI: 10.4252/wjsc.v8.i8.251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/08/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Primordial germ cells (PGCs) are precursors of all gametes, and represent the founder cells of the germline. Although developmental potency is restricted to germ-lineage cells, PGCs can be reprogrammed into a pluripotent state. Specifically, PGCs give rise to germ cell tumors, such as testicular teratomas, in vivo, and to pluripotent stem cells known as embryonic germ cells in vitro. In this review, we highlight the current knowledge on signaling pathways, transcriptional controls, and post-transcriptional controls that govern germ cell differentiation and de-differentiation. These regulatory processes are common in the reprogramming of germ cells and somatic cells, and play a role in the pathogenesis of human germ cell tumors.
Collapse
|
16
|
Robert VJ, Garvis S, Palladino F. Repression of somatic cell fate in the germline. Cell Mol Life Sci 2015; 72:3599-620. [PMID: 26043973 PMCID: PMC11113910 DOI: 10.1007/s00018-015-1942-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/13/2023]
Abstract
Germ cells must transmit genetic information across generations, and produce gametes while also maintaining the potential to form all cell types after fertilization. Preventing the activation of somatic programs is, therefore, crucial to the maintenance of germ cell identity. Studies in Caenorhabditis elegans, Drosophila melanogaster, and mouse have revealed both similarities and differences in how somatic gene expression is repressed in germ cells, thereby preventing their conversion into somatic tissues. This review will focus on recent developments in our understanding of how global or gene-specific transcriptional repression, chromatin regulation, and translational repression operate in the germline to maintain germ cell identity and repress somatic differentiation programs.
Collapse
Affiliation(s)
- Valérie J Robert
- Ecole Normale Supérieure de Lyon, Université de Lyon, 46 allée d'Italie, 69007, Lyon, France
| | - Steve Garvis
- Ecole Normale Supérieure de Lyon, Université de Lyon, 46 allée d'Italie, 69007, Lyon, France
| | - Francesca Palladino
- Ecole Normale Supérieure de Lyon, Université de Lyon, 46 allée d'Italie, 69007, Lyon, France.
| |
Collapse
|
17
|
Tanaka T, Kanatsu-Shinohara M, Hirose M, Ogura A, Shinohara T. Pluripotent cell derivation from male germline cells by suppression of Dmrt1 and Trp53. J Reprod Dev 2015; 61:473-84. [PMID: 26227109 PMCID: PMC4623154 DOI: 10.1262/jrd.2015-059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diploid germ cells are thought to have pluripotency potential. We recently described a method to derive pluripotent stem cells (PSCs) from cultured spermatogonial stem cells (SSCs) by depleting Trp53 and Dmrt1, both of which are known suppressors of teratomas. In this study, we used this technique to analyze the effect of this protocol in deriving PSCs from the male germline at different developmental stages. We collected primordial germ cells (PGCs), gonocytes and spermatogonia, and the cells were transduced with lentiviruses expressing short hairpin RNA against Dmrt1 and/or Trp53. We found that PGCs are highly susceptible to reprogramming induction and that only Trp53 depletion was sufficient to induce pluripotency. In contrast, gonocytes and spermatogonia were resistant to reprogramming by double knockdown of Dmrt1 and Trp53. PSCs derived from PGCs
contributed to chimeras produced by blastocyst injection, but some of the embryos showed placenta-only phenotypes suggestive of epigenetic abnormalities of PGC-derived PSCs. These results show that PGCs and gonocytes/spermatogonia have distinct reprogramming potential and also suggest that fresh and cultured SSCs do not necessarily have the same properties.
Collapse
Affiliation(s)
- Takashi Tanaka
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|