1
|
Crowley D, Simpson L, Chatfield J, Forey T, Allegrucci C, Sang F, Holmes N, Genikhovich G, Technau U, Cunningham D, Silva E, Mullin N, Dixon JE, Loose M, Alberio R, Johnson AD. Programming of pluripotency and the germ line co-evolved from a Nanog ancestor. Cell Rep 2025; 44:115396. [PMID: 40057954 DOI: 10.1016/j.celrep.2025.115396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 12/21/2024] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
Francois Jacob proposed that evolutionary novelty arises through incremental tinkering with pre-existing genetic mechanisms. Vertebrate evolution was predicated on pluripotency, the ability of embryonic cells to form somatic germ layers and primordial germ cells (PGCs). The origins of pluripotency remain unclear, as key regulators, such as Nanog, are not conserved outside of vertebrates. Given NANOG's role in mammalian development, we hypothesized that NANOG activity might exist in ancestral invertebrate genes. Here, we find that Vent from the hemichordate Saccoglossus kowalevskii exhibits NANOG activity, programming pluripotency in Nanog-/- mouse pre-induced pluripotent stem cells (iPSCs) and NANOG-depleted axolotl embryos. Vent from the cnidarian Nematostella vectensis showed partial activity, whereas Vent from sponges and vertebrates had no activity. VENTX knockdown in axolotls revealed a role in germline-competent mesoderm, which Saccoglossus Vent could rescue but Nematostella Vent could not. This suggests that the last deuterostome ancestor had a Vent gene capable of programming pluripotency and germline competence.
Collapse
Affiliation(s)
- Darren Crowley
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK.
| | - Luke Simpson
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Jodie Chatfield
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Teri Forey
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Cinzia Allegrucci
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Nadine Holmes
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, Vienna BioCenter, Djerassiplatz 1, 1030 Vienna, Austria
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, Vienna BioCenter, Djerassiplatz 1, 1030 Vienna, Austria
| | | | - Elena Silva
- Department of Biology, Georgetown University, Washington, D.C, USA
| | - Nicholas Mullin
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - James E Dixon
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Matthew Loose
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - Andrew D Johnson
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
2
|
Chitnis MS, Gao X, Marlena J, Holle AW. The mechanical journey of primordial germ cells. Am J Physiol Cell Physiol 2024; 327:C1532-C1545. [PMID: 39466178 DOI: 10.1152/ajpcell.00404.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Primordial germ cells (PGCs) are the earliest progenitors of germline cells of the gonads in animals. The tissues that arise from primordial germ cells give rise to male and female gametes and are thus responsible for transmitting genetic information to subsequent generations. The development of gonads, from single cells to fully formed organs, is of great interest to the reproductive biology community. In most higher animals, PGCs are initially specified at a site away from the gonads. They then migrate across multiple tissue microenvironments to reach a mesodermal mass of cells called the genital ridge, where they associate with somatic cells to form sex-specific reproductive organs. Their migratory behavior has been studied extensively to identify which tissues they interact with and how this might affect gonad development. A crucial point overlooked by classical studies has been the physical environment experienced by PGCs as they migrate and the mechanical challenges they might encounter along the way. It has long been understood that migrating cells can sense and adapt to physical forces around them via a variety of mechanisms, and studies have shown that these mechanical signals can guide stem cell fate. In this review, we summarize the mechanical microenvironment of migrating PGCs in different organisms. We describe how cells can adapt to this environment and how this adaptation can influence cell fate. Finally, we propose that mechanical signals play a crucial role in the normal development of the germline and shed light on this unexplored area of developmental biology.
Collapse
Affiliation(s)
- Malhar S Chitnis
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xu Gao
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Jennifer Marlena
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Andrew W Holle
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| |
Collapse
|
3
|
Simpson LA, Crowley D, Forey T, Acosta H, Ferjentsik Z, Chatfield J, Payne A, Simpson BS, Redwood C, Dixon JE, Holmes N, Sang F, Alberio R, Loose M, Johnson AD. NANOG is required to establish the competence for germ-layer differentiation in the basal tetrapod axolotl. PLoS Biol 2023; 21:e3002121. [PMID: 37315073 PMCID: PMC10599592 DOI: 10.1371/journal.pbio.3002121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/25/2023] [Accepted: 04/13/2023] [Indexed: 06/16/2023] Open
Abstract
Pluripotency defines the unlimited potential of individual cells of vertebrate embryos, from which all adult somatic cells and germ cells are derived. Understanding how the programming of pluripotency evolved has been obscured in part by a lack of data from lower vertebrates; in model systems such as frogs and zebrafish, the function of the pluripotency genes NANOG and POU5F1 have diverged. Here, we investigated how the axolotl ortholog of NANOG programs pluripotency during development. Axolotl NANOG is absolutely required for gastrulation and germ-layer commitment. We show that in axolotl primitive ectoderm (animal caps; ACs) NANOG and NODAL activity, as well as the epigenetic modifying enzyme DPY30, are required for the mass deposition of H3K4me3 in pluripotent chromatin. We also demonstrate that all 3 protein activities are required for ACs to establish the competency to differentiate toward mesoderm. Our results suggest the ancient function of NANOG may be establishing the competence for lineage differentiation in early cells. These observations provide insights into embryonic development in the tetrapod ancestor from which terrestrial vertebrates evolved.
Collapse
Affiliation(s)
- Luke A. Simpson
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Darren Crowley
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Teri Forey
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Helena Acosta
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Zoltan Ferjentsik
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Jodie Chatfield
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Alexander Payne
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Benjamin S. Simpson
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, United Kingdom
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Catherine Redwood
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - James E. Dixon
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Nadine Holmes
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Matthew Loose
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Andrew D. Johnson
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
4
|
Strange A, Alberio R. Review: A barnyard in the lab: prospect of generating animal germ cells for breeding and conservation. Animal 2023; 17 Suppl 1:100753. [PMID: 37567650 DOI: 10.1016/j.animal.2023.100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 08/13/2023] Open
Abstract
In vitro gametogenesis (IVG) offers broad opportunities for gaining detailed new mechanistic knowledge of germ cell biology that will enable progress in the understanding of human infertility, as well as for applications in the conservation of endangered species and for accelerating genetic selection of livestock. The realisation of this potential depends on overcoming key technical challenges and of gaining more detailed knowledge of the ontogeny and developmental programme in different species. Important differences in the molecular mechanisms of germ cell determination and epigenetic reprogramming between mice and other animals have been elucidated in recent years. These must be carefully considered when developing IVG protocols, as cellular kinetics in mice may not accurately reflect mechanisms in other mammals. Similarly, diverse stem cell models with potential for germ cell differentiation may reflect alternative routes to successful IVG. In conclusion, the fidelity of the developmental programme recapitulated during IVG must be assessed against reference information from each species to ensure the production of healthy animals using these methods, as well as for developing genuine models of gametogenesis.
Collapse
Affiliation(s)
- A Strange
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| | - R Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK.
| |
Collapse
|
5
|
Roelen BAJ, Chuva de Sousa Lopes SM. Stay on the road: from germ cell specification to gonadal colonization in mammals. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210259. [PMID: 36252219 PMCID: PMC9574628 DOI: 10.1098/rstb.2021.0259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The founder cells of the gametes are primordial germ cells (PGCs). In mammals, PGCs are specified early during embryonic development, at the boundary between embryonic and extraembryonic tissue, long before their later residences, the gonads, have developed. Despite the differences in form and behaviour when differentiated into oocytes or sperm cells, in the period between specification and gonadal colonization, male and female PGCs are morphologically indistinct and largely regulated by similar mechanisms. Here, we compare different modes and mechanisms that lead to the formation of PGCs, putting in context protocols that are in place to differentiate both human and mouse pluripotent stem cells into PGC-like cells. In addition, we review important aspects of the migration of PGCs to the gonadal ridges, where they undergo further sex-specific differentiation. Defects in migration need to be effectively corrected, as misplaced PGCs can become tumorigenic. Concluding, a combination of in vivo studies and the development of adequate innovative in vitro models, ensuring both robustness and standardization, are providing us with the tools for a greater understanding of the first steps of gametogenesis and to develop disease models to study the origin of germ cell tumours. This article is part of the theme issue ‘Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom’.
Collapse
Affiliation(s)
- Bernard A J Roelen
- Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands.,Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Susana M Chuva de Sousa Lopes
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy.,Department of Anatomy and Embryology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
6
|
Tveiten H, Karlsen K, Thesslund T, Johansson GS, Thiyagarajan DB, Andersen Ø. Impact of germ cell ablation on the activation of the brain-pituitary-gonadal axis in precocious Atlantic salmon (Salmo salar L.) males. Mol Reprod Dev 2022; 89:471-484. [PMID: 35830347 PMCID: PMC9796531 DOI: 10.1002/mrd.23635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 01/01/2023]
Abstract
The germ cells are essential for sexual reproduction by giving rise to the gametes, but the importance of germ cells for gonadal somatic functions varies among vertebrates. The RNA-binding dead end (Dnd) protein is necessary for the specification and migration of primordial germ cells to the future reproductive organs. Here, we ablated the gametes in Atlantic salmon males and females by microinjecting dnd antisense gapmer oligonucleotides at the zygotic stage. Precocious maturation was induced in above 50% of both germ cell-depleted and intact fertile males, but not in females, by exposure to an off-season photoperiod regime. Sterile and fertile males showed similar body growth, but maturing fish tended to be heavier than their immature counterparts. Pituitary fshβ messenger RNA levels strongly increased in maturing sterile and fertile males concomitant with the upregulated expression of Sertoli and Leydig cell markers. Plasma concentrations of 11-ketotestosterone and testosterone in maturing sterile males were significantly higher than the basal levels in immature fish, but lower than those in maturing fertile males. The study demonstrates that germ cells are not a prerequisite for the activation of the brain-pituitary-gonad axis and sex steroidogenesis in Atlantic salmon males, but may be important for the maintenance of gonadal somatic functions.
Collapse
Affiliation(s)
- Helge Tveiten
- Norwegian College of Fishery ScienceThe Arctic University of NorwayTromsøNorway
| | - Kristian Karlsen
- Norwegian College of Fishery ScienceThe Arctic University of NorwayTromsøNorway,Present address:
Lerøy Aurora AS, Stortorget 1N‐9267 TromsøNorway
| | | | | | | | - Øivind Andersen
- NofimaTromsøNorway,Department of Animal and Aquacultural SciencesNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|
7
|
Abstract
Primordial germ cells (PGCs) form early in embryo development and are crucial precursors to functioning gamete cells. Considerable research has focussed on identifying the transcriptional characteristics and signalling pathway requirements that confer PGC specification and development, enabling the derivation of PGC-like cells (PGCLCs) in vitro using specific signalling cocktails. However, full maturation to germ cells still relies on co-culture with supporting cell types, implicating an additional requirement for cellular- and tissue-level regulation. Here, we discuss the experimental evidence that highlights the nature of intercellular interactions between PGCs and neighbouring cell populations during mouse PGC development. We posit that the role that tissue interactions play on PGCs is not limited solely to signalling-based induction but extends to coordination of development by robust regulation of the proportions and position of the cells and tissues within the embryo, which is crucial for functional germ cell maturation. Such tissue co-development provides a dynamic, contextual niche for PGC development. We argue that there is evidence for a clear role for inter-tissue dependence of mouse PGCs, with potential implications for generating mammalian PGCLCs in vitro.
Collapse
Affiliation(s)
- Christopher B Cooke
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.,Abcam Plc, Discovery Drive, Cambridge Biomedical Campus, Cambridge, CB2 0AX, UK.,The Francis Crick Institute, 1 Midland Road, Somers Town, London, NW1 1AT, UK
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, Somers Town, London, NW1 1AT, UK
| |
Collapse
|
8
|
Lloyd R, Alberio R, Crother BI. Andrew Johnson (1958-2021). Development 2021. [DOI: 10.1242/dev.200333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Andrew Johnson, a pioneer in the development of the amphibian axolotl as a model to study the early stages of metazoan development, died 15th September 2021. Known as ‘AJ’ by his family, and by his friends and colleagues, his older sister Pam referred to him as an unstoppable ‘force of nature’ who at the age of 9 or 10 said to her, ‘I'm going to become a professor’. Here, we reflect on AJ's life and work, paying particular attention to his studies on the establishment of primordial germ cells in vertebrates.
Collapse
Affiliation(s)
- Robert Lloyd
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Ramiro Alberio
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Brian I. Crother
- Department of Biology, Southeastern Louisiana University, Hammond, LA 70402, USA
| |
Collapse
|
9
|
Savage AM, Alberio R, Johnson AD. Germline competent mesoderm: the substrate for vertebrate germline and somatic stem cells? Biol Open 2021; 10:272478. [PMID: 34648017 PMCID: PMC8524722 DOI: 10.1242/bio.058890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In vitro production of tissue-specific stem cells [e.g. haematopoietic stem cells (HSCs)] is a key goal of regenerative medicine. However, recent efforts to produce fully functional tissue-specific stem cells have fallen short. One possible cause of shortcomings may be that model organisms used to characterize basic vertebrate embryology (Xenopus, zebrafish, chick) may employ molecular mechanisms for stem cell specification that are not conserved in humans, a prominent example being the specification of primordial germ cells (PGCs). Germ plasm irreversibly specifies PGCs in many models; however, it is not conserved in humans, which produce PGCs from tissue termed germline-competent mesoderm (GLCM). GLCM is not conserved in organisms containing germ plasm, or even in mice, but understanding its developmental potential could unlock successful production of other stem cell types. GLCM was first discovered in embryos from the axolotl and its conservation has since been demonstrated in pigs, which develop from a flat-disc embryo like humans. Together these findings suggest that GLCM is a conserved basal trait of vertebrate embryos. Moreover, the immortal nature of germ cells suggests that immortality is retained during GLCM specification; here we suggest that the demonstrated pluripotency of GLCM accounts for retention of immortality in somatic stem cell types as well. This article has an associated Future Leaders to Watch interview with the author of the paper. Summary: Recent findings that germline and stem cell specification may differ between species may have important implications for regenerative medicine and the future of stem cell biology.
Collapse
Affiliation(s)
- Aaron M Savage
- School of Pharmacy, Division of Stem Cell and Regenerative Medicine, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ramiro Alberio
- School of Biosciences, Stem Cell Biology, Reprogramming and Pluripotency, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Andrew D Johnson
- School of Life Sciences, Division of Cells, Organisms and Molecular Genetics, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
10
|
Breuss MW, Yang X, Gleeson JG. Sperm mosaicism: implications for genomic diversity and disease. Trends Genet 2021; 37:890-902. [PMID: 34158173 PMCID: PMC9484299 DOI: 10.1016/j.tig.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
While sperm mosaicism has few consequences for men, the offspring and future generations are unwitting recipients of gonadal cell mutations, often yielding severe disease. Recent studies, fueled by emergent technologies, show that sperm mosaicism is a common source of de novo mutations (DNMs) that underlie severe pediatric disease as well as human genetic diversity. Sperm mosaicism can be divided into three types: Type I arises during sperm meiosis and is non-age dependent; Type II arises in spermatogonia and increases as men age; and Type III arises during paternal embryogenesis, spreads throughout the body, and contributes stably to sperm throughout life. Where Types I and II confer little risk of recurrence, Type III may confer identifiable risk to future offspring. These mutations are likely to be the single largest contributor to human genetic diversity. New sequencing approaches may leverage this framework to evaluate and reduce disease risk for future generations.
Collapse
Affiliation(s)
- Martin W Breuss
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xiaoxu Yang
- Rady Children's Institute for Genomic Medicine, Department of Neurosciences, University of California, San Diego, CA, USA
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, Department of Neurosciences, University of California, San Diego, CA, USA.
| |
Collapse
|
11
|
Hansen CL, Pelegri F. Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction. Front Cell Dev Biol 2021; 9:730332. [PMID: 34604230 PMCID: PMC8481613 DOI: 10.3389/fcell.2021.730332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The differentiation of primordial germ cells (PGCs) occurs during early embryonic development and is critical for the survival and fitness of sexually reproducing species. Here, we review the two main mechanisms of PGC specification, induction, and preformation, in the context of four model vertebrate species: mouse, axolotl, Xenopus frogs, and zebrafish. We additionally discuss some notable molecular characteristics shared across PGC specification pathways, including the shared expression of products from three conserved germline gene families, DAZ (Deleted in Azoospermia) genes, nanos-related genes, and DEAD-box RNA helicases. Then, we summarize the current state of knowledge of the distribution of germ cell determination systems across kingdom Animalia, with particular attention to vertebrate species, but include several categories of invertebrates - ranging from the "proto-vertebrate" cephalochordates to arthropods, cnidarians, and ctenophores. We also briefly highlight ongoing investigations and potential lines of inquiry that aim to understand the evolutionary relationships between these modes of specification.
Collapse
Affiliation(s)
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
12
|
Yinjiao Zhao, Wu D, Yu X, Wei S, Yan F. Isolation of a vasa Homolog from Tree Frog Feihyla palpebralis and Its Germline Specific Expression. Russ J Dev Biol 2021. [DOI: 10.1134/s106236042104007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Nakao H. Early embryonic development of Bombyx. Dev Genes Evol 2021; 231:95-107. [PMID: 34296338 DOI: 10.1007/s00427-021-00679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/09/2021] [Indexed: 11/25/2022]
Abstract
Decades have passed since the early molecular embryogenesis of Drosophila melanogaster was outlined. During this period, the molecular mechanisms underlying early embryonic development in other insects, particularly the flour beetle, Tribolium castaneum, have been described in more detail. The information clearly demonstrated that Drosophila embryogenesis is not representative of other insects and has highly distinctive characteristics. At the same time, this new data has been gradually clarifying ancestral operating mechanisms. The silk moth, Bombyx mori, is a lepidopteran insect and, as a representative of the order, has many unique characteristics found in early embryonic development that have not been identified in other insect groups. Herein, some of these characteristics are introduced and discussed in the context of recent information obtained from other insects.
Collapse
Affiliation(s)
- Hajime Nakao
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Oowashi, Tsukuba, Ibaraki, 305-8634, Japan.
| |
Collapse
|
14
|
Pérez-Gómez A, González-Brusi L, Bermejo-Álvarez P, Ramos-Ibeas P. Lineage Differentiation Markers as a Proxy for Embryo Viability in Farm Ungulates. Front Vet Sci 2021; 8:680539. [PMID: 34212020 PMCID: PMC8239129 DOI: 10.3389/fvets.2021.680539] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
Embryonic losses constitute a major burden for reproductive efficiency of farm animals. Pregnancy losses in ungulate species, which include cattle, pigs, sheep and goats, majorly occur during the second week of gestation, when the embryo experiences a series of cell differentiation, proliferation, and migration processes encompassed under the term conceptus elongation. Conceptus elongation takes place following blastocyst hatching and involves a massive proliferation of the extraembryonic membranes trophoblast and hypoblast, and the formation of flat embryonic disc derived from the epiblast, which ultimately gastrulates generating the three germ layers. This process occurs prior to implantation and it is exclusive from ungulates, as embryos from other mammalian species such as rodents or humans implant right after hatching. The critical differences in embryo development between ungulates and mice, the most studied mammalian model, have precluded the identification of the genes governing lineage differentiation in livestock species. Furthermore, conceptus elongation has not been recapitulated in vitro, hindering the study of these cellular events. Luckily, recent advances on transcriptomics, genome modification and post-hatching in vitro culture are shedding light into this largely unknown developmental window, uncovering possible molecular markers to determine embryo quality. In this review, we summarize the events occurring during ungulate pre-implantation development, highlighting recent findings which reveal that several dogmas in Developmental Biology established by knock-out murine models do not hold true for other mammals, including humans and farm animals. The developmental failures associated to in vitro produced embryos in farm animals are also discussed together with Developmental Biology tools to assess embryo quality, including molecular markers to assess proper lineage commitment and a post-hatching in vitro culture system able to directly determine developmental potential circumventing the need of experimental animals.
Collapse
Affiliation(s)
- Alba Pérez-Gómez
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Leopoldo González-Brusi
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Pablo Bermejo-Álvarez
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Priscila Ramos-Ibeas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| |
Collapse
|
15
|
Di Giovannantonio LG, Acampora D, Omodei D, Nigro V, Barba P, Barbieri E, Chambers I, Simeone A. Direct repression of Nanog and Oct4 by OTX2 modulates the contribution of epiblast-derived cells to germline and somatic lineage. Development 2021; 148:263923. [PMID: 33999993 DOI: 10.1242/dev.199166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
In mammals, the pre-gastrula proximal epiblast gives rise to primordial germ cells (PGCs) or somatic precursors in response to BMP4 and WNT signaling. Entry into the germline requires activation of a naïve-like pluripotency gene regulatory network (GRN). Recent work has shown that suppression of OTX2 expression in the epiblast by BMP4 allows cells to develop a PGC fate in a precise temporal window. However, the mechanisms by which OTX2 suppresses PGC fate are unknown. Here, we show that, in mice, OTX2 prevents epiblast cells from activating the pluripotency GRN by direct repression of Oct4 and Nanog. Loss of this control during PGC differentiation in vitro causes widespread activation of the pluripotency GRN and a deregulated response to LIF, BMP4 and WNT signaling. These abnormalities, in specific cell culture conditions, result in massive germline entry at the expense of somatic mesoderm differentiation. Increased generation of PGCs also occurs in mutant embryos. We propose that the OTX2-mediated repressive control of Oct4 and Nanog is the basis of the mechanism that determines epiblast contribution to germline and somatic lineage.
Collapse
Affiliation(s)
| | - Dario Acampora
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| | - Daniela Omodei
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy.,Institute of Biostructures and Bioimaging, CNR, Via Tommaso De Amicis, 95, 80145 Naples, Italy
| | - Vincenzo Nigro
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania 'Luigi Vanvitelli', Via L. De Crecchio, 7, 80138 Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80087 Pozzuoli (NA), Italy
| | - Pasquale Barba
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| | - Elisa Barbieri
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.,Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, UK
| | - Ian Chambers
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.,Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, UK
| | - Antonio Simeone
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
16
|
Nicholls PK, Page DC. Germ cell determination and the developmental origin of germ cell tumors. Development 2021; 148:239824. [PMID: 33913479 DOI: 10.1242/dev.198150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In each generation, the germline is tasked with producing somatic lineages that form the body, and segregating a population of cells for gametogenesis. During animal development, when do cells of the germline irreversibly commit to producing gametes? Integrating findings from diverse species, we conclude that the final commitment of the germline to gametogenesis - the process of germ cell determination - occurs after primordial germ cells (PGCs) colonize the gonads. Combining this understanding with medical findings, we present a model whereby germ cell tumors arise from cells that failed to undertake germ cell determination, regardless of their having colonized the gonads. We propose that the diversity of cell types present in these tumors reflects the broad developmental potential of migratory PGCs.
Collapse
Affiliation(s)
- Peter K Nicholls
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - David C Page
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| |
Collapse
|
17
|
Li YR, Lai HW, Huang HH, Chen HC, Fugmann SD, Yang SY. Trajectory mapping of the early Drosophila germline reveals controls of zygotic activation and sex differentiation. Genome Res 2021; 31:1011-1023. [PMID: 33858841 PMCID: PMC8168578 DOI: 10.1101/gr.271148.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/07/2021] [Indexed: 01/29/2023]
Abstract
Germ cells in Drosophila melanogaster are specified maternally shortly after fertilization and are transcriptionally quiescent until their zygotic genome is activated to sustain further development. To understand the molecular basis of this process, we analyzed the progressing transcriptomes of early male and female germ cells at the single-cell level between germline specification and coalescence with somatic gonadal cells. Our data comprehensively cover zygotic activation in the germline genome, and analyses on genes that exhibit germline-restricted expression reveal that polymerase pausing and differential RNA stability are important mechanisms that establish gene expression differences between the germline and soma. In addition, we observe an immediate bifurcation between the male and female germ cells as zygotic transcription begins. The main difference between the two sexes is an elevation in X Chromosome expression in females relative to males, signifying incomplete dosage compensation, with a few select genes exhibiting even higher expression increases. These indicate that the male program is the default mode in the germline that is driven to female development with a second X Chromosome.
Collapse
Affiliation(s)
- Yi-Ru Li
- Department and College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan
| | - Hsiao Wen Lai
- Department and College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan
| | - Hsiao Han Huang
- Department and College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan
| | - Hsing-Chun Chen
- Department and College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan
| | - Sebastian D Fugmann
- Department and College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan.,Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan.,Department of Nephrology, Linkou Chang Gung Memorial Hospital, Kweishan, Taoyuan 333 Taiwan
| | - Shu Yuan Yang
- Department and College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan.,Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan.,Department of Gynecology, Linkou Chang Gung Memorial Hospital, Kweishan, Taoyuan 333 Taiwan
| |
Collapse
|
18
|
Zhu Q, Sang F, Withey S, Tang W, Dietmann S, Klisch D, Ramos-Ibeas P, Zhang H, Requena CE, Hajkova P, Loose M, Surani MA, Alberio R. Specification and epigenomic resetting of the pig germline exhibit conservation with the human lineage. Cell Rep 2021; 34:108735. [PMID: 33567277 PMCID: PMC7873836 DOI: 10.1016/j.celrep.2021.108735] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/17/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Investigations of the human germline and programming are challenging because of limited access to embryonic material. However, the pig as a model may provide insights into transcriptional network and epigenetic reprogramming applicable to both species. Here we show that, during the pre- and early migratory stages, pig primordial germ cells (PGCs) initiate large-scale epigenomic reprogramming, including DNA demethylation involving TET-mediated hydroxylation and, potentially, base excision repair (BER). There is also macroH2A1 depletion and increased H3K27me3 as well as X chromosome reactivation (XCR) in females. Concomitantly, there is dampening of glycolytic metabolism genes and re-expression of some pluripotency genes like those in preimplantation embryos. We identified evolutionarily young transposable elements and gene coding regions resistant to DNA demethylation in acutely hypomethylated gonadal PGCs, with potential for transgenerational epigenetic inheritance. Detailed insights into the pig germline will likely contribute significantly to advances in human germline biology, including in vitro gametogenesis.
Collapse
Affiliation(s)
- Qifan Zhu
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Sarah Withey
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Walfred Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sabine Dietmann
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Doris Klisch
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Priscila Ramos-Ibeas
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Haixin Zhang
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Cristina E Requena
- MRC London Institute of Medical Sciences (LMS), London, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Petra Hajkova
- MRC London Institute of Medical Sciences (LMS), London, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Matt Loose
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
19
|
Burian A. Does Shoot Apical Meristem Function as the Germline in Safeguarding Against Excess of Mutations? FRONTIERS IN PLANT SCIENCE 2021; 12:707740. [PMID: 34421954 PMCID: PMC8374955 DOI: 10.3389/fpls.2021.707740] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/19/2021] [Indexed: 05/04/2023]
Abstract
A genetic continuity of living organisms relies on the germline which is a specialized cell lineage producing gametes. Essential in the germline functioning is the protection of genetic information that is subjected to spontaneous mutations. Due to indeterminate growth, late specification of the germline, and unique longevity, plants are expected to accumulate somatic mutations during their lifetime that leads to decrease in individual and population fitness. However, protective mechanisms, similar to those in animals, exist in plant shoot apical meristem (SAM) allowing plants to reduce the accumulation and transmission of mutations. This review describes cellular- and tissue-level mechanisms related to spatio-temporal distribution of cell divisions, organization of stem cell lineages, and cell fate specification to argue that the SAM functions analogous to animal germline.
Collapse
|
20
|
Lin CY, Yu JK, Su YH. Evidence for BMP-mediated specification of primordial germ cells in an indirect-developing hemichordate. Evol Dev 2020; 23:28-45. [PMID: 33283431 DOI: 10.1111/ede.12361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/08/2020] [Accepted: 11/09/2020] [Indexed: 01/14/2023]
Abstract
Primordial germ cells (PGCs) are specified during development by either one of two major mechanisms, the preformation mode or the inductive mode. Because the inductive mode is widely employed by many bilaterians and early branching metazoan lineages, it has been postulated as an ancestral mechanism. However, among the deuterostome species that have been studied, invertebrate chordates use the preformation mode, while many vertebrate and echinoderm species are known to utilize an inductive mechanism, thus leaving the evolutionary history of PGC specification in the deuterostome lineage unclear. Hemichordates are the sister phylum of echinoderms, and together they form a clade called Ambulacraria that represents the closest group to the chordates. Thus, research in hemichordates is highly informative for resolving this issue. In this study, we investigate the developmental process of PGCs in an indirect-developing hemichordate, Ptychodera flava. We show that maternal transcripts of the conserved germline markers vasa, nanos, and piwi1 are ubiquitously distributed in early P. flava embryos, and these genes are coexpressed specifically in the dorsal hindgut starting from the gastrula stage. Immunostaining revealed that Vasa protein is concentrated toward the vegetal pole in early P. flava embryos, and it is restricted to cells in the dorsal hindgut of gastrulae and newly hatched larvae. The Vasa-positive cells later contribute to the developing trunk coeloms of the larvae and eventually reside in the adult gonads. We further show that bone morphogenetic protein (BMP) signaling is required to activate expression of the germline determinants in the gastrula hindgut, suggesting that PGC specification is induced by BMP signaling in P. flava. Our data support the hypothesis that the inductive mode is a conserved mechanism in Ambulacraria, which might even trace back to the common ancestor of Deuterostomes.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
21
|
Piprek RP, Kloc M, Mizia P, Kubiak JZ. The Central Role of Cadherins in Gonad Development, Reproduction, and Fertility. Int J Mol Sci 2020; 21:E8264. [PMID: 33158211 PMCID: PMC7663743 DOI: 10.3390/ijms21218264] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Cadherins are a group of membrane proteins responsible for cell adhesion. They are crucial for cell sorting and recognition during the morphogenesis, but they also play many other roles such as assuring tissue integrity and resistance to stretching, mechanotransduction, cell signaling, regulation of cell proliferation, apoptosis, survival, carcinogenesis, etc. Within the cadherin superfamily, E- and N-cadherin have been especially well studied. They are involved in many aspects of sexual development and reproduction, such as germline development and gametogenesis, gonad development and functioning, and fertilization. E-cadherin is expressed in the primordial germ cells (PGCs) and also participates in PGC migration to the developing gonads where they become enclosed by the N-cadherin-expressing somatic cells. The differential expression of cadherins is also responsible for the establishment of the testis or ovary structure. In the adult testes, N-cadherin is responsible for the integrity of the seminiferous epithelium, regulation of sperm production, and the establishment of the blood-testis barrier. Sex hormones regulate the expression and turnover of N-cadherin influencing the course of spermatogenesis. In the adult ovaries, E- and N-cadherin assure the integrity of ovarian follicles and the formation of corpora lutea. Cadherins are expressed in the mature gametes and facilitate the capacitation of sperm in the female reproductive tract and gamete contact during fertilization. The germ cells and accompanying somatic cells express a series of different cadherins; however, their role in gonads and reproduction is still unknown. In this review, we show what is known and unknown about the role of cadherins in the germline and gonad development, and we suggest topics for future research.
Collapse
Affiliation(s)
- Rafał P. Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX 77030, USA;
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Paulina Mizia
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Jacek Z. Kubiak
- Cycle Group, Institute of Genetics and Development of Rennes, Faculty of Medicine, UnivRennes, UMR 6290 CNRS/UR1, F-35000 Rennes, France
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), 01-163 Warsaw, Poland
| |
Collapse
|
22
|
DNA methylation in the vertebrate germline: balancing memory and erasure. Essays Biochem 2020; 63:649-661. [PMID: 31755927 DOI: 10.1042/ebc20190038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Cytosine methylation is a DNA modification that is critical for vertebrate development and provides a plastic yet stable information module in addition to the DNA code. DNA methylation memory establishment, maintenance and erasure is carefully balanced by molecular machinery highly conserved among vertebrates. In mammals, extensive erasure of epigenetic marks, including 5-methylcytosine (5mC), is a hallmark of early embryo and germline development. Conversely, global cytosine methylation patterns are preserved in at least some non-mammalian vertebrates over comparable developmental windows. The evolutionary mechanisms which drove this divergence are unknown, nevertheless a direct consequence of retaining epigenetic memory in the form of 5mC is the enhanced potential for transgenerational epigenetic inheritance (TEI). Given that DNA methylation dynamics remains underexplored in most vertebrate lineages, the extent of information transferred to offspring by epigenetic modification might be underestimated.
Collapse
|
23
|
Comparative Proteomics Reveal Me31B's Interactome Dynamics, Expression Regulation, and Assembly Mechanism into Germ Granules during Drosophila Germline Development. Sci Rep 2020; 10:564. [PMID: 31953495 PMCID: PMC6969142 DOI: 10.1038/s41598-020-57492-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/26/2019] [Indexed: 01/23/2023] Open
Abstract
Me31B is a protein component of Drosophila germ granules and plays an important role in germline development by interacting with other proteins and RNAs. To understand the dynamic changes that the Me31B interactome undergoes from oogenesis to early embryogenesis, we characterized the early embryo Me31B interactome and compared it to the known ovary interactome. The two interactomes shared RNA regulation proteins, glycolytic enzymes, and cytoskeleton/motor proteins, but the core germ plasm proteins Vas, Tud, and Aub were significantly decreased in the embryo interactome. Our follow-up on two RNA regulations proteins present in both interactomes, Tral and Cup, revealed that they colocalize with Me31B in nuage granules, P-bodies/sponge bodies, and possibly in germ plasm granules. We further show that Tral and Cup are both needed for maintaining Me31B protein level and mRNA stability, with Tral’s effect being more specific. In addition, we provide evidence that Me31B likely colocalizes and interacts with germ plasm marker Vas in the ovaries and early embryo germ granules. Finally, we show that Me31B’s localization in germ plasm is likely independent of the Osk-Vas-Tud-Aub germ plasm assembly pathway although its proper enrichment in the germ plasm may still rely on certain conserved germ plasm proteins.
Collapse
|
24
|
Grimaldi C, Raz E. Germ cell migration-Evolutionary issues and current understanding. Semin Cell Dev Biol 2019; 100:152-159. [PMID: 31864795 DOI: 10.1016/j.semcdb.2019.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/19/2022]
Abstract
In many organisms, primordial germ cells (PGCs) are specified at a different location than where the gonad forms, meaning that PGCs must migrate toward the gonad within the early developing embryo. Following species-specific paths, PGCs can be passively carried by surrounding tissues and also perform active migration. When PGCs actively migrate through and along a variety of embryonic structures in different organisms, they adopt an ancestral robust migration mode termed "amoeboid motility", which allows cells to migrate within diverse environments. In this review, we discuss the possible significance of the PGC migration process in facilitating the evolution of animal body shape. In addition, we summarize the latest findings relevant for the molecular and cellular mechanisms controlling the movement and the directed migration of PGCs in different species.
Collapse
Affiliation(s)
- Cecilia Grimaldi
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, 48149, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, 48149, Germany.
| |
Collapse
|
25
|
Abstract
Early embryogenesis is characterized by the segregation of cell lineages that fulfill critical roles in the establishment of pregnancy and development of the fetus. The formation of the blastocyst marks the emergence of extraembryonic precursors, needed for implantation, and of pluripotent cells, which differentiate toward the major lineages of the adult organism. The coordinated emergence of these cell types shows that these processes are broadly conserved in mammals. However, developmental heterochrony and changes in gene regulatory networks highlight unique evolutionary adaptations that may explain the diversity in placentation and in the mechanisms controlling pluripotency in mammals. The incorporation of new technologies, including single-cell omics, imaging, and gene editing, is instrumental for comparative embryology. Broadening the knowledge of mammalian embryology will provide new insights into the mechanisms driving evolution and development. This knowledge can be readily translated into biomedical and biotechnological applications in humans and livestock, respectively.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom;
| |
Collapse
|
26
|
Abstract
Mouse primordial germ cells (PGCs), originate from the early post-implantation epiblast in response to BMP4 secreted by the extraembryonic ectoderm. However, how BMP4 acts here has remained unclear. Recent work has identified the transcription factor (TF), OTX2 as a key determinant of the segregation of the germline from the soma. OTX2 is expressed ubiquitously in the early post-implantation epiblast, decreasing rapidly in cells that initiate the PGC programme. Otx2 mRNA is also rapidly repressed by BMP4 in vitro, in germline competent cells. Supporting a model in which BMP4 represses Otx2, enforcing sustained OTX2 expression in competent cells blocks germline entry. In contrast, Otx2-null epiblast cells enter the germline with increased efficiency in vitro and in vivo and can do so independently of BMP4. Also, Otx2-null cells can initiate germline entry even without the crucial PGC TF, BLIMP1. In this review, we survey recent advances and propose hypotheses concerning germline entry.
Collapse
Affiliation(s)
- Man Zhang
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh , Edinburgh , Scotland
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh , Edinburgh , Scotland
| |
Collapse
|
27
|
Oulhen N, Swartz SZ, Wang L, Wikramanayake A, Wessel GM. Distinct transcriptional regulation of Nanos2 in the germ line and soma by the Wnt and delta/notch pathways. Dev Biol 2019; 452:34-42. [PMID: 31075220 PMCID: PMC6848975 DOI: 10.1016/j.ydbio.2019.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 12/23/2022]
Abstract
Specification of the primordial germ cells (PGCs) is essential for sexually reproducing animals. Although the mechanisms of PGC specification are diverse between organisms, the RNA binding protein Nanos is consistently required in the germ line in all species tested. How Nanos is selectively expressed in the germ line, however, remains largely elusive. We report that in sea urchin embryos, the early expression of Nanos2 in the PGCs requires the maternal Wnt pathway. During gastrulation, however, Nanos2 expression expands into adjacent somatic mesodermal cells and this secondary Nanos expression instead requires Delta/Notch signaling through the forkhead family member FoxY. Each of these transcriptional regulators were tested by chromatin immunoprecipitation analysis and found to directly interact with a DNA locus upstream of Nanos2. Given the conserved importance of Nanos in germ line specification, and the derived character of the micromeres and small micromeres in the sea urchin, we propose that the ancestral mechanism of Nanos2 expression in echinoderms was by induction in mesodermal cells during gastrulation.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - S Zachary Swartz
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
| | - Lingyu Wang
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | | | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI, 02912, USA.
| |
Collapse
|
28
|
Sybirna A, Wong FCK, Surani MA. Genetic basis for primordial germ cells specification in mouse and human: Conserved and divergent roles of PRDM and SOX transcription factors. Curr Top Dev Biol 2019; 135:35-89. [PMID: 31155363 DOI: 10.1016/bs.ctdb.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Primordial germ cells (PGCs) are embryonic precursors of sperm and egg that pass on genetic and epigenetic information from one generation to the next. In mammals, they are induced from a subset of cells in peri-implantation epiblast by BMP signaling from the surrounding tissues. PGCs then initiate a unique developmental program that involves comprehensive epigenetic resetting and repression of somatic genes. This is orchestrated by a set of signaling molecules and transcription factors that promote germ cell identity. Here we review significant findings on mammalian PGC biology, in particular, the genetic basis for PGC specification in mice and human, which has revealed an evolutionary divergence between the two species. We discuss the importance and potential basis for these differences and focus on several examples to illustrate the conserved and divergent roles of critical transcription factors in mouse and human germline.
Collapse
Affiliation(s)
- Anastasiya Sybirna
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, United Kingdom; Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Frederick C K Wong
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, United Kingdom
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, United Kingdom; Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
29
|
Whittle CA, Extavour CG. Contrasting patterns of molecular evolution in metazoan germ line genes. BMC Evol Biol 2019; 19:53. [PMID: 30744572 PMCID: PMC6371493 DOI: 10.1186/s12862-019-1363-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Germ lines are the cell lineages that give rise to the sperm and eggs in animals. The germ lines first arise from primordial germ cells (PGCs) during embryogenesis: these form from either a presumed derived mode of preformed germ plasm (inheritance) or from an ancestral mechanism of inductive cell-cell signalling (induction). Numerous genes involved in germ line specification and development have been identified and functionally studied. However, little is known about the molecular evolutionary dynamics of germ line genes in metazoan model systems. RESULTS Here, we studied the molecular evolution of germ line genes within three metazoan model systems. These include the genus Drosophila (N=34 genes, inheritance), the fellow insect Apis (N=30, induction), and their more distant relative Caenorhabditis (N=23, inheritance). Using multiple species and established phylogenies in each genus, we report that germ line genes exhibited marked variation in the constraint on protein sequence divergence (dN/dS) and codon usage bias (CUB) within each genus. Importantly, we found that de novo lineage-specific inheritance (LSI) genes in Drosophila (osk, pgc) and in Caenorhabditis (pie-1, pgl-1), which are essential to germ plasm functions under the derived inheritance mode, displayed rapid protein sequence divergence relative to the other germ line genes within each respective genus. We show this may reflect the evolution of specialized germ plasm functions and/or low pleiotropy of LSI genes, features not shared with other germ line genes. In addition, we observed that the relative ranking of dN/dS and of CUB between genera were each more strongly correlated between Drosophila and Caenorhabditis, from different phyla, than between Drosophila and its insect relative Apis, suggesting taxonomic differences in how germ line genes have evolved. CONCLUSIONS Taken together, the present results advance our understanding of the evolution of animal germ line genes within three well-known metazoan models. Further, the findings provide insights to the molecular evolution of germ line genes with respect to LSI status, pleiotropy, adaptive evolution as well as PGC-specification mode.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
30
|
Jamieson-Lucy A, Mullins MC. The vertebrate Balbiani body, germ plasm, and oocyte polarity. Curr Top Dev Biol 2019; 135:1-34. [DOI: 10.1016/bs.ctdb.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Kawaguchi M, Sugiyama K, Matsubara K, Lin CY, Kuraku S, Hashimoto S, Suwa Y, Yong LW, Takino K, Higashida S, Kawamura D, Yu JK, Seki Y. Co-option of the PRDM14–CBFA2T complex from motor neurons to pluripotent cells during vertebrate evolution. Development 2019; 146:dev.168633. [DOI: 10.1242/dev.168633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/20/2018] [Indexed: 11/20/2022]
Abstract
Gene regulatory networks underlying cellular pluripotency are controlled by a core circuitry of transcription factors in mammals, including POU5F1. However, the evolutionary origin and transformation of pluripotency-related transcriptional networks have not been elucidated in deuterostomes. PR domain-containing protein 14 (PRDM14) is specifically expressed in pluripotent cells and germ cells, and required for establishing embryonic stem cells (ESCs) and primordial germ cells in mice. Here, we compared the functions and expression patterns of PRDM14 orthologues within deuterostomes. Amphioxus PRDM14 and zebrafish PRDM14, but not sea urchin PRDM14, compensated for mouse PRDM14 function in maintaining mouse ESC pluripotency. Interestingly, sea urchin PRDM14 together with sea urchin CBFA2T, an essential partner of PRDM14 in mouse ESCs, complemented the self-renewal defect in mouse Prdm14 KO ESCs. Contrary to the Prdm14-expression pattern in mouse embryos, Prdm14 was expressed in motor neurons of amphioxus embryos as observed in zebrafish embryos. Thus, Prdm14 expression in motor neurons was conserved in non-tetrapod deuterostomes and the co-option of the PRDM14-CBFA2T complex from motor neurons into pluripotent cells may have maintained the transcriptional network for pluripotency during vertebrate evolution.
Collapse
Affiliation(s)
- Masanori Kawaguchi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin Univerisity, Japan
| | - Kota Sugiyama
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin Univerisity, Japan
| | - Kazumi Matsubara
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin Univerisity, Japan
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minami, Kobe, 650-0047, Japan
| | - Shota Hashimoto
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin Univerisity, Japan
| | - Yoshiaki Suwa
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin Univerisity, Japan
| | - Luok Wen Yong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Koji Takino
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin Univerisity, Japan
| | - Shota Higashida
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin Univerisity, Japan
| | - Daisuke Kawamura
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin Univerisity, Japan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yoshiyuki Seki
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin Univerisity, Japan
| |
Collapse
|
32
|
Nakao H, Takasu Y. Complexities in Bombyx germ cell formation process revealed by Bm-nosO (a Bombyx homolog of nanos) knockout. Dev Biol 2018; 445:29-36. [PMID: 30367845 DOI: 10.1016/j.ydbio.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/11/2018] [Accepted: 10/17/2018] [Indexed: 11/25/2022]
Abstract
Inheritance (sequestration of a localized determinant: germplasm) and zygotic induction are two modes of metazoan primordial germ cell (PGC) specification. vasa and nanos homologs are evolutionarily conserved germline marker genes that have been used to examine the ontogeny of germ cells in various animals. In the lepidopteran insect Bombyx mori, although the lack of vasa homolog (BmVLG) protein localization as well as microscopic observation suggested the lack of germplasm, classical embryo manipulation studies and the localization pattern of Bm-nosO (one of the four nanos genes in Bombyx) maternal mRNA in the egg raised the possibility that an inheritance mode is operating in Bombyx. Here, we generated Bm-nosO knockouts to examine whether the localized mRNA acts as a localized germ cell determinant. Contrary to our expectations, Bm-nosO knockout lines could be established. However, these lines frequently produced abnormal eggs, which failed to hatch, to various extent depending on the individuals. We also found that Bm-nosO positively regulated BmVLG expression at least during embryonic stage, directly or indirectly, indicating that these genes were on the same developmental pathway for germ cell formation in Bombyx. These results suggest that these conserved genes are concerned with stable germ cell production. On the other hand, from the aspect of BmVLG as a PGC marker, we showed that maternal Bm-nosO product(s) as well as early zygotic Bm-nosO activity were redundantly involved in PGC specification; elimination of both maternal and zygotic gene activities (as in knockout lines) resulted in the apparent lack of PGCs, indicating that an inheritance mechanism indeed operates in Bombyx. This, however, together with the fact that germ cells are produced at all in Bm-nosO knockout lines, also suggests the possibility that, in Bombyx, not only this inheritance mechanism but also an inductive mechanism acts in concert to form germ cells or that loss of early PGCs are compensated for by germline regeneration: mechanisms that could enable the evolution of preformation. Thus, Bombyx could serve as an important organism in understanding the evolution of germ cell formation mechanisms; transition between preformation and inductive modes.
Collapse
Affiliation(s)
- Hajime Nakao
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Oowashi, Tsukuba, Ibaraki 305-8634, Japan.
| | - Yoko Takasu
- Silk Materials Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Oowashi, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
33
|
Abstract
The successful segregation of germ cells from somatic lineages is vital for sexual reproduction and species survival. In the mouse, primordial germ cells (PGCs), precursors of all germ cells, are induced from the post-implantation epiblast1. Induction requires BMP4 signalling to prospective PGCs2 and the intrinsic action of PGC transcription factors (TFs)3–6. However, the molecular mechanisms connecting BMP4 to induction of the PGC TFs responsible for segregating PGCs from somatic lineages are unknown. Here we show that the transcription factor OTX2 is a key regulator of these processes. Down-regulation of Otx2 precedes the initiation of the PGC programme both in vitro and in vivo. Deletion of Otx2 in vitro dramatically increases PGCLC differentiation efficiency and prolongs the period of PGC competence. In the absence of Otx2 activity, PGCLC differentiation becomes independent of the otherwise essential cytokine signals, with germline entry initiating even in the absence of the PGC TF Blimp1. Deletion of Otx2 in vivo increases PGC numbers. These data demonstrate that OTX2 functions repressively upstream of PGC TFs, acting as a roadblock to limit entry of epiblast cells to the germline to a small window in space and time, thereby ensuring correct numerical segregation of germline cells from the soma.
Collapse
|
34
|
Tan H, Tee WW. Committing the primordial germ cell: An updated molecular perspective. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1436. [PMID: 30225862 DOI: 10.1002/wsbm.1436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/22/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022]
Abstract
The germ line is a crucial cell lineage that is distinct from somatic cells, and solely responsible for the trans-generational transmission of hereditary information in metazoan sexual reproduction. Primordial germ cells (PGCs)-the precursors to functional germ cells-are among the first cell types to be allocated in embryonic development, and this lineage commitment is a critical event in partitioning germ line and somatic tissues. Classically, mammalian PGC development has been largely informed by investigations on mouse embryos and embryonic stem cells. Recent findings from corresponding nonrodent systems, however, have indicated that murine PGC specification may not be fully archetypal. In this review, we outline the current understanding of molecular mechanisms in PGC specification, emphasizing key transcriptional events, and focus on salient differences between early human and mouse PGC commitment. Beyond these latest findings, we also contemplate the future outlook of inquiries in this field, highlighting the importance of comprehensively understanding early fate decisions that underlie the segregation of this unique lineage. This article is categorized under: Developmental Biology > Stem Cell Biology and Regeneration Biological Mechanisms > Cell Fates Physiology > Mammalian Physiology in Health and Disease.
Collapse
Affiliation(s)
- Haihan Tan
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Wee-Wei Tee
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
35
|
Causes and evolutionary consequences of primordial germ-cell specification mode in metazoans. Proc Natl Acad Sci U S A 2018; 114:5784-5791. [PMID: 28584112 DOI: 10.1073/pnas.1610600114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In animals, primordial germ cells (PGCs) give rise to the germ lines, the cell lineages that produce sperm and eggs. PGCs form in embryogenesis, typically by one of two modes: a likely ancestral mode wherein germ cells are induced during embryogenesis by cell-cell signaling (induction) or a derived mechanism whereby germ cells are specified by using germ plasm-that is, maternally specified germ-line determinants (inheritance). The causes of the shift to germ plasm for PGC specification in some animal clades remain largely unknown, but its repeated convergent evolution raises the question of whether it may result from or confer an innate selective advantage. It has been hypothesized that the acquisition of germ plasm confers enhanced evolvability, resulting from the release of selective constraint on somatic gene networks in embryogenesis, thus leading to acceleration of an organism's protein-sequence evolution, particularly for genes expressed at early developmental stages, and resulting in high speciation rates in germ plasm-containing lineages (denoted herein as the "PGC-specification hypothesis"). Although that hypothesis, if supported, could have major implications for animal evolution, our recent large-scale coding-sequence analyses from vertebrates and invertebrates provided important examples of genera that do not support the hypothesis of liberated constraint under germ plasm. Here, we consider reasons why germ plasm might be neither a direct target of selection nor causally linked to accelerated animal evolution. We explore alternate scenarios that could explain the repeated evolution of germ plasm and propose potential consequences of the inheritance and induction modes to animal evolutionary biology.
Collapse
|
36
|
Mitsunaga S, Shioda T. Evolutionarily diverse mechanisms of germline specification among mammals: what about us? Stem Cell Investig 2018; 5:12. [PMID: 29782583 PMCID: PMC5945857 DOI: 10.21037/sci.2018.04.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/31/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Shino Mitsunaga
- Massachusetts General Hospital Center for Cancer Research, Charlestown, MA, USA
| | - Toshi Shioda
- Massachusetts General Hospital Center for Cancer Research, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Abstract
Fusion of sperm and egg generates a totipotent zygote that develops into a whole organism. Accordingly, the "immortal" germline transmits genetic and epigenetic information to subsequent generations with consequences for human health and disease. In mammals, primordial germ cells (PGCs) originate from peri-gastrulation embryos. While early human embryos are inaccessible for research, in vitro model systems using pluripotent stem cells have provided critical insights into human PGC specification, which differs from that in mice. This might stem from significant differences in early embryogenesis at the morphological and molecular levels, including pluripotency networks. Here, we discuss recent advances and experimental systems used to study mammalian germ cell development. We also highlight key aspects of germ cell disorders, as well as mitochondrial and potentially epigenetic inheritance in humans.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom.
| | - Anastasiya Sybirna
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom; Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
38
|
Sharpe RM. Programmed for sex: Nutrition–reproduction relationships from an inter-generational perspective. Reproduction 2018; 155:S1-S16. [DOI: 10.1530/rep-17-0537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/21/2017] [Indexed: 01/18/2023]
Abstract
Reproduction is our biological reason for being. Our physiology has been shaped via countless millennia of evolution with this one purpose in mind, so that at birth we are ‘programmed for sex’, although this will not kick-start functionally until puberty. Our development from an early embryo is focused on making us fit to reproduce and is intimately connected to nutrition and energy stores. Fluctuations in food supply has probably been a key evolutionary shaper of the reproductive process, and this review hypothesizes that we have developed rapid, non-genomic adaptive mechanisms to such fluctuations to better fit offspring to their perceived (nutritional) environment, thus giving them a reproductive advantage. There is abundant evidence for this notion from ‘fetal programming’ studies and from experimental ‘inter-generational’ studies involving manipulation of parental (especially paternal) diet and then examining metabolic changes in resulting offspring. It is argued that the epigenetic reprogramming of germ cells that occurs during fetal life, after fertilisation and during gametogenesis provides opportunities for sensing of the (nutritional) environment so as to affect adaptive epigenetic changes to alter offspring metabolic function. In this regard, there may be adverse effects of a modern Western diet, perhaps because it is deficient in plant-derived factors that are proven to be capable of altering the epigenome, folate being a prime example; we have evolved in tune with such factors. Therefore, parental and even grandparental diets may have consequences for health of future generations, but how important this might be and the precise epigenetic mechanisms involved are unknown.
Collapse
|
39
|
Seki Y. PRDM14 Is a Unique Epigenetic Regulator Stabilizing Transcriptional Networks for Pluripotency. Front Cell Dev Biol 2018; 6:12. [PMID: 29487849 PMCID: PMC5816753 DOI: 10.3389/fcell.2018.00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
PR-domain containing protein 14 (PRDM14) is a site-specific DNA-binding protein and is required for establishment of pluripotency in embryonic stem cells (ESCs) and primordial germ cells (PGCs) in mice. DNA methylation status is regulated by the balance between de novo methylation and passive/active demethylation, and global DNA hypomethylation is closely associated with cellular pluripotency and totipotency. PRDM14 ensures hypomethylation in mouse ESCs and PGCs through two distinct layers, transcriptional repression of the DNA methyltransferases Dnmt3a/b/l and active demethylation by recruitment of TET proteins. However, the function of PRDM14 remains unclear in other species including humans. Hence, here we focus on the unique characteristics of mouse PRDM14 in the epigenetic regulation of pluripotent cells and primordial germ cells. In addition, we discuss the expression regulation and function of PRDM14 in other species compared with those in mice.
Collapse
Affiliation(s)
- Yoshiyuki Seki
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo, Japan
| |
Collapse
|
40
|
Fresques TM, Wessel GM. Nodal induces sequential restriction of germ cell factors during primordial germ cell specification. Development 2018; 145:dev155663. [PMID: 29358213 PMCID: PMC5825842 DOI: 10.1242/dev.155663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/18/2017] [Indexed: 12/30/2022]
Abstract
Specification of the germ cell lineage is required for sexual reproduction in animals. The mechanism of germ cell specification varies among animals but roughly clusters into either inherited or inductive mechanisms. The inductive mechanism, the use of cell-cell interactions for germ cell specification, appears to be the ancestral mechanism in animal phylogeny, yet the pathways responsible for this process are only recently surfacing. Here, we show that germ cell factors in the sea star initially are present broadly, then become restricted dorsally and then in the left side of the embryo where the germ cells form a posterior enterocoel. We find that Nodal signaling is required for the restriction of two germ cell factors, Nanos and Vasa, during the early development of this animal. We learned that Nodal inhibits germ cell factor accumulation in three ways including: inhibition of specific transcription, degradation of specific mRNAs and inhibition of tissue morphogenesis. These results document a signaling mechanism required for the sequential restriction of germ cell factors, which causes a specific set of embryonic cells to become the primordial germ cells.
Collapse
Affiliation(s)
- Tara M Fresques
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| |
Collapse
|
41
|
Smith A. Formative pluripotency: the executive phase in a developmental continuum. Development 2017; 144:365-373. [PMID: 28143843 PMCID: PMC5430734 DOI: 10.1242/dev.142679] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The regulative capability of single cells to give rise to all primary embryonic lineages is termed pluripotency. Observations of fluctuating gene expression and phenotypic heterogeneity in vitro have fostered a conception of pluripotency as an intrinsically metastable and precarious state. However, in the embryo and in defined culture environments the properties of pluripotent cells change in an orderly sequence. Two phases of pluripotency, called naïve and primed, have previously been described. In this Hypothesis article, a third phase, called formative pluripotency, is proposed to exist as part of a developmental continuum between the naïve and primed phases. The formative phase is hypothesised to be enabling for the execution of pluripotency, entailing remodelling of transcriptional, epigenetic, signalling and metabolic networks to constitute multi-lineage competence and responsiveness to specification cues. Summary: This Hypothesis article poses that a third state of pluripotency, called formative pluripotency, exists between the naïve and primed states, and is enabling for the execution of pluripotency.
Collapse
Affiliation(s)
- Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
42
|
Leopardo NP, Vitullo AD. Early embryonic development and spatiotemporal localization of mammalian primordial germ cell-associated proteins in the basal rodent Lagostomus maximus. Sci Rep 2017; 7:594. [PMID: 28377629 PMCID: PMC5429608 DOI: 10.1038/s41598-017-00723-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/09/2017] [Indexed: 11/22/2022] Open
Abstract
The gene network controlling primordial germ cell (PGC) specification in eutherian mammals has been exhaustively investigated in mice. The egg-cylinder morphology of the mouse embryo is the key event enabling inductive signals from the extra-embryonic ectoderm (ExE) to specify epiblast cells as PGCs early on. We investigated the embryonic development and the spatiotemporal localization of PGC-associated proteins in the basal Hystricognathi rodent Lagostomus maximus. L. maximus develops through a flat-disc epiblast far apart from the ExE. In the primitive streak stage, OCT4-positive cells are detected in the posterior pole of the embryo disc in the mesoderm of the proximal epiblast. In the neural plate stage, a reduced 8 to 12 OCT4-positive cell population transiently expresses FRAGILIS, STELLA and SOX17 in the posterior streak. Soon after translocation to the hindgut, pluripotent OCT4 cells start expressing VASA, and then, STELLA and FRAGILIS are turned on during migration toward the genital ridge. L. maximus shows a spatiotemporal pattern of PGC-associated markers divergent from the early PGC restriction model seen in mice. This pattern conforms to alternative models that are based on a pluripotent population in the embryonic axis, where PGCs are specified later during development.
Collapse
Affiliation(s)
- Noelia P Leopardo
- Departamento de Ciencias Biomédicas y Biotecnológicas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico -CEBBAD-, Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Alfredo D Vitullo
- Departamento de Ciencias Biomédicas y Biotecnológicas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico -CEBBAD-, Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
43
|
Mechanisms of Vertebrate Germ Cell Determination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:383-440. [PMID: 27975276 DOI: 10.1007/978-3-319-46095-6_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two unique characteristics of the germ line are the ability to persist from generation to generation and to retain full developmental potential while differentiating into gametes. How the germ line is specified that allows it to retain these characteristics within the context of a developing embryo remains unknown and is one focus of current research. Germ cell specification proceeds through one of two basic mechanisms: cell autonomous or inductive. Here, we discuss how germ plasm driven germ cell specification (cell autonomous) occurs in both zebrafish and the frog Xenopus. We describe the segregation of germ cells during embryonic development of solitary and colonial ascidians to provide an evolutionary context to both mechanisms. We conclude with a discussion of the inductive mechanism as exemplified by both the mouse and axolotl model systems. Regardless of mechanism, several general themes can be recognized including the essential role of repression and posttranscriptional regulation of gene expression.
Collapse
|
44
|
|
45
|
Škugor A, Tveiten H, Johnsen H, Andersen Ø. Multiplicity of Buc copies in Atlantic salmon contrasts with loss of the germ cell determinant in primates, rodents and axolotl. BMC Evol Biol 2016; 16:232. [PMID: 27784263 PMCID: PMC5080839 DOI: 10.1186/s12862-016-0809-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/14/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The primordial germ cells (PGCs) giving rise to gametes are determined by two different mechanisms in vertebrates. While the germ cell fate in mammals and salamanders is induced by zygotic signals, maternally delivered germ cell determinants specify the PGCs in birds, frogs and teleost fish. Assembly of the germ plasm in the oocyte is organized by the single Buc in zebrafish, named Velo1 in Xenopus, and by Oskar in Drosophila. Secondary loss of oskar in several insect lineages coincides with changes in germline determination strategies, while the presence of buc in mammals suggests functions not associated with germline formation. RESULTS To clarify the evolutionary history of buc we searched for the gene in genomes available from various chordates. No buc sequence was found in lamprey and chordate invertebrates, while the gene was identified in a conserved syntenic region in elephant shark, spotted gar, teleosts, Comoran coelacanth and most tetrapods. Rodents have probably lost the buc gene, while a premature translation stop was found in primates and in Mexican axolotl lacking germ plasm. In contrast, several buc and buc-like (bucL) paralogs were identified in the teleosts examined, including zebrafish, and the tetraploid genome of Atlantic salmon harbors seven buc and bucL genes. Maternal salmon buc1a, buc2a and buc2b mRNAs were abundant in unfertilized eggs together with dnd and vasa mRNAs. Immunostained salmon Buc1a was restricted to cleavage furrows in 4-cell stage embryos similar to a fluorescent zebrafish Buc construct injected in salmon embryos. Salmon Buc1a and Buc2a localized together with DnD, Vasa and Dazl within the Balbiani body of early oocytes. CONCLUSIONS Buc probably originated more than 400 million years ago and might have played an ancestral role in assembling germ plasm. Functional redundancy or subfunctionalization of salmon Buc paralogs in germline formation is suggested by the maternally inherited mRNAs of three salmon buc genes, the localized Buc1a in the cleavage furrows and the distribution of Buc1a and Buc2a in the Balbiani body during oogenesis. The extra-ovarian expression of salmon buc genes and the presence of a second zebrafish bucL gene suggest additional functions not related to germ cell specification.
Collapse
Affiliation(s)
- Adrijana Škugor
- Norwegian University of Life Sciences (NMBU), PO Box 5003, N-1430, Ås, Norway
| | | | | | - Øivind Andersen
- Norwegian University of Life Sciences (NMBU), PO Box 5003, N-1430, Ås, Norway. .,Nofima, PO Box 5010, N-1430, Ås, Norway.
| |
Collapse
|
46
|
Tang WWC, Kobayashi T, Irie N, Dietmann S, Surani MA. Specification and epigenetic programming of the human germ line. Nat Rev Genet 2016; 17:585-600. [DOI: 10.1038/nrg.2016.88] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Bertocchini F, Chuva de Sousa Lopes SM. Germline development in amniotes: A paradigm shift in primordial germ cell specification. Bioessays 2016; 38:791-800. [PMID: 27273724 PMCID: PMC5089639 DOI: 10.1002/bies.201600025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the field of germline development in amniote vertebrates, primordial germ cell (PGC) specification in birds and reptiles remains controversial. Avians are believed to adopt a predetermination or maternal specification mode of PGC formation, contrary to an inductive mode employed by mammals and, supposedly, reptiles. Here, we revisit and review some key aspects of PGC development that channelled the current subdivision, and challenge the position of birds and reptiles as well as the 'binary' evolutionary model of PGC development in vertebrates. We propose an alternative view on PGC specification where germ plasm plays a role in laying the foundation for the formation of PGC precursors (pPGC), but not necessarily of PGCs. Moreover, inductive mechanisms may be necessary for the transition from pPGCs to PGCs. Within this framework, the implementation of data from birds and reptiles could provide new insights on the evolution of PGC specification in amniotes.
Collapse
Affiliation(s)
- Federica Bertocchini
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC)‐CSIC‐University of CantabriaSantanderSpain
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Reproductive MedicineGhent University HospitalGhentBelgium
| |
Collapse
|
48
|
Crother BI, White ME, Johnson AD. Diversification and Germ-Line Determination Revisited: Linking Developmental Mechanism with Species Richness. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
49
|
Quan H, Lynch JA. The evolution of insect germline specification strategies. CURRENT OPINION IN INSECT SCIENCE 2016; 13:99-105. [PMID: 27088076 PMCID: PMC4827259 DOI: 10.1016/j.cois.2016.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The establishment of the germline is essential for sexually reproducing organisms. In animals, there are two major strategies to specify the germline: maternal provision and zygotic induction. The molecular basis of the maternal provision mode has been well characterized in several model organisms (fly, frog, fish, and nematode), while that of the zygotic induction mode has mainly been studied in mammalian models such as the mouse. Shifts in germline determination modes occur unexpectedly frequently and many such shifts have occurred several times among insects. Given their general tractability and rapidly increasing genomic and genetic tools applicable to many species, the insects present a uniquely powerful model system for understanding major transitions in reproductive strategies, and developmental processes in general.
Collapse
Affiliation(s)
- Honghu Quan
- Department of Biological Sciences, University of Illinois at Chicago, United States
| | - Jeremy A Lynch
- Department of Biological Sciences, University of Illinois at Chicago, United States.
| |
Collapse
|
50
|
Abstract
Primordial germ cells are usually made early in the development of an organism. These are the mother of all stem cells that are necessary for propagation of the species, yet use highly diverse mechanisms between organisms. How they are specified, and when and where they form, are central to developmental biology. Using diverse organisms to study this development is illuminating for understanding the mechanics these cells use in this essential function and for identifying the breadth of evolutionary changes that have occurred between species. This essay emphasizes how echinoderms may contribute to the patchwork quilt of our understanding of germ line formation during embryogenesis.
Collapse
Affiliation(s)
- Gary M Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|