1
|
Yang C, McLeod AJ, Cotton AM, de Leeuw CN, Laprise S, Banks KG, Simpson EM, Brown CJ. Targeting of >1.5 Mb of human DNA into the mouse X chromosome reveals presence of cis-acting regulators of epigenetic silencing. Genetics 2012; 192:1281-93. [PMID: 23023002 PMCID: PMC3512139 DOI: 10.1534/genetics.112.143743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/17/2012] [Indexed: 12/18/2022] Open
Abstract
Regulatory sequences can influence the expression of flanking genes over long distances, and X chromosome inactivation is a classic example of cis-acting epigenetic gene regulation. Knock-ins directed to the Mus musculus Hprt locus offer a unique opportunity to analyze the spread of silencing into different human DNA sequences in the identical genomic environment. X chromosome inactivation of four knock-in constructs, including bacterial artificial chromosome (BAC) integrations of over 195 kb, was demonstrated by both the lack of expression from the inactive X chromosome in females with nonrandom X chromosome inactivation and promoter DNA methylation of the human transgene in females. We further utilized promoter DNA methylation to assess the inactivation status of 74 human reporter constructs comprising >1.5 Mb of DNA. Of the 47 genes examined, only the PHB gene showed female DNA hypomethylation approaching the level seen in males, and escape from X chromosome inactivation was verified by demonstration of expression from the inactive X chromosome. Integration of PHB resulted in lower DNA methylation of the flanking HPRT promoter in females, suggesting the action of a dominant cis-acting escape element. Female-specific DNA hypermethylation of CpG islands not associated with promoters implies a widespread imposition of DNA methylation during X chromosome inactivation; yet transgenes demonstrated differential capacities to accumulate DNA methylation when integrated into the identical location on the inactive X chromosome, suggesting additional cis-acting sequence effects. As only one of the human transgenes analyzed escaped X chromosome inactivation, we conclude that elements permitting ongoing expression from the inactive X are rare in the human genome.
Collapse
Affiliation(s)
- Christine Yang
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Andrea J. McLeod
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Allison M. Cotton
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Charles N. de Leeuw
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Stéphanie Laprise
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kathleen G. Banks
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Medical Genetics, Department of Psychiatry, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Carolyn J. Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
2
|
Schmidt S, Nakchbandi I, Ruppert R, Kawelke N, Hess MW, Pfaller K, Jurdic P, Fässler R, Moser M. Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. ACTA ACUST UNITED AC 2011; 192:883-97. [PMID: 21357746 PMCID: PMC3051823 DOI: 10.1083/jcb.201007141] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Loss of kindlin-3 impairs activation of β1, β2, and β3 integrin classes, resulting in osteopetrotic defects in osteoclast adhesion and spreading. The blood cell–specific kindlin-3 protein is required to activate leukocyte and platelet integrins. In line with this function, mutations in the KINDLIN-3 gene in man cause immunodeficiency and severe bleeding. Some patients also suffer from osteopetrosis, but the underlying mechanism leading to abnormal bone turnover is unknown. Here we show that kindlin-3–deficient mice develop severe osteopetrosis because of profound adhesion and spreading defects in bone-resorbing osteoclasts. Mechanistically, loss of kindlin-3 impairs the activation of β1, β2, and β3 integrin classes expressed on osteoclasts, which in turn abrogates the formation of podosomes and sealing zones required for bone resorption. In agreement with these findings, genetic ablation of all integrin classes abolishes the development of podosomes, mimicking kindlin-3 deficiency. Although loss of single integrin classes gives rise to podosomes, their resorptive activity is impaired. These findings show that osteoclasts require their entire integrin repertoire to be regulated by kindlin-3 to orchestrate bone homeostasis.
Collapse
Affiliation(s)
- Sarah Schmidt
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Prothero KE, Stahl JM, Carrel L. Dosage compensation and gene expression on the mammalian X chromosome: one plus one does not always equal two. Chromosome Res 2009; 17:637-48. [PMID: 19802704 PMCID: PMC4941101 DOI: 10.1007/s10577-009-9063-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Counting chromosomes is not just simple math. Although normal males and females differ in sex chromosome content (XY vs. XX), X chromosome imbalance is tolerated because dosage compensation mechanisms have evolved to ensure functional equivalence. In mammals this is accomplished by two processes--X chromosome inactivation that silences most genes on one X chromosome in females, leading to functional X monosomy for most genes in both sexes, and X chromosome upregulation that results in increased gene expression on the single active X in males and females, equalizing dosage relative to autosomes. This review focuses on genes on the X chromosome, and how gene content, organization and expression levels can be influenced by these two processes. Special attention is given to genes that are not X inactivated, and are not necessarily fully dosage compensated. These genes that "escape" X inactivation are of medical importance as they explain phenotypes in individuals with sex chromosome aneuploidies and may impact normal traits and disorders that differ between men and women. Moreover, escape genes give insight into how X chromosome inactivation is spread and maintained on the X.
Collapse
Affiliation(s)
- Katie E. Prothero
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Jill M. Stahl
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Laura Carrel
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus. Proc Natl Acad Sci U S A 2008; 105:17055-60. [PMID: 18971342 DOI: 10.1073/pnas.0807765105] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although most genes on one X chromosome in mammalian females are silenced by X inactivation, some "escape" X inactivation and are expressed from both active and inactive Xs. How these escape genes are transcribed from a largely inactivated chromosome is not fully understood, but underlying genomic sequences are likely involved. We developed a transgene approach to ask whether an escape locus is autonomous or is instead influenced by X chromosome location. Two BACs carrying the mouse Jarid1c gene and adjacent X-inactivated transcripts were randomly integrated into mouse XX embryonic stem cells. Four lines with single-copy, X-linked transgenes were identified, and each was inserted into regions that are normally X-inactivated. As expected for genes that are normally subject to X inactivation, transgene transcripts Tspyl2 and Iqsec2 were X-inactivated. However, allelic expression and RNA/DNA FISH indicate that transgenic Jarid1c escapes X inactivation. Therefore, transgenes at 4 different X locations recapitulate endogenous inactive X expression patterns. We conclude that escape from X inactivation is an intrinsic feature of the Jarid1c locus and functionally delimit this escape domain to the 112-kb maximum overlap of the BACs tested. Additionally, although extensive chromatin differences normally distinguish active and inactive loci, unmodified BACs direct proper inactive X expression patterns, establishing that primary DNA sequence alone, in a chromosome position-independent manner, is sufficient to determine X chromosome inactivation status. This transgene approach will enable further dissection of key elements of escape domains and allow rigorous testing of specific genomic sequences on inactive X expression.
Collapse
|
5
|
Chong S, Kontaraki J, Bonifer C, Riggs AD. A Functional chromatin domain does not resist X chromosome inactivation: silencing of cLys correlates with methylation of a dual promoter-replication origin. Mol Cell Biol 2002; 22:4667-76. [PMID: 12052875 PMCID: PMC133922 DOI: 10.1128/mcb.22.13.4667-4676.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the molecular mechanism(s) involved in the propagation and maintenance of X chromosome inactivation (XCI), the 21.4-kb chicken lysozyme (cLys) chromatin domain was inserted into the Hprt locus on the mouse X chromosome. The inserted fragment includes flanking matrix attachment regions (MARs), an origin of bidirectional replication (OBR), and all the cis-regulatory elements required for correct tissue-specific expression of cLys. It also contains a recently identified and widely expressed second gene, cGas41. The cLys domain is known to function as an autonomous unit resistant to chromosomal position effects, as evidenced by numerous transgenic mouse lines showing copy-number-dependent and development-specific expression of cLys in the myeloid lineage. We asked the questions whether this functional chromatin domain was resistant to XCI and whether the X inactivation signal could spread across an extended region of avian DNA. A generally useful method was devised to generate pure populations of macrophages with the transgene either on the active (Xa) or the inactive (Xi) chromosome. We found that (i) cLys and cGas41 are expressed normally from the Xa; (ii) the cLys chromatin domain, even when bracketed by MARs, is not resistant to XCI; (iii) transcription factors are excluded from lysozyme enhancers on the Xi; and (iv) inactivation correlates with methylation of a CpG island that is both an OBR and a promoter of the cGas41 gene.
Collapse
Affiliation(s)
- Suyinn Chong
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
6
|
Goto T, Monk M. Regulation of X-chromosome inactivation in development in mice and humans. Microbiol Mol Biol Rev 1998; 62:362-78. [PMID: 9618446 PMCID: PMC98919 DOI: 10.1128/mmbr.62.2.362-378.1998] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dosage compensation for X-linked genes in mammals is accomplished by inactivating one of the two X chromosomes in females. X-chromosome inactivation (XCI) occurs during development, coupled with cell differentiation. In somatic cells, XCI is random, whereas in extraembryonic tissues, XCI is imprinted in that the paternally inherited X chromosome is preferentially inactivated. Inactivation is initiated from an X-linked locus, the X-inactivation center (Xic), and inactivity spreads along the chromosome toward both ends. XCI is established by complex mechanisms, including DNA methylation, heterochromatinization, and late replication. Once established, inactivity is stably maintained in subsequent cell generations. The function of an X-linked regulatory gene, Xist, is critically involved in XCI. The Xist gene maps to the Xic, it is transcribed only from the inactive X chromosome, and the Xist RNA associates with the inactive X chromosome in the nucleus. Investigations with Xist-containing transgenes and with deletions of the Xist gene have shown that the Xist gene is required in cis for XCI. Regulation of XCI is therefore accomplished through regulation of Xist. Transcription of the Xist gene is itself regulated by DNA methylation. Hence, the differential methylation of the Xist gene observed in sperm and eggs and its recognition by protein binding constitute the most likely mechanism regulating imprinted preferential expression of the paternal allele in preimplantation embryos and imprinted paternal XCI in extraembryonic tissues. This article reviews the mechanisms underlying XCI and recent advances elucidating the functions of the Xist gene in mice and humans.
Collapse
Affiliation(s)
- T Goto
- Molecular Embryology Unit, Institute of Child Health, London WC1N 1EH, United Kingdom.
| | | |
Collapse
|
7
|
Niswender KD, Postic C, Jetton TL, Bennett BD, Piston DW, Efrat S, Magnuson MA. Cell-specific expression and regulation of a glucokinase gene locus transgene. J Biol Chem 1997; 272:22564-9. [PMID: 9278410 DOI: 10.1074/jbc.272.36.22564] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transgenic mice containing one or more extra copies of the entire glucokinase (GK) gene locus were generated and characterized. The GK transgene, an 83-kilobase pair mouse genomic DNA fragment containing both promoter regions, was expressed and regulated in a cell-specific manner, and rescued GK null lethality when crossed into mice bearing a targeted mutation of the endogenous GK gene. Livers from the transgenic mice had elevated GK mRNA, protein, and activity levels, compared with controls, and the transgene was regulated in liver by dietary manipulations. The amount of GK immunoreactivity in hepatocyte nuclei, where GK binds to the GK regulatory protein, was also increased. Pancreatic islets displayed increased GK immunoreactivity and NAD(P)H responses to glucose, but only when isolated and cultured in 20 mM glucose, as a result of the hypoglycemic phenotype of these mice (Niswender, K. D., Shiota, M., Postic, C., Cherrington, A. D., and Magnuson, M. A. (1997) J. Biol. Chem. 272, 22604-22609). Together, these results indicate that the region of the gene from -55 to +28 kilobase pairs (relative to the liver GK transcription start site) contains all the regulatory sequences necessary for expression of both GK isoforms, thereby placing an upper limit on the size of the GK gene locus.
Collapse
Affiliation(s)
- K D Niswender
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Molecular genetics of X-chromosome inactivation. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1067-5701(96)80006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Abstract
Genes that escape X inactivation have been recently found in human and in mouse. Although many of these genes have homologues on the Y chromosome that may compensate for expression from both X alleles in females, some have no Y homologues, and this presumably results in dosage differences between the sexes. Comparisons between human and mouse have revealed that the X-inactivation status of some genes differs significantly between the two species, suggesting continuous evolutionary changes in the sex chromosomes. Questions about the mechanisms of 'escape' are relevant to the understanding of gene regulation by X inactivation.
Collapse
Affiliation(s)
- C M Disteche
- Department of Pathology, University of Washington, Seattle 98195
| |
Collapse
|
11
|
Pravtcheva DD, Wise TL, Ensor NJ, Ruddle FH. Mosaic expression of an Hprt transgene integrated in a region of Y heterochromatin. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1994; 268:452-68. [PMID: 8176360 DOI: 10.1002/jez.1402680606] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The sensitivity of small transgenes to position effects on their expression suggests that they could serve as indicators of the chromatin properties at their integration site. In particular, they might be expected to provide information on the functional properties of mammalian heterochromatin. We have produced a transgenic line that carries a mouse Hprt minigene on the Y chromosome. In situ hybridization localized the transgene to the heterochromatic portion of the Y. Analysis of transgene expression by isoelectric focusing indicated that the transgene is expressed in a mosaic pattern, and expressing cells have different levels of transgene activity. These findings can be explained as a position effect variegation induced by Y heterochromatin. However, two other transgenes, located at autosomal sites, also showed mosaic activity. If the mosaic transgene expression is attributed to the influence of the chromatin at the insertion site, the Y heterochromatin would appear less potent than some autosomal regions at inducing variegation. An alternative explanation consistent with our results is that the mosaic expression is a semi-autonomous characteristic of these transgene loci. Transgene-expressing and non-expressing cells differed in their ability to grow and be cloned in vitro, indicating that cellular differentiation affected the chromatin structure of the transgene locus on the Y. Karyotype analysis of male mice with the Y-linked transgene and from control male mice carrying the human HPRT transgene, or the mouse Pgk-1 gene at autosomal sites, indicated that the transgene-carrying Y is prone to non-disjunction, generating cells with two (or more) or no Y chromosomes in equal proportion. Further studies will determine if the propensity of this Y chromosome to mitotic errors is also observed in vivo.
Collapse
Affiliation(s)
- D D Pravtcheva
- Pediatric Research Institute, St. Louis University School of Medicine, Missouri 63110
| | | | | | | |
Collapse
|
12
|
Tam PP, Williams EA, Tan SS. Expression of an X-linked HMG-lacZ transgene in mouse embryos: implication of chromosomal imprinting and lineage-specific X-chromosome activity. DEVELOPMENTAL GENETICS 1994; 15:491-503. [PMID: 7834909 DOI: 10.1002/dvg.1020150608] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
X-chromosome activity in female mouse embryos was studied at the cellular level using an X-linked lacZ transgene which encodes beta-galactosidase (beta-Gal). Translation of maternal RNA in oocytes is seen as beta-Gal activity that persists into early cleavage-stages. Zygotic transcription of the transgene from the maternal X chromosome (Xm) is first found at about the 8-cell stage. By contrast, expression of the lacZ transgene on the paternal X chromosome (Xp) is not seen until later at the 16-32-cell stage. Preferential inactivation of Xp occurs in the mural trophectoderm, the primitive endoderm, and derivatives of the polar trophectoderm, but a small number of cells in these lineages may still retain an active paternal X chromosome. X inactivation begins at 3.5 days in the inner cell mass but contrary to previous findings the process is not completed in the embryonic ectoderm by 5.5 to 6.0 days. Regional variation in beta-Gal activity is also observed in the embryonic ectoderm during gastrulation which may be related to the specification of cell fates. Random inactivation of Xp and Xm ensues in all somatic tissues but the process is completed at different times in different tissues. The slower progression of X inactivation in tissues such as the notochord, the heart, and the embryonic gut is primarily due to the persistent maintenance of two active X chromosomes in a significant fraction of cells in these tissues. Recent findings on the methylation of endogenous X-linked genes suggest that the prolonged expression of beta-Gal might also be due to the different rate of spreading of inactivation along the X chromosome to the lacZ transgene locus in different tissues.
Collapse
Affiliation(s)
- P P Tam
- Embryology Unit, Children's Medical Research Institute, Wentworthville NSW, Australia
| | | | | |
Collapse
|