1
|
Yu H, Wang Z, Ma J, Wang R, Yao S, Gu Z, Lin K, Li J, Young RS, Yu Y, Yu Y, Jin M, Chen D. The establishment and regulation of human germ cell lineage. Stem Cell Res Ther 2025; 16:139. [PMID: 40102947 PMCID: PMC11921702 DOI: 10.1186/s13287-025-04171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/23/2025] [Indexed: 03/20/2025] Open
Abstract
The specification of primordial germ cells (PGCs) during early embryogenesis initiates the development of the germ cell lineage that ensures the perpetuation of genetic and epigenetic information from parents to offspring. Defects in germ cell development may lead to infertility or birth defects. Historically, our understanding of human PGCs (hPGCs) regulation has primarily been derived from studies in mice, given the ethical restrictions and practical limitations of human embryos at the stage of PGC specification. However, recent studies have increasingly highlighted significant mechanistic differences for PGC development in humans and mice. The past decade has witnessed the establishment of human pluripotent stem cell (hPSC)-derived hPGC-like cells (hPGCLCs) as new models for studying hPGC fate specification and differentiation. In this review, we systematically summarize the current hPSC-derived models for hPGCLC induction, and how these studies uncover the regulatory machinery for human germ cell fate specification and differentiation, forming the basis for reconstituting gametogenesis in vitro from hPSCs for clinical applications and disease modeling.
Collapse
Affiliation(s)
- Honglin Yu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ziqi Wang
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Jiayue Ma
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ruoming Wang
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Shuo Yao
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Zhaoyu Gu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Kexin Lin
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Jinlan Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Robert S Young
- Center for Global Health Research, Usher Institute, University of Edinburgh, 5-7 Little France Road, Edinburgh, EH16 4UX, UK
- Zhejiang University - University of Edinburgh Institute, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ya Yu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - You Yu
- Center for Infection Immunity, Cancer of Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Min Jin
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Di Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China.
- State Key Laboratory of Biobased Transportation Fuel Technology, Haining, 314400, Zhejiang, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Isomura A, Kageyama R. Progress in understanding the vertebrate segmentation clock. Nat Rev Genet 2025:10.1038/s41576-025-00813-6. [PMID: 40038453 DOI: 10.1038/s41576-025-00813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 03/06/2025]
Abstract
The segmentation clock is a molecular oscillator that regulates the periodic formation of somites from the presomitic mesoderm during vertebrate embryogenesis. Synchronous oscillatory expression of a Hairy homologue or Hairy-related basic helix-loop-helix (bHLH) transcriptional repressor in presomitic mesoderm cells regulates periodic expression of downstream factors that control somite segmentation with a periodicity that varies across species. Although many of the key components of the clock have been identified and characterized, less is known about how the clock is synchronized across cells and how species-specific periodicity is achieved. Advances in live imaging, stem cell and organoid technologies, and synthetic approaches have started to uncover the detailed mechanisms underlying these aspects of somitogenesis, providing insight into how morphogenesis is coordinated in space and time during embryonic development.
Collapse
Affiliation(s)
- Akihiro Isomura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto, Japan.
- Japan Science and Technology Agency, PRESTO, Saitama, Japan.
- RIKEN Center for Brain Science, Wako, Japan.
| | - Ryoichiro Kageyama
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto, Japan.
- RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
3
|
Syangtan D, Al Mahbuba D, Masuko S, Li Q, Elton AC, Zaltsman Y, Wrighton PJ, Xia K, Han X, Ouyang Y, Zhang F, Linhardt RJ, Kiessling LL. Heparan sulfate regulates the fate decisions of human pluripotent stem cells. Stem Cell Reports 2025; 20:102384. [PMID: 39729990 PMCID: PMC11784485 DOI: 10.1016/j.stemcr.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024] Open
Abstract
Heparan sulfate (HS) is an anionic polysaccharide generated by all animal cells, but our understanding of its roles in human pluripotent stem cell (hPSC) self-renewal and differentiation is limited. We derived HS-deficient hPSCs by disrupting the EXT1 glycosyltransferase. These EXT1-/- hPSCs maintain self-renewal and pluripotency under standard culture conditions that contain high levels of basic fibroblast growth factor(bFGF), a requirement for sufficient bFGF signaling in the engineered cells. Intriguingly, Activin/Nodal signaling is also compromised in EXT1-/- hPSCs, highlighting HS's previously unexplored involvement in this pathway. As a result, EXT1-/- hPSCs fail to differentiate into mesoderm or endoderm lineages. Unexpectedly, HS is dispensable for early ectodermal differentiation of hPSCs but still critical in generating motor neurons. Those derived from HS-deficient hPSCs lack proper neuronal projections and show alterations in axonogenesis gene expression. Thus, our study uncovers expected and unexpected mechanistic roles of HS in hPSC fate decisions.
Collapse
Affiliation(s)
- Deepsing Syangtan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Deena Al Mahbuba
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sayaka Masuko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Qiao Li
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andrew C Elton
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Yefim Zaltsman
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Paul J Wrighton
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 8th St., Troy, NY 12180, USA
| | - Xiaorui Han
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 8th St., Troy, NY 12180, USA
| | - Yilan Ouyang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 8th St., Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 8th St., Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 8th St., Troy, NY 12180, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research at MIT, 500 Main St, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Xu X, Wang W, Liu Y, Bäckemo J, Heuchel M, Wang W, Nie Y, Iqbal I, Kratz K, Lendlein A, Ma N. Substrates mimicking the blastocyst geometry revert pluripotent stem cell to naivety. NATURE MATERIALS 2024; 23:1748-1758. [PMID: 39134648 PMCID: PMC11599042 DOI: 10.1038/s41563-024-01971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/11/2024] [Indexed: 09/22/2024]
Abstract
Naive pluripotent stem cells have the highest developmental potential but their in vivo existence in the blastocyst is transient. Here we report a blastocyst motif substrate for the in vitro reversion of mouse and human pluripotent stem cells to a naive state. The substrate features randomly varied microstructures, which we call motifs, mimicking the geometry of the blastocyst. Motifs representing mouse-blastocyst-scaled curvature ranging between 15 and 62 mm-1 were the most efficient in promoting reversion to naivety, as determined by time-resolved correlative analysis. In these substrates, apical constriction enhances E-cadherin/RAC1 signalling and activates the mechanosensitive nuclear transducer YAP, promoting the histone modification of pluripotency genes. This results in enhanced levels of pluripotency transcription factor NANOG, which persist even after cells are removed from the substrate. Pluripotent stem cells cultured in blastocyst motif substrates display a higher development potential in generating embryoid bodies and teratomas. These findings shed light on naivety-promoting substrate design and their large-scale implementation.
Collapse
Affiliation(s)
- Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Weiwei Wang
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Yue Liu
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Johan Bäckemo
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Matthias Heuchel
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Wei Wang
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Yan Nie
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Imran Iqbal
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Karl Kratz
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Berlin and Teltow, Teltow, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.
- Institute of Chemistry, University of Potsdam, Potsdam, Germany.
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Berlin and Teltow, Teltow, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Nan Ma
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Berlin and Teltow, Teltow, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Rosen BP, Li QV, Cho HS, Liu D, Yang D, Graff S, Yan J, Luo R, Verma N, Damodaran JR, Kale HT, Kaplan SJ, Beer MA, Sidoli S, Huangfu D. Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness. Nat Commun 2024; 15:8966. [PMID: 39419994 PMCID: PMC11487130 DOI: 10.1038/s41467-024-53284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Pluripotent stem cells have remarkable self-renewal capacity: the ability to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into almost any cell type in the body. To investigate the interplay between these two aspects of self-renewal, we perform four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSCs and the dissolution of primed pluripotent identity during early differentiation. These screens distinguish genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation. We further identify a core set of genes controlling both stem cell fitness and pluripotent identity, including a network of chromatin factors. Here, unbiased screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide a valuable resource for exploring pluripotent stem cell identity versus cell fitness, and offer a framework for categorizing gene function.
Collapse
Affiliation(s)
- Bess P Rosen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Qing V Li
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tessera Therapeutics, Somerville, MA, USA
| | - Hyein S Cho
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Dingyu Liu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sarah Graff
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renhe Luo
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nipun Verma
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Hanuman T Kale
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Samuel J Kaplan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
6
|
Lin Z, Lin B, Hang C, Lu R, Xiong H, Liu J, Wang S, Gong Z, Zhang M, Li D, Fang G, Ding J, Su X, Guo H, Shi D, Xie D, Liu Y, Liang D, Yang J, Chen YH. A new paradigm for generating high-quality cardiac pacemaker cells from mouse pluripotent stem cells. Signal Transduct Target Ther 2024; 9:230. [PMID: 39237509 PMCID: PMC11377569 DOI: 10.1038/s41392-024-01942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Cardiac biological pacing (BP) is one of the future directions for bradyarrhythmias intervention. Currently, cardiac pacemaker cells (PCs) used for cardiac BP are mainly derived from pluripotent stem cells (PSCs). However, the production of high-quality cardiac PCs from PSCs remains a challenge. Here, we developed a cardiac PC differentiation strategy by adopting dual PC markers and simulating the developmental route of PCs. First, two PC markers, Shox2 and Hcn4, were selected to establish Shox2:EGFP; Hcn4:mCherry mouse PSC reporter line. Then, by stepwise guiding naïve PSCs to cardiac PCs following naïve to formative pluripotency transition and manipulating signaling pathways during cardiac PCs differentiation, we designed the FSK method that increased the yield of SHOX2+; HCN4+ cells with typical PC characteristics, which was 12 and 42 folds higher than that of the embryoid body (EB) and the monolayer M10 methods respectively. In addition, the in vitro cardiac PCs differentiation trajectory was mapped by single-cell RNA sequencing (scRNA-seq), which resembled in vivo PCs development, and ZFP503 was verified as a key regulator of cardiac PCs differentiation. These PSC-derived cardiac PCs have the potential to drive advances in cardiac BP technology, help with the understanding of PCs (patho)physiology, and benefit drug discovery for PC-related diseases as well.
Collapse
Affiliation(s)
- Zheyi Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Bowen Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Chengwen Hang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Hui Xiong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Siyu Wang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zheng Gong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Desheng Li
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Guojian Fang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Jie Ding
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Xuling Su
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Dan Shi
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Duanyang Xie
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Jian Yang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China.
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Yi-Han Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| |
Collapse
|
7
|
Zhang J, Tong L, Liu Y, Li X, Wang J, Lin R, Zhou Z, Chen Y, Chen Y, Liu Y, Chen D. The regulatory role of m 6A modification in the maintenance and differentiation of embryonic stem cells. Genes Dis 2024; 11:101199. [PMID: 38947741 PMCID: PMC11214295 DOI: 10.1016/j.gendis.2023.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/28/2023] [Accepted: 11/11/2023] [Indexed: 07/02/2024] Open
Abstract
As the most prevalent and reversible internal epigenetic modification in eukaryotic mRNAs, N 6-methyladenosine (m6A) post-transcriptionally regulates the processing and metabolism of mRNAs involved in diverse biological processes. m6A modification is regulated by m6A writers, erasers, and readers. Emerging evidence suggests that m6A modification plays essential roles in modulating the cell-fate transition of embryonic stem cells. Mechanistic investigation of embryonic stem cell maintenance and differentiation is critical for understanding early embryonic development, which is also the premise for the application of embryonic stem cells in regenerative medicine. This review highlights the current knowledge of m6A modification and its essential regulatory contribution to the cell fate transition of mouse and human embryonic stem cells.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Lingling Tong
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yuchen Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiang Li
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jiayi Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ruoxin Lin
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ziyu Zhou
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yunbing Chen
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yanxi Chen
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yirong Liu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Di Chen
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- National Key Laboratory of Biobased Transportation Fuel Technology, Haining, Zhejiang 314400, China
| |
Collapse
|
8
|
Conner AA, Yao Y, Chan SW, Jain D, Wong SM, Yim EKF, Rizwan M. High-throughput analysis of topographical cues for the expansion of murine pluripotent stem cells. NANOTECHNOLOGY 2024; 35:455101. [PMID: 39084233 DOI: 10.1088/1361-6528/ad6994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
The expansion of pluripotent stem cells (PSCs)in vitroremains a critical barrier to their use in tissue engineering and regenerative medicine. Biochemical methods for PSC expansion are known to produce heterogeneous cell populations with varying states of pluripotency and are cost-intensive, hindering their clinical translation. Engineering biomaterials to physically control PSC fate offers an alternative approach. Surface or substrate topography is a promising design parameter for engineering biomaterials. Topographical cues have been shown to elicit profound effects on stem cell differentiation and proliferation. Previous reports have shown isotropic substrate topographies to be promising in expanding PSCs. However, the optimal feature to promote PSC proliferation and the pluripotent state has not yet been determined. In this work, the MultiARChitecture (MARC) plate is developed to conduct a high-throughput analysis of topographical cues in a 96-well plate format. The MARC plate is a reproducible and customizable platform for the analysis of multiple topographical patterns and features and is compatible with both microscopic assays and molecular biology techniques. The MARC plate is used to evaluate the expression of pluripotency markersOct4, Nanog, andSox2and the differentiation markerLmnAas well as the proliferation of murine embryonic stem (mES) cells. Our systematic analyses identified three topographical patterns that maintain pluripotency in mES cells after multiple passages: 1µm pillars (1µm spacing, square arrangement), 2µm wells (c-c (x, y) = 4, 4µm), and 5µm pillars (c-c (x, y) = 7.5, 7.5µm). This study represents a step towards developing a biomaterial platform for controlled murine PSC expansion.
Collapse
Affiliation(s)
- Abigail A Conner
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Sarah W Chan
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Deepak Jain
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Suzanne M Wong
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Muhammad Rizwan
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
9
|
Dehghanian F, Bovio PP, Gather F, Probst S, Naghsh-Nilchi A, Vogel T. ZFP982 confers mouse embryonic stem cell characteristics by regulating expression of Nanog, Zfp42, and Dppa3. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119686. [PMID: 38342310 DOI: 10.1016/j.bbamcr.2024.119686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Understanding the genetic underpinnings of protein networks conferring stemness is of broad interest for basic and translational research. METHODS We used multi-omics analyses to identify and characterize stemness genes, and focused on the zinc finger protein 982 (Zfp982) that regulates stemness through the expression of Nanog, Zfp42, and Dppa3 in mouse embryonic stem cells (mESC). RESULTS Zfp982 was expressed in stem cells, and bound to chromatin through a GCAGAGKC motif, for example near the stemness genes Nanog, Zfp42, and Dppa3. Nanog and Zfp42 were direct targets of ZFP982 that decreased in expression upon knockdown and increased upon overexpression of Zfp982. We show that ZFP982 expression strongly correlated with stem cell characteristics, both on the transcriptional and morphological levels. Zfp982 expression decreased with progressive differentiation into ecto-, endo- and mesodermal cell lineages, and knockdown of Zfp982 correlated with morphological and transcriptional features of differentiated cells. Zfp982 showed transcriptional overlap with members of the Hippo signaling pathway, one of which was Yap1, the major co-activator of Hippo signaling. Despite the observation that ZFP982 and YAP1 interacted and localized predominantly to the cytoplasm upon differentiation, the localization of YAP1 was not influenced by ZFP982 localization. CONCLUSIONS Together, our study identified ZFP982 as a transcriptional regulator of early stemness genes, and since ZFP982 is under the control of the Hippo pathway, underscored the importance of the context-dependent Hippo signals for stem cell characteristics.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran; Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Patrick Piero Bovio
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fabian Gather
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Simone Probst
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amirhosein Naghsh-Nilchi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Basics in Neuromodulation (Neuromodul Basics), Freiburg, Germany.
| |
Collapse
|
10
|
Fatima N, Saif Ur Rahman M, Qasim M, Ali Ashfaq U, Ahmed U, Masoud MS. Transcriptional Factors Mediated Reprogramming to Pluripotency. Curr Stem Cell Res Ther 2024; 19:367-388. [PMID: 37073151 DOI: 10.2174/1574888x18666230417084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 04/20/2023]
Abstract
A unique kind of pluripotent cell, i.e., Induced pluripotent stem cells (iPSCs), now being targeted for iPSC synthesis, are produced by reprogramming animal and human differentiated cells (with no change in genetic makeup for the sake of high efficacy iPSCs formation). The conversion of specific cells to iPSCs has revolutionized stem cell research by making pluripotent cells more controllable for regenerative therapy. For the past 15 years, somatic cell reprogramming to pluripotency with force expression of specified factors has been a fascinating field of biomedical study. For that technological primary viewpoint reprogramming method, a cocktail of four transcription factors (TF) has required: Kruppel-like factor 4 (KLF4), four-octamer binding protein 34 (OCT3/4), MYC and SOX2 (together referred to as OSKM) and host cells. IPS cells have great potential for future tissue replacement treatments because of their ability to self-renew and specialize in all adult cell types, although factor-mediated reprogramming mechanisms are still poorly understood medically. This technique has dramatically improved performance and efficiency, making it more useful in drug discovery, disease remodeling, and regenerative medicine. Moreover, in these four TF cocktails, more than 30 reprogramming combinations were proposed, but for reprogramming effectiveness, only a few numbers have been demonstrated for the somatic cells of humans and mice. Stoichiometry, a combination of reprogramming agents and chromatin remodeling compounds, impacts kinetics, quality, and efficiency in stem cell research.
Collapse
Affiliation(s)
- Nazira Fatima
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Muhammad Saif Ur Rahman
- Institute of Advanced Studies, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Uzair Ahmed
- EMBL Partnership Institute for Genome Editing Technologies, Vilnius University, Vilnius, 10257, Lithuania
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
11
|
Abstract
Metabolic switches are a crucial hallmark of cellular development and regeneration. In response to changes in their environment or physiological state, cells undergo coordinated metabolic switching that is necessary to execute biosynthetic demands of growth and repair. In this Review, we discuss how metabolic switches represent an evolutionarily conserved mechanism that orchestrates tissue development and regeneration, allowing cells to adapt rapidly to changing conditions during development and postnatally. We further explore the dynamic interplay between metabolism and how it is not only an output, but also a driver of cellular functions, such as cell proliferation and maturation. Finally, we underscore the epigenetic and cellular mechanisms by which metabolic switches mediate biosynthetic needs during development and regeneration, and how understanding these mechanisms is important for advancing our knowledge of tissue development and devising new strategies to promote tissue regeneration.
Collapse
Affiliation(s)
- Ahmed I. Mahmoud
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
12
|
Li D, Luo L, Guo L, Wu C, Zhang R, Peng Y, Wu M, Kuang J, Li Y, Zhang Y, Xie J, Xie W, Mao R, Ma G, Fu X, Chen J, Hutchins AP, Pei D. c-Jun as a one-way valve at the naive to primed interface. Cell Biosci 2023; 13:191. [PMID: 37838693 PMCID: PMC10576270 DOI: 10.1186/s13578-023-01141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND c-Jun is a proto-oncogene functioning as a transcription factor to activate gene expression under many physiological and pathological conditions, particularly in somatic cells. However, its role in early embryonic development remains unknown. RESULTS Here, we show that c-Jun acts as a one-way valve to preserve the primed state and impair reversion to the naïve state. c-Jun is induced during the naive to primed transition, and it works to stabilize the chromatin structure and inhibit the reverse transition. Loss of c-Jun has surprisingly little effect on the naïve to primed transition, and no phenotypic effect on primed cells, however, in primed cells the loss of c-Jun leads to a failure to correctly close naïve-specific enhancers. When the primed cells are induced to reprogram to a naïve state, these enhancers are more rapidly activated when c-Jun is lost or impaired, and the conversion is more efficient. CONCLUSIONS The results of this study indicate that c-Jun can function as a chromatin stabilizer in primed EpiSCs, to maintain the epigenetic cell type state and act as a one-way valve for cell fate conversions.
Collapse
Affiliation(s)
- Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 190 Kaiyuan Dadao, Huangpu District, Guangzhou, 510799, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Ling Luo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Lin Guo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chuman Wu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ran Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, Guangdong, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Yuling Peng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 190 Kaiyuan Dadao, Huangpu District, Guangzhou, 510799, China
| | - Menghua Wu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 190 Kaiyuan Dadao, Huangpu District, Guangzhou, 510799, China
| | - Junqi Kuang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yudan Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jun Xie
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Wenxiu Xie
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rui Mao
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiuling Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiekai Chen
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Yunqi Town, No.18 Longshan Street, Xihu District, Hangzhou, 310024, China.
| |
Collapse
|
13
|
Liu WX, Li CX, Xie XX, Ge W, Qiao T, Sun XF, Shen W, Cheng SF. Transcriptomic landscape reveals germline potential of porcine skin-derived multipotent dermal fibroblast progenitors. Cell Mol Life Sci 2023; 80:224. [PMID: 37480481 PMCID: PMC11072884 DOI: 10.1007/s00018-023-04869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
According to estimations, approximately about 15% of couples worldwide suffer from infertility, in which individuals with azoospermia or oocyte abnormalities cannot be treated with assisted reproductive technology. The skin-derived stem cells (SDSCs) differentiation into primordial germ cell-like cells (PGCLCs) is one of the major breakthroughs in the field of stem cells intervention for infertility treatment in recent years. However, the cellular origin of SDSCs and their dynamic changes in transcription profile during differentiation into PGCLCs in vitro remain largely undissected. Here, the results of single-cell RNA sequencing indicated that porcine SDSCs are mainly derived from multipotent dermal fibroblast progenitors (MDFPs), which are regulated by growth factors (EGF/bFGF). Importantly, porcine SDSCs exhibit pluripotency for differentiating into three germ layers and can effectively differentiate into PGCLCs through complex transcriptional regulation involving histone modification. Moreover, this study also highlights that porcine SDSC-derived PGCLCs specification exhibit conservation with the human primordial germ cells lineage and that its proliferation is mediated by the MAPK signaling pathway. Our findings provide substantial novel insights into the field of regenerative medicine in which stem cells differentiate into germ cells in vitro, as well as potential therapeutic effects in individuals with azoospermia and/or defective oocytes.
Collapse
Affiliation(s)
- Wen-Xiang Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Chun-Xiao Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin-Xiang Xie
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-Feng Sun
- Anqiu Women and Children's Hospital, Weifang, 262100, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
14
|
Kocere A, Lalonde RL, Mosimann C, Burger A. Lateral thinking in syndromic congenital cardiovascular disease. Dis Model Mech 2023; 16:dmm049735. [PMID: 37125615 PMCID: PMC10184679 DOI: 10.1242/dmm.049735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
- Department of Molecular Life Science, University of Zurich, 8057 Zurich, Switzerland
| | - Robert L. Lalonde
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Arkoun B, Moison P, Guerquin MJ, Messiaen S, Moison D, Tourpin S, Monville C, Livera G. Sorting and Manipulation of Human PGC-LC Using PDPN and Hanging Drop Cultures. Cells 2022; 11:3832. [PMID: 36497094 PMCID: PMC9736549 DOI: 10.3390/cells11233832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The generation of oocytes from induced pluripotent stem cells (iPSCs) was proven efficient with mouse cells. However, no human iPSCs have yet been reported to generate cells able to complete oogenesis. Additionally, efficient sorting of human Primordial Germ Cell-like Cells (hPGC-LCs) without genomic integration of fluorescent reporter for their downstream manipulation is still lacking. Here, we aimed to develop a model that allows human germ cell differentiation in vitro in order to study the developing human germline. The hPGC-LCs specified from two iPS cell lines were sorted and manipulated using the PDPN surface marker without genetic modification. hPGC-LCs obtained remain arrested at early stages of maturation and no further differentiation nor meiotic onset occurred when these were cultured with human or mouse fetal ovarian somatic cells. However, when cultured independently of somatic ovarian cells, using BMP4 and the hanging drop-transferred EBs system, early hPGC-LCs further differentiate efficiently and express late PGC (DDX4) and meiotic gene markers, although no SYCP3 protein was detected. Altogether, we characterized a tool to sort hPGC-LCs and an efficient in vitro differentiation system to obtain pre-meiotic germ cell-like cells without using a gonadal niche.
Collapse
Affiliation(s)
- Brahim Arkoun
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Pauline Moison
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Marie-Justine Guerquin
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Sébastien Messiaen
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Delphine Moison
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Sophie Tourpin
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
- Paris-Saclay Evry, U861, 91100 Corbeil-Essonnes, France
| | - Gabriel Livera
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
16
|
Liu WX, Tan SJ, Wang YF, Zhang FL, Feng YQ, Ge W, Dyce PW, Reiter RJ, Shen W, Cheng SF. Melatonin promotes the proliferation of primordial germ cell-like cells derived from porcine skin-derived stem cells: A mechanistic analysis. J Pineal Res 2022; 73:e12833. [PMID: 36106819 DOI: 10.1111/jpi.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
In vitro differentiation of stem cells into functional gametes remains of great interest in the biomedical field. Skin-derived stem cells (SDSCs) are an adult stem cells that provides a wide range of clinical applications without inherent ethical restrictions. In this paper, porcine SDSCs were successfully differentiated into primordial germ cell-like cells (PGCLCs) in conditioned media. The PGCLCs were characterized in terms of cell morphology, marker gene expression, and epigenetic properties. Furthermore, we also found that 25 μM melatonin (MLT) significantly increased the proliferation of the SDSC-derived PGCLCs while acting through the MLT receptor type 1 (MT1). RNA-seq results found the mitogen-activated protein kinase (MAPK) signaling pathway was more active when PGCLCs were cultured with MLT. Moreover, the effect of MLT was attenuated by the use of S26131 (MT1 antagonist), crenolanib (platelet-derived growth factor receptor inhibitor), U0126 (mitogen-activated protein kinase kinase inhibitor), or CCG-1423 (serum response factor transcription inhibitor), suggesting that MLT promotes the proliferation processes through the MAPK pathway. Taken together, this study highlights the role of MLT in promoting PGCLCs proliferation. Importantly, this study provides a suitable in vitro model for use in translational studies and could help to answer numerous remaining questions related to germ cell physiology.
Collapse
Affiliation(s)
- Wen-Xiang Liu
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shao-Jing Tan
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yu-Feng Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
- Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Fa-Li Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yu-Qing Feng
- School Hospital, Qingdao Agricultural University, Qingdao, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, Alabama, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, Texas, USA
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
17
|
Bouchereau W, Jouneau L, Archilla C, Aksoy I, Moulin A, Daniel N, Peynot N, Calderari S, Joly T, Godet M, Jaszczyszyn Y, Pratlong M, Severac D, Savatier P, Duranthon V, Afanassieff M, Beaujean N. Major transcriptomic, epigenetic and metabolic changes underlie the pluripotency continuum in rabbit preimplantation embryos. Development 2022; 149:276385. [DOI: 10.1242/dev.200538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Despite the growing interest in the rabbit model for developmental and stem cell biology, the characterization of embryos at the molecular level is still poorly documented. We conducted a transcriptome analysis of rabbit preimplantation embryos from E2.7 (morula stage) to E6.6 (early primitive streak stage) using bulk and single-cell RNA-sequencing. In parallel, we studied oxidative phosphorylation and glycolysis, and analysed active and repressive epigenetic modifications during blastocyst formation and expansion. We generated a transcriptomic, epigenetic and metabolic map of the pluripotency continuum in rabbit preimplantation embryos, and identified novel markers of naive pluripotency that might be instrumental for deriving naive pluripotent stem cell lines. Although the rabbit is evolutionarily closer to mice than to primates, we found that the transcriptome of rabbit epiblast cells shares common features with those of humans and non-human primates.
Collapse
Affiliation(s)
- Wilhelm Bouchereau
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Catherine Archilla
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Irène Aksoy
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Anais Moulin
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Nathalie Daniel
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Nathalie Peynot
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Sophie Calderari
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Thierry Joly
- ISARA-Lyon 4 , F-69007 Lyon , France
- VetAgroSup, UPSP ICE 5 , F-69280 Marcy l'Etoile , France
| | - Murielle Godet
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 6 , 91198 Gif-sur-Yvette , France
| | - Marine Pratlong
- MGX, Université Montpellier, CNRS, INSERM 7 , 34094 Montpellier , France
| | - Dany Severac
- MGX, Université Montpellier, CNRS, INSERM 7 , 34094 Montpellier , France
| | - Pierre Savatier
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Véronique Duranthon
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Marielle Afanassieff
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Nathalie Beaujean
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| |
Collapse
|
18
|
Metabolic Determinants in Cardiomyocyte Function and Heart Regenerative Strategies. Metabolites 2022; 12:metabo12060500. [PMID: 35736435 PMCID: PMC9227827 DOI: 10.3390/metabo12060500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Heart disease is the leading cause of mortality in developed countries. The associated pathology is characterized by a loss of cardiomyocytes that leads, eventually, to heart failure. In this context, several cardiac regenerative strategies have been developed, but they still lack clinical effectiveness. The mammalian neonatal heart is capable of substantial regeneration following injury, but this capacity is lost at postnatal stages when cardiomyocytes become terminally differentiated and transit to the fetal metabolic switch. Cardiomyocytes are metabolically versatile cells capable of using an array of fuel sources, and the metabolism of cardiomyocytes suffers extended reprogramming after injury. Apart from energetic sources, metabolites are emerging regulators of epigenetic programs driving cell pluripotency and differentiation. Thus, understanding the metabolic determinants that regulate cardiomyocyte maturation and function is key for unlocking future metabolic interventions for cardiac regeneration. In this review, we will discuss the emerging role of metabolism and nutrient signaling in cardiomyocyte function and repair, as well as whether exploiting this axis could potentiate current cellular regenerative strategies for the mammalian heart.
Collapse
|
19
|
Collier AJ, Bendall A, Fabian C, Malcolm AA, Tilgner K, Semprich CI, Wojdyla K, Nisi PS, Kishore K, Roamio Franklin VN, Mirshekar-Syahkal B, D’Santos C, Plath K, Yusa K, Rugg-Gunn PJ. Genome-wide screening identifies Polycomb repressive complex 1.3 as an essential regulator of human naïve pluripotent cell reprogramming. SCIENCE ADVANCES 2022; 8:eabk0013. [PMID: 35333572 PMCID: PMC8956265 DOI: 10.1126/sciadv.abk0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Uncovering the mechanisms that establish naïve pluripotency in humans is crucial for the future applications of pluripotent stem cells including the production of human blastoids. However, the regulatory pathways that control the establishment of naïve pluripotency by reprogramming are largely unknown. Here, we use genome-wide screening to identify essential regulators as well as major impediments of human primed to naïve pluripotent stem cell reprogramming. We discover that factors essential for cell state change do not typically undergo changes at the level of gene expression but rather are repurposed with new functions. Mechanistically, we establish that the variant Polycomb complex PRC1.3 and PRDM14 jointly repress developmental and gene regulatory factors to ensure naïve cell reprogramming. In addition, small-molecule inhibitors of reprogramming impediments improve naïve cell reprogramming beyond current methods. Collectively, this work defines the principles controlling the establishment of human naïve pluripotency and also provides new insights into mechanisms that destabilize and reconfigure cell identity during cell state transitions.
Collapse
Affiliation(s)
- Amanda J. Collier
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Adam Bendall
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | - Andrew A. Malcolm
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Katarzyna Tilgner
- Stem Cell Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | | | | | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | | | - Clive D’Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kosuke Yusa
- Stem Cell Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Stem Cell Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Peter J. Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Zywitza V, Rusha E, Shaposhnikov D, Ruiz-Orera J, Telugu N, Rishko V, Hayashi M, Michel G, Wittler L, Stejskal J, Holtze S, Göritz F, Hermes R, Wang J, Izsvák Z, Colleoni S, Lazzari G, Galli C, Hildebrandt TB, Hayashi K, Diecke S, Drukker M. Naïve-like pluripotency to pave the way for saving the northern white rhinoceros from extinction. Sci Rep 2022; 12:3100. [PMID: 35260583 PMCID: PMC8904600 DOI: 10.1038/s41598-022-07059-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/09/2022] [Indexed: 11/09/2022] Open
Abstract
The northern white rhinoceros (NWR) is probably the earth's most endangered mammal. To rescue the functionally extinct species, we aim to employ induced pluripotent stem cells (iPSCs) to generate gametes and subsequently embryos in vitro. To elucidate the regulation of pluripotency and differentiation of NWR PSCs, we generated iPSCs from a deceased NWR female using episomal reprogramming, and observed surprising similarities to human PSCs. NWR iPSCs exhibit a broad differentiation potency into the three germ layers and trophoblast, and acquire a naïve-like state of pluripotency, which is pivotal to differentiate PSCs into primordial germ cells (PGCs). Naïve culturing conditions induced a similar expression profile of pluripotency related genes in NWR iPSCs and human ESCs. Furthermore, naïve-like NWR iPSCs displayed increased expression of naïve and PGC marker genes, and a higher integration propensity into developing mouse embryos. As the conversion process was aided by ectopic BCL2 expression, and we observed integration of reprogramming factors, the NWR iPSCs presented here are unsuitable for gamete production. However, the gained insights into the developmental potential of both primed and naïve-like NWR iPSCs are fundamental for in future PGC-specification in order to rescue the species from extinction using cryopreserved somatic cells.
Collapse
Affiliation(s)
- Vera Zywitza
- Technology Platform Pluripotent Stem Cells, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Ejona Rusha
- Induced Pluripotent Stem Cell Core Facility, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Dmitry Shaposhnikov
- Induced Pluripotent Stem Cell Core Facility, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Narasimha Telugu
- Technology Platform Pluripotent Stem Cells, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Valentyna Rishko
- Induced Pluripotent Stem Cell Core Facility, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Masafumi Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Geert Michel
- FEMTransgenic Technologies, Charité, 13125, Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Jan Stejskal
- ZOO Dvůr Králové, Štefánikova 1029, 544 01, Dvůr Králové nad Labem, Czech Republic
| | - Susanne Holtze
- Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| | - Frank Göritz
- Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| | - Robert Hermes
- Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| | - Jichang Wang
- Mobile DNA, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Zsuzsanna Izsvák
- Mobile DNA, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Silvia Colleoni
- Laboratory of Reproductive Technologies, Avantea, 26100, Cremona, Italy
| | - Giovanna Lazzari
- Laboratory of Reproductive Technologies, Avantea, 26100, Cremona, Italy
- Fondazione Avantea, 26100, Cremona, Italy
| | - Cesare Galli
- Laboratory of Reproductive Technologies, Avantea, 26100, Cremona, Italy
- Fondazione Avantea, 26100, Cremona, Italy
| | - Thomas B Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
- Faculty of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sebastian Diecke
- Technology Platform Pluripotent Stem Cells, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| | - Micha Drukker
- Induced Pluripotent Stem Cell Core Facility, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
21
|
|
22
|
Veenvliet JV, Lenne PF, Turner DA, Nachman I, Trivedi V. Sculpting with stem cells: how models of embryo development take shape. Development 2021; 148:dev192914. [PMID: 34908102 PMCID: PMC8722391 DOI: 10.1242/dev.192914] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryogenesis, organisms acquire their shape given boundary conditions that impose geometrical, mechanical and biochemical constraints. A detailed integrative understanding how these morphogenetic information modules pattern and shape the mammalian embryo is still lacking, mostly owing to the inaccessibility of the embryo in vivo for direct observation and manipulation. These impediments are circumvented by the developmental engineering of embryo-like structures (stembryos) from pluripotent stem cells that are easy to access, track, manipulate and scale. Here, we explain how unlocking distinct levels of embryo-like architecture through controlled modulations of the cellular environment enables the identification of minimal sets of mechanical and biochemical inputs necessary to pattern and shape the mammalian embryo. We detail how this can be complemented with precise measurements and manipulations of tissue biochemistry, mechanics and geometry across spatial and temporal scales to provide insights into the mechanochemical feedback loops governing embryo morphogenesis. Finally, we discuss how, even in the absence of active manipulations, stembryos display intrinsic phenotypic variability that can be leveraged to define the constraints that ensure reproducible morphogenesis in vivo.
Collapse
Affiliation(s)
- Jesse V. Veenvliet
- Stembryogenesis Lab, Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| | - Pierre-François Lenne
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, 13288, Marseille, France
| | - David A. Turner
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, University of Liverpool, Liverpool, L7 8TX, UK
| | - Iftach Nachman
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Vikas Trivedi
- European Molecular Biology Laboratories (EMBL), Barcelona, 08003, Spain
- EMBL Heidelberg, Developmental Biology Unit, 69117, Heidelberg, Germany
| |
Collapse
|
23
|
Pera MF, Rossant J. The exploration of pluripotency space: Charting cell state transitions in peri-implantation development. Cell Stem Cell 2021; 28:1896-1906. [PMID: 34672948 DOI: 10.1016/j.stem.2021.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Pluripotent cells in the mammalian embryo undergo state transitions marked by changes in patterns of gene expression and developmental potential as they progress from pre-implantation through post-implantation stages of development. Recent studies of cultured mouse and human pluripotent stem cells (hPSCs) have identified cells representative of an intermediate stage (referred to as the formative state) between naive pluripotency (equivalent to pre-implantation epiblast) and primed pluripotency (equivalent to late post-implantation epiblast). We examine these recent findings in light of our knowledge of peri-implantation mouse and human development, and we consider the implications of this work for deriving human embryo models from pluripotent cells.
Collapse
Affiliation(s)
| | - Janet Rossant
- The Hospital for Sick Children and the Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Gairdner Foundation, Toronto, ON, Canada.
| |
Collapse
|
24
|
Saba JA, Liakath-Ali K, Green R, Watt FM. Translational control of stem cell function. Nat Rev Mol Cell Biol 2021; 22:671-690. [PMID: 34272502 DOI: 10.1038/s41580-021-00386-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.
Collapse
Affiliation(s)
- James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kifayathullah Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK.
| |
Collapse
|
25
|
Osnato A, Brown S, Krueger C, Andrews S, Collier AJ, Nakanoh S, Quiroga Londoño M, Wesley BT, Muraro D, Brumm AS, Niakan KK, Vallier L, Ortmann D, Rugg-Gunn PJ. TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells. eLife 2021; 10:e67259. [PMID: 34463252 PMCID: PMC8410071 DOI: 10.7554/elife.67259] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/26/2021] [Indexed: 12/30/2022] Open
Abstract
The signalling pathways that maintain primed human pluripotent stem cells (hPSCs) have been well characterised, revealing a critical role for TGFβ/Activin/Nodal signalling. In contrast, the signalling requirements of naive human pluripotency have not been fully established. Here, we demonstrate that TGFβ signalling is required to maintain naive hPSCs. The downstream effector proteins - SMAD2/3 - bind common sites in naive and primed hPSCs, including shared pluripotency genes. In naive hPSCs, SMAD2/3 additionally bind to active regulatory regions near to naive pluripotency genes. Inhibiting TGFβ signalling in naive hPSCs causes the downregulation of SMAD2/3-target genes and pluripotency exit. Single-cell analyses reveal that naive and primed hPSCs follow different transcriptional trajectories after inhibition of TGFβ signalling. Primed hPSCs differentiate into neuroectoderm cells, whereas naive hPSCs transition into trophectoderm. These results establish that there is a continuum for TGFβ pathway function in human pluripotency spanning a developmental window from naive to primed states.
Collapse
Affiliation(s)
- Anna Osnato
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Department of Surgery, University of CambridgeCambridgeUnited Kingdom
| | - Stephanie Brown
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Department of Surgery, University of CambridgeCambridgeUnited Kingdom
| | - Christel Krueger
- Bioinformatics Group, The Babraham InstituteCambridgeUnited Kingdom
| | - Simon Andrews
- Bioinformatics Group, The Babraham InstituteCambridgeUnited Kingdom
| | - Amanda J Collier
- Epigenetics Programme, The Babraham InstituteCambridgeUnited Kingdom
| | - Shota Nakanoh
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Department of Surgery, University of CambridgeCambridgeUnited Kingdom
- Division of Embryology, National Institute for Basic BiologyOkazakiJapan
| | - Mariana Quiroga Londoño
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Department of Surgery, University of CambridgeCambridgeUnited Kingdom
| | - Brandon T Wesley
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Department of Surgery, University of CambridgeCambridgeUnited Kingdom
| | - Daniele Muraro
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Department of Surgery, University of CambridgeCambridgeUnited Kingdom
- Wellcome Sanger Institute, HinxtonCambridgeUnited Kingdom
| | - A Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Centre for Trophoblast Research, University of CambridgeCambridgeUnited Kingdom
| | - Ludovic Vallier
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Department of Surgery, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Ortmann
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Department of Surgery, University of CambridgeCambridgeUnited Kingdom
| | - Peter J Rugg-Gunn
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
- Epigenetics Programme, The Babraham InstituteCambridgeUnited Kingdom
- Centre for Trophoblast Research, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
26
|
Tang X, Wu H, Xie J, Wang N, Chen Q, Zhong Z, Qiu Y, Wang J, Li X, Situ P, Lai L, Zern MA, Chen H, Duan Y. The combination of dextran sulphate and polyvinyl alcohol prevents excess aggregation and promotes proliferation of pluripotent stem cells in suspension culture. Cell Prolif 2021; 54:e13112. [PMID: 34390064 PMCID: PMC8450127 DOI: 10.1111/cpr.13112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/13/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES For clinical applications of cell-based therapies, a large quantity of human pluripotent stem cells (hPSCs) produced in standardized and scalable culture processes is required. Currently, microcarrier-free suspension culture shows potential for large-scale expansion of hPSCs; however, hPSCs tend to aggregate during culturing leading to a negative effect on cell yield. To overcome this problem, we developed a novel protocol to effectively control the sizes of cell aggregates and enhance the cell proliferation during the expansion of hPSCs in suspension. MATERIALS AND METHODS hPSCs were expanded in suspension culture supplemented with polyvinyl alcohol (PVA) and dextran sulphate (DS), and 3D suspension culture of hPSCs formed cell aggregates under static or dynamic conditions. The sizes of cell aggregates and the cell proliferation as well as the pluripotency of hPSCs after expansion were assessed using cell counting, size analysis, real-time quantitative polymerase chain reaction, flow cytometry analysis, immunofluorescence staining, embryoid body formation, teratoma formation and transcriptome sequencing. RESULTS Our results demonstrated that the addition of DS alone effectively prevented hPSC aggregation, while the addition of PVA significantly enhanced hPSC proliferation. The combination of PVA and DS not only promoted cell proliferation of hPSCs but also produced uniform and size-controlled cell aggregates. Moreover, hPSCs treated with PVA, or DS or a combination, maintained the pluripotency and were capable of differentiating into all three germ layers. mRNA-seq analysis demonstrated that the combination of PVA and DS significantly promoted hPSC proliferation and prevented cell aggregation through improving energy metabolism-related processes, regulating cell growth, cell proliferation and cell division, as well as reducing the adhesion among hPSC aggregates by affecting expression of genes related to cell adhesion. CONCLUSIONS Our results represent a significant step towards developing a simple and robust approach for the expansion of hPSCs in large scale.
Collapse
Affiliation(s)
- Xianglian Tang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China.,Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Jinghe Xie
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China.,Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Ning Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China.,Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Qicong Chen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China.,Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiyong Zhong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China.,Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Yaqi Qiu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Jue Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiajing Li
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ping Situ
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mark A Zern
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| |
Collapse
|
27
|
Munisha M, Schimenti JC. Genome maintenance during embryogenesis. DNA Repair (Amst) 2021; 106:103195. [PMID: 34358805 DOI: 10.1016/j.dnarep.2021.103195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022]
Abstract
Genome maintenance during embryogenesis is critical, because defects during this period can be perpetuated and thus have a long-term impact on individual's health and longevity. Nevertheless, genome instability is normal during certain aspects of embryonic development, indicating that there is a balance between the exigencies of timely cell proliferation and mutation prevention. In particular, early embryos possess unique cellular and molecular features that underscore the challenge of having an appropriate balance. Here, we discuss genome instability during embryonic development, the mechanisms used in various cell compartments to manage genomic stress and address outstanding questions regarding the balance between genome maintenance mechanisms in key cell types that are important for adulthood and progeny.
Collapse
Affiliation(s)
- Mumingjiang Munisha
- Dept. of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States
| | - John C Schimenti
- Dept. of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States.
| |
Collapse
|
28
|
Advanced maternal age perturbs mouse embryo development and alters the phenotype of derived embryonic stem cells. J Dev Orig Health Dis 2021; 13:395-405. [PMID: 34193331 DOI: 10.1017/s2040174421000325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Advanced maternal age (AMA) is known to reduce fertility, increases aneuploidy in oocytes and early embryos and leads to adverse developmental consequences which may associate with offspring lifetime health risks. However, investigating underlying effects of AMA on embryo developmental potential is confounded by the inherent senescence present in maternal body systems further affecting reproductive success. Here, we describe a new model for the analysis of early developmental mechanisms underlying AMA by the derivation and characterisation of mouse embryonic stem cell (mESC-like) lines from naturally conceived embryos. Young (7-8 weeks) and Old (7-8 months) C57BL/6 female mice were mated with young males. Preimplantation embryos from Old dams displayed developmental retardation in blastocyst morphogenesis. mESC lines established from these blastocysts using conventional techniques revealed differences in genetic, cellular and molecular criteria conserved over several passages in the standardised medium. mESCs from embryos from AMA dams displayed increased incidence of aneuploidy following Giemsa karyotyping compared with those from Young dams. Moreover, AMA caused an altered pattern of expression of pluripotency markers (Sox2, OCT4) in mESCs. AMA further diminished mESC survival and proliferation and reduced the expression of cell proliferation marker, Ki-67. These changes coincided with altered expression of the epigenetic marker, Dnmt3a and other developmental regulators in a sex-dependent manner. Collectively, our data demonstrate the feasibility to utilise mESCs to reveal developmental mechanisms underlying AMA in the absence of maternal senescence and with reduced animal use.
Collapse
|
29
|
Ávila-González D, Portillo W, García-López G, Molina-Hernández A, Díaz-Martínez NE, Díaz NF. Unraveling the Spatiotemporal Human Pluripotency in Embryonic Development. Front Cell Dev Biol 2021; 9:676998. [PMID: 34249929 PMCID: PMC8262797 DOI: 10.3389/fcell.2021.676998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
There have been significant advances in understanding human embryogenesis using human pluripotent stem cells (hPSCs) in conventional monolayer and 3D self-organized cultures. Thus, in vitro models have contributed to elucidate the molecular mechanisms for specification and differentiation during development. However, the molecular and functional spectrum of human pluripotency (i.e., intermediate states, pluripotency subtypes and regionalization) is still not fully understood. This review describes the mechanisms that establish and maintain pluripotency in human embryos and their differences with mouse embryos. Further, it describes a new pluripotent state representing a transition between naïve and primed pluripotency. This review also presents the data that divide pluripotency into substates expressing epiblast regionalization and amnion specification as well as primordial germ cells in primates. Finally, this work analyzes the amnion's relevance as an "signaling center" for regionalization before the onset of gastrulation.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
- Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | | | | | - Néstor E. Díaz-Martínez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Néstor F. Díaz
- Instituto Nacional de Perinatología, Mexico City, Mexico
| |
Collapse
|
30
|
Dvir S, Argoetti A, Lesnik C, Roytblat M, Shriki K, Amit M, Hashimshony T, Mandel-Gutfreund Y. Uncovering the RNA-binding protein landscape in the pluripotency network of human embryonic stem cells. Cell Rep 2021; 35:109198. [PMID: 34077720 DOI: 10.1016/j.celrep.2021.109198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Embryonic stem cell (ESC) self-renewal and cell fate decisions are driven by a broad array of molecular signals. While transcriptional regulators have been extensively studied in human ESCs (hESCs), the extent to which RNA-binding proteins (RBPs) contribute to human pluripotency remains unclear. Here, we carry out a proteome-wide screen and identify 810 proteins that bind RNA in hESCs. We reveal that RBPs are preferentially expressed in hESCs and dynamically regulated during early stem cell differentiation. Notably, many RBPs are affected by knockdown of OCT4, a master regulator of pluripotency, several dozen of which are directly targeted by this factor. Using cross-linking and immunoprecipitation (CLIP-seq), we find that the pluripotency-associated STAT3 and OCT4 transcription factors interact with RNA in hESCs and confirm the binding of STAT3 to the conserved NORAD long-noncoding RNA. Our findings indicate that RBPs have a more widespread role in human pluripotency than previously appreciated.
Collapse
Affiliation(s)
- Shlomi Dvir
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Amir Argoetti
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Chen Lesnik
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | | | | | - Michal Amit
- Accellta LTD, Haifa 320003, Israel; Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 2161002, Israel
| | - Tamar Hashimshony
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Yael Mandel-Gutfreund
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel; Computer Science Department, Technion - Israel Institute of Technology, Haifa 320003, Israel.
| |
Collapse
|
31
|
Hayes K, Kim YK, Pera MF. A case for revisiting Nodal signaling in human pluripotent stem cells. STEM CELLS (DAYTON, OHIO) 2021; 39:1137-1144. [PMID: 33932319 DOI: 10.1002/stem.3383] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/30/2021] [Indexed: 11/10/2022]
Abstract
Nodal is a transforming growth factor-β (TGF-β) superfamily member that plays a number of critical roles in mammalian embryonic development. Nodal is essential for the support of the peri-implantation epiblast in the mouse embryo and subsequently acts to specify mesendodermal fate at the time of gastrulation and, later, left-right asymmetry. Maintenance of human pluripotent stem cells (hPSCs) in vitro is dependent on Nodal signaling. Because it has proven difficult to prepare a biologically active form of recombinant Nodal protein, Activin or TGFB1 are widely used as surrogates for NODAL in hPSC culture. Nonetheless, the expression of the components of an endogenous Nodal signaling pathway in hPSC provides a potential autocrine pathway for the regulation of self-renewal in this system. Here we review recent studies that have clarified the role of Nodal signaling in pluripotent stem cell populations, highlighted spatial restrictions on Nodal signaling, and shown that Nodal functions in vivo as a heterodimer with GDF3, another TGF-β superfamily member expressed by hPSC. We discuss the role of this pathway in the maintenance of the epiblast and hPSC in light of these new advances.
Collapse
Affiliation(s)
- Kevin Hayes
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Yun-Kyo Kim
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | |
Collapse
|
32
|
Abstract
Embryonic stem (ES) cells, derived from the inner cell mass of a blastocyst, are believed to pluripotent cells and give rise to embryonic, but not extraembryonic, tissues. In mice, totipotent 2-cell stage embryo-like (2-cell-like) cells, which are identified by reactivation of murine endogenous retrovirus with leucin transfer RNA primer (MuERV-L), arise at a very few frequencies in ES cell cultures. Here, we found that a lipid droplet forms during the transition from ES cells to 2-cell-like cells, and we propose that 2-cell-like cells utilize a unique energy storage and production pathway.
Collapse
Affiliation(s)
- Asuka Furuta
- Laboratory for Epigenetic Regulation, Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga 526-0829, Japan
| | - Toshinobu Nakamura
- Laboratory for Epigenetic Regulation, Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga 526-0829, Japan
| |
Collapse
|
33
|
Balestri S, Del Giovane A, Sposato C, Ferrarelli M, Ragnini-Wilson A. The Current Challenges for Drug Discovery in CNS Remyelination. Int J Mol Sci 2021; 22:ijms22062891. [PMID: 33809224 PMCID: PMC8001072 DOI: 10.3390/ijms22062891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
The myelin sheath wraps around axons, allowing saltatory currents to be transmitted along neurons. Several genetic, viral, or environmental factors can damage the central nervous system (CNS) myelin sheath during life. Unless the myelin sheath is repaired, these insults will lead to neurodegeneration. Remyelination occurs spontaneously upon myelin injury in healthy individuals but can fail in several demyelination pathologies or as a consequence of aging. Thus, pharmacological intervention that promotes CNS remyelination could have a major impact on patient’s lives by delaying or even preventing neurodegeneration. Drugs promoting CNS remyelination in animal models have been identified recently, mostly as a result of repurposing phenotypical screening campaigns that used novel oligodendrocyte cellular models. Although none of these have as yet arrived in the clinic, promising candidates are on the way. Many questions remain. Among the most relevant is the question if there is a time window when remyelination drugs should be administrated and why adult remyelination fails in many neurodegenerative pathologies. Moreover, a significant challenge in the field is how to reconstitute the oligodendrocyte/axon interaction environment representative of healthy as well as disease microenvironments in drug screening campaigns, so that drugs can be screened in the most appropriate disease-relevant conditions. Here we will provide an overview of how the field of in vitro models developed over recent years and recent biological findings about how oligodendrocytes mature after reactivation of their staminal niche. These data have posed novel questions and opened new views about how the adult brain is repaired after myelin injury and we will discuss how these new findings might change future drug screening campaigns for CNS regenerative drugs.
Collapse
|
34
|
Park JE, Sasaki E. Assisted Reproductive Techniques and Genetic Manipulation in the Common Marmoset. ILAR J 2021; 61:286-303. [PMID: 33693670 PMCID: PMC8918153 DOI: 10.1093/ilar/ilab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Genetic modification of nonhuman primate (NHP) zygotes is a useful method for the development of NHP models of human diseases. This review summarizes the recent advances in the development of assisted reproductive and genetic manipulation techniques in NHP, providing the basis for the generation of genetically modified NHP disease models. In this study, we review assisted reproductive techniques, including ovarian stimulation, in vitro maturation of oocytes, in vitro fertilization, embryo culture, embryo transfer, and intracytoplasmic sperm injection protocols in marmosets. Furthermore, we review genetic manipulation techniques, including transgenic strategies, target gene knock-out and knock-in using gene editing protocols, and newly developed gene-editing approaches that may potentially impact the production of genetically manipulated NHP models. We further discuss the progress of assisted reproductive and genetic manipulation techniques in NHP; future prospects on genetically modified NHP models for biomedical research are also highlighted.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Neurobiology, University of Pittsburgh, School of Medicine in Pittsburgh, Pennsylvania, USA
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals in Kawasaki, Kanagawa, Japan
| |
Collapse
|
35
|
Kinoshita M, Barber M, Mansfield W, Cui Y, Spindlow D, Stirparo GG, Dietmann S, Nichols J, Smith A. Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency. Cell Stem Cell 2021; 28:453-471.e8. [PMID: 33271069 PMCID: PMC7939546 DOI: 10.1016/j.stem.2020.11.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/03/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Pluripotent cells emerge as a naive founder population in the blastocyst, acquire capacity for germline and soma formation, and then undergo lineage priming. Mouse embryonic stem cells (ESCs) and epiblast-derived stem cells (EpiSCs) represent the initial naive and final primed phases of pluripotency, respectively. Here, we investigate the intermediate formative stage. Using minimal exposure to specification cues, we derive stem cells from formative mouse epiblast. Unlike ESCs or EpiSCs, formative stem (FS) cells respond directly to germ cell induction. They colonize somatic tissues and germline in chimeras. Whole-transcriptome analyses show similarity to pre-gastrulation formative epiblast. Signal responsiveness and chromatin accessibility features reflect lineage capacitation. Furthermore, FS cells show distinct transcription factor dependencies, relying critically on Otx2. Finally, FS cell culture conditions applied to human naive cells or embryos support expansion of similar stem cells, consistent with a conserved staging post on the trajectory of mammalian pluripotency.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Michael Barber
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - William Mansfield
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Yingzhi Cui
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Daniel Spindlow
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Giuliano Giuseppe Stirparo
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Sabine Dietmann
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Austin Smith
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
36
|
Sun L, Fu X, Ma G, Hutchins AP. Chromatin and Epigenetic Rearrangements in Embryonic Stem Cell Fate Transitions. Front Cell Dev Biol 2021; 9:637309. [PMID: 33681220 PMCID: PMC7930395 DOI: 10.3389/fcell.2021.637309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
A major event in embryonic development is the rearrangement of epigenetic information as the somatic genome is reprogrammed for a new round of organismal development. Epigenetic data are held in chemical modifications on DNA and histones, and there are dramatic and dynamic changes in these marks during embryogenesis. However, the mechanisms behind this intricate process and how it is regulating and responding to embryonic development remain unclear. As embryos develop from totipotency to pluripotency, they pass through several distinct stages that can be captured permanently or transiently in vitro. Pluripotent naïve cells resemble the early epiblast, primed cells resemble the late epiblast, and blastomere-like cells have been isolated, although fully totipotent cells remain elusive. Experiments using these in vitro model systems have led to insights into chromatin changes in embryonic development, which has informed exploration of pre-implantation embryos. Intriguingly, human and mouse cells rely on different signaling and epigenetic pathways, and it remains a mystery why this variation exists. In this review, we will summarize the chromatin rearrangements in early embryonic development, drawing from genomic data from in vitro cell lines, and human and mouse embryos.
Collapse
Affiliation(s)
| | | | | | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
37
|
Aksoy I, Rognard C, Moulin A, Marcy G, Masfaraud E, Wianny F, Cortay V, Bellemin-Ménard A, Doerflinger N, Dirheimer M, Mayère C, Bourillot PY, Lynch C, Raineteau O, Joly T, Dehay C, Serrano M, Afanassieff M, Savatier P. Apoptosis, G1 Phase Stall, and Premature Differentiation Account for Low Chimeric Competence of Human and Rhesus Monkey Naive Pluripotent Stem Cells. Stem Cell Reports 2020; 16:56-74. [PMID: 33382978 PMCID: PMC7815945 DOI: 10.1016/j.stemcr.2020.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/25/2022] Open
Abstract
After reprogramming to naive pluripotency, human pluripotent stem cells (PSCs) still exhibit very low ability to make interspecies chimeras. Whether this is because they are inherently devoid of the attributes of chimeric competency or because naive PSCs cannot colonize embryos from distant species remains to be elucidated. Here, we have used different types of mouse, human, and rhesus monkey naive PSCs and analyzed their ability to colonize rabbit and cynomolgus monkey embryos. Mouse embryonic stem cells (ESCs) remained mitotically active and efficiently colonized host embryos. In contrast, primate naive PSCs colonized host embryos with much lower efficiency. Unlike mouse ESCs, they slowed DNA replication after dissociation and, after injection into host embryos, they stalled in the G1 phase and differentiated prematurely, regardless of host species. We conclude that human and non-human primate naive PSCs do not efficiently make chimeras because they are inherently unfit to remain mitotically active during colonization. Mouse ESCs are highly effective in colonizing rabbit and non-human primate embryos Rhesus monkey and human naive PSCs ineffectively colonize rabbit and monkey embryos Most rhesus/human naive PSCs differentiate prematurely upon injection into embryos Rhesus monkey PSCs stall in the G1 phase after transfer into rabbit embryos
Collapse
Affiliation(s)
- Irène Aksoy
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| | - Cloé Rognard
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Anaïs Moulin
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Guillaume Marcy
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Etienne Masfaraud
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Florence Wianny
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Véronique Cortay
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Angèle Bellemin-Ménard
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Nathalie Doerflinger
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Manon Dirheimer
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Chloé Mayère
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Pierre-Yves Bourillot
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Cian Lynch
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Olivier Raineteau
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Thierry Joly
- ISARA-Lyon, 69007 Lyon, France; VetAgroSup, UPSP ICE, 69280 Marcy l'Etoile, France
| | - Colette Dehay
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Manuel Serrano
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Marielle Afanassieff
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Pierre Savatier
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
38
|
The Key Role of MicroRNAs in Self-Renewal and Differentiation of Embryonic Stem Cells. Int J Mol Sci 2020; 21:ijms21176285. [PMID: 32877989 PMCID: PMC7504502 DOI: 10.3390/ijms21176285] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Naïve pluripotent embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) represent distinctive developmental stages, mimicking the pre- and the post-implantation events during the embryo development, respectively. The complex molecular mechanisms governing the transition from ESCs into EpiSCs are orchestrated by fluctuating levels of pluripotency transcription factors (Nanog, Oct4, etc.) and wide-ranging remodeling of the epigenetic landscape. Recent studies highlighted the pivotal role of microRNAs (miRNAs) in balancing the switch from self-renewal to differentiation of ESCs. Of note, evidence deriving from miRNA-based reprogramming strategies underscores the role of the non-coding RNAs in the induction and maintenance of the stemness properties. In this review, we revised recent studies concerning the functions mediated by miRNAs in ESCs, with the aim of giving a comprehensive view of the highly dynamic miRNA-mediated tuning, essential to guarantee cell cycle progression, pluripotency maintenance and the proper commitment of ESCs.
Collapse
|
39
|
Lau KX, Mason EA, Kie J, De Souza DP, Kloehn J, Tull D, McConville MJ, Keniry A, Beck T, Blewitt ME, Ritchie ME, Naik SH, Zalcenstein D, Korn O, Su S, Romero IG, Spruce C, Baker CL, McGarr TC, Wells CA, Pera MF. Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal. Nat Commun 2020; 11:2420. [PMID: 32415101 PMCID: PMC7229198 DOI: 10.1038/s41467-020-16214-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 04/16/2020] [Indexed: 01/06/2023] Open
Abstract
Archetypal human pluripotent stem cells (hPSC) are widely considered to be equivalent in developmental status to mouse epiblast stem cells, which correspond to pluripotent cells at a late post-implantation stage of embryogenesis. Heterogeneity within hPSC cultures complicates this interspecies comparison. Here we show that a subpopulation of archetypal hPSC enriched for high self-renewal capacity (ESR) has distinct properties relative to the bulk of the population, including a cell cycle with a very low G1 fraction and a metabolomic profile that reflects a combination of oxidative phosphorylation and glycolysis. ESR cells are pluripotent and capable of differentiation into primordial germ cell-like cells. Global DNA methylation levels in the ESR subpopulation are lower than those in mouse epiblast stem cells. Chromatin accessibility analysis revealed a unique set of open chromatin sites in ESR cells. RNA-seq at the subpopulation and single cell levels shows that, unlike mouse epiblast stem cells, the ESR subset of hPSC displays no lineage priming, and that it can be clearly distinguished from gastrulating and extraembryonic cell populations in the primate embryo. ESR hPSC correspond to an earlier stage of post-implantation development than mouse epiblast stem cells. Human pluripotent cells (hPSCs) in standard culture are similar to mouse epiblast cells, but heterogeneity within hPSC cultures complicates comparisons. Here the authors show that a subpopulation of hPSCs enriched for self-renewal capacity have distinct cell cycle, metabolic, DNA methylation, and ATAC-seq profiles.
Collapse
Affiliation(s)
- Kevin X Lau
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Elizabeth A Mason
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia.,Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Joshua Kie
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Joachim Kloehn
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Dedreia Tull
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Malcolm J McConville
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3052, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Andrew Keniry
- Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Tamara Beck
- Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Marnie E Blewitt
- Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Matthew E Ritchie
- Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Shalin H Naik
- Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Daniela Zalcenstein
- Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Othmar Korn
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Shian Su
- Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Irene Gallego Romero
- Melbourne Integrative Genomics, School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | | | | | - Christine A Wells
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia.,Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia.,Divisions of Cancer and Hematology and Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Martin F Pera
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia. .,Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia. .,The Jackson Laboratory, Bar Harbor, ME, 04609, USA. .,The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
40
|
Mandal S, Chandel D, Kaur H, Majumdar S, Arava M, Gayen S. Single-Cell Analysis Reveals Partial Reactivation of X Chromosome instead of Chromosome-wide Dampening in Naive Human Pluripotent Stem Cells. Stem Cell Reports 2020; 14:745-754. [PMID: 32359444 PMCID: PMC7221091 DOI: 10.1016/j.stemcr.2020.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Recently, a unique form of X chromosome dosage compensation has been demonstrated in human preimplantation embryos, which happens through the dampening of X-linked gene expression from both X chromosomes. Subsequently, X chromosome dampening has also been demonstrated in female human pluripotent stem cells (hPSCs) during the transition from primed to naive state. However, the existence of dampened X chromosomes in both embryos and hPSCs remains controversial. Specifically, in preimplantation embryos it has been shown that there is inactivation of X chromosome instead of dampening. Here, we performed allelic analysis of X-linked genes at the single-cell level in hPSCs and found that there is partial reactivation of the inactive X chromosome instead of chromosome-wide dampening upon conversion from primed to naive state. In addition, our analysis suggests that the reduced X-linked gene expression in naive hPSCs might be the consequence of erasure of active X chromosome upregulation.
Collapse
Affiliation(s)
- Susmita Mandal
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Deepshikha Chandel
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Harman Kaur
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Sudeshna Majumdar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Maniteja Arava
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Srimonta Gayen
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
41
|
Chow T, Wong FTM, Monetti C, Nagy A, Cox B, Rogers IM. Recapitulating kidney development in vitro by priming and differentiating mouse embryonic stem cells in monolayers. NPJ Regen Med 2020; 5:7. [PMID: 32351711 PMCID: PMC7171095 DOI: 10.1038/s41536-020-0092-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/13/2020] [Indexed: 12/26/2022] Open
Abstract
In order to harness the potential of pluripotent stem cells, we need to understand how to differentiate them to our target cell types. Here, we developed a protocol to differentiate mouse embryonic stem cells (ESCs) to renal progenitors in a step-wise manner. Microarrays were used to track the transcriptional changes at each stage of differentiation and we observed that genes associated with metanephros, ureteric bud, and blood vessel development were significantly upregulated as the cells differentiated towards renal progenitors. Priming the ESCs and optimizing seeding cell density and growth factor concentrations helped improve differentiation efficiency. Organoids were used to determine the developmental potential of the renal progenitor cells. Aggregated renal progenitors gave rise to organoids consisting of LTL+/E-cadherin+ proximal tubules, cytokeratin+ ureteric bud-derived tubules, and extracellular matrix proteins secreted by the cells themselves. Over-expression of key kidney developmental genes, Pax2, Six1, Eya1, and Hox11 paralogs, during differentiation did not improve differentiation efficiency. Altogether, we developed a protocol to differentiate mouse ESCs in a manner that recapitulates embryonic kidney development and showed that precise gene regulation is essential for proper differentiation to occur.
Collapse
Affiliation(s)
- Theresa Chow
- 1Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada.,2Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Frances T M Wong
- 2Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Claudio Monetti
- 1Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Andras Nagy
- 1Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada.,3Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON Canada.,4Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Brian Cox
- 2Department of Physiology, University of Toronto, Toronto, ON Canada.,3Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON Canada
| | - Ian M Rogers
- 1Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada.,2Department of Physiology, University of Toronto, Toronto, ON Canada.,3Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
42
|
Wojdyla K, Collier AJ, Fabian C, Nisi PS, Biggins L, Oxley D, Rugg-Gunn PJ. Cell-Surface Proteomics Identifies Differences in Signaling and Adhesion Protein Expression between Naive and Primed Human Pluripotent Stem Cells. Stem Cell Reports 2020; 14:972-988. [PMID: 32302559 PMCID: PMC7220956 DOI: 10.1016/j.stemcr.2020.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Naive and primed human pluripotent stem cells (hPSC) provide valuable models to study cellular and molecular developmental processes. The lack of detailed information about cell-surface protein expression in these two pluripotent cell types prevents an understanding of how the cells communicate and interact with their microenvironments. Here, we used plasma membrane profiling to directly measure cell-surface protein expression in naive and primed hPSC. This unbiased approach quantified over 1,700 plasma membrane proteins, including those involved in cell adhesion, signaling, and cell interactions. Notably, multiple cytokine receptors upstream of JAK-STAT signaling were more abundant in naive hPSC. In addition, functional experiments showed that FOLR1 and SUSD2 proteins are highly expressed at the cell surface in naive hPSC but are not required to establish human naive pluripotency. This study provides a comprehensive stem cell proteomic resource that uncovers differences in signaling pathway activity and has identified new markers to define human pluripotent states.
Collapse
Affiliation(s)
- Katarzyna Wojdyla
- Epigenetics Programme, The Babraham Institute, Cambridge, UK; Mass Spectrometry Facility, The Babraham Institute, Cambridge, UK
| | | | - Charlene Fabian
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Paola S Nisi
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Laura Biggins
- Bioinformatics Group, The Babraham Institute, Cambridge, UK
| | - David Oxley
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
43
|
White MD, Plachta N. Specification of the First Mammalian Cell Lineages In Vivo and In Vitro. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035634. [PMID: 31615786 DOI: 10.1101/cshperspect.a035634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our understanding of how the first mammalian cell lineages arise has been shaped largely by studies of the preimplantation mouse embryo. Painstaking work over many decades has begun to reveal how a single totipotent cell is transformed into a multilayered structure representing the foundations of the body plan. Here, we review how the first lineage decision is initiated by epigenetic regulation but consolidated by the integration of morphological features and transcription factor activity. The establishment of pluripotent and multipotent stem cell lines has enabled deeper analysis of molecular and epigenetic regulation of cell fate decisions. The capability to assemble these stem cells into artificial embryos is an exciting new avenue of research that offers a long-awaited window into cell fate specification in the human embryo. Together, these approaches are poised to profoundly increase our understanding of how the first lineage decisions are made during mammalian embryonic development.
Collapse
Affiliation(s)
- Melanie D White
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| |
Collapse
|
44
|
Shi J, Farzaneh M, Khoshnam SE. Yes-Associated Protein and PDZ Binding Motif: A Critical Signaling Pathway in the Control of Human Pluripotent Stem Cells Self-Renewal and Differentiation. Cell Reprogram 2020; 22:55-61. [PMID: 32125897 DOI: 10.1089/cell.2019.0084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) can self-renew indefinitely to generate cells like themselves with a normal karyotype and differentiate into other types of cells when stimulated with a proper set of internal and external signals. hPSCs including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) are an alternative approach toward stem cell biology, drug discovery, disease modeling, and regenerative medicine. hESCs are commonly derived from the inner cell mass of preimplantation embryos and can maintain their pluripotency in appropriate culture media. The Hippo pathway is a major integrator of cell surface-mediated signals and plays an essential role in regulating hESCs function. Yes-associated protein (YAP) and TAZ (PDZ binding motif) are critical downstream transcriptional coactivators in the Hippo pathway. The culture conditions have effects on the cytoplasmic or nuclear YAP/TAZ localization. Also, the activity of Hippo pathway is influenced by cell density, mechanical tension, and biochemical signals. In this review article, we summarize the function of YAP/TAZ and focus on the regulation of YAP/TAZ in self-renewal and differentiation of hESCs.
Collapse
Affiliation(s)
- Jia Shi
- Medical College, Weinan Vocational and Technical College, Weinan, China
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
45
|
Kim K, Abdal Dayem A, Gil M, Yang GM, Lee SB, Kwon OH, Choi S, Kang GH, Lim KM, Kim D, Cho SG. 3,2'-Dihydroxyflavone Improves the Proliferation and Survival of Human Pluripotent Stem Cells and Their Differentiation into Hematopoietic Progenitor Cells. J Clin Med 2020; 9:jcm9030669. [PMID: 32131506 PMCID: PMC7141312 DOI: 10.3390/jcm9030669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 01/14/2023] Open
Abstract
Efficient maintenance of the undifferentiated status of human pluripotent stem cells (hiPSCs) is crucial for producing cells with improved proliferation, survival and differentiation, which can be successfully used for stem cell research and therapy. Here, we generated iPSCs from healthy donor peripheral blood mononuclear cells (PBMCs) and analyzed the proliferation and differentiation capacities of the generated iPSCs using single cell NGS-based 24-chromosome aneuploidy screening and RNA sequencing. In addition, we screened various natural compounds for molecules that could enhance the proliferation and differentiation potential of hiPSCs. Among the tested compounds, 3,2′-dihydroxyflavone (3,2′-DHF) significantly increased cell proliferation and expression of naïve stemness markers and decreased the dissociation-induced apoptosis of hiPSCs. Of note, 3,2′-DHF-treated hiPSCs showed upregulation of intracellular glutathione (GSH) and an increase in the percentage of GSH-high cells in an analysis with a FreSHtracer system. Interestingly, culture of the 3,2′-DHF-treated hiPSCs in differentiation media enhanced their mesodermal differentiation and differentiation into CD34+ CD45+ hematopoietic progenitor cells (HPC) and natural killer cells (NK) cells. Taken together, our results demonstrate that the natural compound 3,2′-DHF can improve the proliferation and differentiation capacities of hiPSCs and increase the efficiency of HPC and NK cell production from hiPSCs.
Collapse
Affiliation(s)
- Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Minchan Gil
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Gwang-Mo Yang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Soo Bin Lee
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Oh-Hyung Kwon
- Bio-Medical Science (BMS) Co., Ltd., Gimpo 10136, Korea; (O.-H.K.)
| | - Sangbaek Choi
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Geun-Ho Kang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Kyung Min Lim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Dongho Kim
- Bio-Medical Science (BMS) Co., Ltd., Gimpo 10136, Korea; (O.-H.K.)
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
- Correspondence: ; Tel.: +82-2-450-4207
| |
Collapse
|
46
|
Bi Y, Tu Z, Zhang Y, Yang P, Guo M, Zhu X, Zhao C, Zhou J, Wang H, Wang Y, Gao S. Identification of ALPPL2 as a Naive Pluripotent State-Specific Surface Protein Essential for Human Naive Pluripotency Regulation. Cell Rep 2020; 30:3917-3931.e5. [DOI: 10.1016/j.celrep.2020.02.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/28/2019] [Accepted: 02/25/2020] [Indexed: 10/24/2022] Open
|
47
|
Tsogtbaatar E, Landin C, Minter-Dykhouse K, Folmes CDL. Energy Metabolism Regulates Stem Cell Pluripotency. Front Cell Dev Biol 2020; 8:87. [PMID: 32181250 PMCID: PMC7059177 DOI: 10.3389/fcell.2020.00087] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells (PSCs) are characterized by their unique capacity for both unlimited self-renewal and their potential to differentiate to all cell lineages contained within the three primary germ layers. While once considered a distinct cellular state, it is becoming clear that pluripotency is in fact a continuum of cellular states, all capable of self-renewal and differentiation, yet with distinct metabolic, mitochondrial and epigenetic features dependent on gestational stage. In this review we focus on two of the most clearly defined states: “naïve” and “primed” PSCs. Like other rapidly dividing cells, PSCs have a high demand for anabolic precursors necessary to replicate their genome, cytoplasm and organelles, while concurrently consuming energy in the form of ATP. This requirement for both anabolic and catabolic processes sufficient to supply a highly adapted cell cycle in the context of reduced oxygen availability, distinguishes PSCs from their differentiated progeny. During early embryogenesis PSCs adapt their substrate preference to match the bioenergetic requirements of each specific developmental stage. This is reflected in different mitochondrial morphologies, membrane potentials, electron transport chain (ETC) compositions, and utilization of glycolysis. Additionally, metabolites produced in PSCs can directly influence epigenetic and transcriptional programs, which in turn can affect self-renewal characteristics. Thus, our understanding of the role of metabolism in PSC fate has expanded from anabolism and catabolism to include governance of the pluripotent epigenetic landscape. Understanding the roles of metabolism and the factors influencing metabolic pathways in naïve and primed pluripotent states provide a platform for understanding the drivers of cell fate during development. This review highlights the roles of the major metabolic pathways in the acquisition and maintenance of the different states of pluripotency.
Collapse
Affiliation(s)
- Enkhtuul Tsogtbaatar
- Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States
| | - Chelsea Landin
- Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States
| | - Katherine Minter-Dykhouse
- Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States
| | - Clifford D L Folmes
- Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States
| |
Collapse
|
48
|
Ehnes DD, Hussein AM, Ware CB, Mathieu J, Ruohola-Baker H. Combinatorial metabolism drives the naive to primed pluripotent chromatin landscape. Exp Cell Res 2020; 389:111913. [PMID: 32084392 DOI: 10.1016/j.yexcr.2020.111913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Since epigenetic modifications are a key driver for cellular differentiation, the regulation of these modifications is tightly controlled. Interestingly, recent studies have revealed metabolic regulation for epigenetic modifications in pluripotent cells. As metabolic differences are prominent between naive (pre-implantation) and primed (post-implantation) pluripotent cells, the epigenetic changes regulated by metabolites has become an interesting topic of analysis. In this review we discuss how combinatorial metabolic activities drive the developmental progression through early pluripotent stages.
Collapse
Affiliation(s)
- D D Ehnes
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - A M Hussein
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - C B Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - J Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, 98109, USA.
| | - H Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
49
|
Mossahebi-Mohammadi M, Quan M, Zhang JS, Li X. FGF Signaling Pathway: A Key Regulator of Stem Cell Pluripotency. Front Cell Dev Biol 2020; 8:79. [PMID: 32133359 PMCID: PMC7040165 DOI: 10.3389/fcell.2020.00079] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells (PSCs) isolated in vitro from embryonic stem cells (ESCs), induced PSC (iPSC) and also post-implantation epiblast-derived stem cells (EpiSCs) are known for their two unique characteristics: the ability to give rise to all somatic lineages and the self-renewal capacity. Numerous intrinsic signaling pathways contribute to the maintenance of the pluripotency state of stem cells by tightly controlling key transcriptional regulators of stemness including sex determining region Y box 2 (Sox-2), octamer-binding transcription factor (Oct)3/4, krueppel-like factor 4 (Klf-4), Nanog, and c-Myc. Signaling by fibroblast growth factor (FGF) is of critical importance in regulating stem cells pluripotency. The FGF family is comprised of 22 ligands that interact with four FGF receptors (FGFRs). FGF/FGFR signaling governs fundamental cellular processes such as cell survival, proliferation, migration, differentiation, embryonic development, organogenesis, tissue repair/regeneration, and metabolism. FGF signaling is mediated by the activation of RAS - mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-AKT, Phospholipase C Gamma (PLCγ), and signal transducers and activators of transcription (STAT), which intersects and synergizes with other signaling pathways such as Wnt, retinoic acid (RA) and transforming growth factor (TGF)-β signaling. In the current review, we summarize the role of FGF signaling in the maintenance of pluripotency state of stem cells through regulation of key transcriptional factors.
Collapse
Affiliation(s)
- Majid Mossahebi-Mohammadi
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| | - Meiyu Quan
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| | - Jin-San Zhang
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
50
|
Chan SW, Rizwan M, Yim EKF. Emerging Methods for Enhancing Pluripotent Stem Cell Expansion. Front Cell Dev Biol 2020; 8:70. [PMID: 32117992 PMCID: PMC7033584 DOI: 10.3389/fcell.2020.00070] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Pluripotent stem cells (PSCs) have great potential to revolutionize the fields of tissue engineering and regenerative medicine as well as stem cell therapeutics. However, the end goal of using PSCs for therapeutic use remains distant due to limitations in current PSC production. Conventional methods for PSC expansion have limited potential to be scaled up to produce the number of cells required for the end-goal of therapeutic use due to xenogenic components, high cost or low efficiency. In this mini review, we explore novel methods and emerging technologies of improving PSC expansion: the use of the two-dimensional mechanobiological strategies of topography and stiffness and the use of three-dimensional (3D) expansion methods including encapsulation, microcarrier-based culture, and suspension culture. Additionally, we discuss the limitations of conventional PSC expansion methods as well as the challenges in implementing non-conventional methods.
Collapse
Affiliation(s)
- Sarah W. Chan
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Muhammad Rizwan
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Evelyn K. F. Yim
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
- Centre for Biotechnology and Bioengineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|