1
|
Deng X, Suito T, Tominaga M, Sokabe T. Monoacylglycerol acyltransferase maintains ionotropic receptor expression for cool temperature sensing and avoidance in Drosophila. Commun Biol 2025; 8:765. [PMID: 40442407 PMCID: PMC12122706 DOI: 10.1038/s42003-025-08154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 05/01/2025] [Indexed: 06/02/2025] Open
Abstract
Sensory inputs of temperature dynamics in the environment are essential for appropriate physiological outputs. The responsiveness of sensory neurons is maintained by functional thermosensor expression. However, the mechanism by which their expression is regulated is unclear. In this study, we identify a monoacylglycerol acyltransferase-coding gene named bishu-1 that contributes to maintaining the responsiveness of cool temperature sensing neurons in Drosophila. bishu-1 mutation leads to abnormal thermal avoidance in a cool temperature range. Cooling-induced responses in dorsal organ cool cells are weakened by the absence of bishu-1, and this is associated with reduced transcription of the ionotropic receptors IR25a and IR21a and a transcription factor broad. Our findings unveil a novel link between lipid metabolism and thermosensor function, thus providing new insights into mechanisms underlying the appropriate maintenance of sensory inputs.
Collapse
Affiliation(s)
- Xiangmei Deng
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Section of Sensory Physiology, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Takuto Suito
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Section of Sensory Physiology, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Ezaki Glico Co., Ltd., Osaka, Japan
| | - Makoto Tominaga
- Section of Sensory Physiology, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Thermal Biology Research Group, Nagoya Advanced Research and Development Center, Nagoya City University, Nagoya, Japan
| | - Takaaki Sokabe
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan.
- Section of Sensory Physiology, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Japan.
| |
Collapse
|
2
|
Tao C, Wang J, Cong J, Yang H, Cao J, Liu C, Cheng T. Broad complex negatively regulates Fibrohexamerin/P25 by binding to the cis-element BMFA in the silkworm, Bombyx mori. Int J Biol Macromol 2025; 307:142114. [PMID: 40089240 DOI: 10.1016/j.ijbiomac.2025.142114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Silk proteins, as natural macromolecular substances, hold significant potential for applications in biomaterials and biomedical fields. The expression of silk protein genes exhibits spatiotemporal specificity. Broad Complex (BrC), a key primary response factor to 20-hydroxyecdysone, plays a crucial role in metamorphosis. Our previous study showed that overexpression of BmBrC-Z2 significantly reduced fibroin gene Fibrohexamerin/P25 expression in the posterior silk gland. However, the underlying regulatory mechanism remains unclear. BMFA, a widely expressed factor that inhibits silk protein gene expression by recognizing BMFA elements, remains unidentified. Notably, the binding sequence of BmBrC-Z2 on the P25 promoter aligns with the BMFA element. Dual-Luciferase Reporter Assays, EMSA, and ChIP-PCR confirmed that BmBrC-Z2 directly binds to the BMFA element, thereby inhibiting P25 promoter activity. Furthermore, we demonstrated that BmBrC-Z2 and its isoform BmBrC-Z4 jointly bind to the BMFA element on the P25 promoter during the molting stage, whereas BmBrC-Z4 contributes a secondary role. Knocking out BmBrC-Z2 using the CRISPR/Cas9 system led to significant upregulation of silk protein genes during the molting stage in mutant larvae. These findings deepen our understanding of the complex regulatory mechanisms governing silk production and highlight the interplay between hormonal signaling and transcriptional regulation.
Collapse
Affiliation(s)
- Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jinxia Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jiangshan Cong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Wang JL, Zhong ZQ, He YZ, Tian JH, Wang YF, Raikhel AS. The ecdysone-induced bZIP transcription factor MafB establishes a positive feedback loop to enhance vitellogenesis and reproduction in the Aedes aegypti mosquito. Proc Natl Acad Sci U S A 2025; 122:e2411688122. [PMID: 39792288 PMCID: PMC11745349 DOI: 10.1073/pnas.2411688122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Female mosquitoes require a vertebrate blood meal to activate reproduction, transmitting numerous devastating human diseases. Vitellogenesis is a central event of female reproduction that involves the massive production of vitellogenin (Vg) in the fat body and the maturation of ovaries. This process is controlled by the steroid hormone 20-hydroxyecdysone (20E); however, its molecular regulatory basis remains not completely understood. We found that the expression of Aedes aegypti muscle aponeurosis fibromatosis B (AaMafB), coding for a basic leucine zipper (bZIP) transcription factor, was significantly up-regulated after a blood meal. The 20E-bound ecdysone receptor-ultraspiracle heterodimer directly targeted the ecdysone response element in the promoter of AaMafB, activating its transcription. Coimmunoprecipitation assays illustrated the interaction between AaMafB and Cap "n" collar C (AaCncC), another bZIP transcription factor. RNA interference-mediated depletion of AaMafB or AaCncC led to impaired ovarian growth, decreased expression of AaVg and Halloween genes, and reduced 20E levels. The AaMafB-AaCncC heterodimer directly activated the transcription of AaVg and AaShade by targeting the antioxidant response element in their promoters. Together, our results indicate that AaMafB functions as an early 20E response gene, the product of which heterodimerizes with AaCncC to maintain high 20E levels and facilitates activation of AaVg in mosquitoes after a blood meal.
Collapse
Affiliation(s)
- Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan430079, China
- Department of Entomology, University of California, Riverside, CA92521
- Institute of Integrative Genomic Biology, University of California, Riverside, CA92521
| | - Zi-Qian Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - Ya-Zhou He
- Department of Entomology, University of California, Riverside, CA92521
- Institute of Integrative Genomic Biology, University of California, Riverside, CA92521
- College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Jun-Hua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan430022, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - Alexander S. Raikhel
- Department of Entomology, University of California, Riverside, CA92521
- Institute of Integrative Genomic Biology, University of California, Riverside, CA92521
| |
Collapse
|
4
|
Liu W, Yan M, King-Jones K. Soul is a master control gene governing the development of the Drosophila prothoracic gland. Proc Natl Acad Sci U S A 2024; 121:e2405469121. [PMID: 39312662 PMCID: PMC11459192 DOI: 10.1073/pnas.2405469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
The prothoracic gland (PG) is a major insect endocrine organ. It is the principal source of insect steroid hormones, and critical for key developmental events such as the molts, the establishment of critical weight (CW), pupation, and sexual maturation. However, little is known about the developmental processes that regulate PG morphology. In this study, we identified soul, which encodes a PG-specific basic helix-loop-helix (bHLH) transcription factor. We demonstrate that Tap, also a bHLH protein, dimerizes with Soul. Both are expressed in the developing PG. Interfering with either soul or tap function caused strikingly similar phenotypes, resulting in small and fragmented PGs, the abolishment of steroid hormone-producing gene expression, larval arrest, and a failure to undergo metamorphosis. Furthermore, both soul and tap showed expression peaks just prior to the CW checkpoint. Disrupting soul- or tap-function before, but not after, the CW checkpoint caused larval arrest, and perturbed highly similar gene cohorts, which were enriched for regulators and components of the steroid hormone biosynthesis pathway. Intriguingly, a chitin-based cuticle gene, Cpr49Ah, and a POU domain transcription factor gene, pdm3, are direct target genes of the Soul/Tap complex, and disruption of either phenocopied key aspects of soul/tap loss-of-function phenotypes. Taken together, our findings demonstrate that the Soul/Tap heterodimer resides at the top of a complex gene hierarchy that drives PG development, CW establishment, and steroid hormone production.
Collapse
Affiliation(s)
- Wen Liu
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
| | - Minyi Yan
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
| |
Collapse
|
5
|
Tao C, Li J, Du W, Qin X, Cao J, Liu C, Cheng T. Broad Complex-Z2 directly activates BmMBF2 to inhibit the silk protein synthesis in the silkworm, Bombyx mori. Int J Biol Macromol 2024; 277:134211. [PMID: 39069049 DOI: 10.1016/j.ijbiomac.2024.134211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Silk proteins, as natural macromolecules, have extensive applications in biomaterials and biomedicine. In the silkworm, the expression of silk protein genes is negatively associated with ecdysone during the molt stage, while it is positively correlated with juvenile hormone during the intermolt stage. In our previous study, overexpression of an isoform Z2 of Broad Complex (BmBrC-Z2), an ecdysone early response factor, significantly reduced the expression of silk protein genes. However, the underlying regulatory mechanism remains unclear. In this study, we conducted transcriptomic analysis and found that overexpressing BmBrC-Z2 significantly upregulated the expression level of multiprotein bridging factor 2 (BmMBF2), an inhibitor of fibroin heavy chain (FibH). Further investigations revealed that BmBrC-Z2 directly regulated BmMBF2 by binding to cis-regulatory elements, as demonstrated using Dual-Luciferase Reporter Gene Assay, EMSA, and ChIP-PCR assay. Additionally, when using the CRISPR/Cas9 system to knock out BmMBF2, silk protein genes were significantly upregulated during the molt stage of mutant larvae. These findings uncover the negative regulation of silk protein synthesis by the ecdysone signaling cascade, specifically through the manipulation of BmMBF2 expression during the molt stage. This study enhances to our understanding of the temporal regulatory mechanism governing silk protein synthesis and offers a potential strategy for improving silk yield.
Collapse
Affiliation(s)
- Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jiaojiao Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Wenjie Du
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xiaodan Qin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Benzhen L, Shucheng S, Chenchang B, Zhaoxia C, Yanan Y. Transcriptome analysis elucidates mating affects the expression of intra-/extra-ovarian factors, thereby influencing ovarian development in the mud crab Scylla paramamosain. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101334. [PMID: 39378790 DOI: 10.1016/j.cbd.2024.101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Prior to the pubertal molt and mating, the ovarian development of the mud crab Scylla paramamosain was primarily at stage II. However, immediately after mating, female crabs initiate vitellogenesis, and their ovaries quickly develop. The aim of this study was to identify differentially expressed genes associated with ovarian development in the mud crab before and after mating, in order to elucidate the influence of mating on ovarian development using comparative transcriptomics. The KEGG pathway analysis results indicated that ribosome and ribosome-related pathways were highly associated with ovarian development at stage II across both transcriptomes, likely to support the subsequent vitellogenesis by providing the necessary materials. Additionally, the neurodegeneration, MAPK, cAMP and PLD pathways were active in regulating oogonia differentiation, oocyte proliferation and vitellogenesis after mating. Meanwhile, certain intra-ovarian factors, such as the cell cycle-related genes cyclin B and APC, the forkhead box family genes Foxl2 and slp1, the SOX family gene SOX5-like, the hormone-related genes SULT1E1 and Eip74EF-like, the growth factor-related genes VEGFD-like and CUBE1-like, as well as HPS10 and tra1-like, have essential functions in regulating ovarian development after mating. Furthermore, the receptors of extra-ovarian hormones, such as RPCHR, HR4, and ILR1, as well as the neurotransmitter receptor 5-HTR4, were involved in ovarian development. It is believed that ovarian development is controlled by the coordinated action of both intrinsic and extrinsic endocrine factors, and these factors are influenced by mating. Finally, the analysis of epigenic modification-related genes, transcription factors, and target genes revealed the regulation of gene expression. Our study indicated that, those genes work in a coordinated manner to regulate the complex processes of follicle cell development, oogonia differentiation, oocyte proliferation, and vitellogenesis during ovarian development.
Collapse
Affiliation(s)
- Li Benzhen
- School of Marine Science, Ningbo University, Ningbo, China
| | - Shao Shucheng
- School of Marine Science, Ningbo University, Ningbo, China
| | - Bao Chenchang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Cui Zhaoxia
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yang Yanan
- School of Marine Science, Ningbo University, Ningbo, China.
| |
Collapse
|
7
|
Pujal D, Escudero J, Cabrera P, Bos L, Vargas-Chávez C, Fernández R, Bellés X, Maestro JL. Functional redundancy of the three insulin receptors of cockroaches. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 172:104161. [PMID: 39059715 DOI: 10.1016/j.ibmb.2024.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Gene duplication is a fundamental evolutionary process which provides opportunities to acquire new gene functions. In the case of the insulin receptors (InRs) in cockroaches and close-related insects, two successive duplications determined the occurrence of three InR genes: InR2, InR1 and InR3, the last two forming a sister cluster to InR2. The biological role of each of the gene duplicates and whether they resulted from neofunctionalization or subfunctionalization is still unclear. The analysis of the sequences from different lineages did not detect positive selection as driving the divergence of InR1 and InR3, discarding neofunctionalization, and suggesting that there is no functional divergence between both gene copies. Using the cockroach Blattella germanica as a model, we have determined that BgInR2 is the gene with the highest expression levels in all the tissues analyzed, both in adult females and males, as well as in nymphs and embryos. BgInR3 is second in expression levels while BgInR1 is expressed at lower levels and only in some tissues. The selective depletion by RNAi of each of the three InRs, analyzed in terms of phenotype and fat body transcriptomic profiles, resulted in essentially redundant effects, with a magnitude approximately proportional to the level of expression of the respective InR. Therefore, the results indicate that the InR duplicates likely experienced a subfunctionalization process, by which the three InRs maintained similar functions but contributing to those functions proportionally to their expression levels.
Collapse
Affiliation(s)
- David Pujal
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Jorge Escudero
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Pol Cabrera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Laura Bos
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Carlos Vargas-Chávez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Rosa Fernández
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Xavier Bellés
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - José Luis Maestro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
8
|
Smolin N, Dombrovski M, Hina BW, Moreno-Sanchez A, Gossart R, Carmona CR, Rehan A, Hussein RH, Mirshahidi P, Ausborn J, Kurmangaliyev YZ, von Reyn CR. Neuronal identity control at the resolution of a single transcription factor isoform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598883. [PMID: 38915533 PMCID: PMC11195191 DOI: 10.1101/2024.06.14.598883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The brain exhibits remarkable neuronal diversity which is critical for its functional integrity. From the sheer number of cell types emerging from extensive transcriptional, morphological, and connectome datasets, the question arises of how the brain is capable of generating so many unique identities. 'Terminal selectors' are transcription factors hypothesized to determine the final identity characteristics in post-mitotic cells. Which transcription factors function as terminal selectors and the level of control they exert over different terminal characteristics are not well defined. Here, we establish a novel role for the transcription factor broad as a terminal selector in Drosophila melanogaster. We capitalize on existing large sequencing and connectomics datasets and employ a comprehensive characterization of terminal characteristics including Perturb-seq and whole-cell electrophysiology. We find a single isoform broad-z4 serves as the switch between the identity of two visual projection neurons LPLC1 and LPLC2. Broad-z4 is natively expressed in LPLC1, and is capable of transforming the transcriptome, morphology, and functional connectivity of LPLC2 cells into LPLC1 cells when perturbed. Our comprehensive work establishes a single isoform as the smallest unit underlying an identity switch, which may serve as a conserved strategy replicated across developmental programs.
Collapse
Affiliation(s)
- Natalie Smolin
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Mark Dombrovski
- Howard Hughes Medical Institute, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Bryce W. Hina
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Anthony Moreno-Sanchez
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | - Ryan Gossart
- Brandeis University, Department of Biology, Waltham, MA
| | | | - Aadil Rehan
- Howard Hughes Medical Institute, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Roni H. Hussein
- Howard Hughes Medical Institute, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Parmis Mirshahidi
- Howard Hughes Medical Institute, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | | | - Catherine R. von Reyn
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
9
|
Cheng S, Jacobs CGC, Mogollón Pérez EA, Chen D, van de Sanden JT, Bretscher KM, Verweij F, Bosman JS, Hackmann A, Merks RMH, van den Heuvel J, van der Zee M. A life-history allele of large effect shortens developmental time in a wild insect population. Nat Ecol Evol 2024; 8:70-82. [PMID: 37957313 DOI: 10.1038/s41559-023-02246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023]
Abstract
Developmental time is a key life-history trait with large effects on Darwinian fitness. In many insects, developmental time is currently under strong selection to minimize ecological mismatches in seasonal timing induced by climate change. The genetic basis of responses to such selection, however, is poorly understood. To address this problem, we set up a long-term evolve-and-resequence experiment in the beetle Tribolium castaneum and selected replicate, outbred populations for fast or slow embryonic development. The response to this selection was substantial and embryonic developmental timing of the selection lines started to diverge during dorsal closure. Pooled whole-genome resequencing, gene expression analysis and an RNAi screen pinpoint a 222 bp deletion containing binding sites for Broad and Tramtrack upstream of the ecdysone degrading enzyme Cyp18a1 as a main target of selection. Using CRISPR/Cas9 to reconstruct this allele in the homogenous genetic background of a laboratory strain, we unravel how this single deletion advances the embryonic ecdysone peak inducing dorsal closure and show that this allele accelerates larval development but causes a trade-off with fecundity. Our study uncovers a life-history allele of large effect and reveals the evolvability of developmental time in a natural insect population.
Collapse
Affiliation(s)
- Shixiong Cheng
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Elisa A Mogollón Pérez
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Daipeng Chen
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | - Joep T van de Sanden
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | | | - Femke Verweij
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Jelle S Bosman
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Amke Hackmann
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Roeland M H Merks
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | | |
Collapse
|
10
|
Babišová K, Mentelová L, Geisseová TK, Beňová-Liszeková D, Beňo M, Chase BA, Farkaš R. Apocrine secretion in the salivary glands of Drosophilidae and other dipterans is evolutionarily conserved. Front Cell Dev Biol 2023; 10:1088055. [PMID: 36712974 PMCID: PMC9880899 DOI: 10.3389/fcell.2022.1088055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Apocrine secretion is a transport and secretory mechanism that remains only partially characterized, even though it is evolutionarily conserved among all metazoans, including humans. The excellent genetic model organism Drosophila melanogaster holds promise for elucidating the molecular mechanisms regulating this fundamental metazoan process. Two prerequisites for such investigations are to clearly define an experimental system to investigate apocrine secretion and to understand the evolutionarily and functional contexts in which apocrine secretion arose in that system. To this end, we recently demonstrated that, in D. melanogaster, the prepupal salivary glands utilize apocrine secretion prior to pupation to deliver innate immune and defense components to the exuvial fluid that lies between the metamorphosing pupae and its chitinous case. This finding provided a unique opportunity to appraise how this novel non-canonical and non-vesicular transport and secretory mechanism is employed in different developmental and evolutionary contexts. Here we demonstrate that this apocrine secretion, which is mechanistically and temporarily separated from the exocytotic mechanism used to produce the massive salivary glue secretion (Sgs), is shared across Drosophilidae and two unrelated dipteran species. Screening more than 30 species of Drosophila from divergent habitats across the globe revealed that apocrine secretion is a widespread and evolutionarily conserved cellular mechanism used to produce exuvial fluid. Species with longer larval and prepupal development than D. melanogaster activate apocrine secretion later, while smaller and more rapidly developing species activate it earlier. In some species, apocrine secretion occurs after the secretory material is first concentrated in cytoplasmic structures of unknown origin that we name "collectors." Strikingly, in contrast to the widespread use of apocrine secretion to provide exuvial fluid, not all species use exocytosis to produce the viscid salivary glue secretion that is seen in D. melanogaster. Thus, apocrine secretion is the conserved mechanism used to realize the major function of the salivary gland in fruitflies and related species: it produces the pupal exuvial fluid that provides an active defense against microbial invasion during pupal metamorphosis.
Collapse
Affiliation(s)
- Klaudia Babišová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Mentelová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia,Department of Genetics, Comenius University, Bratislava, Slovakia
| | - Terézia Klaudia Geisseová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia
| | - Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milan Beňo
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bruce A. Chase
- Department of Biology, University of Nebraska, Omaha, NE, United States
| | - Robert Farkaš
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia,*Correspondence: Robert Farkaš,
| |
Collapse
|
11
|
Jia D, Jevitt A, Huang YC, Ramos B, Deng WM. Developmental regulation of epithelial cell cuboidal-to-squamous transition in Drosophila follicle cells. Dev Biol 2022; 491:113-125. [PMID: 36100084 DOI: 10.1016/j.ydbio.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022]
Abstract
Epithelial cells form continuous membranous structures for organ formation, and these cells are classified into three major morphological categories: cuboidal, columnar, and squamous. It is crucial that cells transition between these shapes during the morphogenetic events of organogenesis, yet this process remains poorly understood. All three epithelial cell shapes can be found in the follicular epithelium of Drosophila egg chamber during oogenesis. Squamous cells (SCs) are initially restricted to the anterior terminus in cuboidal shape. They then rapidly become flattened to assume squamous shape by stretching and expansion in 12 h during midoogenesis. Previously, we reported that Notch signaling activated a zinc-finger transcription factor Broad (Br) at the end of early oogenesis. Here we report that ecdysone and JAK/STAT pathways subsequently converge on Br to serve as an important spatiotemporal regulator of this dramatic morphological change of SCs. The early uniform pattern of Br in the follicular epithelium is directly established by Notch signaling at stage 5 of oogenesis. Later, ecdysone and JAK/STAT signaling activities synergize to suppress Br in SCs from stage 8 to 10a, contributing to proper SC squamous shape. During this process, ecdysone signaling is essential for SC stretching, while JAK/STAT regulates SC clustering and cell fate determination. This study reveals an inhibitory role of ecdysone signaling in suppressing Br in epithelial cell remodeling. In this study we also used single-cell RNA sequencing data to highlight the shift in gene expression which occurs as Br is suppressed and cells become flattened.
Collapse
Affiliation(s)
- Dongyu Jia
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA; Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| | - Allison Jevitt
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA; Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Belen Ramos
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA; Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
12
|
Fernandez-Nicolas A, Ventos-Alfonso A, Kamsoi O, Clark-Hachtel C, Tomoyasu Y, Belles X. Broad complex and wing development in cockroaches. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 147:103798. [PMID: 35662625 DOI: 10.1016/j.ibmb.2022.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
In hemimetabolan insects, the transcription factor Broad complex (Br-C) promotes wing growth and development during the nymphal period. We wondered whether Br-C could trigger the initiation of wing development, using the cockroach Blattella germanica as a model. We show that first instar nymphs have their unique identity of these three thoracic segments specified. During embryogenesis, the expression of Br-C and some wing-related genes show two matching waves. The first takes place before the formation of the germ band, which might be involved in the establishment of various developmental fields including a potential "wing field", and the second wave around organogenesis, possibly involved in the initiation of wing development. However, the expression of Br-C in early embryogenesis concentrates in the developing central nervous system, thus not co-localizing with the expression of the typical wing-related gene vestigial, which is expressed at the edge of the thoracic and abdominal segments. This suggests that Br-C is not specifically involved in the establishment of a potential "wing field" in early embryogenesis. Moreover, maternal RNAi for Br-C depletes the first wave of Br-C expression but does not affect the early expression of wing-related genes. As maternal Br-C RNAi did not deplete the second expression wave of Br-C, we could not evaluate if Br-C is involved in the initiation of wing development. Alternatively, using nymphal RNAi of Br-C and Sex combs reduced (Scr), we show that Br-C contributes to the formation of ectopic wing structures that develop in the prothorax when Scr is depleted. The gene most clearly influenced by Br-C RNAi is nubbin (nub), which, in nymphs is crucial for wing growth. Together, these results suggest that Br-C does not specifically contribute to the establishment of the "wing field", but it does seem important later, in the initiation of wing development, enhancing the expression of wing-related genes, especially nub. This supports the hypothesis previously proposed by the authors, whereby Br-C might have facilitated the evolution of holometaboly. However, there is no doubt that other factors have also contributed to this evolution.
Collapse
Affiliation(s)
| | - Alba Ventos-Alfonso
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Orathai Kamsoi
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Courtney Clark-Hachtel
- Department of Biology, Miami University, 700E High St, Pearson Hall, Oxford, OH, 45056, USA
| | - Yoshinori Tomoyasu
- Department of Biology, Miami University, 700E High St, Pearson Hall, Oxford, OH, 45056, USA
| | - Xavier Belles
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
13
|
Cerqueira de Araujo A, Leobold M, Bézier A, Musset K, Uzbekov R, Volkoff AN, Drezen JM, Huguet E, Josse T. Conserved Viral Transcription Plays a Key Role in Virus-Like Particle Production of the Parasitoid Wasp Venturia canescens. J Virol 2022; 96:e0052422. [PMID: 35678601 PMCID: PMC9278141 DOI: 10.1128/jvi.00524-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Nudiviruses are large double-stranded DNA viruses related to baculoviruses known to be endogenized in the genomes of certain parasitic wasp species. These wasp-virus associations allow the production of viral particles or virus-like particles that ensure wasp parasitism success within lepidopteran hosts. Venturia canescens is an ichneumonid wasp belonging to the Campopleginae subfamily that has endogenized nudivirus genes belonging to the Alphanudivirus genus to produce "virus-like particles" (Venturia canescens virus-like particles [VcVLPs]), which package proteic virulence factors. The main aim of this study was to determine whether alphanudivirus gene functions have been conserved following endogenization. The expression dynamics of alphanudivirus genes was monitored by a high throughput transcriptional approach, and the functional role of lef-4 and lef-8 genes predicted to encode viral RNA polymerase components was investigated by RNA interference. As described for baculovirus infections and for endogenized nudivirus genes in braconid wasp species producing bracoviruses, a transcriptional cascade involving early and late expressed alphanudivirus genes could be observed. The expression of lef-4 and lef-8 was also shown to be required for the expression of alphanudivirus late genes allowing correct particle formation. Together with previous literature, the results show that endogenization of nudiviruses in parasitoid wasps has repeatedly led to the conservation of the viral RNA polymerase function, allowing the production of viruses or viral-like particles that differ in composition but enable wasp parasitic success. IMPORTANCE This study shows that endogenization of a nudivirus genome in a Campopleginae parasitoid wasp has led to the conservation, as for endogenized nudiviruses in braconid parasitoid wasps, of the viral RNA polymerase function, required for the transcription of genes encoding viral particles involved in wasp parasitism success. We also showed for the first time that RNA interference (RNAi) can be successfully used to downregulate gene expression in this species, a model in behavioral ecology. This opens the opportunity to investigate the function of genes involved in other traits important for parasitism success, such as reproductive strategies and host choice. Fundamental data acquired on gene function in Venturia canescens are likely to be transferable to other parasitoid wasp species used in biological control programs. This study also renders possible the investigation of other nudivirus gene functions, for which little data are available.
Collapse
Affiliation(s)
| | - Matthieu Leobold
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Rustem Uzbekov
- Université de Tours, Département des Microscopies, Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Anne-Nathalie Volkoff
- Diversité, Génomes & Interactions Microorganismes - Insectes (DGIMI), UMR 1333, Université de Montpellier - INRAE, Montpellier, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Thibaut Josse
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| |
Collapse
|
14
|
Zou H, Zou H, Li X, Qiu Q, Geng N, Zhang B, Yan G, Zhang Z, Zhang S, Yao B, Zhang G, Zou C. Metformin-induced AMPK activation suppresses larval growth and molting probably by disrupting 20E synthesis and glycometabolism in fall webworm, Hyphantria cunea Drury. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105083. [PMID: 35430073 DOI: 10.1016/j.pestbp.2022.105083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/24/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Metformin, considered to be a potent AMPK activator, is widely used for clinical therapy of cancer and diabetes due to its distinct function in regulating cell energy balance and body metabolism. However, the effect of metformin-induced AMPK activation on the growth and development of insects remains largely unknown. In the present study, we focused on the role of metformin in regulating the growth and development of Hyphantria cunea, a notorious defoliator in the forestry. Firstly, we obtained the complete coding sequences of HcAMPKα2, HcAMPKβ1, HcAMPKγ2 from H. cunea, which encoded a protein of 512, 281, and 680 amino acids respectively. Furthermore, the phylogenetic analysis revealed that these three subunits were highly homologous with the AMPK subunits from other lepidopteran species. According to the bioassay, we found metformin remarkably restrained the growth and development of H. cunea larvae, and caused molting delayed and body weight reduced. In addition, expressions of HcAMPKα2, HcAMPKβ1, and HcAMPKγ2 were upregulated 3.30-, 5.93- and 5.92-folds at 24 h after treatment, confirming that metformin activated AMPK signaling at the transcriptional level in H. cunea larvae. Conversely, the expressions of two vital Halloween genes (HcCYP306A1 and HcCYP314A1) in the 20E synthesis pathway were remarkably suppressed by metformin. Thus, we presumed that metformin delayed larval molting probably by impeding 20E synthesis in the H. cunea larvae. Finally, we found that metformin accelerated glycogen breakdown, elevated in vivo trehalose level, promoted chitin synthesis, and upregulated transcriptions of the genes in chitin synthesis pathway. Taken together, the findings provide a new insight into the molecular mechanisms by which AMPK regulates carbohydrate metabolism and chitin synthesis in insects.
Collapse
Affiliation(s)
- Haifeng Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Xingpeng Li
- School of Forestry, Beihua University, Jilin 132013, PR China
| | - Qian Qiu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Nannan Geng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Bihan Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Gaige Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Zhidong Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Shengyu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Bin Yao
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
15
|
Connahs H, Tan EJ, Ter YT, Dion E, Matsuoka Y, Bear A, Monteiro A. The yellow gene regulates behavioural plasticity by repressing male courtship in Bicyclus anynana butterflies. Proc Biol Sci 2022; 289:20212665. [PMID: 35382598 PMCID: PMC8984812 DOI: 10.1098/rspb.2021.2665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Seasonal plasticity in male courtship in Bicyclus anynana butterflies is due to variation in levels of the steroid hormone 20E (20-hydroxyecdysone) during pupation. Wet season (WS) males have high levels of 20E and become active courters. Dry season (DS) males have lower levels of 20E and reduced courtship rates. However, WS courtship rates can be achieved if DS male pupae are injected with 20E at 30% of pupation. Here, we investigated the genes involved in male courtship plasticity and examined whether 20E plays an organizational role in the pupal brain that later influences the sexual behaviour of adults. We show that DS pupal brains have a sevenfold upregulation of the yellow gene relative to the WS brains, and that knocking out yellow leads to increased male courtship. We find that injecting 20E into DS pupa reduced yellow expression although not significantly. Our results show that yellow is a repressor of the neural circuity for male courtship behaviour in B. anynana. 20E levels experienced during pupation could play an organizational role during pupal brain development by regulating yellow expression, however, other factors might also be involved. Our findings are in striking contrast to Drosophila where yellow is required for male courtship.
Collapse
Affiliation(s)
- Heidi Connahs
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Eunice Jingmei Tan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Yale-NUS College, 16 College Avenue West, Singapore 138527
| | - Yi Ting Ter
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Emilie Dion
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Yuji Matsuoka
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Ashley Bear
- Department of Ecology and Evolutionary Biology, Yale University, CT 06511, USA
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Yale-NUS College, 16 College Avenue West, Singapore 138527
| |
Collapse
|
16
|
Chinmo is the larval member of the molecular trinity that directs Drosophila metamorphosis. Proc Natl Acad Sci U S A 2022; 119:e2201071119. [PMID: 35377802 PMCID: PMC9169713 DOI: 10.1073/pnas.2201071119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The genome of insects with complete metamorphosis contains the instructions for making three distinct body forms, that of the larva, of the pupa, and of the adult. However, the molecular mechanisms by which each gene set is called forth and stably expressed are poorly understood. A half century ago, it was proposed that there was a set of three master genes that inhibited each other’s expression and enabled the expression of genes for each respective stage. We show that the transcription factor chinmo is essential for maintaining the larval stage in Drosophila, and with two other regulatory genes, broad and E93, makes up the trinity of mutually repressive master genes that underlie insect metamorphosis. The molecular control of insect metamorphosis from larva to pupa to adult has long been a mystery. The Broad and E93 transcription factors, which can modify chromatin domains, are known to direct the production of the pupa and the adult, respectively. We now show that chinmo, a gene related to broad, is essential for the repression of these metamorphic genes. Chinmo is strongly expressed during the formation and growth of the larva and its removal results in the precocious expression of broad and E93 in the first stage larva, causing a shift from larval to premetamorphic functions. This trinity of Chinmo, Broad, and E93 regulatory factors is mutually inhibitory. The interaction of this network with regulatory hormones likely ensures the orderly progression through insect metamorphosis.
Collapse
|
17
|
Ghosh S, Leng W, Wilsch-Bräuninger M, Barrera-Velázquez M, Léopold P, Eaton S. A local insulin reservoir in Drosophila alpha cell homologs ensures developmental progression under nutrient shortage. Curr Biol 2022; 32:1788-1797.e5. [PMID: 35316653 DOI: 10.1016/j.cub.2022.02.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 12/19/2022]
Abstract
Insulin/insulin-like growth factor (IGF) signaling (IIS) controls many aspects of development and physiology. In Drosophila, a conserved family of insulin-like peptides called Dilps is produced by brain neurosecretory cells, and it regulates organismal growth and developmental timing. To accomplish these systemic functions, the Dilps are secreted into the general circulation, and they signal to peripheral tissues in an endocrine fashion. Here, we describe the local uptake and storage of Dilps in the corpora cardiaca (CC), an endocrine organ composed of alpha cell homologs known to produce the glucagon-like adipokinetic hormone (AKH). We show that Dilp uptake by the CC relies on the expression of an IGF-binding protein called ImpL2. Following their uptake, immunogold staining demonstrates that Dilps are co-packaged with AKH in dense-core vesicles for secretion. In response to nutrient shortage, this specific Dilp reservoir is released and activates IIS in a paracrine manner in the prothoracic gland. This stimulates the production of the steroid hormone ecdysone and initiates entry into pupal development. We therefore uncover a sparing mechanism whereby insulin stores in CC serve to locally activate IIS and the production of ecdysone in the PG, accelerating developmental progression in adverse food conditions.
Collapse
Affiliation(s)
- Suhrid Ghosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| | - Weihua Leng
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Michaela Wilsch-Bräuninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Mariana Barrera-Velázquez
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Undergraduate Program on Genomic Sciences, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos 62210, Mexico
| | - Pierre Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, Inserm U934, 26 Rue d'Ulm, 75005 Paris, France.
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| |
Collapse
|
18
|
Direct and indirect gene repression by the ecdysone cascade during mosquito reproductive cycle. Proc Natl Acad Sci U S A 2022; 119:e2116787119. [PMID: 35254892 PMCID: PMC8931382 DOI: 10.1073/pnas.2116787119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hematophagous Aedes aegypti mosquitoes spread devastating viral diseases. Upon blood feeding, a steroid hormone, 20-hydroxyecdysone (20E), initiates a reproductive program during which thousands of genes are differentially expressed. While 20E-mediated gene activation is well known, repressive action by this hormone remains poorly understood. Using bioinformatics and molecular biological approaches, we have identified the mechanisms of 20E-dependent direct and indirect transcriptional repression by the ecdysone receptor (EcR). While indirect repression involves E74, EcR binds to an ecdysone response element different from those utilized in 20E-mediated gene activation to exert direct repressive action. Moreover, liganded EcR recruits a corepressor Mi2, initiating chromatin compaction. This study advances our understanding of the 20E-EcR repression mechanism and could lead to improved vector control approaches. Hematophagous mosquitoes transmit devastating human diseases. Reproduction of these mosquitoes is cyclical, with each egg maturation period supported by a blood meal. Previously, we have shown that in the female mosquito Aedes aegypti, nearly half of all genes are differentially expressed during the postblood meal reproductive period in the fat body, an insect analog of mammalian liver and adipose tissue. This work aims to decipher how transcription networks govern these genes. Bioinformatics tools found 89 putative transcription factor binding sites (TFBSs) on the cis-regulatory regions of more than 1,400 differentially expressed genes. Putative transcription factors that may bind to these TFBSs were identified and used for the construction of temporally coordinated regulatory networks. Further molecular biology analyses have uncovered mechanisms of direct and indirect negative transcriptional regulation by the steroid hormone 20-hydroxyecdysone (20E) through the ecdysone receptor (EcR). Genes within the two groups, early genes and late mid-genes, have distinctly different expression profiles. However, both groups of genes show lower expression at the high titers of 20E and are down-regulated by the 20E/EcR cascade by different molecular mechanisms. Transcriptional repression of early genes is indirect and involves the classic 20E pathway with ecdysone-induced protein E74 functioning as a repressor. Late mid-genes are repressed directly by EcR that recognizes and binds a previously unreported DNA element, different from those utilized in the 20E-mediated gene activation, within the regulatory regions of its target genes and recruits Mi2 that acts as a corepressor, initiating chromatin condensation.
Collapse
|
19
|
Hutfilz C. Endocrine Regulation of Lifespan in Insect Diapause. Front Physiol 2022; 13:825057. [PMID: 35242054 PMCID: PMC8886022 DOI: 10.3389/fphys.2022.825057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Diapause is a physiological adaptation to conditions that are unfavorable for growth or reproduction. During diapause, animals become long-lived, stress-resistant, developmentally static, and non-reproductive, in the case of diapausing adults. Diapause has been observed at all developmental stages in both vertebrates and invertebrates. In adults, diapause traits weaken into adaptations such as hibernation, estivation, dormancy, or torpor, which represent evolutionarily diverse versions of the traditional diapause traits. These traits are regulated through modifications of the endocrine program guiding development. In insects, this typically includes changes in molting hormones, as well as metabolic signals that limit growth while skewing the organism's energetic demands toward conservation. While much work has been done to characterize these modifications, the interactions between hormones and their downstream consequences are incompletely understood. The current state of diapause endocrinology is reviewed here to highlight the relevance of diapause beyond its use as a model to study seasonality and development. Specifically, insect diapause is an emerging model to study mechanisms that determine lifespan. The induction of diapause represents a dramatic change in the normal progression of age. Hormones such as juvenile hormone, 20-hydroxyecdysone, and prothoracicotropic hormone are well-known to modulate this plasticity. The induction of diapause-and by extension, the cessation of normal aging-is coordinated by interactions between these pathways. However, research directly connecting diapause endocrinology to the biology of aging is lacking. This review explores connections between diapause and aging through the perspective of endocrine signaling. The current state of research in both fields suggests appreciable overlap that will greatly contribute to our understanding of diapause and lifespan determination.
Collapse
|
20
|
Guo MP, Qian WL, He XC, Peng J, Wang P, Wang WN, Xia QY, Cheng DJ. Genome-wide identification of target genes for transcription factor BR-C in the silkworm, Bombyx mori. INSECT SCIENCE 2021; 28:1530-1540. [PMID: 33372405 DOI: 10.1111/1744-7917.12893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/23/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Transcription factor Broad Complex (BR-C) is an ecdysone primary response gene in insects and participates in the regulation of insect growth and development. In this study, we performed a genome-wide identification of BR-C target genes in silkworm (Bombyx mori) using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). As a result, a total of 1006 BR-C ChIP peaks were identified, and 15% of peaks were located in the promoter regions of 133 protein-coding genes. Functional annotation revealed that these ChIP peak-associated genes, as potential BR-C targets, were enriched in pathways related to biosynthetic process, metabolic process, and development. Transcriptome analysis and quantitative real-time polymerase chain reaction (PCR) examination revealed that developmental changes in expression patterns of a portion of potential BR-C targets, including HR96 and GC-α1, were similar to those of BR-C. ChIP-PCR examination confirmed that BR-C could directly bind to the promoters of potential targets. Further, dual luciferase assays demonstrated that HR96 promoter activity was significantly upregulated following BR-C overexpression, and this upregulation was abolished when the binding motif in the promoter was truncated. This study will be helpful for deciphering the regulatory roles of BR-C during insect growth and development.
Collapse
Affiliation(s)
- Meng-Pei Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Wen-Liang Qian
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Xue-Chuan He
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Jian Peng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Peng Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Wei-Na Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, China
| | - Dao-Jun Cheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, China
| |
Collapse
|
21
|
Arcanjo C, Trémolet G, Giusti-Petrucciani N, Duflot A, Forget-Leray J, Boulangé-Lecomte C. Susceptibility of the Non-Targeted Crustacean Eurytemora affinis to the Endocrine Disruptor Tebufenozide: A Transcriptomic Approach. Genes (Basel) 2021; 12:genes12101484. [PMID: 34680879 PMCID: PMC8536038 DOI: 10.3390/genes12101484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Copepods are zooplanktonic crustaceans ubiquitously widespread in aquatic systems. Although they are not the target, copepods are exposed to a wide variety of pollutants such as insect growth regulators (IGRs). The aim of this study was to investigate the molecular response of a non-targeted organism, the copepod Eurytemora affinis, to an IGR. Adult males and females were exposed to two sub-lethal concentrations of tebufenozide (TEB). Our results indicate a sex-specific response with a higher sensitivity in males, potentially due to a differential activation of stress response pathways. In both sexes, exposure to TEB triggered similar pathways to those found in targeted species by modulating the transcription of early and late ecdysone responsive genes. Among them were genes involved in cuticle metabolism, muscle contraction, neurotransmission, and gametogenesis, whose mis-regulation could lead to moult, locomotor, and reproductive impairments. Furthermore, genes involved in epigenetic processes were found in both sexes, which highlights the potential impact of exposure to TEB on future generations. This work allows identification of (i) potential biomarkers of ecdysone agonists and (ii) further assessment of putative physiological responses to characterize the effects of TEB at higher biological levels. The present study reinforces the suitability of using E. affinis as an ecotoxicological model.
Collapse
|
22
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
23
|
Asad M, Munir F, Xu X, Li M, Jiang Y, Chu L, Yang G. Functional characterization of the cis-regulatory region for the vitellogenin gene in Plutella xylostella. INSECT MOLECULAR BIOLOGY 2020; 29:137-147. [PMID: 31850544 DOI: 10.1111/imb.12632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
The vitellogenin gene promoter (VgP) is an essential cis-regulatory element that plays a significant role in transcription of the vitellogenin (Vg) gene, leading to the production of yolk protein in insects, including lepidopterans. However, the function of VgP is still not clear in Plutella xylostella. Here, we cloned a 5.1 kb DNA fragment of the cis-regulatory region adjacent to the 5' end of the Vg gene of P. xylostella (PxVg). We identified two promoter sites in that 5' upstream sequence of PxVg and performed in vitro analysis of two promoter sequences (PxVgP1, 4.9 kb, and PxVgP2, 2.9 kb) in the embryonic cell line of P. xylostella. PxVgP2 exhibited higher enhanced green fluorescent protein (EGFP) expression, so PxVgP2 was used for in vivo analysis. Strong EGFP fluorescence was observed in adult females and the fat body of females, with low expression in embryos. Our results suggest that PxVgP is an important stage-, tissue- and sex-specific endogenous cis-regulatory element in P. xylostella.
Collapse
Affiliation(s)
- M Asad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - F Munir
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - X Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - M Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Y Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - L Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - G Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| |
Collapse
|
24
|
Ding N, Wang Z, Geng N, Zou H, Zhang G, Cao C, Li X, Zou C. Silencing Br-C impairs larval development and chitin synthesis in Lymantria dispar larvae. JOURNAL OF INSECT PHYSIOLOGY 2020; 122:104041. [PMID: 32126216 DOI: 10.1016/j.jinsphys.2020.104041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
In insects, 20-hydroxyecdysone (20E) mediates developmental transitions and regulates molting processes through activation of a series of transcription factors. Broad-Complex (Br-C), a vital gene in the 20E signalling pathway, plays crucial roles during insect growth processes. However, whether Br-C affects chitin synthesis in insects remains unclear. In the present study, the Br-C gene from Lymantria dispar, a notorious defoliator of forestry, was identified based on transcriptome data, and subjected to bioinformatic analysis. The regulatory functions of LdBr-C in chitin synthesis and metabolism in L. dispar larvae were analysed by RNA interference (RNAi). The full-length LdBr-C gene (1431 bp) encodes a 477 amino acid (aa) polypeptide containing a common BRcore region (391 aa) at the N-terminus and a C-terminal Zinc finger domain (56 aa) harbouring two characteristic C2H2 motifs (CXXC and HXXXXH). Phylogenetic analyses showed that LdBr-C shares highest homology and identity with Br-C isoform 7 (83.12%) of Helicoverpa armigera. Expression profiles indicate that LdBr-C was expressed throughout larval and pupal stages, and highly expressed in prepupal and pupal stages. Furthermore, LdBr-C expression was strongly induced by exogenous 20E, and suppressed dramatically after application of dsLdBr-C. Bioassay results showed that knockdown of LdBr-C caused larval developmental deformity, significant weight loss, and a mortality rate of 67.18%. Knockdown of LdBr-C significantly down-regulated transcription levels of eight critical genes (LdTre1, LdTre2, LdG6PI, LdUAP, LdCHS1, LdCHS2, LdTPS and LdCHT) related to chitin synthesis and metabolism, thereby lowering the chitin content in the midgut and epidermis. Our findings demonstrate that Br-C knockdown impairs larval development and chitin synthesis in L. dispar.
Collapse
Affiliation(s)
- Nan Ding
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Zhiying Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Nannan Geng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanwang Cao
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Xingpeng Li
- Jilin Province Academy of Forestry Sciences, PR China
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
25
|
Belles X. Krüppel homolog 1 and E93: The doorkeeper and the key to insect metamorphosis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21609. [PMID: 31385626 DOI: 10.1002/arch.21609] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Insect metamorphosis is regulated by two main hormones: ecdysone (20E), which promotes molting, and juvenile hormone (JH), which inhibits adult morphogenesis. The transduction mechanisms for the respective hormonal signals include the transcription factors Krüppel homolog 1 (Kr-h1) and E93, which are JH- and 20E-dependent, respectively. Kr-h1 is the main effector of the antimetamorphic action of JH, while E93 is a key promoter of metamorphosis. The ancestral regulatory axis of metamorphosis, which operates in insects with hemimetabolan (gradual) metamorphosis and is known as the MEKRE93 pathway, is based on Kr-h1 repression of E93. In the last juvenile stage, when the production of JH dramatically decreases, Kr-h1 expression is almost completely interrupted, E93 becomes upregulated and metamorphosis proceeds. The holometabolan (complete) metamorphosis mode of development includes the peculiar pupal stage, a sort of intermediate between the final larval instar and the adult stage. In holometabolan species, Broad-Complex (BR-C) transcription factors determine the pupal stage and E93 stimulates the expression of BR-C in the prepupa. The MEKRE93 pathway is conserved in holometabolan insects, which have added the E93/BR-C interaction loop to the ancestral (hemimetabolan) pathway during the evolution from hemimetaboly to holometaboly.
Collapse
Affiliation(s)
- Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
26
|
Zhou Y, Yang Y, Huang Y, Wang H, Wang S, Luo H. Broad Promotes Neuroepithelial Stem Cell Differentiation in the Drosophila Optic Lobe. Genetics 2019; 213:941-951. [PMID: 31530575 PMCID: PMC6827381 DOI: 10.1534/genetics.119.302421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/08/2019] [Indexed: 11/18/2022] Open
Abstract
Brain development requires the generation of the right number, and type, of neurons and glial cells at the right time. The Drosophila optic lobe, like mammalian brains, develops from simple neuroepithelia; they first divide symmetrically to expand the progenitor pool and then differentiate into neuroblasts, which divide asymmetrically to generate neurons and glial cells. Here, we investigate the mechanisms that control neuroepithelial growth and differentiation in the optic lobe. We find that the Broad/Tramtrack/Bric a brac-zinc finger protein Broad, which is dynamically expressed in the optic lobe neuroepithelia, promotes the transition of neuroepithelial cells to medulla neuroblasts. Loss of Broad function causes neuroepithelial cells to remain highly proliferative and delays neuroepithelial cell differentiation into neuroblasts, which leads to defective lamina and medulla. Conversely, Broad overexpression induces neuroepithelial cells to prematurely transform into medulla neuroblasts. We find that the ecdysone receptor is required for neuroepithelial maintenance and growth, and that Broad expression in neuroepithelial cells is repressed by the ecdysone receptor. Our studies identify Broad as an important cell-intrinsic transcription factor that promotes the neuroepithelial-cell-to-neuroblast transition.
Collapse
Affiliation(s)
- Yanna Zhou
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuqin Yang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yanyi Huang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Hui Wang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Shengyu Wang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Hong Luo
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
27
|
Xu QY, Meng QW, Deng P, Fu KY, Guo WC, Li GQ. Impairment of pupation by RNA interference-aided knockdown of Broad- Complex gene in Leptinotarsa decemlineata (Say). BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:659-668. [PMID: 30704539 DOI: 10.1017/s0007485318001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dietary delivery of bacterially expressed double-stranded RNA (dsRNA) has a great potential for management of Leptinotarsa decemlineata. An important first step is to discover possible RNA-interference (RNAi)-target genes effective against larvae, especially the old larvae. In the present paper, five putative Broad-Complex (BrC) cDNAs (Z1-Z4, and Z6) were identified in L. decemlineata. The expression of the five LdBrC isoforms was suppressed by juvenile hormone signaling, whereas the transcription was upregulated by 20-hydroxyecdysone signaling at the fourth (final) instar larval stage. Feeding of bacterially expressed dsBrC (derived from a common fragment of the five LdBrC variants) in the third- and fourth-instar larvae successfully knocked down the target mRNAs. For the fourth-instar LdBrC RNAi hypomorphs, they had a higher larval mortality compared with the controls. Moreover, most dsBrC-fed beetles did not pupate normally. After removal of the apolysed larval cuticle, a miniature adult was found. The adult head, compound eyes, prothorax, mesothorax, metathorax were found on the dorsal view. Distinct adult cuticle pigmentation was seen on the prothorax. The mouthparts, forelegs, midlegs, and hindlegs could be observed on the ventral view of the miniature adults. For the third-instar LdBrC RNAi specimens, around 20% moribund beetles remained as prepupae and finally died. Therefore, LdBrC is among the most attractive candidate genes for RNAi to control the fourth-instar larvae in L. decemlineata.
Collapse
Affiliation(s)
- Q-Y Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Q-W Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - P Deng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - K-Y Fu
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - W-C Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - G-Q Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
28
|
Simon F, Ramat A, Louvet-Vallée S, Lacoste J, Burg A, Audibert A, Gho M. Shaping of Drosophila Neural Cell Lineages Through Coordination of Cell Proliferation and Cell Fate by the BTB-ZF Transcription Factor Tramtrack-69. Genetics 2019; 212:773-788. [PMID: 31073020 PMCID: PMC6614892 DOI: 10.1534/genetics.119.302234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/01/2019] [Indexed: 12/25/2022] Open
Abstract
Cell diversity in multicellular organisms relies on coordination between cell proliferation and the acquisition of cell identity. The equilibrium between these two processes is essential to assure the correct number of determined cells at a given time at a given place. Using genetic approaches and correlative microscopy, we show that Tramtrack-69 (Ttk69, a Broad-complex, Tramtrack and Bric-à-brac - Zinc Finger (BTB-ZF) transcription factor ortholog of the human promyelocytic leukemia zinc finger factor) plays an essential role in controlling this balance. In the Drosophila bristle cell lineage, which produces the external sensory organs composed by a neuron and accessory cells, we show that ttk69 loss-of-function leads to supplementary neural-type cells at the expense of accessory cells. Our data indicate that Ttk69 (1) promotes cell cycle exit of newborn terminal cells by downregulating CycE, the principal cyclin involved in S-phase entry, and (2) regulates cell-fate acquisition and terminal differentiation, by downregulating the expression of hamlet and upregulating that of Suppressor of Hairless, two transcription factors involved in neural-fate acquisition and accessory cell differentiation, respectively. Thus, Ttk69 plays a central role in shaping neural cell lineages by integrating molecular mechanisms that regulate progenitor cell cycle exit and cell-fate commitment.
Collapse
Affiliation(s)
- Françoise Simon
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team « Cell cycle and cell determination", F-75005 Paris, France
| | - Anne Ramat
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team « Cell cycle and cell determination", F-75005 Paris, France
| | - Sophie Louvet-Vallée
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team « Cell cycle and cell determination", F-75005 Paris, France
| | - Jérôme Lacoste
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team « Cell cycle and cell determination", F-75005 Paris, France
| | - Angélique Burg
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team « Cell cycle and cell determination", F-75005 Paris, France
| | - Agnès Audibert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team « Cell cycle and cell determination", F-75005 Paris, France.
| | - Michel Gho
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team « Cell cycle and cell determination", F-75005 Paris, France.
| |
Collapse
|
29
|
Huang J, Fang L, Wang S, Liu X, Chen Y, Chen Y, Tian H, Lin S, Tian S, Wei H, Gu X. Molecular cloning, expression profiling, and functional analysis of a broad-complex isoform 2/3 (Br-Z2/Z3) transcription factor in the diamondback moth, Plutella xylostella (L.). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21549. [PMID: 30941822 DOI: 10.1002/arch.21549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/23/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a widespread and destructive pest of cruciferous crops. New strategies for controlling it are needed because it is rapidly developing resistance to conventional pesticides. In insects, transcription factors (TFs) including broad-complex (Br-C) are thought to be useful for insecticide development because they are able to regulate the transcription of functional genes involved in responses to external stimuli including insecticides. In the present study, we cloned and sequenced the open reading frames (ORFs) of three BTB-ZF encoding genes from the diamondback moth deposited in the National Center for Biotechnology Information (NCBI) database under accessions MG753773, MG288674, and MG753772. The lengths of these ORFs were 1,680, 1,428, and 1,647 bp, respectively. The phylogenetic analysis based on the predicted amino acid sequences of ZF domains showed that MG753773 and MG288674 belonged to Z2/Z3 and Z7 of Br-C while MG753772 belonged to Ttk types. In the agreement, the highest expression level of MG753773 occurred during the prepupal stage, MG288674 and MG753772 were expressed during all stages and peaked in the adult and egg stages, respectively. RNA interference silencing of MG753773 in the late third instar larvae significantly decreased survival and pupation of the insects. With precocene II, transcription of MG753773 increased (4×) in the fourth instar larva 24 hr later; 48 hr later the rate of prepupation and pupation was significantly higher. These findings will contribute to the development of new regulators of the growth and development for diamondback moth control.
Collapse
Affiliation(s)
- Jingfei Huang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Ling Fang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Shuai Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Xiang Liu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Yong Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Yixin Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Houjun Tian
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Shuo Lin
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Sufen Tian
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Hui Wei
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Xiaojun Gu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| |
Collapse
|
30
|
Uyehara CM, McKay DJ. Direct and widespread role for the nuclear receptor EcR in mediating the response to ecdysone in Drosophila. Proc Natl Acad Sci U S A 2019; 116:9893-9902. [PMID: 31019084 PMCID: PMC6525475 DOI: 10.1073/pnas.1900343116] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ecdysone pathway was among the first experimental systems employed to study the impact of steroid hormones on the genome. In Drosophila and other insects, ecdysone coordinates developmental transitions, including wholesale transformation of the larva into the adult during metamorphosis. Like other hormones, ecdysone controls gene expression through a nuclear receptor, which functions as a ligand-dependent transcription factor. Although it is clear that ecdysone elicits distinct transcriptional responses within its different target tissues, the role of its receptor, EcR, in regulating target gene expression is incompletely understood. In particular, EcR initiates a cascade of transcription factor expression in response to ecdysone, making it unclear which ecdysone-responsive genes are direct EcR targets. Here, we use the larval-to-prepupal transition of developing wings to examine the role of EcR in gene regulation. Genome-wide DNA binding profiles reveal that EcR exhibits widespread binding across the genome, including at many canonical ecdysone response genes. However, the majority of its binding sites reside at genes with wing-specific functions. We also find that EcR binding is temporally dynamic, with thousands of binding sites changing over time. RNA-seq reveals that EcR acts as both a temporal gate to block precocious entry to the next developmental stage as well as a temporal trigger to promote the subsequent program. Finally, transgenic reporter analysis indicates that EcR regulates not only temporal changes in target enhancer activity but also spatial patterns. Together, these studies define EcR as a multipurpose, direct regulator of gene expression, greatly expanding its role in coordinating developmental transitions.
Collapse
Affiliation(s)
- Christopher M Uyehara
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Daniel J McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
31
|
Ma H, Abbas MN, Zhang K, Hu X, Xu M, Liang H, Kausar S, Yang L, Cui H. 20-Hydroxyecdysone regulates the transcription of the lysozyme via Broad-Complex Z2 gene in silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 94:66-72. [PMID: 30716346 DOI: 10.1016/j.dci.2019.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Broad-Complex Z2 (Br-C Z2) is an ecdysone inducible transcription factor that regulates physiological, innate immune and developmental events in insects. Here, we identified an orthologue of Br-C Z2 from silkworm, Bombyx mori (BmBr-C Z2) to study its involvement in immune responses. The quantitative real-time PCR analysis revealed that BmBr-C Z2 was expressed ubiquitously in all tested tissues under normal physiological conditions. Further, developmental profile displayed that BmBr-C Z2 expression was detectable in different developmental stages, however the gene's expression was highest in the molting and pre-pupal stages. Administration of 20-hydroxyecdysone (20E) enhanced the expression levels of BmBr-C Z2 in hemocytes. The challenge with pathogens and pathogen associated molecular patterns (PAMPs) also upregulated the mRNA levels of BmBr-C Z2 in hemocytes when compared with the control. By contrast, the ectopic expression of BmBr-C Z2 remarkably increased the production of antimicrobial peptides, while the knock-down of this gene by double stranded RNA decreased their production. Dual-luciferase assay exhibited that BmBr-C Z2 induced the expression of lysozyme by directly binding to its promoter region. The treatment of Escherichia coli following the knock-down of BmBr-C Z2 strongly reduced the survival rate of silkworm larvae. These results suggest that BmBr-C Z2 plays an important biological role in the innate immune responses of silkworm by regulating immune-related genes.
Collapse
Affiliation(s)
- Hanxiu Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China
| | - Xiaosong Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China
| | - Man Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China
| |
Collapse
|
32
|
Panfilio KA, Vargas Jentzsch IM, Benoit JB, Erezyilmaz D, Suzuki Y, Colella S, Robertson HM, Poelchau MF, Waterhouse RM, Ioannidis P, Weirauch MT, Hughes DST, Murali SC, Werren JH, Jacobs CGC, Duncan EJ, Armisén D, Vreede BMI, Baa-Puyoulet P, Berger CS, Chang CC, Chao H, Chen MJM, Chen YT, Childers CP, Chipman AD, Cridge AG, Crumière AJJ, Dearden PK, Didion EM, Dinh H, Doddapaneni HV, Dolan A, Dugan S, Extavour CG, Febvay G, Friedrich M, Ginzburg N, Han Y, Heger P, Holmes CJ, Horn T, Hsiao YM, Jennings EC, Johnston JS, Jones TE, Jones JW, Khila A, Koelzer S, Kovacova V, Leask M, Lee SL, Lee CY, Lovegrove MR, Lu HL, Lu Y, Moore PJ, Munoz-Torres MC, Muzny DM, Palli SR, Parisot N, Pick L, Porter ML, Qu J, Refki PN, Richter R, Rivera-Pomar R, Rosendale AJ, Roth S, Sachs L, Santos ME, Seibert J, Sghaier E, Shukla JN, Stancliffe RJ, Tidswell O, Traverso L, van der Zee M, Viala S, Worley KC, Zdobnov EM, Gibbs RA, Richards S. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biol 2019. [PMID: 30935422 DOI: 10.1101/201731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. RESULTS The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. CONCLUSIONS With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.
Collapse
Affiliation(s)
- Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK.
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Deniz Erezyilmaz
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
- Present address: Department of Physiology, Anatomy and Genetics and Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, UK
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Stefano Colella
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
- Present address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, INRA, IRD, CIRAD, SupAgro, University of Montpellier, Montpellier, France
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Robert M Waterhouse
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
- Present address: Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics, and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Present address: Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Present address: Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07745, Jena, Germany
| | - Elizabeth J Duncan
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Barbara M I Vreede
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | | | - Chloé S Berger
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Chun-Che Chang
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mei-Ju M Chen
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Yen-Ta Chen
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Andrew G Cridge
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Antonin J J Crumière
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Peter K Dearden
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Dolan
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Gérard Febvay
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Neta Ginzburg
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter Heger
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Thorsten Horn
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Yi-Min Hsiao
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Tamsin E Jones
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Stefan Koelzer
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Megan Leask
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chien-Yueh Lee
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Mackenzie R Lovegrove
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Hsiao-Ling Lu
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yong Lu
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Patricia J Moore
- Department of Entomology, University of Georgia, 120 Cedar St., Athens, GA, 30602, USA
| | - Monica C Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Subba R Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Leslie Pick
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Megan L Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter N Refki
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
- Present address: Department of Evolutionary Genetics, Max-Planck-Institut für Evolutionsbiologie, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Rose Richter
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: Earthworks Institute, 185 Caroline Street, Rochester, NY, 14620, USA
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Siegfried Roth
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Lena Sachs
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - M Emília Santos
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jan Seibert
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Essia Sghaier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jayendra N Shukla
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
- Present address: Department of Biotechnology, Central University of Rajasthan (CURAJ), NH-8, Bandarsindri, Ajmer, 305801, India
| | - Richard J Stancliffe
- Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121, Bonn, Germany
- Present address: E. A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX, UK
| | - Olivia Tidswell
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- Present address: Department of Zoology, University of Cambridge, Cambridge, CB2 3DT, UK
| | - Lucila Traverso
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maurijn van der Zee
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Séverine Viala
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
33
|
Panfilio KA, Vargas Jentzsch IM, Benoit JB, Erezyilmaz D, Suzuki Y, Colella S, Robertson HM, Poelchau MF, Waterhouse RM, Ioannidis P, Weirauch MT, Hughes DST, Murali SC, Werren JH, Jacobs CGC, Duncan EJ, Armisén D, Vreede BMI, Baa-Puyoulet P, Berger CS, Chang CC, Chao H, Chen MJM, Chen YT, Childers CP, Chipman AD, Cridge AG, Crumière AJJ, Dearden PK, Didion EM, Dinh H, Doddapaneni HV, Dolan A, Dugan S, Extavour CG, Febvay G, Friedrich M, Ginzburg N, Han Y, Heger P, Holmes CJ, Horn T, Hsiao YM, Jennings EC, Johnston JS, Jones TE, Jones JW, Khila A, Koelzer S, Kovacova V, Leask M, Lee SL, Lee CY, Lovegrove MR, Lu HL, Lu Y, Moore PJ, Munoz-Torres MC, Muzny DM, Palli SR, Parisot N, Pick L, Porter ML, Qu J, Refki PN, Richter R, Rivera-Pomar R, Rosendale AJ, Roth S, Sachs L, Santos ME, Seibert J, Sghaier E, Shukla JN, Stancliffe RJ, Tidswell O, Traverso L, van der Zee M, Viala S, Worley KC, Zdobnov EM, Gibbs RA, Richards S. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biol 2019; 20:64. [PMID: 30935422 PMCID: PMC6444547 DOI: 10.1186/s13059-019-1660-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/21/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. RESULTS The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. CONCLUSIONS With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.
Collapse
Affiliation(s)
- Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK.
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Deniz Erezyilmaz
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
- Present address: Department of Physiology, Anatomy and Genetics and Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, UK
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Stefano Colella
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
- Present address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, INRA, IRD, CIRAD, SupAgro, University of Montpellier, Montpellier, France
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Robert M Waterhouse
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
- Present address: Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics, and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Present address: Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Present address: Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07745, Jena, Germany
| | - Elizabeth J Duncan
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Barbara M I Vreede
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | | | - Chloé S Berger
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Chun-Che Chang
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mei-Ju M Chen
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Yen-Ta Chen
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Andrew G Cridge
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Antonin J J Crumière
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Peter K Dearden
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Dolan
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Gérard Febvay
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Neta Ginzburg
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter Heger
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Thorsten Horn
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Yi-Min Hsiao
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Tamsin E Jones
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Stefan Koelzer
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Megan Leask
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chien-Yueh Lee
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Mackenzie R Lovegrove
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Hsiao-Ling Lu
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yong Lu
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Patricia J Moore
- Department of Entomology, University of Georgia, 120 Cedar St., Athens, GA, 30602, USA
| | - Monica C Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Subba R Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Leslie Pick
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Megan L Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter N Refki
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
- Present address: Department of Evolutionary Genetics, Max-Planck-Institut für Evolutionsbiologie, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Rose Richter
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: Earthworks Institute, 185 Caroline Street, Rochester, NY, 14620, USA
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Siegfried Roth
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Lena Sachs
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - M Emília Santos
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jan Seibert
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Essia Sghaier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jayendra N Shukla
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
- Present address: Department of Biotechnology, Central University of Rajasthan (CURAJ), NH-8, Bandarsindri, Ajmer, 305801, India
| | - Richard J Stancliffe
- Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121, Bonn, Germany
- Present address: E. A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX, UK
| | - Olivia Tidswell
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- Present address: Department of Zoology, University of Cambridge, Cambridge, CB2 3DT, UK
| | - Lucila Traverso
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maurijn van der Zee
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Séverine Viala
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
34
|
Chen H, Lin L, Ali F, Xie M, Zhang G, Su W. Genome-wide analysis of developmental stage-specific transcriptome in Bradysia odoriphaga. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:45-54. [PMID: 30776755 DOI: 10.1016/j.cbd.2019.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 02/06/2023]
Abstract
Bradysia odoriphaga is a serious pest of the Chinese chive; however, detailed information regarding the developmental stage-specific gene expression patterns of B. odoriphaga is not yet available. In this study, RNA sequencing (RNA-seq) was performed to determine the gene expression patterns of developmental stages including the eggs, second instar larvae, fourth instar larvae, pupae, and adults of B. odoriphaga. Analysis of 15 samples revealed an average of 89.56% of the clean reads could be mapped onto the assembled UniGene database. Cluster tree analysis showed that the expression patterns were stage-specific and that samples of the second and fourth instar larvae clustered in one group, while those of eggs, pupae, and adults clustered in another group. Differential expression unigenes (DEUs) for sequential developmental stages were between 3314 and 10,632. A total of 1910-7756 DEUs of sequential developmental stages were assigned into 45-56 gene ontology categories and 1165-3845 DEUs were mapped into Kyoto Encyclopedia of Genes and Genomes pathways. The expression of DEUs related to growth and development showed that hormone receptors highly expressed in the pupal stage, while chitinases were highly expressed in the larval stage. The results of quantitative real time polymerase chain reaction (qRT-PCR) and RNA-seq expression agreed well for 12 growth- and development-related unigenes. This study identified DEUs for sequential developmental stages of B. odoriphaga. Gene Ontology classifications and KEGG pathway identification of DEUs not only provide information useful for understanding insect growth and development but also for exploring novel approaches to control B. odoriphaga.
Collapse
Affiliation(s)
- Haoliang Chen
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China
| | - Lulu Lin
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China
| | - Farman Ali
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China; Department of Agriculture, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Minghui Xie
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China
| | - Guangling Zhang
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China
| | - Weihua Su
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China.
| |
Collapse
|
35
|
Hyde CJ, Elizur A, Ventura T. The crustacean ecdysone cassette: A gatekeeper for molt and metamorphosis. J Steroid Biochem Mol Biol 2019; 185:172-183. [PMID: 30157455 DOI: 10.1016/j.jsbmb.2018.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
Arthropods have long been utilized as models to explore molecular function, and the findings derived from them can be applied throughout metazoa, including as a basis for medical research. This has led to the adoption of many representative insect models beyond Drosophila, as each lends its own unique perspective to questions in endocrinology and genetics. However, non-insect arthropods are yet to be realised for the potential insight they may provide in such studies. The Crustacea are among the most ancient arthropods from which insects descended, comprising a huge variety of life histories and ecological roles. Of the events in a typical crustacean development, metamorphosis is perhaps the most ubiquitous, challenging and highly studied. Despite this, our knowledge of the endocrinology which underpins metamorphosis is rudimentary at best; although several key molecules have been identified and studied in depth, the link between them is quite nebulous and leans heavily on well-explored insect models, which diverged from the Pancrustacea over 450 million years ago. As omics technologies become increasingly accessible, they bring the prospect of explorative molecular research which will allow us to uncover components and pathways unique to crustaceans. This review reconciles known components of crustacean metamorphosis and reflects on our findings in insects to outline a future search space, with focus given to the ecdysone cascade. To expand our knowledge of this ubiquitous endocrine system not only aids in our understanding of crustacean metamorphosis, but also provides a deeper insight into the adaptive capacity of arthropods throughout evolution.
Collapse
Affiliation(s)
- Cameron J Hyde
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Tomer Ventura
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia.
| |
Collapse
|
36
|
Diaz-de-la-Loza MDC, Ray RP, Ganguly PS, Alt S, Davis JR, Hoppe A, Tapon N, Salbreux G, Thompson BJ. Apical and Basal Matrix Remodeling Control Epithelial Morphogenesis. Dev Cell 2018; 46:23-39.e5. [PMID: 29974861 PMCID: PMC6035286 DOI: 10.1016/j.devcel.2018.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 04/04/2018] [Accepted: 06/07/2018] [Indexed: 01/28/2023]
Abstract
Epithelial tissues can elongate in two dimensions by polarized cell intercalation, oriented cell division, or cell shape change, owing to local or global actomyosin contractile forces acting in the plane of the tissue. In addition, epithelia can undergo morphogenetic change in three dimensions. We show that elongation of the wings and legs of Drosophila involves a columnar-to-cuboidal cell shape change that reduces cell height and expands cell width. Remodeling of the apical extracellular matrix by the Stubble protease and basal matrix by MMP1/2 proteases induces wing and leg elongation. Matrix remodeling does not occur in the haltere, a limb that fails to elongate. Limb elongation is made anisotropic by planar polarized Myosin-II, which drives convergent extension along the proximal-distal axis. Subsequently, Myosin-II relocalizes to lateral membranes to accelerate columnar-to-cuboidal transition and isotropic tissue expansion. Thus, matrix remodeling induces dynamic changes in actomyosin contractility to drive epithelial morphogenesis in three dimensions.
Collapse
Affiliation(s)
| | - Robert P Ray
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Poulami S Ganguly
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Silvanus Alt
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin-Buch 13125, Germany
| | - John R Davis
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andreas Hoppe
- Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| | - Nic Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Guillaume Salbreux
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Barry J Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
37
|
Xu K, Liu X, Wang Y, Wong C, Song Y. Temporospatial induction of homeodomain gene cut dictates natural lineage reprogramming. eLife 2018; 7:33934. [PMID: 29714689 PMCID: PMC5986271 DOI: 10.7554/elife.33934] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Understanding how cellular identity naturally interconverts with high efficiency and temporospatial precision is crucial for regenerative medicine. Here, we revealed a natural midgut-to-renal lineage conversion event during Drosophila metamorphosis and identified the evolutionarily-conserved homeodomain protein Cut as a master switch in this process. A steep Wnt/Wingless morphogen gradient intersects with a pulse of steroid hormone ecdysone to induce cut expression in a subset of midgut progenitors and reprogram them into renal progenitors. Molecularly, ecdysone-induced temporal factor Broad physically interacts with cut enhancer-bound Wnt pathway effector TCF/β-catenin and likely bridges the distant enhancer and promoter region of cut through its self-association. Such long-range enhancer-promoter looping could subsequently trigger timely cut transcription. Our results therefore led us to propose an unexpected poising-and-bridging mechanism whereby spatial and temporal cues intersect, likely via chromatin looping, to turn on a master transcription factor and dictate efficient and precise lineage reprogramming. As an embryo develops, an organism transforms from a single cell into an organized collection of different cells, tissues and organs. Regulated by genes and messenger molecules, non-specialized cells known as precursor cells, move, divide and adapt to produce the different cells in the adult body. However, sometimes already-specialized adult cells can acquire a new role in a process known as lineage reprogramming. Finding ways to artificially induce and control lineage reprogramming could be useful in regenerative medicine. This would allow cells to be reprogrammed to replace those that are lost or damaged. So far, scientists have been unable to develop a clear view of how lineage reprogramming happens naturally. Here, Xu et al. identified a cell-conversion event in the developing fruit fly. As the fly larva develops into an adult, a group of cells in the midgut reprogramme to become renal cells – the equivalent to human kidney cells. The experiments revealed that a combination of signals from a cell messenger system important for cell specialization (called Wnt) and the hormone that controls molting in insects, activate a gene called cut, which controls the midgut-to-renal lineage reprogramming. Together, Wnt and the hormone ensure that cut is activated only in a small, specific group of midgut precursor cells at a precise time. The reprogrammed cells then move into the excretory organs, the renal tubes, where they give rise to renal cells. Midgut precursor cells in which cut had been experimentally removed, still traveled into the renal tubes. However, they failed to switch their identity and gave rise to midgut cells instead. Further examination revealed that both Wnt and the ecdysone hormone are needed to activate the cut gene. This is probably achieved by creating loops in the DNA to bring together the two distantly located key regulatory elements of cut gene expression. If this mechanism can be seen in other contexts it may be possible to adapt it for medical purposes. The ability to reprogramme groups of cells with high specificity could transform medicine. It would make it easier for our bodies to regenerate and repair.
Collapse
Affiliation(s)
- Ke Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Xiaodan Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yuchun Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Chouin Wong
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yan Song
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
38
|
Glaser-Schmitt A, Parsch J. Functional characterization of adaptive variation within a cis-regulatory element influencing Drosophila melanogaster growth. PLoS Biol 2018; 16:e2004538. [PMID: 29324742 PMCID: PMC5783415 DOI: 10.1371/journal.pbio.2004538] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/24/2018] [Accepted: 12/18/2017] [Indexed: 11/18/2022] Open
Abstract
Gene expression variation is a major contributor to phenotypic diversity within species and is thought to play an important role in adaptation. However, examples of adaptive regulatory polymorphism are rare, especially those that have been characterized at both the molecular genetic level and the organismal level. In this study, we perform a functional analysis of the Drosophila melanogaster CG9509 enhancer, a cis-regulatory element that shows evidence of adaptive evolution in populations outside the species’ ancestral range in sub-Saharan Africa. Using site-directed mutagenesis and transgenic reporter gene assays, we determined that 3 single nucleotide polymorphisms are responsible for the difference in CG9509 expression that is observed between sub-Saharan African and cosmopolitan populations. Interestingly, while 2 of these variants appear to have been the targets of a selective sweep outside of sub-Saharan Africa, the variant with the largest effect on expression remains polymorphic in cosmopolitan populations, suggesting it may be subject to a different mode of selection. To elucidate the function of CG9509, we performed a series of functional and tolerance assays on flies in which CG9509 expression was disrupted. We found that CG9509 plays a role in larval growth and influences adult body and wing size, as well as wing loading. Furthermore, variation in several of these traits was associated with variation within the CG9509 enhancer. The effect on growth appears to result from a modulation of active ecdysone levels and expression of growth factors. Taken together, our findings suggest that selection acted on 3 sites within the CG9509 enhancer to increase CG9509 expression and, as a result, reduce wing loading as D. melanogaster expanded out of sub-Saharan Africa. Much of the phenotypic variation that is observed within species is thought to be caused by variation in gene expression. Variants within cis-regulatory elements, which affect the expression of nearby genes within the same DNA strand, are thought to be an abundant resource upon which natural selection can act. Understanding the functional consequences of adaptive cis-regulatory changes is important, as it can help elucidate the mechanisms underlying phenotypic evolution in general and provide insight into the development and maintenance of biodiversity. However, functional analyses of these types of changes remain rare. Here we present a functional analysis of an adaptively evolving enhancer element of a D. melanogaster gene called CG9509, of previously unknown function. We show that 3 single nucleotide polymorphisms located within the enhancer of this gene are responsible for an increase in CG9509 expression in cosmopolitan populations (outside of south and central Africa) relative to sub-Saharan populations, which include ancestral populations. We further show that CG9509 is involved in the regulation of growth rate and body size determination and propose that the CG9509 enhancer underwent positive selection to reduce wing loading as the species expanded out of sub-Saharan Africa.
Collapse
Affiliation(s)
- Amanda Glaser-Schmitt
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail: (AGS); (JP)
| | - John Parsch
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail: (AGS); (JP)
| |
Collapse
|
39
|
Zhang S, An S, Hoover K, Li Z, Li X, Liu X, Shen Z, Fang H, Ros VID, Zhang Q, Liu X. Host miRNAs are involved in hormonal regulation of HaSNPV-triggered climbing behaviour in Helicoverpa armigera. Mol Ecol 2018; 27:459-475. [PMID: 29219212 DOI: 10.1111/mec.14457] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Baculoviruses manipulate host climbing behaviour to ensure that the hosts die at elevated positions on host plants to facilitate virus proliferation and transmission, which is a process referred to as tree-top disease. However, the detailed molecular mechanism underlying tree-top disease has not been elucidated. Using transcriptome analysis, we showed that two hormone signals, juvenile hormone (JH) and 20-hydroxyecdysone (20E), are key components involved in HaSNPV-induced tree-top disease in Helicoverpa armigera larvae. RNAi-mediated knockdown and exogenous hormone treatment assays demonstrated that 20E inhibits virus-induced tree-top disease, while JH mediates tree-top disease behaviour. Knockdown of BrZ2, a downstream signal of JH and 20E, promoted HaSNPV-induced tree-top disease. We also found that two miRNAs target BrZ2 and are involved in the cross-talk regulation between 20E and JH manipulating HaSNPV replication, time to death and HaSNPV-induced tree-top disease.
Collapse
Affiliation(s)
- Songdou Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Shiheng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Zhen Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiangrui Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoming Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Zhongjian Shen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Haibo Fang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Roy S, Saha TT, Zou Z, Raikhel AS. Regulatory Pathways Controlling Female Insect Reproduction. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:489-511. [PMID: 29058980 DOI: 10.1146/annurev-ento-020117-043258] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The synthesis of vitellogenin and its uptake by maturing oocytes during egg maturation are essential for successful female reproduction. These events are regulated by the juvenile hormones and ecdysteroids and by the nutritional signaling pathway regulated by neuropeptides. Juvenile hormones act as gonadotropins, regulating vitellogenesis in most insects, but ecdysteroids control this process in Diptera and some Hymenoptera and Lepidoptera. The complex crosstalk between the juvenile hormones, ecdysteroids, and nutritional signaling pathways differs distinctly depending on the reproductive strategies adopted by various insects. Molecular studies within the past decade have revealed much about the relationships among, and the role of, these pathways with respect to regulation of insect reproduction. Here, we review the role of juvenile hormones, ecdysteroids, and nutritional signaling, along with that of microRNAs, in regulating female insect reproduction at the molecular level.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| | - Tusar T Saha
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Alexander S Raikhel
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| |
Collapse
|
41
|
Chen D, Dale RK, Lei EP. Shep regulates Drosophila neuronal remodeling by controlling transcription of its chromatin targets. Development 2018; 145:dev.154047. [PMID: 29158441 DOI: 10.1242/dev.154047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/07/2017] [Indexed: 11/20/2022]
Abstract
Neuronal remodeling is crucial for formation of the mature nervous system and disruption of this process can lead to neuropsychiatric diseases. Global gene expression changes in neurons during remodeling as well as the factors that regulate these changes remain poorly defined. To elucidate this process, we performed RNA-seq on isolated Drosophila larval and pupal neurons and found upregulated synaptic signaling and downregulated gene expression regulators as a result of normal neuronal metamorphosis. We further tested the role of alan shepard (shep), which encodes an evolutionarily conserved RNA-binding protein required for proper neuronal remodeling. Depletion of shep in neurons prevents the execution of metamorphic gene expression patterns, and shep-regulated genes correspond to Shep chromatin and/or RNA-binding targets. Reduced expression of a Shep-inhibited target gene that we identified, brat, is sufficient to rescue neuronal remodeling defects of shep knockdown flies. Our results reveal direct regulation of transcriptional programs by Shep to regulate neuronal remodeling during metamorphosis.
Collapse
Affiliation(s)
- Dahong Chen
- Nuclear Organization and Gene Expression Section, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan K Dale
- Nuclear Organization and Gene Expression Section, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elissa P Lei
- Nuclear Organization and Gene Expression Section, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Roy A, George S, Palli SR. Multiple functions of CREB-binding protein during postembryonic development: identification of target genes. BMC Genomics 2017; 18:996. [PMID: 29284404 PMCID: PMC5747157 DOI: 10.1186/s12864-017-4373-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
Background Juvenile hormones (JH) and ecdysteroids control postembryonic development in insects. They serve as valuable targets for pest management. Hence, understanding the molecular mechanisms of their action is of crucial importance. CREB-binding protein (CBP) is a universal transcriptional co-regulator. It controls the expression of several genes including those from hormone signaling pathways through co-activation of many transcription factors. However, the role of CBP during postembryonic development in insects is not well understood. Therefore, we have studied the role of CBP in postembryonic development in Tribolium, a model coleopteran insect. Results CBP is ubiquitously expressed in the red flour beetle, Tribolium castaneum. RNA interference (RNAi) mediated knockdown of CBP resulted in a decrease in JH induction of Kr-h1 gene expression in Tribolium larvae and led to a block in their development. Moreover, the injection of CBP double-stranded RNA (dsRNA) showed lethal phenotypes within 8 days of injection. RNA-seq and subsequent differential gene expression analysis identified CBP target genes in Tribolium. Knockdown of CBP caused a decrease in the expression of 1306 genes coding for transcription factors and other proteins associated with growth and development. Depletion of CBP impaired the expression of several JH response genes (e.g., Kr-h1, Hairy, early trypsin) and ecdysone response genes (EcR, E74, E75, and broad complex). Further, GO enrichment analyses of the downregulated genes showed enrichment in different functions including developmental processes, pigmentation, anatomical structure development, regulation of biological and cellular processes, etc. Conclusion These data suggest diverse but crucial roles for CBP during postembryonic development in the coleopteran model insect, Tribolium. It can serve as a target for RNAi mediated pest management of this stored product pest. Electronic supplementary material The online version of this article (10.1186/s12864-017-4373-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amit Roy
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA.,Present address, Faculty of Forestry and Wood Sciences, EXTEMIT-K, Czech University of Life Sciences, Kamýcká 1176, Prague 6, 165 21, Suchdol, Czech Republic
| | - Smitha George
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
43
|
Yuan S, Huang W, Geng L, Beerntsen BT, Song H, Ling E. Differentiation of lepidoptera scale cells from epidermal stem cells followed by ecdysone-regulated DNA duplication and scale secreting. Cell Cycle 2017; 16:2156-2167. [PMID: 28933984 DOI: 10.1080/15384101.2017.1376148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Integuments are the first line to protect insects from physical damage and pathogenic infection. In lepidopteran insects, they undergo distinct morphology changes such as scale formation during metamorphosis. However, we know little about integument development and scale formation during this stage. Here, we use the silkworm, Bombyx mori, as a model and show that stem cells in the integument of each segment, but not intersegmental membrane, divide into two scale precursor cells during the spinning stage. In young pupae, the scale precursor cell divides again. One of the daughter cells becomes a mature scale-secreting cell that undergoes several rounds of DNA duplication and the other daughter cell undergoes apoptosis later on. This scale precursor cell division is crucial to the development and differentiation of scale-secreting cells because scale production can be blocked after treatment with the cell division inhibitor paclitaxel. Subsequently, the growth of scale-secreting cells is under the control of 20-hydroxyecdysone but not juvenile hormone since injection of 20-hydroxyecdysone inhibited scale formation. Further work demonstrated that 20-hydroxyecdysone injection inhibits DNA duplication in scale-secreting cells while the expression of scale-forming gene ASH1 was down-regulated by BR-C Z2. Therefore, this research demonstrates that the scale cells of the silkworm develops through stem cell division prior to pupation and then another wave of cell division differentiates these cells into scale secreting cells soon after entrance into the pupal stage. Additionally, DNA duplication and scale production in the scale-secreting cells were found to be under the regulation of 20-hydroxyecdysone.
Collapse
Affiliation(s)
- Shenglei Yuan
- a Key Laboratory of Insect Developmental and Evolutionary Biology , Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai , China.,b Department of Neurosciences , College of Life Sciences, Shanghai University , Shanghai , China
| | - Wuren Huang
- a Key Laboratory of Insect Developmental and Evolutionary Biology , Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai , China
| | - Lei Geng
- a Key Laboratory of Insect Developmental and Evolutionary Biology , Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai , China
| | - Brenda T Beerntsen
- c Department of Veterinary Pathobiology , University of Missouri , Columbia , MO , USA
| | - Hongsheng Song
- b Department of Neurosciences , College of Life Sciences, Shanghai University , Shanghai , China
| | - Erjun Ling
- a Key Laboratory of Insect Developmental and Evolutionary Biology , Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai , China
| |
Collapse
|
44
|
Reisser CMO, Fasel D, Hürlimann E, Dukic M, Haag-Liautard C, Thuillier V, Galimov Y, Haag CR. Transition from Environmental to Partial Genetic Sex Determination in Daphnia through the Evolution of a Female-Determining Incipient W Chromosome. Mol Biol Evol 2017; 34:575-588. [PMID: 28007974 DOI: 10.1093/molbev/msw251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sex chromosomes can evolve during the evolution of genetic sex determination (GSD) from environmental sex determination (ESD). Despite theoretical attention, early mechanisms involved in the transition from ESD to GSD have yet to be studied in nature. No mixed ESD-GSD animal species have been reported, except for some species of Daphnia, small freshwater crustaceans in which sex is usually determined solely by the environment, but in which a dominant female sex-determining locus is present in some populations. This locus follows Mendelian single-locus inheritance, but has otherwise not been characterized genetically. We now show that the sex-determining genomic region maps to the same low-recombining peri-centromeric region of linkage group 3 (LG3) in three highly divergent populations of D. magna, and spans 3.6 Mb. Despite low levels of recombination, the associated region contains signs of historical recombination, suggesting a role for selection acting on several genes thereby maintaining linkage disequilibrium among the 36 associated SNPs. The region carries numerous genes involved in sex differentiation in other taxa, including transformer2 and sox9. Taken together, the region determining the genetic females shows characteristics of a sex-related supergene, suggesting that LG3 is potentially an incipient W chromosome despite the lack of significant additional restriction of recombination between Z and W. The occurrence of the female-determining locus in a pre-existing low recombining region illustrates one possible form of recombination suppression in sex chromosomes. D. magna is a promising model for studying the evolutionary transitions from ESD to GSD and early sex chromosome evolution.
Collapse
Affiliation(s)
- Céline M O Reisser
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, CNRS Université de Montpellier Université Paul-Valéry Montpellier EPHE, Montpellier, France.,Université de Fribourg, Ecology and Evolution, Fribourg, Switzerland.,IFREMER Centre du Pacifique, Taravao, Tahiti, Polynésie Française
| | - Dominique Fasel
- Université de Fribourg, Ecology and Evolution, Fribourg, Switzerland
| | - Evelin Hürlimann
- Université de Fribourg, Ecology and Evolution, Fribourg, Switzerland
| | - Marinela Dukic
- Universität Basel, Zoology Institute, Evolutionary Biology, Basel, Switzerland
| | | | | | - Yan Galimov
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Christoph R Haag
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, CNRS Université de Montpellier Université Paul-Valéry Montpellier EPHE, Montpellier, France.,Université de Fribourg, Ecology and Evolution, Fribourg, Switzerland
| |
Collapse
|
45
|
Sengupta S, Rath U, Yao C, Zavortink M, Wang C, Girton J, Johansen KM, Johansen J. Digitor/dASCIZ Has Multiple Roles in Drosophila Development. PLoS One 2016; 11:e0166829. [PMID: 27861562 PMCID: PMC5115829 DOI: 10.1371/journal.pone.0166829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/05/2016] [Indexed: 12/02/2022] Open
Abstract
In this study we provide evidence that the spindle matrix protein Skeletor in Drosophila interacts with the human ASCIZ (also known as ATMIN and ZNF822) ortholog, Digitor/dASCIZ. This interaction was first detected in a yeast two-hybrid screen and subsequently confirmed by pull-down assays. We also confirm a previously documented function of Digitor/dASCIZ as a regulator of Dynein light chain/Cut up expression. Using transgenic expression of a mCitrine-labeled Digitor construct, we show that Digitor/dASCIZ is a nuclear protein that is localized to interband and developmental puff chromosomal regions during interphase but redistributes to the spindle region during mitosis. Its mitotic localization and physical interaction with Skeletor suggest the possibility that Digitor/dASCIZ plays a direct role in mitotic progression as a member of the spindle matrix complex. Furthermore, we have characterized a P-element insertion that is likely to be a true null Digitor/dASCIZ allele resulting in complete pupal lethality when homozygous, indicating that Digitor/dASCIZ is an essential gene. Phenotypic analysis of the mutant provided evidence that Digitor/dASCIZ plays critical roles in regulation of metamorphosis and organogenesis as well as in the DNA damage response. In the Digitor/dASCIZ null mutant larvae there was greatly elevated levels of γH2Av, indicating accumulation of DNA double-strand breaks. Furthermore, reduced levels of Digitor/dASCIZ decreased the resistance to paraquat-induced oxidative stress resulting in increased mortality in a stress test paradigm. We show that an early developmental consequence of the absence of Digitor/dASCIZ is reduced third instar larval brain size although overall larval development appeared otherwise normal at this stage. While Digitor/dASCIZ mutant larvae initiate pupation, all mutant pupae failed to eclose and exhibited various defects in metamorphosis such as impaired differentiation, incomplete disc eversion, and faulty apoptosis. Altogether we provide evidence that Digitor/dASCIZ is a nuclear protein that performs multiple roles in Drosophila larval and pupal development.
Collapse
Affiliation(s)
- Saheli Sengupta
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Uttama Rath
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Changfu Yao
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Michael Zavortink
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Chao Wang
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jack Girton
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Kristen M. Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (JJ); (KMJ)
| | - Jørgen Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (JJ); (KMJ)
| |
Collapse
|
46
|
Hitrik A, Popliker M, Gancz D, Mukamel Z, Lifshitz A, Schwartzman O, Tanay A, Gilboa L. Combgap Promotes Ovarian Niche Development and Chromatin Association of EcR-Binding Regions in BR-C. PLoS Genet 2016; 12:e1006330. [PMID: 27846223 PMCID: PMC5147775 DOI: 10.1371/journal.pgen.1006330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/29/2016] [Indexed: 01/26/2023] Open
Abstract
The development of niches for tissue-specific stem cells is an important aspect of stem cell biology. Determination of niche size and niche numbers during organogenesis involves precise control of gene expression. How this is achieved in the context of a complex chromatin landscape is largely unknown. Here we show that the nuclear protein Combgap (Cg) supports correct ovarian niche formation in Drosophila by controlling ecdysone-Receptor (EcR)- mediated transcription and long-range chromatin contacts in the broad locus (BR-C). Both cg and BR-C promote ovarian growth and the development of niches for germ line stem cells. BR-C levels were lower when Combgap was either reduced or over-expressed, indicating an intricate regulation of the BR-C locus by Combgap. Polytene chromosome stains showed that Cg co-localizes with EcR, the major regulator of BR-C, at the BR-C locus and that EcR binding to chromatin was sensitive to changes in Cg levels. Proximity ligation assay indicated that the two proteins could reside in the same complex. Finally, chromatin conformation analysis revealed that EcR-bound regions within BR-C, which span ~30 KBs, contacted each other. Significantly, these contacts were stabilized in an ecdysone- and Combgap-dependent manner. Together, these results highlight Combgap as a novel regulator of chromatin structure that promotes transcription of ecdysone target genes and ovarian niche formation. Germ line stem cells (GSCs) supply either eggs or sperm throughout the life- time of many organisms, including mammals. For their function, GSCs require input from somatic niche cells. Understanding how niches form during development is an important initial step in understanding how stem cell units form, and by extension, how they may regenerate. In this work we describe a new function for the chromatin binding protein Combgap in ovarian niche formation of the model organism Drosophila melanogaster. Combgap is required for the correct expression of another factor, BR-C, in somatic ovarian cells. BR-C is one of the central target genes of the steroid hormone ecdysone, and its expression is controlled by the ecdysone receptor (EcR). Interestingly, EcR-enriched regions within the BR-C locus are engaged in long-range contacts that are stabilized by ecdysone in a Combgap-depended manner. We also found that EcR binding to chromatin depends on WT levels of Combgap. BR-C regulates GSC unit establishment, intestinal stem cells, immune responses, and many other processes. Understanding Combgaps’ function in shaping the BR-C chromatin landscape is a first step towards better appreciation of how this important locus is controlled, and the general machinery coupling gene expression to 3D chromatin structure.
Collapse
Affiliation(s)
- Anna Hitrik
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Malka Popliker
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Dana Gancz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Zohar Mukamel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Aviezer Lifshitz
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Omer Schwartzman
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Mol. Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Childhood Leukemia Research Institute, Sheba Medical Center, Ramat Gan, Israel
| | - Amos Tanay
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Gilboa
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
47
|
Lenaerts C, Van Wielendaele P, Peeters P, Vanden Broeck J, Marchal E. Ecdysteroid signalling components in metamorphosis and development of the desert locust, Schistocerca gregaria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:10-23. [PMID: 27180725 DOI: 10.1016/j.ibmb.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
The arthropod-specific hormone family of ecdysteroids plays an important role in regulating diverse physiological processes, such as moulting and metamorphosis, reproduction, diapause and innate immunity. Ecdysteroids mediate their response by binding to a heterodimeric complex of two nuclear receptors, the ecdysone receptor (EcR) and the retinoid-X-receptor/ultraspiracle (RXR/USP). In this study we investigated the role of EcR and RXR in metamorphosis and development of the desert locust, Schistocerca gregaria. The desert locust is a voracious, phytophagous, swarming pest that can ruin crops and harvests in some of the world's poorest countries. A profound knowledge of the ecdysteroid signalling pathway can be used in the development of more target-specific insecticides to combat this harmful plague insect. Here we report an in-depth profiling study of the transcript levels of EcR and RXR, as well as its downstream response genes, in different tissues isolated throughout the last larval stage of a hemimetabolous insect, showing a clear correlation with circulating ecdysteroid titres. Using RNA interference (RNAi), the role of SgEcR/SgRXR in moulting and development was investigated. We have proven the importance of the receptor components for successful moulting of locust nymphs into the adult stage. Some SgEcR/SgRXR knockdown females were arrested in the last larval stage, and 65 % of them initiated vitellogenesis and oocyte maturation, which normally only occurs in adults. Furthermore, our results clearly indicate that at the peak of ecdysteroid synthesis, on day six of the last larval stage, knockdown of SgEcR/SgRXR is affecting the transcript levels of the Halloween genes, Spook, Shadow and Shade.
Collapse
Affiliation(s)
- Cynthia Lenaerts
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Pieter Van Wielendaele
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Paulien Peeters
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium.
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| |
Collapse
|
48
|
The Ecdysone and Notch Pathways Synergistically Regulate Cut at the Dorsal-Ventral Boundary in Drosophila Wing Discs. J Genet Genomics 2016; 43:179-86. [PMID: 27117286 DOI: 10.1016/j.jgg.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/05/2016] [Accepted: 03/04/2016] [Indexed: 11/23/2022]
Abstract
Metazoan development requires coordination of signaling pathways to regulate patterns of gene expression. In Drosophila, the wing imaginal disc provides an excellent model for the study of how signaling pathways interact to regulate pattern formation. The determination of the dorsal-ventral (DV) boundary of the wing disc depends on the Notch pathway, which is activated along the DV boundary and induces the expression of the homeobox transcription factor, Cut. Here, we show that Broad (Br), a zinc-finger transcription factor, is also involved in regulating Cut expression in the DV boundary region. However, Br expression is not regulated by Notch signaling in wing discs, while ecdysone signaling is the upstream signal that induces Br for Cut upregulation. Also, we find that the ecdysone-Br cascade upregulates cut-lacZ expression, a reporter containing a 2.7 kb cut enhancer region, implying that ecdysone signaling, similar to Notch, regulates cut at the transcriptional level. Collectively, our findings reveal that the Notch and ecdysone signaling pathways synergistically regulate Cut expression for proper DV boundary formation in the wing disc. Additionally, we show br promotes Delta, a Notch ligand, near the DV boundary to suppress aberrant high Notch activity, indicating further interaction between the two pathways for DV patterning of the wing disc.
Collapse
|
49
|
Djabrayan NJV, Casanova J. Snoo and Dpp Act as Spatial and Temporal Regulators Respectively of Adult Progenitor Cells in the Drosophila Trachea. PLoS Genet 2016; 12:e1005909. [PMID: 26942411 PMCID: PMC4778947 DOI: 10.1371/journal.pgen.1005909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/10/2016] [Indexed: 11/21/2022] Open
Abstract
Clusters of differentiated cells contributing to organ structures retain the potential to re-enter the cell cycle and replace cells lost during development or upon damage. To do so, they must be designated spatially and respond to proper activation cues. Here we show that in the case of Drosophila differentiated larval tracheal cells, progenitor potential is conferred by the spatially restricted activity of the Snoo transcription cofactor. Furthermore, Dpp signalling regulated by endocrine hormonal cues provides the temporal trigger for their activation. Finally, we elucidate the genetic network elicited by Snoo and Dpp activity. These results illustrate a regulatory mechanism that translates intrinsic potential and extrinsic cues into the facultative stem cell features of differentiated progenitors. An important feature of organs is their ability to maintain their structure and function in spite of natural or accidental cell loss. This capacity is often sustained by so-called stem cells, which are able to provide new cells of the different types in the organ. In addition, some specialized cells, known as facultative stem cells, also retain the ability to re-enter the cell cycle and replace lost tissue. This process has to be very precisely regulated to provide for the maintenance of the tissues and organs while preventing uncontrolled cellular growth. We have analysed this mechanism in the Drosophila trachea; there, a group of Differentiated Adult Progenitor cells (or DAP cells) share the features of facultative stem cells as they remain quiescent during larval growth, reactivate their proliferation at the last larval stage and give rise to the different cell types of the adult tracheal network during metamorphosis. The DAP cells, conversely to the majority of the larval cells, do not enter endocycle and by doing so they acquire the features of adult progenitor cells. In this paper we identify the regulatory mechanism that integrates spatial and temporal cues to precisely activate the tracheal adult progenitor program.
Collapse
Affiliation(s)
- Nareg J.-V. Djabrayan
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
- * E-mail: (NJVD); (JC)
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
- * E-mail: (NJVD); (JC)
| |
Collapse
|
50
|
Deng H, Niu K, Zhang J, Feng Q. BmBR-C Z4 is an upstream regulatory factor of BmPOUM2 controlling the pupal specific expression of BmWCP4 in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:42-50. [PMID: 26363295 DOI: 10.1016/j.ibmb.2015.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
20-hydroxyecdysone (20E)-induced expression of the wing disc cuticle protein gene BmWCP4 was mediated by the transcription factor BmPOUM2, which binds to the cis-response elements (CREs) of BmWCP4 gene in Bombyx mori. In this study we report the regulation of BmPOUM2. RT-PCR analysis indicated that in response to 20E, BmPOUM2 was expressed at higher levels in the wing discs during the pre-pupal and mid-pupal stages than other stages and the expression pattern of BmBR-C Z1, BmBR-C Z2 and BmBR-C Z4 was in tandem with the expression of BmPOUM2. BmBR-C Z4 was induced by 20E in the wing discs, whereas BmBR-C Z1 and BmBR-C Z2 were not. Three potential BR-C Z4 cis-response elements (CREs) were identified in the promoter region of BmPOUM2. The expression of BmPOUM2 mRNA and protein was increased by the over-expression of BmBR-C Z4 in BmN cells, which acted at the promoter of BmPOUM2. Electrophoretic mobility shift assay (EMSA) and the luciferase activity analysis under the control of wild-type and mutants of the BR-C Z4 CREs suggested that BmBR-C Z4 protein bound to the predicted BRC-Z4 CRE C (-684 ∼ -660). Taken together the data suggest that BmBR-C Z4 is a direct upstream regulator of BmPOUM2 and regulates the pupal-specific expression of BmWCP4 through BmPOUM2.
Collapse
Affiliation(s)
- Huimin Deng
- Laboratory of Molecular and Developmental Entomology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Kangkang Niu
- Laboratory of Molecular and Developmental Entomology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jialing Zhang
- Laboratory of Molecular and Developmental Entomology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qili Feng
- Laboratory of Molecular and Developmental Entomology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|