1
|
Wu Z, Pang L, Ding M. CFI-1 functions unilaterally to restrict gap junction formation in C. elegans. Development 2025; 152:dev202955. [PMID: 39679967 PMCID: PMC11829774 DOI: 10.1242/dev.202955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024]
Abstract
Electrical coupling is vital to neural communication, facilitating synchronized activity among neurons. Despite its significance, the precise mechanisms governing the establishment of gap junction connections between specific neurons remain elusive. Here, we identified that the PVC interneuron in Caenorhabditis elegans forms gap junction connections with the PVR interneuron. The transcriptional regulator CFI-1 (ARID3) is specifically expressed in the PVC but not PVR interneuron. Reducing cfi-1 expression in the PVC interneuron leads to enhanced gap junction formation in the PVR neuron, while ectopic expression of cfi-1 in the PVR neuron restores the proper level of gap junction connections in the PVC neuron, along with the normal touch response. These findings unveil the pivotal role of CFI-1 in bidirectionally regulating the formation of gap junctions within a specific neuronal pair, shedding light on the intricate molecular mechanisms governing neuronal connectivity in vivo.
Collapse
Affiliation(s)
- Zan Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Pang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Chen X. Reimagining Cortical Connectivity by Deconstructing Its Molecular Logic into Building Blocks. Cold Spring Harb Perspect Biol 2024; 16:a041509. [PMID: 38621822 PMCID: PMC11529856 DOI: 10.1101/cshperspect.a041509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Comprehensive maps of neuronal connectivity provide a foundation for understanding the structure of neural circuits. In a circuit, neurons are diverse in morphology, electrophysiology, gene expression, activity, and other neuronal properties. Thus, constructing a comprehensive connectivity map requires associating various properties of neurons, including their connectivity, at cellular resolution. A commonly used approach is to use the gene expression profiles as an anchor to which all other neuronal properties are associated. Recent advances in genomics and anatomical techniques dramatically improved the ability to determine and associate the long-range projections of neurons with their gene expression profiles. These studies revealed unprecedented details of the gene-projection relationship, but also highlighted conceptual challenges in understanding this relationship. In this article, I delve into the findings and the challenges revealed by recent studies using state-of-the-art neuroanatomical and transcriptomic techniques. Building upon these insights, I propose an approach that focuses on understanding the gene-projection relationship through basic features in gene expression profiles and projections, respectively, that associate with underlying cellular processes. I then discuss how the developmental trajectories of projections and gene expression profiles create additional challenges and necessitate interrogating the gene-projection relationship across time. Finally, I explore complementary strategies that, together, can provide a comprehensive view of the gene-projection relationship.
Collapse
Affiliation(s)
- Xiaoyin Chen
- Allen Institute for Brain Science, Seattle, Washington 98109, USA
| |
Collapse
|
3
|
Staum M, Abraham AC, Arbid R, Birari VS, Dominitz M, Rabinowitch I. Behavioral adjustment of C. elegans to mechanosensory loss requires intact mechanosensory neurons. PLoS Biol 2024; 22:e3002729. [PMID: 39024405 PMCID: PMC11288434 DOI: 10.1371/journal.pbio.3002729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/30/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Sensory neurons specialize in detecting and signaling the presence of diverse environmental stimuli. Neuronal injury or disease may undermine such signaling, diminishing the availability of crucial information. Can animals distinguish between a stimulus not being present and the inability to sense that stimulus in the first place? To address this question, we studied Caenorhabditis elegans nematode worms that lack gentle body touch sensation due to genetic mechanoreceptor dysfunction. We previously showed that worms can compensate for the loss of touch by enhancing their sense of smell, via an FLP-20 neuropeptide pathway. Here, we find that touch-deficient worms exhibit, in addition to sensory compensation, also cautious-like behavior, as if preemptively avoiding potential undetectable hazards. Intriguingly, these behavioral adjustments are abolished when the touch neurons are removed, suggesting that touch neurons are required for signaling the unavailability of touch information, in addition to their conventional role of signaling touch stimulation. Furthermore, we found that the ASE taste neurons, which similarly to the touch neurons, express the FLP-20 neuropeptide, exhibit altered FLP-20 expression levels in a touch-dependent manner, thus cooperating with the touch circuit. These results imply a novel form of neuronal signaling that enables C. elegans to distinguish between lack of touch stimulation and loss of touch sensation, producing adaptive behavioral adjustments that could overcome the inability to detect potential threats.
Collapse
Affiliation(s)
- Michal Staum
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ayelet-Chen Abraham
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reema Arbid
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Varun Sanjay Birari
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Matanel Dominitz
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ithai Rabinowitch
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Verbeeren J, Teixeira J, Garcia SMDA. The Muscleblind-like protein MBL-1 regulates microRNA expression in Caenorhabditis elegans through an evolutionarily conserved autoregulatory mechanism. PLoS Genet 2023; 19:e1011109. [PMID: 38134228 PMCID: PMC10773944 DOI: 10.1371/journal.pgen.1011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/08/2024] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The Muscleblind-like (MBNL) family is a highly conserved set of RNA-binding proteins (RBPs) that regulate RNA metabolism during the differentiation of various animal tissues. Functional insufficiency of MBNL affects muscle and central nervous system development, and contributes to the myotonic dystrophies (DM), a set of incurable multisystemic disorders. Studies on the regulation of MBNL genes are essential to provide insight into the gene regulatory networks controlled by MBNL proteins and to understand how dysregulation within these networks causes disease. In this study, we demonstrate the evolutionary conservation of an autoregulatory mechanism that governs the function of MBNL proteins by generating two distinct protein isoform types through alternative splicing. Our aim was to further our understanding of the regulatory principles that underlie this conserved feedback loop in a whole-organismal context, and to address the biological significance of the respective isoforms. Using an alternative splicing reporter, our studies show that, during development of the Caenorhabditis elegans central nervous system, the orthologous mbl-1 gene shifts production from long protein isoforms that localize to the nucleus to short isoforms that also localize to the cytoplasm. Using isoform-specific CRISPR/Cas9-generated strains, we showed that expression of short MBL-1 protein isoforms is required for healthy neuromuscular function and neurodevelopment, while expression of long MBL-1 protein isoforms is dispensable, emphasizing a key role for cytoplasmic functionalities of the MBL-1 protein. Furthermore, RNA-seq and lifespan analyses indicated that short MBL-1 isoforms are crucial regulators of miRNA expression and, in consequence, required for normal lifespan. In conclusion, this study provides support for the disruption of cytoplasmic RNA metabolism as a contributor in myotonic dystrophy and paves the way for further exploration of miRNA regulation through MBNL proteins during development and in disease models.
Collapse
Affiliation(s)
- Jens Verbeeren
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Joana Teixeira
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
5
|
Kochersberger A, Torkashvand MM, Lee D, Baskoylu S, Sengupta T, Koonce N, Emerson CE, Patel NV, Colón-Ramos D, Flavell S, Horvitz HR, Venkatachalam V, Hammarlund M. Programmed Cell Death Modifies Neural Circuits and Tunes Intrinsic Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557249. [PMID: 37745399 PMCID: PMC10515839 DOI: 10.1101/2023.09.11.557249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Programmed cell death is a common feature of animal development. During development of the C. elegans hermaphrodite, programmed cell death (PCD) removes 131 cells from stereotyped positions in the cell lineage, mostly in neuronal lineages. Blocking cell death results in supernumerary "undead" neurons. We find that undead neurons can be wired into circuits, can display activity, and can modify specific behaviors. The two undead RIM-like neurons participate in the RIM-containing circuit that computes movement. The addition of these two extra neurons results in animals that initiate fewer reversals and lengthens the duration of those reversals that do occur. We describe additional behavioral alterations of cell-death mutants, including in turning angle and pharyngeal pumping. These findings reveal that, like too much PCD, too little PCD can modify nervous system function and animal behavior.
Collapse
Affiliation(s)
- Alison Kochersberger
- Department of Genetics and Department of Neuroscience, Yale University School of Medicine; New Haven, CT 06536, USA
| | | | - Dongyeop Lee
- Howard Hughes Medical Institute, Department of Biology, MIT; Cambridge, MA 02139, USA
| | - Saba Baskoylu
- Picower Institute for Learning and Memory, MIT; Cambridge, MA 02139, USA
| | - Titas Sengupta
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Noelle Koonce
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Chloe E Emerson
- Department of Genetics and Department of Neuroscience, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Nandan V Patel
- Department of Genetics and Department of Neuroscience, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Daniel Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
- MBL Fellows, Marine Biological Laboratory; Woods Hole, MA 02543, USA
- Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico; San Juan 00901, Puerto Rico
| | - Steven Flavell
- Picower Institute for Learning and Memory, MIT; Cambridge, MA 02139, USA
| | - H Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, MIT; Cambridge, MA 02139, USA
| | | | - Marc Hammarlund
- Department of Genetics and Department of Neuroscience, Yale University School of Medicine; New Haven, CT 06536, USA
| |
Collapse
|
6
|
Wang W, Sherry T, Cheng X, Fan Q, Cornell R, Liu J, Xiao Z, Pocock R. An intestinal sphingolipid confers intergenerational neuroprotection. Nat Cell Biol 2023; 25:1196-1207. [PMID: 37537365 PMCID: PMC10415181 DOI: 10.1038/s41556-023-01195-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
In animals, maternal diet and environment can influence the health of offspring. Whether and how maternal dietary choice impacts the nervous system across multiple generations is not well understood. Here we show that feeding Caenorhabditis elegans with ursolic acid, a natural plant product, improves axon transport and reduces adult-onset axon fragility intergenerationally. Ursolic acid provides neuroprotection by enhancing maternal provisioning of sphingosine-1-phosphate, a bioactive sphingolipid. Intestine-to-oocyte sphingosine-1-phosphate transfer is required for intergenerational neuroprotection and is dependent on the RME-2 lipoprotein yolk receptor. Sphingosine-1-phosphate acts intergenerationally by upregulating the transcription of the acid ceramidase-1 (asah-1) gene in the intestine. Spatial regulation of sphingolipid metabolism is critical, as inappropriate asah-1 expression in neurons causes developmental axon outgrowth defects. Our results show that sphingolipid homeostasis impacts the development and intergenerational health of the nervous system. The ability of specific lipid metabolites to act as messengers between generations may have broad implications for dietary choice during reproduction.
Collapse
Affiliation(s)
- Wenyue Wang
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Tessa Sherry
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Xinran Cheng
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Qi Fan
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Rebecca Cornell
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Jie Liu
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Zhicheng Xiao
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Lesta A, Marín-García PJ, Llobat L. How Does Nutrition Affect the Epigenetic Changes in Dairy Cows? Animals (Basel) 2023; 13:1883. [PMID: 37889793 PMCID: PMC10251833 DOI: 10.3390/ani13111883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 10/29/2023] Open
Abstract
Dairy cows require a balanced diet that provides enough nutrients to support milk production, growth, and reproduction. Inadequate nutrition can lead to metabolic disorders, impaired fertility, and reduced milk yield. Recent studies have shown that nutrition can affect epigenetic modifications in dairy cows, which can impact gene expression and affect the cows' health and productivity. One of the most important epigenetic modifications in dairy cows is DNA methylation, which involves the addition of a methyl group to the DNA molecule. Studies have shown that the methylation status of certain genes in dairy cows can be influenced by dietary factors such as the level of methionine, lysine, choline, and folate in the diet. Other important epigenetic modifications in dairy cows are histone modification and microRNAs as regulators of gene expression. Overall, these findings suggest that nutrition can have a significant impact on the epigenetic regulation of gene expression in dairy cows. By optimizing the diet of dairy cows, it may be possible to improve their health and productivity by promoting beneficial epigenetic modifications. This paper reviews the main nutrients that can cause epigenetic changes in dairy cattle by analyzing the effect of diet on milk production and its composition.
Collapse
Affiliation(s)
- Ana Lesta
- MMOPS Research Group, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain;
| | - Pablo Jesús Marín-García
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera—CEU, CEU Universities, 46113 Valencia, Spain;
| | - Lola Llobat
- MMOPS Research Group, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain;
| |
Collapse
|
8
|
Long T, Xie L, Pulati M, Wen Q, Guo X, Zhang D. C. elegans: Sensing the low-frequency profile of amplitude-modulated ultrasound. ULTRASONICS 2023; 128:106887. [PMID: 36395535 DOI: 10.1016/j.ultras.2022.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Several research groups have demonstrated that C. elegans can respond to pulsed ultrasound stimuli, and elucidating the underlying mechanisms is necessary to develop ultrasound neuromodulation. Here, amplitude-modulated (AM) ultrasound is applied to C. elegans, and its behavioral responses are investigated in detail. By loading surface acoustic waves (SAWs) onto free-moving worms on an agar surface, a carrier wave with a frequency of 8.80 MHz is selected. The signal is modulated by a rectangular or sinusoidal profile. It is demonstrated that sinusoidal modulation can produce similar responses in worms to rectangular modulation, with the strongest responses occurring at modulation frequencies of around 1.00 kHz. Meanwhile, the behavioral response is relatively weak when the ultrasonic signal is unmodulated, that is, when only the carrier wave is applied. At modulation frequencies other than 100.00 Hz to 10.00 kHz, the worms respond weakly, but when a second modulation frequency of 1.00 kHz is introduced, an improvement in response can be observed. These results suggest that C. elegans may sense the low-frequency envelope and respond to amplitude-modulated ultrasonic stimuli like an amplitude demodulator. MEC-4, an ion channel for touch sensing, is involved in the behavioral response of C. elegans to ultrasound in the present setup.
Collapse
Affiliation(s)
- Tianyang Long
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Linzhou Xie
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Mayibaier Pulati
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
| | - Quan Wen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
9
|
Hori S, Mitani S. An atonal homolog, lin-32, regulates hypodermal morphogenesis in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000754. [PMID: 36873297 PMCID: PMC9975813 DOI: 10.17912/micropub.biology.000754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Abstract
The transcription factor atonal contributes to patterning and cell fate determination in specialized epithelial cells in various animals, but its function in hypodermis is unknown. Here, we analyzed the atonal homolog lin-32 in C. elegans to clarify whether atonal acts in hypodermal development. The lin-32 null mutants exhibited bulges and cavities in their head, which were prevented by LIN-32 expression. Fluorescent protein was expressed in hypodermis cells at the embryonic stage by the lin-32 promoter. These results certify that atonal plays an essential role in the development of a broader range of tissues as hypodermis than initially thought.
Collapse
Affiliation(s)
- Sayaka Hori
- Tokyo Women's Medical University, Tokyo, Tokyo, Japan
| | - Shohei Mitani
- Physiology, Tokyo Women's Medical University, Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Hori S, Mitani S. The transcription factor unc-130/FOXD3/4 contributes to the biphasic calcium response required to optimize avoidance behavior. Sci Rep 2022; 12:1907. [PMID: 35115609 PMCID: PMC8814005 DOI: 10.1038/s41598-022-05942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/13/2022] [Indexed: 11/12/2022] Open
Abstract
The central neural network optimizes avoidance behavior depending on the nociceptive stimulation intensity and is essential for survival. How the property of hub neurons that enables the selection of behaviors is genetically defined is not well understood. We show that the transcription factor unc-130, a human FOXD3/4 ortholog, is required to optimize avoidance behavior depending on stimulus strength in Caenorhabditis elegans. unc-130 is necessary for both ON responses (calcium decreases) and OFF responses (calcium increases) in AIBs, central neurons of avoidance optimization. Ablation of predicted upstream inhibitory neurons reduces the frequency of turn behavior, suggesting that optimization needs both calcium responses. At the molecular level, unc-130 upregulates the expression of at least three genes: nca-2, a homolog of the vertebrate cation leak channel NALCN; glr-1, an AMPA-type glutamate receptor; and eat-4, a hypothetical L-glutamate transmembrane transporter in the central neurons of optimization. unc-130 shows more limited regulation in optimizing behavior than an atonal homolog lin-32, and unc-130 and lin-32 appear to act in parallel molecular pathways. Our findings suggest that unc-130 is required for the establishment of some AIB identities to optimize avoidance behavior.
Collapse
Affiliation(s)
- Sayaka Hori
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, 162-8666, Japan.
| |
Collapse
|
11
|
Motor domain-mediated autoinhibition dictates axonal transport by the kinesin UNC-104/KIF1A. PLoS Genet 2021; 17:e1009940. [PMID: 34843479 PMCID: PMC8659337 DOI: 10.1371/journal.pgen.1009940] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 12/09/2021] [Accepted: 11/11/2021] [Indexed: 12/01/2022] Open
Abstract
The UNC-104/KIF1A motor is crucial for axonal transport of synaptic vesicles, but how the UNC-104/KIF1A motor is activated in vivo is not fully understood. Here, we identified point mutations located in the motor domain or the inhibitory CC1 domain, which resulted in gain-of-function alleles of unc-104 that exhibit hyperactive axonal transport and abnormal accumulation of synaptic vesicles. In contrast to the cell body localization of wild type motor, the mutant motors accumulate on neuronal processes. Once on the neuronal process, the mutant motors display dynamic movement similarly to wild type motors. The gain-of-function mutation on the motor domain leads to an active dimeric conformation, releasing the inhibitory CC1 region from the motor domain. Genetically engineered mutations in the motor domain or CC1 of UNC-104, which disrupt the autoinhibitory interface, also led to the gain of function and hyperactivation of axonal transport. Thus, the CC1/motor domain-mediated autoinhibition is crucial for UNC-104/KIF1A-mediated axonal transport in vivo. UNC-104/KIF1A is the founding member of the kinesin-3 family. When not transporting cargos, most kinesin-3 motors adopt an autoinhibited conformation, and how the UNC-104/KIF1A motor is activated in vivo is not fully understood. Here, we identified gain-of-function mutations in the motor domain or CC1 domain that significantly enhance the synaptic vesicle transport. Further biochemical and structural analyses revealed that these mutations could disrupt the CC1/motor mediated autoinhibition. Thus, our work provides a mechanistic explanation for the role of some disease-related mutations in motor hyperactivation.
Collapse
|
12
|
Godini R, Handley A, Pocock R. Transcription Factors That Control Behavior-Lessons From C. elegans. Front Neurosci 2021; 15:745376. [PMID: 34646119 PMCID: PMC8503520 DOI: 10.3389/fnins.2021.745376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/02/2021] [Indexed: 11/15/2022] Open
Abstract
Behavior encompasses the physical and chemical response to external and internal stimuli. Neurons, each with their own specific molecular identities, act in concert to perceive and relay these stimuli to drive behavior. Generating behavioral responses requires neurons that have the correct morphological, synaptic, and molecular identities. Transcription factors drive the specific gene expression patterns that define these identities, controlling almost every phenomenon in a cell from development to homeostasis. Therefore, transcription factors play an important role in generating and regulating behavior. Here, we describe the transcription factors, the pathways they regulate, and the neurons that drive chemosensation, mechanosensation, thermosensation, osmolarity sensing, complex, and sex-specific behaviors in the animal model Caenorhabditis elegans. We also discuss the current limitations in our knowledge, particularly our minimal understanding of how transcription factors contribute to the adaptive behavioral responses that are necessary for organismal survival.
Collapse
|
13
|
Davis L, Radman I, Goutou A, Tynan A, Baxter K, Xi Z, O'Shea JM, Chin JW, Greiss S. Precise optical control of gene expression in C. elegans using improved genetic code expansion and Cre recombinase. eLife 2021; 10:67075. [PMID: 34350826 PMCID: PMC8448529 DOI: 10.7554/elife.67075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in Caenorhabditis elegans and use it to create a photoactivatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP-controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted. Animal behaviour and movement emerges from the stimulation of nerve cells that are connected together like a circuit. Researchers use various tools to investigate these neural networks in model organisms such as roundworms, fruit flies and zebrafish. The trick is to activate some nerve cells, but not others, so as to isolate their specific role within the neural circuit. One way to do this is to switch genes on or off in individual cells as a way to control their neuronal activity. This can be achieved by building a photocaged version of the enzyme Cre recombinase which is designed to target specific genes. The modified Cre recombinase contains an amino acid (the building blocks of proteins) that inactivates the enzyme. When the cell is illuminated with UV light, a part of the amino acid gets removed allowing Cre recombinase to turn on its target gene. However, cells do not naturally produce these photocaged amino acids. To overcome this, researchers can use a technology called genetic code expansion which provides cells with the tools they need to build proteins containing these synthetic amino acids. Although this technique has been used in live animals, its application has been limited due to the small amount of proteins it produces. Davis et al. therefore set out to improve the efficiency of genetic code expansion so that it can be used to study single nerve cells in freely moving roundworms. In the new system, named LaserTAC, individual cells are targeted with UV light that ‘uncages’ the Cre recombinase enzyme so it can switch on a gene for a protein that controls neuronal activity. Davis et al. used this approach to stimulate a pair of neurons sensitive to touch to see how this impacted the roundworm’s behaviour. This revealed that individual neurons within this pair contribute to the touch response in different ways. However, input from both neurons is required to produce a robust reaction. These findings show that the LaserTAC system can be used to manipulate gene activity in single cells, such as neurons, using light. It allows researchers to precisely control in which cells and when a given gene is switched on or off. Also, with the improved efficiency of the genetic code expansion, this technology could be used to modify proteins other than Cre recombinase and be applied to other artificial amino acids that have been developed in recent years.
Collapse
Affiliation(s)
- Lloyd Davis
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Inja Radman
- Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Angeliki Goutou
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ailish Tynan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kieran Baxter
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Zhiyan Xi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jack M O'Shea
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Sebastian Greiss
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Nishida K, Tsuchiya K, Obinata H, Onodera S, Honda Y, Lai YC, Haruta N, Sugimoto A. Expression Patterns and Levels of All Tubulin Isotypes Analyzed in GFP Knock-In C. elegans Strains. Cell Struct Funct 2021; 46:51-64. [PMID: 33967119 PMCID: PMC10511039 DOI: 10.1247/csf.21022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/28/2021] [Indexed: 11/11/2022] Open
Abstract
Most organisms have multiple α- and β-tubulin isotypes that likely contribute to the diversity of microtubule (MT) functions. To understand the functional differences of tubulin isotypes in Caenorhabditis elegans, which has nine α-tubulin isotypes and six β-tubulin isotypes, we systematically constructed null mutants and GFP-fusion strains for all tubulin isotypes with the CRISPR/Cas9 system and analyzed their expression patterns and levels in adult hermaphrodites. Four isotypes-α-tubulins TBA-1 and TBA-2 and β-tubulins TBB-1 and TBB-2-were expressed in virtually all tissues, with a distinct tissue-specific spectrum. Other isotypes were expressed in specific tissues or cell types at significantly lower levels than the broadly expressed isotypes. Four isotypes (TBA-5, TBA-6, TBA-9, and TBB-4) were expressed in different subsets of ciliated sensory neurons, and TBB-4 was inefficiently incorporated into mitotic spindle MTs. Taken together, we propose that MTs in C. elegans are mainly composed of four broadly expressed tubulin isotypes and that incorporation of a small amount of tissue-specific isotypes may contribute to tissue-specific MT properties. These newly constructed strains will be useful for further elucidating the distinct roles of tubulin isotypes.Key words: tubulin isotypes, microtubules, C. elegans.
Collapse
Affiliation(s)
- Kei Nishida
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Kenta Tsuchiya
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hiroyuki Obinata
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Shizuka Onodera
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yu Honda
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yen-Cheng Lai
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Nami Haruta
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Asako Sugimoto
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
15
|
Masoudi N, Yemini E, Schnabel R, Hobert O. Piecemeal regulation of convergent neuronal lineages by bHLH transcription factors in Caenorhabditis elegans. Development 2021; 148:dev199224. [PMID: 34100067 PMCID: PMC8217713 DOI: 10.1242/dev.199224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/29/2021] [Indexed: 11/20/2022]
Abstract
Cells of the same type can be generated by distinct cellular lineages that originate in different parts of the developing embryo ('lineage convergence'). Several Caenorhabditis elegans neuron classes composed of left/right or radially symmetric class members display such lineage convergence. We show here that the C. elegans Atonal homolog lin-32 is differentially expressed in neuronal lineages that give rise to left/right or radially symmetric class members. Loss of lin-32 results in the selective loss of the expression of pan-neuronal markers and terminal selector-type transcription factors that confer neuron class-specific features. Another basic helix-loop-helix (bHLH) gene, the Achaete-Scute homolog hlh-14, is expressed in a mirror image pattern relative to lin-32 and is required to induce neuronal identity and terminal selector expression on the contralateral side of the animal. These findings demonstrate that distinct lineage histories converge via different bHLH factors at the level of induction of terminal selector identity determinants, which thus serve as integrators of distinct lineage histories. We also describe neuron-to-neuron identity transformations in lin-32 mutants, which we propose to also be the result of misregulation of terminal selector gene expression.
Collapse
Affiliation(s)
- Neda Masoudi
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| | - Eviatar Yemini
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| | - Ralf Schnabel
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| |
Collapse
|
16
|
Leyva-Díaz E, Masoudi N, Serrano-Saiz E, Glenwinkel L, Hobert O. Brn3/POU-IV-type POU homeobox genes-Paradigmatic regulators of neuronal identity across phylogeny. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e374. [PMID: 32012462 DOI: 10.1002/wdev.374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
One approach to understand the construction of complex systems is to investigate whether there are simple design principles that are commonly used in building such a system. In the context of nervous system development, one may ask whether the generation of its highly diverse sets of constituents, that is, distinct neuronal cell types, relies on genetic mechanisms that share specific common features. Specifically, are there common patterns in the function of regulatory genes across different neuron types and are those regulatory mechanisms not only used in different parts of one nervous system, but are they conserved across animal phylogeny? We address these questions here by focusing on one specific, highly conserved and well-studied regulatory factor, the POU homeodomain transcription factor UNC-86. Work over the last 30 years has revealed a common and paradigmatic theme of unc-86 function throughout most of the neuron types in which Caenorhabditis elegans unc-86 is expressed. Apart from its role in preventing lineage reiterations during development, UNC-86 operates in combination with distinct partner proteins to initiate and maintain terminal differentiation programs, by coregulating a vast array of functionally distinct identity determinants of specific neuron types. Mouse orthologs of unc-86, the Brn3 genes, have been shown to fulfill a similar function in initiating and maintaining neuronal identity in specific parts of the mouse brain and similar functions appear to be carried out by the sole Drosophila ortholog, Acj6. The terminal selector function of UNC-86 in many different neuron types provides a paradigm for neuronal identity regulation across phylogeny. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Invertebrate Organogenesis > Worms Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Eduardo Leyva-Díaz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | - Neda Masoudi
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | | | - Lori Glenwinkel
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| |
Collapse
|
17
|
Zheng C, Jin FQ, Trippe BL, Wu J, Chalfie M. Inhibition of cell fate repressors secures the differentiation of the touch receptor neurons of Caenorhabditis elegans. Development 2018; 145:dev.168096. [PMID: 30291162 DOI: 10.1242/dev.168096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022]
Abstract
Terminal differentiation generates the specialized features and functions that allow postmitotic cells to acquire their distinguishing characteristics. This process is thought to be controlled by transcription factors called 'terminal selectors' that directly activate a set of downstream effector genes. In Caenorhabditis elegans, the differentiation of both the mechanosensory touch receptor neurons (TRNs) and the multidendritic nociceptor FLP neurons uses the terminal selectors UNC-86 and MEC-3. The FLP neurons fail to activate TRN genes, however, because a complex of two transcriptional repressors (EGL-44/EGL-46) prevents their expression. Here, we show that the ZEB family transcriptional factor ZAG-1 promotes TRN differentiation not by activating TRN genes but by preventing the expression of EGL-44/EGL-46. As EGL-44/EGL-46 also inhibits the production of ZAG-1, these proteins form a bistable, negative-feedback loop that regulates the choice between the two neuronal fates.
Collapse
Affiliation(s)
- Chaogu Zheng
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Felix Qiaochu Jin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Brian Loeber Trippe
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ji Wu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
18
|
Mishra N, Wei H, Conradt B. Caenorhabditis elegans ced-3 Caspase Is Required for Asymmetric Divisions That Generate Cells Programmed To Die. Genetics 2018; 210:983-998. [PMID: 30194072 PMCID: PMC6218217 DOI: 10.1534/genetics.118.301500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/04/2018] [Indexed: 01/30/2023] Open
Abstract
Caspases have functions other than in apoptosis. Here, we report that Caenorhabditis elegans CED-3 caspase regulates asymmetric cell division. Many of the 131 cells that are "programmed" to die during C. elegans development are the smaller daughter of a neuroblast that divides asymmetrically by size and fate. We have previously shown that CED-3 caspase is activated in such neuroblasts, and that before neuroblast division, a gradient of CED-3 caspase activity is formed in a ced-1 MEGF10 ( m ultiple EGF -like domains 10 )-dependent manner. This results in the nonrandom segregation of active CED-3 caspase or "apoptotic potential" into the smaller daughter. We now show that CED-3 caspase is necessary for the ability of neuroblasts to divide asymmetrically by size. In addition, we provide evidence that a pig-1 MELK (maternal embryonic leucine zipper kinase)-dependent reciprocal gradient of "mitotic potential" is formed in the QL.p neuroblast, and that CED-3 caspase antagonizes this mitotic potential. Based on these findings, we propose that CED-3 caspase plays a critical role in the asymmetric division by size and fate of neuroblasts, and that this contributes to the reproducibility and robustness with which the smaller daughter cell is produced and adopts the apoptotic fate. Finally, the function of CED-3 caspase in this context is dependent on its activation through the conserved egl-1 BH3-only, ced-9 Bcl-2, and ced-4 Apaf-1 pathway. In mammals, caspases affect various aspects of stem cell lineages. We speculate that the new nonapoptotic function of C. elegans CED-3 caspase in asymmetric neuroblast division is relevant to the function(s) of mammalian caspases in stem cells.
Collapse
Affiliation(s)
- Nikhil Mishra
- Faculty of Biology, Center for Integrated Protein Science Munich, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Hai Wei
- Faculty of Biology, Center for Integrated Protein Science Munich, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, Center for Integrated Protein Science Munich, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
19
|
The Heterochronic Gene lin-14 Controls Axonal Degeneration in C. elegans Neurons. Cell Rep 2018; 20:2955-2965. [PMID: 28930688 DOI: 10.1016/j.celrep.2017.08.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/31/2017] [Accepted: 08/25/2017] [Indexed: 01/23/2023] Open
Abstract
The disproportionate length of an axon makes its structural and functional maintenance a major task for a neuron. The heterochronic gene lin-14 has previously been implicated in regulating the timing of key developmental events in the nematode C. elegans. Here, we report that LIN-14 is critical for maintaining neuronal integrity. Animals lacking lin-14 display axonal degeneration and guidance errors in both sensory and motor neurons. We demonstrate that LIN-14 functions both cell autonomously within the neuron and non-cell autonomously in the surrounding tissue, and we show that interaction between the axon and its surrounding tissue is essential for the preservation of axonal structure. Furthermore, we demonstrate that lin-14 expression is only required during a short period early in development in order to promote axonal maintenance throughout the animal's life. Our results identify a crucial role for LIN-14 in preventing axonal degeneration and in maintaining correct interaction between an axon and its surrounding tissue.
Collapse
|
20
|
Zheng C, Diaz-Cuadros M, Nguyen KCQ, Hall DH, Chalfie M. Distinct effects of tubulin isotype mutations on neurite growth in Caenorhabditis elegans. Mol Biol Cell 2017; 28:2786-2801. [PMID: 28835377 PMCID: PMC5638583 DOI: 10.1091/mbc.e17-06-0424] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022] Open
Abstract
Different tubulin isotypes perform different functions in the regulation of microtubule (MT) structure and neurite growth, and missense mutations of tubulin genes have three types of distinct effects on MT stability and neurite growth. One α-tubulin isotype appears to induce relative instability due to the lack of potential posttranslational modification sites. Tubulins, the building block of microtubules (MTs), play a critical role in both supporting and regulating neurite growth. Eukaryotic genomes contain multiple tubulin isotypes, and their missense mutations cause a range of neurodevelopmental defects. Using the Caenorhabditis elegans touch receptor neurons, we analyzed the effects of 67 tubulin missense mutations on neurite growth. Three types of mutations emerged: 1) loss-of-function mutations, which cause mild defects in neurite growth; 2) antimorphic mutations, which map to the GTP binding site and intradimer and interdimer interfaces, significantly reduce MT stability, and cause severe neurite growth defects; and 3) neomorphic mutations, which map to the exterior surface, increase MT stability, and cause ectopic neurite growth. Structure-function analysis reveals a causal relationship between tubulin structure and MT stability. This stability affects neuronal morphogenesis. As part of this analysis, we engineered several disease-associated human tubulin mutations into C. elegans genes and examined their impact on neuronal development at the cellular level. We also discovered an α-tubulin (TBA-7) that appears to destabilize MTs. Loss of TBA-7 led to the formation of hyperstable MTs and the generation of ectopic neurites; the lack of potential sites for polyamination and polyglutamination on TBA-7 may be responsible for this destabilization.
Collapse
Affiliation(s)
- Chaogu Zheng
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | - Ken C Q Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
21
|
Muñoz-Jiménez C, Ayuso C, Dobrzynska A, Torres-Mendéz A, Ruiz PDLC, Askjaer P. An Efficient FLP-Based Toolkit for Spatiotemporal Control of Gene Expression in Caenorhabditis elegans. Genetics 2017; 206:1763-1778. [PMID: 28646043 PMCID: PMC5560786 DOI: 10.1534/genetics.117.201012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/19/2017] [Indexed: 02/07/2023] Open
Abstract
Site-specific recombinases are potent tools to regulate gene expression. In particular, the Cre (cyclization recombination) and FLP (flipase) enzymes are widely used to either activate or inactivate genes in a precise spatiotemporal manner. Both recombinases work efficiently in the popular model organism Caenorhabditis elegans, but their use in this nematode is still only sporadic. To increase the utility of the FLP system in C. elegans, we have generated a series of single-copy transgenic strains that stably express an optimized version of FLP in specific tissues or by heat induction. We show that recombination efficiencies reach 100% in several cell types, such as muscles, intestine, and serotonin-producing neurons. Moreover, we demonstrate that most promoters drive recombination exclusively in the expected tissues. As examples of the potentials of the FLP lines, we describe novel tools for induced cell ablation by expression of the PEEL-1 toxin and a versatile FLP-out cassette for generation of GFP-tagged conditional knockout alleles. Together with other recombinase-based reagents created by the C. elegans community, this toolkit increases the possibilities for detailed analyses of specific biological processes at developmental stages inside intact animals.
Collapse
Affiliation(s)
- Celia Muñoz-Jiménez
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Cristina Ayuso
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Agnieszka Dobrzynska
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Antonio Torres-Mendéz
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Patricia de la Cruz Ruiz
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
22
|
MITANI S. Comprehensive functional genomics using Caenorhabditis elegans as a model organism. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:561-577. [PMID: 29021508 PMCID: PMC5743858 DOI: 10.2183/pjab.93.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
We have been working on functional genomics using C. elegans as a model organism. We first used cell-type specific markers and preexisting mutants to investigate how genotype-phenotype causal relationships are regulated. With the aid of transgenic methods, we analyzed various biological processes in C. elegans. We have developed efficient methods to isolate gene knockout strains. Thousands of strains isolated this way are used by many researchers and have revealed many biological mechanisms. We have also developed methods to examine the functions of genes in a comprehensive manner by integrating transgenes into chromosomes, designing conditional knockouts, and creating balancers for lethal mutations. A combination of these biological resources and techniques will be useful to understand the functions of genes in C. elegans, which has many genes that are orthologous to those of higher organisms including humans.
Collapse
Affiliation(s)
- Shohei MITANI
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
- Tokyo Women’s Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| |
Collapse
|
23
|
Shi S, Luke CJ, Miedel MT, Silverman GA, Kleyman TR. Activation of the Caenorhabditis elegans Degenerin Channel by Shear Stress Requires the MEC-10 Subunit. J Biol Chem 2016; 291:14012-14022. [PMID: 27189943 DOI: 10.1074/jbc.m116.718031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 01/12/2023] Open
Abstract
Mechanotransduction in Caenorhabditis elegans touch receptor neurons is mediated by an ion channel formed by MEC-4, MEC-10, and accessory proteins. To define the role of these subunits in the channel's response to mechanical force, we expressed degenerin channels comprising MEC-4 and MEC-10 in Xenopus oocytes and examined their response to laminar shear stress (LSS). Shear stress evoked a rapid increase in whole cell currents in oocytes expressing degenerin channels as well as channels with a MEC-4 degenerin mutation (MEC-4d), suggesting that C. elegans degenerin channels are sensitive to LSS. MEC-10 is required for a robust LSS response as the response was largely blunted in oocytes expressing homomeric MEC-4 or MEC-4d channels. We examined a series of MEC-10/MEC-4 chimeras to identify specific domains (amino terminus, first transmembrane domain, and extracellular domain) and sites (residues 130-132 and 134-137) within MEC-10 that are required for a robust response to shear stress. In addition, the LSS response was largely abolished by MEC-10 mutations encoded by a touch-insensitive mec-10 allele, providing a correlation between the channel's responses to two different mechanical forces. Our findings suggest that MEC-10 has an important role in the channel's response to mechanical forces.
Collapse
Affiliation(s)
- Shujie Shi
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Cliff J Luke
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Mark T Miedel
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Gary A Silverman
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
24
|
Abstract
Transcription factors control neuronal differentiation by acting as "terminal selectors" that determine the specific cell fates of different types of neurons. The specification of cell fate, however, requires high fidelity, which relies on stable and robust expression of the terminal selectors. Our recent studies in C. elegans suggest that a second set of transcription factors function as reinforcing or protecting factors to stabilize the expression and activity of terminal selectors. Some serve as "guarantors" to ensure the activation and continuous expression of the selectors by reducing stochastic fluctuations in gene expression; others safeguard the protein function of selectors by repressing inhibitors that would block their activity. These transcription factors, unlike the terminal selectors, do not induce specification but secure neuronal cell fate and provide reliability in differentiation.
Collapse
|
25
|
EFF-1-mediated regenerative axonal fusion requires components of the apoptotic pathway. Nature 2015; 517:219-22. [DOI: 10.1038/nature14102] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 11/19/2014] [Indexed: 02/03/2023]
|
26
|
Marcette JD, Chen JJ, Nonet ML. The Caenorhabditis elegans microtubule minus-end binding homolog PTRN-1 stabilizes synapses and neurites. eLife 2014; 3:e01637. [PMID: 24569480 PMCID: PMC3930908 DOI: 10.7554/elife.01637] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/17/2014] [Indexed: 12/17/2022] Open
Abstract
Microtubule dynamics facilitate neurite growth and establish morphology, but the role of minus-end binding proteins in these processes is largely unexplored. CAMSAP homologs associate with microtubule minus-ends, and are important for the stability of epithelial cell adhesions. In this study, we report morphological defects in neurons and neuromuscular defects in mutants of the C. elegans CAMSAP, ptrn-1. Mechanosensory neurons initially extend wild-type neurites, and subsequently remodel by overextending neurites and retracting synaptic branches and presynaptic varicosities. This neuronal remodeling can be activated by mutations known to alter microtubules, and depends on a functioning DLK-1 MAP kinase pathway. We found that PTRN-1 localizes to both neurites and synapses, and our results suggest that alterations of microtubule structures caused by loss of PTRN-1 function activates a remodeling program leading to changes in neurite morphology. We propose a model whereby minus-end microtubule stabilization mediated by a functional PTRN-1 is necessary for morphological maintenance of neurons. DOI: http://dx.doi.org/10.7554/eLife.01637.001.
Collapse
Affiliation(s)
- Jana Dorfman Marcette
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, United States
| | - Jessica Jie Chen
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, United States
| | - Michael L Nonet
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
27
|
Krajniak J, Hao Y, Mak HY, Lu H. C.L.I.P.--continuous live imaging platform for direct observation of C. elegans physiological processes. LAB ON A CHIP 2013; 13:2963-71. [PMID: 23708469 DOI: 10.1039/c3lc50300c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Direct observation of developmental and physiological changes in certain model organisms over time has been technically challenging. In the model organism Caenorhabditis elegans, these studies require frequent or continuous imaging at physiologically benign conditions. However, standard methods use anaesthetics, glue, or microbeads, which prevent animals from feeding during the experiment. Thus, the animals' normal physiological function may be affected over time. Here we present a platform designed for dynamic studies of C. elegans. The system is capable of immobilizing only the animals' bodies under benign conditions and without physical deformation. Simultaneously, the animals' heads remain free to move and feed for the duration of the experiment. This allows for high-resolution and high-magnification fluorescent imaging of immobilized and feeding animals. The system is very easy to fabricate, set up, and operate, and should be widely applicable to many problems in developmental and physiological studies.
Collapse
Affiliation(s)
- Jan Krajniak
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | |
Collapse
|
28
|
Li L, Xiao B, Tong H, Xie F, Zhang Z, Xiao GG. Regulation of breast cancer tumorigenesis and metastasis by miRNAs. Expert Rev Proteomics 2013; 9:615-25. [PMID: 23256672 DOI: 10.1586/epr.12.64] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
miRNAs are a family of 17- to 23-nucleotide noncoding small RNAs that primarily function as gene expression fine regulators. A number of studies have shown that miRNAs play an important role in breast tumorigenesis, metastasis, proliferation and differentiation of breast cancer stem cells. This short review summarizes the progression of miRNA-mediated breast tumorigenesis and metastasis through various signaling pathways associated with drug resistance.
Collapse
Affiliation(s)
- Lianhong Li
- Dalian Medical University, Dalian, 116000, China
| | | | | | | | | | | |
Collapse
|
29
|
Smith MA, Zhang Y, Polli JR, Wu H, Zhang B, Xiao P, Farwell MA, Pan X. Impacts of chronic low-level nicotine exposure on Caenorhabditis elegans reproduction: identification of novel gene targets. Reprod Toxicol 2013; 40:69-75. [PMID: 23735997 DOI: 10.1016/j.reprotox.2013.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/25/2013] [Accepted: 05/24/2013] [Indexed: 12/17/2022]
Abstract
Effects and mechanisms of chronic exposure to low levels of nicotine is an area fundamentally important however less investigated. We employed the model organism Caenorhabditis elegans to investigate potential impacts of chronic (24h) and low nicotine exposure (6.17-194.5 μM) on stimulus-response, reproduction, and gene expressions. Nicotine significantly affects the organism's response to touch stimulus (p=0.031), which follows a dose-dependent pattern. Chronic nicotine exposure promotes early egg-laying events and slightly increased egg productions during the first 72 h of adulthood. The expressions of 10 (egl-10, egl-44, hlh-14, ric-3, unc-103, unc-50, unc-68, sod-1, oxi-1, and old-1) out of 18 selected genes were affected significantly. Other tested genes were cat-4, egl-19, egl-47, egl-5, lin-39, unc-43, pink-1, and age-1. Changes in gene expression were more evident at low dosages than at relatively high levels. Genes implicated in reproduction, cholinergic signaling, and stress response were regulated by nicotine, suggesting widespread physiological impacts of nicotine.
Collapse
Affiliation(s)
- Michael A Smith
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Interdomain lateral gene transfer of an essential ferrochelatase gene in human parasitic nematodes. Proc Natl Acad Sci U S A 2013; 110:7748-53. [PMID: 23610429 DOI: 10.1073/pnas.1304049110] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Lateral gene transfer events between bacteria and animals highlight an avenue for evolutionary genomic loss/gain of function. Herein, we report functional lateral gene transfer in animal parasitic nematodes. Members of the Nematoda are heme auxotrophs, lacking the ability to synthesize heme; however, the human filarial parasite Brugia malayi has acquired a bacterial gene encoding ferrochelatase (BmFeCH), the terminal step in heme biosynthesis. BmFeCH, encoded by a 9-exon gene, is a mitochondrial-targeted, functional ferrochelatase based on enzyme assays, complementation, and inhibitor studies. Homologs have been identified in several filariae and a nonfilarial nematode. RNAi and ex vivo inhibitor experiments indicate that BmFeCH is essential for viability, validating it as a potential target for filariasis control.
Collapse
|
31
|
Chew YL, Fan X, Götz J, Nicholas HR. PTL-1 regulates neuronal integrity and lifespan in C. elegans. J Cell Sci 2013; 126:2079-91. [PMID: 23525010 DOI: 10.1242/jcs.jcs124404] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein with tau-like repeats (PTL-1) is the sole Caenorhabditis elegans homolog of tau and MAP2, which are members of the mammalian family of microtubule-associated proteins (MAPs). In mammalian neurons, tau and MAP2 are segregated, with tau being mainly localised to the axon and MAP2 mainly to the dendrite. In particular, tau plays a crucial role in pathology, as elevated levels lead to the formation of tau aggregates in many neurodegenerative conditions including Alzheimer's disease. We used PTL-1 in C. elegans to model the biological functions of a tau-like protein without the complication of functional redundancy that is observed among the mammalian MAPs. Our findings indicate that PTL-1 is important for the maintenance of neuronal health as animals age, as well as in the regulation of whole organism lifespan. In addition, gene dosage of PTL-1 is crucial because variations from wild-type levels are detrimental. We also observed that human tau is unable to robustly compensate for loss of PTL-1, although phenotypes observed in tau transgenic worms are dependent on the presence of endogenous PTL-1. Our data suggest that some of the effects of tau pathology result from the loss of physiological tau function and not solely from a toxic gain-of-function due to accumulation of tau.
Collapse
Affiliation(s)
- Yee Lian Chew
- School of Molecular Bioscience, University of Sydney, New South Wales, 2006, Australia
| | | | | | | |
Collapse
|
32
|
Duncan JS, Fritzsch B. Evolution of Sound and Balance Perception: Innovations that Aggregate Single Hair Cells into the Ear and Transform a Gravistatic Sensor into the Organ of Corti. Anat Rec (Hoboken) 2012; 295:1760-74. [DOI: 10.1002/ar.22573] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 01/20/2023]
|
33
|
Zou Y, Chiu H, Domenger D, Chuang CF, Chang C. The lin-4 microRNA targets the LIN-14 transcription factor to inhibit netrin-mediated axon attraction. Sci Signal 2012; 5:ra43. [PMID: 22692424 DOI: 10.1126/scisignal.2002437] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
miR-125 microRNAs, such as lin-4 in Caenorhabditis elegans, were among the first microRNAs discovered, are phylogenetically conserved, and have been implicated in regulating developmental timing. Here, we showed that loss-of-function mutations in lin-4 microRNA increased axon attraction mediated by the netrin homolog UNC-6. The absence of lin-4 microRNA suppressed the axon guidance defects of anterior ventral microtubule (AVM) neurons caused by loss-of-function mutations in slt-1, which encodes a repulsive guidance cue. Selective expression of lin-4 microRNA in AVM neurons of lin-4-null animals indicated that the effect of lin-4 on AVM axon guidance was cell-autonomous. Promoter reporter analysis suggested that lin-4 was likely expressed strongly in AVM neurons during the developmental time frame that the axons are guided to their targets. In contrast, the lin-4 reporter was barely detectable in anterior lateral microtubule (ALM) neurons, axon guidance of which is insensitive to netrin. In AVM neurons, the transcription factor LIN-14, a target of lin-4 microRNA, stimulated UNC-6-mediated ventral guidance of the AVM axon. LIN-14 promoted attraction of the AVM axon through the UNC-6 receptor UNC-40 [the worm homolog of vertebrate Deleted in Colorectal Cancer (DCC)] and its cofactor MADD-2, which signals through both the UNC-34 (Ena) and the CED-10 (Rac1) downstream pathways. LIN-14 stimulated UNC-6-mediated axon attraction in part by increasing UNC-40 abundance. Our study indicated that lin-4 microRNA reduced the activity of LIN-14 to terminate UNC-6-mediated axon guidance of AVM neurons.
Collapse
Affiliation(s)
- Yan Zou
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
34
|
The core apoptotic executioner proteins CED-3 and CED-4 promote initiation of neuronal regeneration in Caenorhabditis elegans. PLoS Biol 2012; 10:e1001331. [PMID: 22629231 PMCID: PMC3358320 DOI: 10.1371/journal.pbio.1001331] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/03/2012] [Indexed: 12/03/2022] Open
Abstract
Laser severing of individual axons in the nematode Caenorhabditis elegans revealed that the apoptotic executioner caspase CED-3 and its regulator CED-4/Apaf-1 play an unexpected beneficial role in promoting axonal regeneration. A critical accomplishment in the rapidly developing field of regenerative medicine will be the ability to foster repair of neurons severed by injury, disease, or microsurgery. In C. elegans, individual visualized axons can be laser-cut in vivo and neuronal responses to damage can be monitored to decipher genetic requirements for regeneration. With an initial interest in how local environments manage cellular debris, we performed femtosecond laser axotomies in genetic backgrounds lacking cell death gene activities. Unexpectedly, we found that the CED-3 caspase, well known as the core apoptotic cell death executioner, acts in early responses to neuronal injury to promote rapid regeneration of dissociated axons. In ced-3 mutants, initial regenerative outgrowth dynamics are impaired and axon repair through reconnection of the two dissociated ends is delayed. The CED-3 activator, CED-4/Apaf-1, similarly promotes regeneration, but the upstream regulators of apoptosis CED-9/Bcl2 and BH3-domain proteins EGL-1 and CED-13 are not essential. Thus, a novel regulatory mechanism must be utilized to activate core apoptotic proteins for neuronal repair. Since calcium plays a conserved modulatory role in regeneration, we hypothesized calcium might play a critical regulatory role in the CED-3/CED-4 repair pathway. We used the calcium reporter cameleon to track in vivo calcium fluxes in the axotomized neuron. We show that when the endoplasmic reticulum calcium-storing chaperone calreticulin, CRT-1, is deleted, both calcium dynamics and initial regenerative outgrowth are impaired. Genetic data suggest that CED-3, CED-4, and CRT-1 act in the same pathway to promote early events in regeneration and that CED-3 might act downstream of CRT-1, but upstream of the conserved DLK-1 kinase implicated in regeneration across species. This study documents reconstructive roles for proteins known to orchestrate apoptotic death and links previously unconnected observations in the vertebrate literature to suggest a similar pathway may be conserved in higher organisms. Clinical success in reconnecting neurons damaged by injury will require detailed molecular understanding of how mature axons respond to being severed. To decipher intrinsic molecular pathways that stimulate axon regeneration, we use the small transparent model, Caenorhabditis elegans, in which individual labeled axons can be laser-severed without damage to neighboring tissue, and regrowing axons can be observed directly in the living animal. We find that the apoptotic protein CED-3, well known for its developmental roles in cell death, also unexpectedly acts in a beneficial role to promote regeneration of severed axons. Initial post-surgery outgrowth is impaired in a ced-3 mutant, suggesting that CED-3 is involved in the early steps of axonal regeneration. The activation of CED-3 caspase in this context occurs independently of major cell death regulatory pathways, but efficient regeneration does require the caspase activator CED-4/Apaf-1, the conserved regeneration kinase DLK-1, and calreticulin-dependent calcium fluxes within the severed neuron. Our data suggest a novel conserved pathway for neuronal reconstruction, and call into question the practice of blocking caspases to treat neuronal injury in the clinic.
Collapse
|
35
|
Shared gene expression in distinct neurons expressing common selector genes. Proc Natl Acad Sci U S A 2011; 108:19258-63. [PMID: 22087002 DOI: 10.1073/pnas.1111684108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression of the mec-3/unc-86 selector gene complex induces the differentiation of the touch receptor neurons (TRNs) of Caenorhabditis elegans. These genes are also expressed in another set of embryonically derived mechanosensory neurons, the FLP neurons, but these cells do not share obvious TRN traits or proteins. We have identified ~300 genes in each cell type that are up-regulated at least threefold using DNA microarrays. Twenty-three percent of these genes are up-regulated in both cells. Surprisingly, some of the common genes had previously been identified as TRN-specific. Although the FLP neurons contain low amounts of the mRNAs for these TRN genes, they do not have detectable proteins. These results suggest that transcription control is relatively inexact but that these apparent errors of transcription are tolerated and do not alter cell fate. Previous studies showed that loss of the EGL-44 and EGL-46 transcription factors cause the FLP neurons to acquire TRN-like traits. Here, we show that similar changes occur (e.g., the expression of both the TRN mRNAs and proteins) when the FLP neurons ectopically express the auxiliary transcription factor ALR-1 (Aristaless related), which ensures, but does not direct, TRN differentiation. Thus, the FLP neurons can acquire a TRN-like fate but use multiple levels of regulation to ensure they do not. Our data indicate that expression of common master regulators in different cell types can result in inappropriate expression of effector genes. This misexpression makes these cells vulnerable to influences that could cause them to acquire alternative fates.
Collapse
|
36
|
Olsson-Carter K, Slack FJ. The POU transcription factor UNC-86 controls the timing and ventral guidance of Caenorhabditis elegans axon growth. Dev Dyn 2011; 240:1815-25. [PMID: 21656875 PMCID: PMC3307343 DOI: 10.1002/dvdy.22667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2011] [Indexed: 01/24/2023] Open
Abstract
The in vivo mechanisms that coordinate the timing of axon growth and guidance are not well understood. In the Caenorhabditis elegans hermaphrodite specific neurons (HSNs), the lin-4 microRNA controls the stage of axon initiation independent of the UNC-40 and SAX-3 ventral guidance receptors. lin-4 loss-of-function mutants exhibit marked delays in axon outgrowth, while lin-4 overexpression leads to precocious growth in the L3 larval stage. Here, we show that loss of the POU transcription factor UNC-86 not only results in penetrant ventral axon growth defects in in the HSNs, but also causes processes to extend in the L1, three stages earlier than wild-type. This temporal shift is not dependent on UNC-40 or SAX-3, and does not require the presence of lin-4. We propose that unc-86(lf) HSN axons are misguided due to the temporal decoupling of axon initiation and ventral guidance responses.
Collapse
Affiliation(s)
- Katherine Olsson-Carter
- Department of Molecular, Cellular, and Developmental Biology, Yale University, KBT 936, PO Box 208103, New Haven CT 06520-8103, New Haven, CT 06520, USA
| | - Frank J. Slack
- Department of Molecular, Cellular, and Developmental Biology, Yale University, KBT 936, PO Box 208103, New Haven CT 06520-8103, New Haven, CT 06520, USA
| |
Collapse
|
37
|
Abstract
Mechanosensitive ion channels are gated directly by physical stimuli and transduce these stimuli into electrical signals. Several criteria must apply for a channel to be considered mechanically gated. Mechanosensitive channels from bacterial systems have met these criteria, but few eukaryotic channels have been confirmed by the same standards. Recent work has suggested or confirmed that diverse types of channels, including TRP channels, K(2P) channels, MscS-like proteins, and DEG/ENaC channels, are mechanically gated. Several studies point to the importance of the plasma membrane for channel gating, but intracellular and/or extracellular structures may also be required.
Collapse
Affiliation(s)
- Jóhanna Arnadóttir
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | |
Collapse
|
38
|
Hokii Y, Sasano Y, Sato M, Sakamoto H, Sakata K, Shingai R, Taneda A, Oka S, Himeno H, Muto A, Fujiwara T, Ushida C. A small nucleolar RNA functions in rRNA processing in Caenorhabditis elegans. Nucleic Acids Res 2010; 38:5909-18. [PMID: 20460460 PMCID: PMC2943600 DOI: 10.1093/nar/gkq335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CeR-2 RNA is one of the newly identified Caenorhabditis elegans noncoding RNAs (ncRNAs). The characterization of CeR-2 by RNomic studies has failed to classify it into any known ncRNA family. In this study, we examined the spatiotemporal expression patterns of CeR-2 to gain insight into its function. CeR-2 is expressed in most cells from the early embryo to adult stages. The subcellular localization of this RNA is analogous to that of fibrillarin, a major protein of the nucleolus. It was observed that knockdown of C/D small nucleolar ribonucleoproteins (snoRNPs), but not of H/ACA snoRNPs, resulted in the aberrant nucleolar localization of CeR-2 RNA. A mutant worm with a reduced amount of cellular CeR-2 RNA showed changes in its pre-rRNA processing pattern compared with that of the wild-type strain N2. These results suggest that CeR-2 RNA is a C/D snoRNA involved in the processing of rRNAs.
Collapse
Affiliation(s)
- Yusuke Hokii
- Functional Genomics and Technology, United Graduate School of Agricultural Science, Iwate University, 18-8 Ueda 3-chome, Morioka 020-8550
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
mec-15 encodes an F-box protein required for touch receptor neuron mechanosensation, synapse formation and development. Genetics 2009; 183:607-17, 1SI-4SI. [PMID: 19652181 DOI: 10.1534/genetics.109.105726] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selective protein degradation is a key regulator of neuronal development and synaptogenesis. Complexes that target proteins for degradation often contain F-box proteins. Here we characterize MEC-15, an F-box protein with WD repeats, which is required for the development and function of Caenorhabditis elegans touch receptor neurons (TRNs). Mutations in mec-15 produce defects in TRN touch sensitivity, chemical synapse formation, and cell-body morphology. All mec-15 mutant phenotypes are enhanced by mutations in a MAP kinase pathway composed of the MAPKKK DLK-1, the MAPKK MKK-4, and the p38 MAPK PMK-3. A mutation of the rpm-1 gene, which encodes an E3 ubiquitin ligase that negatively regulates this pathway to promote synaptogenesis, suppresses only the mec-15 cell-body defect. Thus, MEC-15 acts in parallel with RPM-1, implicating a second protein degradation pathway in TRN development. In addition, all mec-15 phenotypes can be dominantly suppressed by mutations in mec-7, which encodes a beta-tubulin, and dominantly enhanced by mutations in mec-12, which encodes an alpha-tubulin. Since mec-15 phenotypes depend on the relative levels of these tubulins, MEC-15 may target proteins whose function is affected by these levels.
Collapse
|
40
|
Jovelin R. Rapid sequence evolution of transcription factors controlling neuron differentiation in Caenorhabditis. Mol Biol Evol 2009; 26:2373-86. [PMID: 19589887 DOI: 10.1093/molbev/msp142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Whether phenotypic evolution proceeds predominantly through changes in regulatory sequences is a controversial issue in evolutionary genetics. Ample evidence indicates that the evolution of gene regulatory networks via changes in cis-regulatory sequences is an important determinant of phenotypic diversity. However, recent experimental work suggests that the role of transcription factor (TF) divergence in developmental evolution may be underestimated. In order to help understand what levels of constraints are acting on the coding sequence of developmental regulatory genes, evolutionary rates were investigated among 48 TFs required for neuronal development in Caenorhabditis elegans. Allelic variation was then sampled for 28 of these genes within a population of the related species Caenorhabditis remanei. Neuronal TFs are more divergent, both within and between species, than structural genes. TFs affecting different neuronal classes are under different levels of selective constraints. The regulatory genes controlling the differentiation of chemosensory neurons evolve particularly fast and exhibit higher levels of within- and between-species nucleotide variation than TFs required for the development of several neuronal classes and TFs required for motorneuron differentiation. The TFs affecting chemosensory neuron development are also more divergent than chemosensory genes expressed in the neurons they differentiate. These results illustrate that TFs are not as highly constrained as commonly thought and suggest that the role of divergence in developmental regulatory genes during the evolution of gene regulatory networks requires further attention.
Collapse
Affiliation(s)
- Richard Jovelin
- Center for Ecology and Evolutionary Biology, University of Oregon, Oregon, USA.
| |
Collapse
|
41
|
Regulatory logic of neuronal diversity: terminal selector genes and selector motifs. Proc Natl Acad Sci U S A 2008; 105:20067-71. [PMID: 19104055 DOI: 10.1073/pnas.0806070105] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Individual neuronal cell types are defined by the expression of unique batteries of terminal differentiation genes. The elucidation of the cis-regulatory architecture of several distinct, single neuron type-specific gene batteries in Caenorhabditis elegans has revealed a strikingly simple cis-regulatory logic, in which small cis-regulatory motifs are activated in postmitotic neurons by autoregulating transcription factors (TFs). Loss of the TFs results in the loss of the identity of the individual neuron type. I propose to term these TFs "terminal selector genes" and their cognate cis-regulatory target sites "terminal selector motifs." Terminal selector genes assign individual neuronal identities by directly controlling the expression of downstream, terminal differentiation genes and act in specific regulatory network configurations. The simplicity of the cis-regulatory logic on which the terminal selector gene concept is based may contribute to the evolvability of neuronal diversity.
Collapse
|
42
|
Tsechpenakis G, Bianchi L, Metaxas D, Driscoll M. A novel computational approach for simultaneous tracking and feature extraction of C. elegans populations in fluid environments. IEEE Trans Biomed Eng 2008; 55:1539-49. [PMID: 18440900 DOI: 10.1109/tbme.2008.918582] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nematode Caenorhabditis elegans (C. elegans) is a genetic model widely used to dissect conserved basic biological mechanisms of development and nervous system function. C. elegans locomotion is under complex neuronal regulation and is impacted by genetic and environmental factors; thus, its analysis is expected to shed light on how genetic, environmental, and pathophysiological processes control behavior. To date, computer-based approaches have been used for analysis of C. elegans locomotion; however, none of these is both high resolution and high throughput. We used computer vision methods to develop a novel automated approach for analyzing the C. elegans locomotion. Our method provides information on the position, trajectory, and body shape during locomotion and is designed to efficiently track multiple animals (C. elegans) in cluttered images and under lighting variations. We used this method to describe in detail C. elegans movement in liquid for the first time and to analyze six unc-8, one mec-4, and one odr-1 mutants. We report features of nematode swimming not previously noted and show that our method detects differences in the swimming profile of mutants that appear at first glance similar.
Collapse
Affiliation(s)
- Gabriel Tsechpenakis
- Department of Electrical and Computer Engineering, University of Miami, Miami, FL 33124, USA.
| | | | | | | |
Collapse
|
43
|
Profile of Martin Chalfie. Proc Natl Acad Sci U S A 2008; 105:1393-5. [DOI: 10.1073/pnas.0704615105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Mechanotransduction: Touch and Feel at the Molecular Level as Modeled in Caenorhabditis elegans. Mol Neurobiol 2007; 36:254-71. [DOI: 10.1007/s12035-007-8009-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 08/30/2007] [Indexed: 01/07/2023]
|
45
|
Cho H, Koo JY, Kim S, Park SP, Yang Y, Oh U. A novel mechanosensitive channel identified in sensory neurons. Eur J Neurosci 2006; 23:2543-50. [PMID: 16817857 DOI: 10.1111/j.1460-9568.2006.04802.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mechanosensitive (MS) channels are ion channels gated by different types of mechanical stimuli. MS channels in sensory neurons are thought to be molecular transducers for somatic sensations such as touch, pressure, proprioception and pain. Previously, we reported that two types of MS channels are present in sensory neurons. These channels are termed low threshold (LT) and high threshold (HT) MS channels based on their pressure threshold for activation. Here, we report another type of MS channel present in sensory neurons. The channel is activated by low pressure applied to a patch (threshold approximately 20 mmHg, similar to that in the LT channel). However, because this channel has a smaller single-channel conductance than that of the LT channel, the newly classified MS channel is now called a low threshold small conductance (LTSC) channel. Unlike the LT channel, which has outwardly rectifying currents, the current-voltage relationship of the LTSC is linear. The LTSC was permeable to monovalent cations and Ca2+, and reversibly blocked by gadolinium, a blocker of MS channels. Unlike the LT channel, the LTSC was sensitized by prostaglandin E2, an inflammatory mediator that is known to sensitize nociceptors to mechanical stimuli. LTSC channels were found mostly in small cultured sensory neurons. Thus, these results suggest that the LTSC is a distinct type of MS channel that is different from the LT and HT channels in sensory neurons, and that LTSCs might play a role in mediating somatosensations, including pain.
Collapse
Affiliation(s)
- Hawon Cho
- The Sensory Research Centre, Creative Research Initiatives, Seoul National University, College of Pharmacy, Kwanak, Shinlim 9-dong, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
46
|
Aamodt E, Aamodt S. Neural specification and differentiation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 69:73-97. [PMID: 16492462 DOI: 10.1016/s0074-7742(05)69003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Eric Aamodt
- Department of Biochemistry, Louisiana State University Health Sciences Center-Shreveport, Louisiana, USA
| | | |
Collapse
|
47
|
Abstract
Genetic studies of behavior in the nematode Caenorhabditis elegans have provided an effective approach to investigate the molecular and cellular basis of nervous system function and development. Among the best studied behaviors is egg-laying, the process by which hermaphrodites deposit developing embryos into the environment. Egg-laying involves a simple motor program involving a small network of motorneurons and specialized smooth muscle cells, which is regulated by a variety of sensory stimuli. Analysis of egg-laying-defective mutants has provided insight into a number of conserved processes in nervous system development, including neurogenesis, cell migration, and synaptic patterning, as well as aspects of excitable cell signal transduction and neuromodulation.
Collapse
Affiliation(s)
- William F Schafer
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0349, USA.
| |
Collapse
|
48
|
Royal DC, Bianchi L, Royal MA, Lizzio M, Mukherjee G, Nunez YO, Driscoll M. Temperature-sensitive mutant of the Caenorhabditis elegans neurotoxic MEC-4(d) DEG/ENaC channel identifies a site required for trafficking or surface maintenance. J Biol Chem 2005; 280:41976-86. [PMID: 16239217 DOI: 10.1074/jbc.m510732200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DEG/ENaC channel subunits are two transmembrane domain proteins that assemble into heteromeric complexes to perform diverse biological functions that include sensory perception, electrolyte balance, and synaptic plasticity. Hyperactivation of neuronally expressed DEG/ENaCs that conduct both Na+ and Ca2+, however, can potently induce necrotic neuronal death in vivo. For example, Caenorhabditis elegans DEG/ENaC MEC-4 comprises the core subunit of a touch-transducing ion channel critical for mechanosensation that when hyperactivated by a mec-4(d) mutation induces necrosis of the sensory neurons in which it is expressed. Thus, studies of the MEC-4 channel have provided insight into both normal channel biology and neurotoxicity mechanisms. Here we report on intragenic mec-4 mutations identified in a screen for suppressors of mec-4(d)-induced necrosis, with a focus on detailed characterization of allele bz2 that has the distinctive phenotype of inducing dramatic neuronal swelling without being fully penetrant for toxicity. The bz2 mutation encodes substitution A745T, which is situated in the intracellular C-terminal domain of MEC-4. We show that this substitution renders both MEC-4 and MEC-4(d) activity strongly temperature sensitive. In addition, we show that both in Xenopus oocytes and in vivo, substitution A745T disrupts channel trafficking or maintenance of the MEC-4 subunit at the cell surface. This is the first demonstration of a C-terminal domain that affects trafficking of a neuronally expressed DEG/ENaC. Moreover, this study reveals that neuronal swelling occurs prior to commitment to necrotic death and defines a powerful new tool for inducible necrosis initiation.
Collapse
Affiliation(s)
- Dewey C Royal
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Kim K, Colosimo ME, Yeung H, Sengupta P. The UNC-3 Olf/EBF protein represses alternate neuronal programs to specify chemosensory neuron identity. Dev Biol 2005; 286:136-48. [PMID: 16143323 DOI: 10.1016/j.ydbio.2005.07.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/14/2005] [Accepted: 07/15/2005] [Indexed: 11/30/2022]
Abstract
Neuronal identities are specified by the combinatorial functions of activators and repressors of gene expression. Members of the well-conserved Olf/EBF (O/E) transcription factor family have been shown to play important roles in neuronal and non-neuronal development and differentiation. O/E proteins are highly expressed in the olfactory epithelium, and O/E binding sites have been identified upstream of olfactory genes. However, the roles of O/E proteins in sensory neuron development are unclear. Here we show that the O/E protein UNC-3 is required for subtype specification of the ASI chemosensory neurons in Caenorhabditis elegans. UNC-3 promotes an ASI identity by directly repressing the expression of alternate neuronal programs and by activating expression of ASI-specific genes including the daf-7 TGF-beta gene. Our results indicate that UNC-3 is a critical component of the transcription factor code that integrates cell-intrinsic developmental programs with external signals to specify sensory neuronal identity and suggest models for O/E protein functions in other systems.
Collapse
Affiliation(s)
- Kyuhyung Kim
- Department of Biology and Volen Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
50
|
O'Hagan R, Chalfie M. Mechanosensation in Caenorhabditis elegans. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 69:169-203. [PMID: 16492465 DOI: 10.1016/s0074-7742(05)69006-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Robert O'Hagan
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | | |
Collapse
|