1
|
Liu Y, Lau X, Munusamy P, Sanchez CMAS, Snell D, Sangrithi M. Single-cell RNA-seq identifies protracted mouse germline X chromosome reactivation dynamics directed by a PRC2-dependent mechanism. Dev Cell 2025; 60:1321-1335.e5. [PMID: 39798575 DOI: 10.1016/j.devcel.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/05/2024] [Accepted: 12/11/2024] [Indexed: 01/15/2025]
Abstract
Female primordial germ cells (PGCs) undergo X chromosome reactivation (XCR) during genome-wide reprogramming. XCR kinetics and dynamics are poorly understood at a molecular level. Here, we apply single-cell RNA sequencing and chromatin profiling on germ cells from F1 mouse embryos, performing a precise appraisal of XCR spanning from migratory-stage PGCs to gonadal germ cells. Establishment of germ cell sexual dimorphism and X chromosome dosage compensation states in vivo are temporally linked to XCR. Allele-specific analysis evidence that the reactivating X chromosome is minimally active in embryonic day (E)9.5 female PGCs, reactivates gradually, and reaches parity to the active X chromosome in E16.5 oogonia. While Xist is repressed from E10.5 onward, epigenetic memory of X inactivation persists from self-sustained polycomb repressive complex 2 (PRC2) activity. The reactivating X is asymmetrically enriched for histone 3-lysine-27-trimethylation (H3K27me3) at E13.5, which is later reversed, permitting germline gene expression. Our findings relate XCR with PRC2 function in promoting female meiosis.
Collapse
Affiliation(s)
- Yaqiong Liu
- King's College London, Centre for Gene Therapy and Regenerative Medicine, School of Basic & Medical Biosciences, Faculty of Life Sciences and Medicine, London, UK
| | - Xianzhong Lau
- KK Women's and Children Hospital, Division of Obstetrics and Gynaecology, Singapore, Singapore
| | - Prabhakaran Munusamy
- KK Women's and Children Hospital, Division of Obstetrics and Gynaecology, Singapore, Singapore
| | - Carlos M Abascal Sherwell Sanchez
- King's College London, Centre for Gene Therapy and Regenerative Medicine, School of Basic & Medical Biosciences, Faculty of Life Sciences and Medicine, London, UK
| | | | - Mahesh Sangrithi
- King's College London, Centre for Gene Therapy and Regenerative Medicine, School of Basic & Medical Biosciences, Faculty of Life Sciences and Medicine, London, UK; King's College London, Guy's Hospital Assisted Conception Unit, Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, London, UK.
| |
Collapse
|
2
|
Roidor C, Syx L, Beyne E, Raynaud P, Zielinski D, Teissandier A, Lee C, Walter M, Servant N, Chebli K, Bourc'his D, Surani MA, Borensztein M. Temporal and regional X-linked gene reactivation in the mouse germline reveals site-specific retention of epigenetic silencing. Nat Struct Mol Biol 2025; 32:926-939. [PMID: 39838109 DOI: 10.1038/s41594-024-01469-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/06/2024] [Indexed: 01/23/2025]
Abstract
Random X-chromosome inactivation is a hallmark of female mammalian somatic cells. This epigenetic mechanism, mediated by the long noncoding RNA Xist, occurs in the early embryo and is stably maintained throughout life, although inactivation is lost during primordial germ cell (PGC) development. Using a combination of single-cell allele-specific RNA sequencing and low-input chromatin profiling on developing mouse PGCs, we provide a detailed map of X-linked gene reactivation. Despite the absence of Xist expression, PGCs still harbor a fully silent X chromosome at embryonic day 9.5 (E9.5). Subsequently, X-linked genes undergo gradual and distinct regional reactivation. At E12.5, a substantial part of the inactive X chromosome resists reactivation, retaining an epigenetic memory of its silencing. Our findings define the orchestration of reactivation of the inactive X chromosome, a key event in female PGC reprogramming with direct implications for reproduction.
Collapse
Affiliation(s)
- Clara Roidor
- IGMM, University of Montpellier, CNRS, Montpellier, France
| | - Laurène Syx
- INSERM U900, Mines ParisTech, Institut Curie, PSL Research University, Paris, France
| | | | - Peggy Raynaud
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Dina Zielinski
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Aurélie Teissandier
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Caroline Lee
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Marius Walter
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Nicolas Servant
- INSERM U900, Mines ParisTech, Institut Curie, PSL Research University, Paris, France
| | - Karim Chebli
- IGMM, University of Montpellier, CNRS, Montpellier, France
| | - Deborah Bourc'his
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - M Azim Surani
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Maud Borensztein
- IGMM, University of Montpellier, CNRS, Montpellier, France.
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Holuka C, Grova N, Charalambous EG, Le Cléac H J, Turner JD, Mposhi A. Transgenerational impacts of early life adversity: from health determinants, implications to epigenetic consequences. Neurosci Biobehav Rev 2024; 164:105785. [PMID: 38945418 DOI: 10.1016/j.neubiorev.2024.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Exposure to different environmental factors, social and socioeconomic factors promotes development of the early-life adversity (ELA) phenotype. The persistence of this phenotype across generations is an interesting phenomenon that remains unexplored. Of late many studies have focused on disease-associated outcomes of ELA following exposure during childhood but the persistence of epigenetic imprints transmitted by ELA exposed parents to their offspring remains poorly described. It is possible that both parents are able to transmit ELA-associated genetic imprints to their offspring via transgenerational inheritance mechanisms. Here, we highlight the role of the mother and father in the biological process of conception, from epigenetic reprogramming cycles to later environmental exposures. We explain some of the known determinants of ELA (pollution, socioeconomic challenges, infections, etc.) and their disease-associated outcomes. Finally, we highlight the role of epigenetics, mitochondria and ncRNAs as mechanisms mediating transgenerational inheritance. Whether these transgenerational inheritance mechanisms occur in the human context remains unclear but there is a large body of suggestive evidence in non-human models that points out to its existence.
Collapse
Affiliation(s)
- Cyrielle Holuka
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg; Faculty of Science, University of Luxembourg, Belval L-4365, Luxembourg
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, Nancy 54511, France
| | - Eleftheria G Charalambous
- Department of Psychiatry and Psychotherapy, University Medecine Greifswald, Ellernholzstr. 1-2, Greifswald 17489, Germany; Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus
| | - Jeanne Le Cléac H
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg; Faculty of Science, University of Luxembourg, Belval L-4365, Luxembourg
| | - Jonathan D Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg.
| | - Archibold Mposhi
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| |
Collapse
|
4
|
Gyobu‐Motani S, Yabuta Y, Mizuta K, Katou Y, Okamoto I, Kawasaki M, Kitamura A, Tsukiyama T, Iwatani C, Tsuchiya H, Tsujimura T, Yamamoto T, Nakamura T, Saitou M. Induction of fetal meiotic oocytes from embryonic stem cells in cynomolgus monkeys. EMBO J 2023; 42:e112962. [PMID: 36929479 PMCID: PMC10152148 DOI: 10.15252/embj.2022112962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
Human in vitro oogenesis provides a framework for clarifying the mechanism of human oogenesis. To create its benchmark, it is vital to promote in vitro oogenesis using a model physiologically close to humans. Here, we establish a foundation for in vitro oogenesis in cynomolgus (cy) monkeys (Macaca fascicularis): cy female embryonic stem cells harboring one active and one inactive X chromosome (Xa and Xi, respectively) differentiate robustly into primordial germ cell-like cells, which in xenogeneic reconstituted ovaries develop efficiently into oogonia and, remarkably, further into meiotic oocytes at the zygotene stage. This differentiation entails comprehensive epigenetic reprogramming, including Xi reprogramming, yet Xa and Xi remain epigenetically asymmetric with, as partly observed in vivo, incomplete Xi reactivation. In humans and monkeys, the Xi epigenome in pluripotent stem cells functions as an Xi-reprogramming determinant. We further show that developmental pathway over-activations with suboptimal up-regulation of relevant meiotic genes impede in vitro meiotic progression. Cy in vitro oogenesis exhibits critical homology with the human system, including with respect to bottlenecks, providing a salient model for advancing human in vitro oogenesis.
Collapse
Affiliation(s)
- Sayuri Gyobu‐Motani
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ken Mizuta
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yoshitaka Katou
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ikuhiro Okamoto
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masanori Kawasaki
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ayaka Kitamura
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Chizuru Iwatani
- Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Hideaki Tsuchiya
- Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Taro Tsujimura
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Center for Advanced Intelligence Project, RIKENTokyoJapan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
- The Hakubi Center for Advanced ResearchKyoto UniversityKyotoJapan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| |
Collapse
|
5
|
Keniry A, Jansz N, Hickey PF, Breslin KA, Iminitoff M, Beck T, Gouil Q, Ritchie ME, Blewitt ME. A method for stabilising the XX karyotype in female mESC cultures. Development 2022; 149:285125. [PMID: 36355065 PMCID: PMC10112917 DOI: 10.1242/dev.200845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/30/2022] [Indexed: 11/12/2022]
Abstract
Female mouse embryonic stem cells (mESCs) present differently from male mESCs in several fundamental ways; however, complications with their in vitro culture have resulted in an under-representation of female mESCs in the literature. Recent studies show that the second X chromosome in female, and more specifically the transcriptional activity from both of these chromosomes due to absent X chromosome inactivation, sets female and male mESCs apart. To avoid this undesirable state, female mESCs in culture preferentially adopt an XO karyotype, with this adaption leading to loss of their unique properties in favour of a state that is near indistinguishable from male mESCs. If female pluripotency is to be studied effectively in this system, it is crucial that high-quality cultures of XX mESCs are available. Here, we report a method for better maintaining XX female mESCs in culture that also stabilises the male karyotype and makes study of female-specific pluripotency more feasible.
Collapse
Affiliation(s)
- Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Natasha Jansz
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter F Hickey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kelsey A Breslin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Megan Iminitoff
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tamara Beck
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Quentin Gouil
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
6
|
BAF complex-mediated chromatin relaxation is required for establishment of X chromosome inactivation. Nat Commun 2022; 13:1658. [PMID: 35351876 PMCID: PMC8964718 DOI: 10.1038/s41467-022-29333-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The process of epigenetic silencing, while fundamentally important, is not yet completely understood. Here we report a replenishable female mouse embryonic stem cell (mESC) system, Xmas, that allows rapid assessment of X chromosome inactivation (XCI), the epigenetic silencing mechanism of one of the two X chromosomes that enables dosage compensation in female mammals. Through a targeted genetic screen in differentiating Xmas mESCs, we reveal that the BAF complex is required to create nucleosome-depleted regions at promoters on the inactive X chromosome during the earliest stages of establishment of XCI. Without this action gene silencing fails. Xmas mESCs provide a tractable model for screen-based approaches that enable the discovery of unknown facets of the female-specific process of XCI and epigenetic silencing more broadly. Female embryonic stem cells (ESCs) are the ideal model to study X chromosome inactivation (XCI) establishment; however, these cells are challenging to keep in culture. Here the authors create fluorescent ‘Xmas’ reporter mice as a renewable source of ESCs and show nucleosome remodelers Smarcc1 and Smarca4 create a nucleosome-free promoter region prior to the establishment of silencing.
Collapse
|
7
|
Generation of developmentally competent oocytes and fertile mice from parthenogenetic embryonic stem cells. Protein Cell 2021; 12:947-964. [PMID: 34845589 PMCID: PMC8674391 DOI: 10.1007/s13238-021-00865-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Parthenogenetic embryos, created by activation and diploidization of oocytes, arrest at mid-gestation for defective paternal imprints, which impair placental development. Also, viable offspring has not been obtained without genetic manipulation from parthenogenetic embryonic stem cells (pESCs) derived from parthenogenetic embryos, presumably attributable to their aberrant imprinting. We show that an unlimited number of oocytes can be derived from pESCs and produce healthy offspring. Moreover, normal expression of imprinted genes is found in the germ cells and the mice. pESCs exhibited imprinting consistent with exclusively maternal lineage, and higher X-chromosome activation compared to female ESCs derived from the same mouse genetic background. pESCs differentiated into primordial germ cell-like cells (PGCLCs) and formed oocytes following in vivo transplantation into kidney capsule that produced fertile pups and reconstituted ovarian endocrine function. The transcriptome and methylation of imprinted and X-linked genes in pESC-PGCLCs closely resembled those of in vivo produced PGCs, consistent with efficient reprogramming of methylation and genomic imprinting. These results demonstrate that amplification of germ cells through parthenogenesis faithfully maintains maternal imprinting, offering a promising route for deriving functional oocytes and having potential in rebuilding ovarian endocrine function.
Collapse
|
8
|
Zeng S, Hua Y, Zhang Y, Liu G, Zhao C. GLEANER: a web server for GermLine cycle Expression ANalysis and Epigenetic Roadmap visualization. BMC Bioinformatics 2021; 22:289. [PMID: 34058973 PMCID: PMC8165803 DOI: 10.1186/s12859-021-04217-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Germline cells are important carriers of genetic and epigenetic information transmitted across generations in mammals. During the mammalian germline cell development cycle (i.e., the germline cycle), cell potency changes cyclically, accompanied by dynamic transcriptional changes and epigenetic reprogramming. Recently, to understand these dynamic and regulatory mechanisms, multiomic analyses, including transcriptomic and epigenomic analyses of DNA methylation, chromatin accessibility and histone modifications of germline cells, have been performed for different stages in human and mouse germline cycles. However, the long time span of the germline cycle and material scarcity of germline cells have largely limited the understanding of these dynamic characteristic changes. A tool that integrates the existing multiomics data and visualizes the overall continuous dynamic trends in the germline cycle can partially overcome such limitations. RESULTS Here, we present GLEANER, a web server for GermLine cycle Expression ANalysis and Epigenetics Roadmap visualization. GLEANER provides a comprehensive collection of the transcriptome, DNA methylome, chromatin accessibility, and H3K4me3, H3K27me3, and H3K9me3 histone modification characteristics in human and mouse germline cycles. For each input gene, GLEANER shows the integrative analysis results of its transcriptional and epigenetic features, the genes with correlated transcriptional changes, and the overall continuous dynamic trends in the germline cycle. We further used two case studies to demonstrate the detailed functionality of GLEANER and highlighted that it can provide valuable clues to the epigenetic regulation mechanisms in the genetic and epigenetic information transmitted during the germline cycle. CONCLUSIONS To the best of our knowledge, GLEANER is the first web server dedicated to the analysis and visualization of multiomics data related to the mammalian germline cycle. GLEANER is freely available at http://compbio-zhanglab.org/GLEANER .
Collapse
Affiliation(s)
- Shiyang Zeng
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Yuwei Hua
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Yong Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Guifen Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China.
| | - Chengchen Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
9
|
Mäkelä JA, Koskenniemi JJ, Virtanen HE, Toppari J. Testis Development. Endocr Rev 2019; 40:857-905. [PMID: 30590466 DOI: 10.1210/er.2018-00140] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022]
Abstract
Production of sperm and androgens is the main function of the testis. This depends on normal development of both testicular somatic cells and germ cells. A genetic program initiated from the Y chromosome gene sex-determining region Y (SRY) directs somatic cell specification to Sertoli cells that orchestrate further development. They first guide fetal germ cell differentiation toward spermatogenic destiny and then take care of the full service to spermatogenic cells during spermatogenesis. The number of Sertoli cells sets the limits of sperm production. Leydig cells secrete androgens that determine masculine development. Testis development does not depend on germ cells; that is, testicular somatic cells also develop in the absence of germ cells, and the testis can produce testosterone normally to induce full masculinization in these men. In contrast, spermatogenic cell development is totally dependent on somatic cells. We herein review germ cell differentiation from primordial germ cells to spermatogonia and development of the supporting somatic cells. Testicular descent to scrota is necessary for normal spermatogenesis, and cryptorchidism is the most common male birth defect. This is a mild form of a disorder of sex differentiation. Multiple genetic reasons for more severe forms of disorders of sex differentiation have been revealed during the last decades, and these are described along with the description of molecular regulation of testis development.
Collapse
Affiliation(s)
- Juho-Antti Mäkelä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jaakko J Koskenniemi
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| |
Collapse
|
10
|
Yadu N, Kumar PG. Retinoic acid signaling in regulation of meiosis during embryonic development in mice. Genesis 2019; 57:e23327. [PMID: 31313882 DOI: 10.1002/dvg.23327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/23/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
Abstract
In the embryonic gonads of mice, the genetic and epigenetic regulatory programs for germ cell sex specification and meiosis induction or suppression are intertwined. The quest for garnering comprehensive understanding of these programs has led to the emergence of retinoic acid (RA) as an important extrinsic factor, which regulates initiation of meiosis in female fetal germ cells that have attained a permissive epigenetic ground state. In contrast, germ cells in fetal testis are protected from the exposure to RA due to the activity of CYP26B1, an RA metabolizing enzyme, which is highly expressed in fetal testis. In this review, we provide an overview of the molecular mechanisms operating in fetal gonads of mice, which enable regulation of meiosis via RA signaling.
Collapse
Affiliation(s)
- Nomesh Yadu
- Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Pradeep G Kumar
- Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
11
|
Ambeskovic M, Roseboom TJ, Metz GAS. Transgenerational effects of early environmental insults on aging and disease incidence. Neurosci Biobehav Rev 2017; 117:297-316. [PMID: 28807754 DOI: 10.1016/j.neubiorev.2017.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 06/18/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Abstract
Adverse early life experiences are major influences on developmental trajectories with potentially life-long consequences. Prenatal or early postnatal exposure to stress, undernutrition or environmental toxicants may reprogram brain development and increase risk of behavioural and neurological disorders later in life. Not only experience within a single lifetime, but also ancestral experience affects health trajectories and chances of successful aging. The central mechanism in transgenerational programming of a disease may be the formation of epigenetic memory. This review explores transgenerational effects of early adverse experience on health and disease incidence in older age. First, we address mechanisms of developmental and transgenerational programming of disease and inheritance. Second, we discuss experimental and clinical findings linking early environmental determinants to adverse aging trajectories in association with possible parental contributions and sex-specific effects. Third, we outline the main mechanisms of age-related functional decline and suggest potential interventions to reverse negative effects of transgenerational programming. Thus, strategies that support healthy development and successful aging should take into account the potential influences of transgenerational inheritance.
Collapse
Affiliation(s)
- Mirela Ambeskovic
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K3M4, Canada
| | - Tessa J Roseboom
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, Meibergdreef 9, University of Amsterdam, 1105 AZ Amsterdam, Netherlands; Department of Obstetrics and Gynaecology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K3M4, Canada.
| |
Collapse
|
12
|
Kobayashi S. Live imaging of X chromosome inactivation and reactivation dynamics. Dev Growth Differ 2017; 59:493-500. [PMID: 28635043 PMCID: PMC11520949 DOI: 10.1111/dgd.12365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022]
Abstract
The epigenetic phenomenon called X chromosome inactivation plays critical roles in female development in eutherian mammals, and has attracted attention in the fields of developmental biology and regenerative biology in efforts to understand the pluripotency of stem cells. X chromosome inactivation is routinely studied after cell fixation, but live imaging is increasingly being required to improve our understanding of the dynamics and kinetics of X chromosome inactivation and reactivation processes. Here, we describe our live imaging method to monitor the epigenetic status of X chromosomes using a gene knock-in mouse strain named "Momiji" and give an overview of the application of this strain as a resource for biological and stem cell research.
Collapse
Affiliation(s)
- Shin Kobayashi
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and Technology2‐4‐7 AomiKoutou‐kuTokyo135‐0064Japan
- Department of EpigeneticsMedical Research InstituteTokyo Medical & Dental University1‐5‐45 YushimaBunkyo‐kuTokyo113‐8510Japan
| |
Collapse
|
13
|
Tang WWC, Kobayashi T, Irie N, Dietmann S, Surani MA. Specification and epigenetic programming of the human germ line. Nat Rev Genet 2016; 17:585-600. [DOI: 10.1038/nrg.2016.88] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
How Many Non-coding RNAs Does It Take to Compensate Male/Female Genetic Imbalance? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:33-49. [PMID: 26659486 DOI: 10.1007/978-94-017-7417-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genetic sex determination in mammals relies on dimorphic sex chromosomes that confer phenotypic/physiologic differences between males and females. In this heterogametic system, X and Y chromosomes diverged from an ancestral pair of autosomes, creating a genetic disequilibrium between XX females and XY males. Dosage compensation mechanisms alleviate intrinsic gene dosage imbalance, leading to equal expression levels of most X-linked genes in the two sexes. In therian mammals, this is achieved through inactivation of one of the two X chromosomes in females. Failure to undergo X-chromosome inactivation (XCI) results in developmental arrest and death. Although fundamental for survival, a surprising loose conservation in the mechanisms to achieve XCI during development in therian lineage has been, and continues, to be uncovered. XCI involves the concerted action of non-coding RNAs (ncRNAs), including the well-known Xist RNA, and has thus become a classical paradigm to study the mode of action of this particular class of transcripts. In this chapter, we will describe the processes coping with sex chromosome genetic imbalance and how ncRNAs underlie dosage compensation mechanisms and influence male-female differences in mammals. Moreover, we will discuss how ncRNAs have been tinkered with during therian evolution to adapt XCI mechanistic to species-specific constraints.
Collapse
|
15
|
Jang HJ, Seo HW, Lee BR, Yoo M, Womack JE, Han JY. Gene expression and DNA methylation status of chicken primordial germ cells. Mol Biotechnol 2013; 54:177-86. [PMID: 22678927 DOI: 10.1007/s12033-012-9560-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
DNA methylation reprogramming of primordial germ cells (PGCs) in mammals establishes monoallelic expression of imprinting genes, maintains retrotransposons in an inactive state, inactivates one of the two X chromosomes, and suppresses gene expression. However, the roles of DNA methylation in chickens PGCs are unknown. In this study, we found a 1.5-fold or greater difference in the expression of 261 transcripts when comparing PGCs and chicken embryonic fibroblasts (CEFs) using an Affymetrix GeneChip Chicken Genome Array. In addition, we analyzed the methylation patterns of the regions ~5-kb upstream of 261 sorted genes, 51 of which were imprinting homologous loci and 49 of which were X-linked homologous loci in chicken using the MeDIP Array by Roche NimbleGen. Seven hypomethylated and five hypermethylated regions within the 5-kb upstream regions of 261 genes were found in PGCs when compared with CEFs. These differentially methylated regions were restrictively matched to differentially expressed genes in PGCs. We also detected 203 differentially methylated regions within imprinting and X-linked homologous regions between male PGCs and female PGCs. These differentially methylated regions may be directly or indirectly associated with gene expression during early embryonic development, and the epigenetic difference could be evolutionally conserved between mammals and birds.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
16
|
Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 2012; 338:971-5. [PMID: 23042295 DOI: 10.1126/science.1226889] [Citation(s) in RCA: 519] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reconstitution of female germ cell development in vitro is a key challenge in reproductive biology and medicine. We show here that female (XX) embryonic stem cells and induced pluripotent stem cells in mice are induced into primordial germ cell-like cells (PGCLCs), which, when aggregated with female gonadal somatic cells as reconstituted ovaries, undergo X-reactivation, imprint erasure, and cyst formation, and exhibit meiotic potential. Upon transplantation under mouse ovarian bursa, PGCLCs in the reconstituted ovaries mature into germinal vesicle-stage oocytes, which then contribute to fertile offspring after in vitro maturation and fertilization. Our culture system serves as a robust foundation for the investigation of key properties of female germ cells, including the acquisition of totipotency, and for the reconstitution of whole female germ cell development in vitro.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Female mammalian cells silence one of their two X chromosomes, resulting in equal expression levels of X-encoded genes in female XX and male XY cells. In mice, the X chromosomes in female cells go through sequential steps of inactivation and reactivation. Depending on the developmental time window, imprinted or random X chromosome inactivation (XCI) is initiated, and both processes lead to an inactive X chromosome that is clonally inherited. Here, we review new insights into the life cycle of XCI and provide an overview of the mechanisms regulating X inactivation and reactivation.
Collapse
Affiliation(s)
- Tahsin Stefan Barakat
- Department of Reproduction and Development, Erasmus MC, University Medical Center, 3015GE Rotterdam, The Netherlands
| | | |
Collapse
|
18
|
Saitou M, Kagiwada S, Kurimoto K. Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development 2012; 139:15-31. [PMID: 22147951 DOI: 10.1242/dev.050849] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications are crucial for the identity and stability of cells, and, when aberrant, can lead to disease. During mouse development, the genome-wide epigenetic states of pre-implantation embryos and primordial germ cells (PGCs) undergo extensive reprogramming. An improved understanding of the epigenetic reprogramming mechanisms that occur in these cells should provide important new information about the regulation of the epigenetic state of a cell and the mechanisms of induced pluripotency. Here, we discuss recent findings about the potential mechanisms of epigenetic reprogramming, particularly genome-wide DNA demethylation, in pre-implantation mouse embryos and PGCs.
Collapse
Affiliation(s)
- Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
19
|
Affiliation(s)
| | - Philip Avner
- Mouse Molecular Genetics Unit, Developmental Biology Department, CNRS URA 2578, Institut Pasteur, F-75015 Paris, France;
| |
Collapse
|
20
|
Su J, Wang Y, Liu Q, Yang B, Wu Y, Luo Y, Hu G, Zhang Y. Aberrant mRNA expression and DNA methylation levels of imprinted genes in cloned transgenic calves that died of large offspring syndrome. Livest Sci 2011. [DOI: 10.1016/j.livsci.2011.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet 2011; 12:542-53. [PMID: 21765457 DOI: 10.1038/nrg3035] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In female mammals, one of the two X chromosomes is silenced for dosage compensation between the sexes. X-chromosome inactivation is initiated in early embryogenesis by the Xist RNA that localizes to the inactive X chromosome. During development, the inactive X chromosome is further modified, a specialized form of facultative heterochromatin is formed and gene repression becomes stable and independent of Xist in somatic cells. The recent identification of several factors involved in this process has provided insights into the mechanism of Xist localization and gene silencing. The emerging picture is complex and suggests that chromosome-wide silencing can be partitioned into several steps, the molecular components of which are starting to be defined.
Collapse
|
22
|
Hoki Y, Ikeda R, Mise N, Sakata Y, Ohhata T, Sasaki H, Abe K, Sado T. Incomplete X-inactivation initiated by a hypomorphic Xist allele in the mouse. Development 2011; 138:2649-59. [PMID: 21613321 DOI: 10.1242/dev.061226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
X chromosome inactivation (X-inactivation) in female mammals is triggered by differential upregulation of the Xist gene on one of the two X chromosomes and subsequent coating of the X in cis with its non-coding transcripts. Although targeted mutation has clearly shown that Xist is essential for X-inactivation in cis, the molecular mechanism by which Xist RNA induces chromosome silencing is largely unknown. Here, we demonstrate that an Xist mutant generated previously in mouse by gene targeting, Xist(IVS), is unique in that it partially retains the capacity to silence the X chromosome. Although Xist(IVS) is differentially upregulated and its mutated transcript coats the X chromosome in cis in embryonic and extra-embryonic tissues, X-inactivation thus initiated does not seem to be fully established. The state of such incomplete inactivation is probably unstable and the mutated X is apparently reactivated in a subset of extra-embryonic tissues and, perhaps, early epiblastic cells. Xist(IVS), which can be referred to as a partial loss-of-function mutation, would provide an opportunity to dissect the molecular mechanism of Xist RNA-mediated chromosome silencing.
Collapse
Affiliation(s)
- Yuko Hoki
- Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mechanistic insights into chromosome-wide silencing in X inactivation. Hum Genet 2011; 130:295-305. [PMID: 21567178 DOI: 10.1007/s00439-011-1002-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 04/28/2011] [Indexed: 12/21/2022]
Abstract
In mammals, one of the two X chromosomes in female cells is transcriptionally silenced for dosage compensation between the sexes. Chromosome-wide silencing is initiated by the non-coding Xist RNA that accumulates within the inactive X chromosome territory and triggers gene repression and chromatin modifications. Epigenetic changes of the inactive X chromosome in a developmentally regulated manner result in stable gene repression in female somatic cells. X inactivation is a model for understanding the formation of facultative heterochromatin in mammalian development and represents a paradigm for RNA mediated regulation of gene expression. In this review, we summarize the present knowledge of the mechanism of chromosome-wide silencing and give an outlook on future directions.
Collapse
|
24
|
Trisomy-X with estrous cycle anomalies in two female dogs. Theriogenology 2011; 76:374-80. [PMID: 21550105 DOI: 10.1016/j.theriogenology.2011.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 01/26/2011] [Accepted: 02/11/2011] [Indexed: 11/21/2022]
Abstract
Two female dogs were presented with a history of abnormal estrous cycles and infertility, despite multiple breedings. Medical therapy to correct the cycle anomalies did not result in pregnancy. Cytogenetic analysis of blood lymphocyte cultures in each dog revealed three copies of the X chromosome in each cell, constituting a 79,XXX karyotype (trisomy-X). Both dogs were eventually ovariohysterectomised and histological evaluation revealed hypoplastic ovaries and an absence of normal follicular structures. However, partial or immature follicles were noted, which may have been sufficient to cause both females to initiate cycling. The history and clinical characteristics found in these dogs were compared to those described in three other dogs reported with trisomy-X, as well as those reported in other species. These findings highlighted the importance of cytogenetic studies in fertility evaluation and achieving a definitive diagnosis for infertility in the bitch.
Collapse
|
25
|
Abstract
Primordial germ cells (PGCs) are embryonic progenitors for the gametes. In the gastrulating mouse embryo, a small group of cells begin expressing a unique set of genes and so commit to the germline. Over the next 3-5 days, these PGCs migrate anteriorly and increase rapidly in number via mitotic division before colonizing the newly formed gonads. PGCs then express a different set of unique genes, their inherited epigenetic imprint is erased and an individual methylation imprint is established, and for female PGCs, the silent X chromosome is reactivated. At this point, germ cells (GCs) commit to either a female or male sexual lineage, denoted by meiosis entry and mitotic arrest, respectively. This developmental program is determined by cues emanating from the somatic environment.
Collapse
Affiliation(s)
- Katherine A Ewen
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
26
|
Bowles J, Koopman P. Sex determination in mammalian germ cells: extrinsic versus intrinsic factors. Reproduction 2010; 139:943-58. [DOI: 10.1530/rep-10-0075] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian germ cells do not determine their sexual fate based on their XX or XY chromosomal constitution. Instead, sexual fate is dependent on the gonadal environment in which they develop. In a fetal testis, germ cells commit to the spermatogenic programme of development during fetal life, although they do not enter meiosis until puberty. In a fetal ovary, germ cells commit to oogenesis by entering prophase of meiosis I. Although it was believed previously that germ cells are pre-programmed to enter meiosis unless they are actively prevented from doing so, recent results indicate that meiosis is triggered by a signaling molecule, retinoic acid (RA). Meiosis is avoided in the fetal testis because a male-specifically expressed enzyme actively degrades RA during the critical time period. Additional extrinsic factors are likely to influence sexual fate of the germ cells, and in particular, we postulate that an additional male-specific fate-determining factor or factors is involved. The full complement of intrinsic factors that underlie the competence of gonadal germ cells to respond to RA and other extrinsic factors is yet to be defined.
Collapse
|
27
|
Nicholas CR, Chavez SL, Baker VL, Reijo Pera RA. Instructing an embryonic stem cell-derived oocyte fate: lessons from endogenous oogenesis. Endocr Rev 2009; 30:264-83. [PMID: 19366753 PMCID: PMC2726843 DOI: 10.1210/er.2008-0034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Female reproductive potential is limited in the majority of species due to oocyte depletion. Because functional human oocytes are restricted in number and accessibility, a robust system to differentiate oocytes from stem cells would enable a thorough investigation of the genetic, epigenetic, and environmental factors affecting human oocyte development. Also, the differentiation of functional oocytes from stem cells may permit the success of human somatic cell nuclear transfer for reprogramming studies and for the production of patient-specific embryonic stem cells (ESCs). Thus, ESC-derived oocytes could ultimately help to restore fertility in women. Here, we review endogenous and ESC-derived oocyte development, and we discuss the potential and challenges for differentiating functional oocytes from ESCs.
Collapse
Affiliation(s)
- Cory R Nicholas
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Palo Alto, California 94304, USA.
| | | | | | | |
Collapse
|
28
|
Xist gene regulation at the onset of X inactivation. Curr Opin Genet Dev 2009; 19:122-6. [DOI: 10.1016/j.gde.2009.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/03/2009] [Accepted: 03/10/2009] [Indexed: 11/21/2022]
|
29
|
Abstract
The development of genetic sex determination and cytologically distinct sex chromosomes leads to the potential problem of gene dosage imbalances between autosomes and sex chromosomes and also between males and females. To circumvent these imbalances, mammals have developed an elaborate system of dosage compensation that includes both upregulation and repression of the X chromosome. Recent advances have provided insights into the evolutionary history of how both the imprinted and random forms of X chromosome inactivation have come about. Furthermore, our understanding of the epigenetic switch at the X-inactivation center and the molecular aspects of chromosome-wide silencing has greatly improved recently. Here, we review various facets of the ever-expanding field of mammalian dosage compensation and discuss its evolutionary, developmental, and mechanistic components.
Collapse
Affiliation(s)
- Bernhard Payer
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
30
|
Edwards TM, Myers JP. Environmental exposures and gene regulation in disease etiology. CIENCIA & SAUDE COLETIVA 2009; 13:269-81. [PMID: 18813540 DOI: 10.1590/s1413-81232008000100030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Accepted: 05/21/2007] [Indexed: 12/21/2022] Open
Abstract
Health or disease is shaped for all individuals by interactions between their genes and environment. Exactly how the environment changes gene expression and how this can lead to disease are being explored in a fruitful new approach to environmental health research, representative studies of which are reviewed here. We searched Web of Science and references of relevant publications to understand the diversity of gene regulatory mechanisms affected by environmental exposures with disease implications. Pharmaceuticals, pesticides, air pollutants, industrial chemicals, heavy metals, hormones, nutrition, and behavior can change gene expression through a broad array of gene regulatory mechanisms. Furthermore, chemically induced changes in gene regulation are associated with serious and complex human diseases, including cancer, diabetes and obesity, infertility, respiratory diseases, allergies, and neurodegenerative disorders such as Parkinson and Alzheimer diseases. The reviewed studies indicate that genetic predisposition for disease is best predicted in the context of environmental exposures. And the genetic mechanisms investigated in these studies offer new avenues for risk assessment research. Finally, we are likely to witness dramatic improvements in human health, and reductions in medical costs, if environmental pollution is decreased.
Collapse
Affiliation(s)
- Thea M Edwards
- Department of Zoology, University of Florida, Gainesville, FL 32611, USA.
| | | |
Collapse
|
31
|
Chuva de Sousa Lopes SM, Hayashi K, Shovlin TC, Mifsud W, Surani MA, McLaren A. X chromosome activity in mouse XX primordial germ cells. PLoS Genet 2008; 4:e30. [PMID: 18266475 PMCID: PMC2233679 DOI: 10.1371/journal.pgen.0040030] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 12/21/2007] [Indexed: 11/21/2022] Open
Abstract
In the early epiblast of female mice, one of the two X chromosomes is randomly inactivated by a Xist-dependent mechanism, involving the recruitment of Ezh2-Eed and the subsequent trimethylation of histone 3 on lysine 27 (H3K27me3). We demonstrate that this random inactivation process applies also to the primordial germ cell (PGC) precursors, located in the proximal region of the epiblast. PGC specification occurs at about embryonic day (E)7.5, in the extraembryonic mesoderm, after which the germ cells enter the endoderm of the invaginating hindgut. As they migrate towards the site of the future gonads, the XX PGCs gradually lose the H3K27me3 accumulation on the silent X chromosome. However, using a GFP transgene inserted into the X chromosome, we observed that the XX gonadal environment (independently of the gender) is important for the substantial reactivation of the inactive X chromosome between E11.5 and E13.5, but is not required for X-chromosome reactivation during the derivation of pluripotent embryonic germ cells. We describe in detail one of the key events during female PGC development, the epigenetic reprogramming of the X chromosome, and demonstrate the role of the XX somatic genital ridge in this process. The last few years have led to striking advances in our understanding of the genesis of primordial germ cells (PGCs) and the importance of their correct epigenetic programming for the formation of functional gametes in mice. We investigated one aspect of the epigenetic programming of germ cells, the activity of the XX chromosomes in female germ cells between the formation of PGC precursors and sex determination. Random inactivation of one of the X chromosomes occurs in all cells of the embryo including the PGC precursors. This is followed by reactivation of the silent X in XX germ cells, but not in the XX somatic cells. The process of reactivation of the silent X chromosome in PGCs is initiated during their migratory journey to the genital ridges and may be cell autonomous. However, substantial X-linked gene reactivation occurs only in response to signals emanating from the somatic compartment of the XX genital ridges and is gender independent (occurring as well in sex reversed embryos).
Collapse
|
32
|
Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 2008; 9:129-40. [PMID: 18197165 DOI: 10.1038/nrg2295] [Citation(s) in RCA: 633] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epigenetic profile of germ cells, which is defined by modifications of DNA and chromatin, changes dynamically during their development. Many of the changes are associated with the acquisition of the capacity to support post-fertilization development. Our knowledge of this aspect has greatly increased- for example, insights into how the re-establishment of parental imprints is regulated. In addition, an emerging theme from recent studies is that epigenetic modifiers have key roles in germ-cell development itself--for example, epigenetics contributes to the gene-expression programme that is required for germ-cell development, regulation of meiosis and genomic integrity. Understanding epigenetic regulation in germ cells has implications for reproductive engineering technologies and human health.
Collapse
|
33
|
Lees-Murdock DJ, Walsh CP. DNA methylation reprogramming in the germ line. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 626:1-15. [PMID: 18372787 DOI: 10.1007/978-0-387-77576-0_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In mammals, methylation occurs almost exclusively on the CpG dinucleotide in DNA and shows no preference for sequence context surrounding this target. CpGs are found on many different sequence classes and methylation of this dinucleotide is associated with repression of transcription. Reprogramming methylation in the primordial germ cells establishes monoallelic expression of imprinted genes which exhibit monoallelic expression throughout the lifetime of an organism, maintains retrotransposons in an inactive state and inactivates one of the two X chromosomes. In addition to direct transcriptional silencing, DNA methylation is important for suppression of recombination, and resetting this information is therefore necessary for maintenance of genomic stability. In this chapter, we will review the recent progress in our understanding of the time course and extent of DNA methylation reprogramming of many different sequence classes. We focus on the mouse germline, since this has been the model system from which we have gained the most knowledge of the process. In addition we will examine some of the evidence suggesting a link between repeat methylation and methylation of epigenetically controlled single-copy genes. To do this, we will look at the temporal sequence of methylation events from the time the germ cells become recognizable as a discrete population until the mature male and female gametes fuse and form the early embryo.
Collapse
Affiliation(s)
- Diane J Lees-Murdock
- Stem Cells and Epigenetics Research Group, School of Biomedical Sciences, Centre for Molecular Bioscience, University of Ulster, Coleraine, Northern Ireland, UK.
| | | |
Collapse
|
34
|
de Napoles M, Nesterova T, Brockdorff N. Early loss of Xist RNA expression and inactive X chromosome associated chromatin modification in developing primordial germ cells. PLoS One 2007; 2:e860. [PMID: 17848991 PMCID: PMC1959243 DOI: 10.1371/journal.pone.0000860] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 08/01/2007] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The inactive X chromosome characteristic of female somatic lineages is reactivated during development of the female germ cell lineage. In mouse, analysis of protein products of X-linked genes and/or transgenes located on the X chromosome has indicated that reactivation occurs after primordial germ cells reach the genital ridges. PRINCIPAL FINDINGS/METHODOLOGY We present evidence that the epigenetic reprogramming of the inactive X-chromosome is initiated earlier than was previously thought, around the time that primordial germ cells (PGCs) migrate through the hindgut. Specifically, we find that Xist RNA expression, the primary signal for establishment of chromosome silencing, is extinguished in migrating PGCs. This is accompanied by displacement of Polycomb-group repressor proteins Eed and Suz(12), and loss of the inactive X associated histone modification, methylation of histone H3 lysine 27. CONCLUSIONS/SIGNIFICANCE We conclude that X reactivation in primordial germ cells occurs progressively, initiated by extinction of Xist RNA around the time that germ cells migrate through the hindgut to the genital ridges. The events that we observe are reminiscent of X reactivation of the paternal X chromosome in inner cell mass cells of mouse pre-implantation embryos and suggest a unified model in which execution of the pluripotency program represses Xist RNA thereby triggering progressive reversal of epigenetic silencing of the X chromosome.
Collapse
Affiliation(s)
- Mariana de Napoles
- Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Tatyana Nesterova
- Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Neil Brockdorff
- Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
35
|
Edwards TM, Myers JP. Environmental exposures and gene regulation in disease etiology. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:1264-70. [PMID: 17805414 PMCID: PMC1964917 DOI: 10.1289/ehp.9951] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Accepted: 05/21/2007] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Health or disease is shaped for all individuals by interactions between their genes and environment. Exactly how the environment changes gene expression and how this can lead to disease are being explored in a fruitful new approach to environmental health research, representative studies of which are reviewed here. DATA SOURCES We searched Web of Science and references of relevant publications to understand the diversity of gene regulatory mechanisms affected by environmental exposures with disease implications. DATA SYNTHESIS Pharmaceuticals, pesticides, air pollutants, industrial chemicals, heavy metals, hormones, nutrition, and behavior can change gene expression through a broad array of gene regulatory mechanisms. Mechanisms include regulation of gene translocation, histone modifications, DNA methylation, DNA repair, transcription, RNA stability, alternative RNA splicing, protein degradation, gene copy number, and transposon activation. Furthermore, chemically induced changes in gene regulation are associated with serious and complex human diseases, including cancer, diabetes and obesity, infertility, respiratory diseases, allergies, and neurodegenerative disorders such as Parkinson and Alzheimer diseases. One of the best-studied areas of gene regulation is epigenetics, especially DNA methylation. Our examples of environmentally induced changes in DNA methylation are presented in the context of early development, when methylation patterns are initially laid down. This approach highlights the potential role for altered DNA methylation in fetal origins of adult disease and inheritance of acquired genetic change. CONCLUSIONS The reviewed studies indicate that genetic predisposition for disease is best predicted in the context of environmental exposures. Second, the genetic mechanisms investigated in these studies offer new avenues for risk assessment research. Finally, we are likely to witness dramatic improvements in human health, and reductions in medical costs, if environmental pollution is decreased.
Collapse
Affiliation(s)
- Thea M Edwards
- Department of Zoology, University of Florida, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
36
|
Sugimoto M, Abe K. X chromosome reactivation initiates in nascent primordial germ cells in mice. PLoS Genet 2007; 3:e116. [PMID: 17676999 PMCID: PMC1950944 DOI: 10.1371/journal.pgen.0030116] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/04/2007] [Indexed: 11/26/2022] Open
Abstract
During primordial germ cell (PGC) development, epigenetic reprogramming events represented by X chromosome reactivation and erasure of genomic imprinting are known to occur. Although precise timing is not given, X reactivation is thought to take place over a short period of time just before initiation of meiosis. Here, we show that the cessation of Xist expression commences in nascent PGCs, and re-expression of some X-linked genes begins in newly formed PGCs. The X reactivation process was not complete in E14.5 PGCs, indicating that X reactivation in developing PGCs occurs over a prolonged period. These results set the reactivation timing much earlier than previously thought and suggest that X reactivation may involve slow passive steps. X chromosome inactivation is a mechanism to compensate gene dosage difference between XY males and XX females in mammals. During early embryogenesis, one of two X chromosomes in every female cell is inactivated, and the inactive X chromosome is stably inherited through cell divisions of somatic cells. Although precise timing is not given, the inactive X chromosome is known to be reactivated during germ cell development. It is generally believed that the dynamics of X chromosome activity is tightly correlated with major genomic reprogramming events occurring during mammalian development. Therefore, elucidation of the X reactivation kinetics is important for understanding the mechanism of X chromosome inactivation/reactivation processes and the epigenetic reprogramming processes as well. Here we investigated when X reactivation is initiated during development of female mouse germ cells. Contrary to the previous suggestions, X reactivation already begins in nascent primordial germ cells in female mice and proceeds gradually requiring a prolonged period. The activity status of the X chromosomes of germ cells appears to vary from cell-to-cell and from gene-to-gene during the reactivation processes. These results indicate that the X reactivation coincides with the formation of germ cells and suggest that this involves slow passive steps.
Collapse
Affiliation(s)
- Michihiko Sugimoto
- Technology and Development Team for Mammalian Cellular Dynamics, BioResource Center, RIKEN Tsukuba Institute, Tsukuba, Ibaraki, Japan
| | - Kuniya Abe
- Technology and Development Team for Mammalian Cellular Dynamics, BioResource Center, RIKEN Tsukuba Institute, Tsukuba, Ibaraki, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Abstract
Genetic and epigenetic mechanisms regulate the transition from the totipotent zygote to pluripotent primitive ectoderm cells in the inner cell mass of mouse blastocysts. These pluripotent cells can be propagated indefinitely in vitro, underpinned by a unique epigenetic state. Following implantation of the blastocyst, diverse epigenetic modifiers control differentiation of pluripotent epiblast cells into somatic cells, while specification of germ cells requires repression of the somatic program. Regenerating totipotency during development of germ cells entails re-expression of pluripotency-specific genes and extensive erasure of epigenetic modifications. Increasing knowledge of key underlying mechanisms heightens prospects for creating pluripotent cells directly from adult somatic cells.
Collapse
Affiliation(s)
- M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | | | | |
Collapse
|
38
|
Lepore DA, Thomas GPL, Knight KR, Hussey AJ, Callahan T, Wagner J, Morrison WA, Thomas PQ. Survival and differentiation of pituitary colony-forming cells in vivo. Stem Cells 2007; 25:1730-6. [PMID: 17395770 DOI: 10.1634/stemcells.2007-0012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Growth hormone (GH) deficiency is a significant clinical problem, since growth hormone is essential for the regulation of growth, metabolism, and the cardiovascular system. Stem and progenitor cells have been identified in many adult tissues. Recently, our laboratory identified a cell type within the adult pituitary gland with stem cell-like properties, which we have termed pituitary colony-forming cells (PCFCs). Herein we investigate the ability of PCFCs to survive and differentiate in vivo. Enriched populations of PCFCs were transplanted into an in vivo microchamber model. Grafts were harvested at 6 weeks post-transplant and tested for surviving donor cells (LacZ(+)) or for differentiation (GH(+)). The results showed that donor cells survived in chambers (LacZ(+)) and underwent division (phosphohistone-H3-positive). Furthermore, grafted cells showed colocalization of LacZ and GH, suggesting differentiation. To confirm differentiation, donor cells were obtained from a GH-enhanced green fluorescent protein (eGFP) reporter transgenic mouse model that expressed eGFP under control of the GH promoter. Cells that were eGFP(-), that is, GH(-), were selected by fluorescence-activated cell sorting (FACS) and transplanted. After 6 weeks, eGFP(+)GH(+) cells were detected in grafts by immunostaining and by FACS analysis of digested grafts. In conclusion, PCFCs have the capacity to divide and differentiate into GH(+) cells in vivo. The vascularized tissue chamber model is an ideal model to investigate the environmental niche for PCFC expansion and differentiation and has the potential to be developed into a growth hormone-releasing organoid in vivo. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Diana A Lepore
- Pituitary Research Unit, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Savarese F, Flahndorfer K, Jaenisch R, Busslinger M, Wutz A. Hematopoietic precursor cells transiently reestablish permissiveness for X inactivation. Mol Cell Biol 2006; 26:7167-77. [PMID: 16980619 PMCID: PMC1592878 DOI: 10.1128/mcb.00810-06] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Xist is the trigger for X inactivation in female mammals. The long noncoding Xist RNA localizes along one of the two female X chromosomes and initiates chromosome-wide silencing in the early embryo. In differentiated cells, Xist becomes dispensable for the maintenance of the inactive X, and its function for initiation of silencing is lost. How Xist mediates gene repression remains an open question. Here, we use an inducible Xist allele in adult mice to identify cells in which Xist can cause chromosome-wide silencing. We show that Xist has the ability to initiate silencing in immature hematopoietic precursor cells. In contrast, hematopoietic stem cells and mature blood cells are unable to initiate ectopic X inactivation. This indicates that pathways critical for silencing are transiently activated in hematopoietic differentiation. Xist-responsive cell types in normal female mice show a change of chromatin marks on the inactive X. However, dosage compensation is maintained throughout hematopoiesis. Therefore, Xist can initiate silencing in precursors with concomitant maintenance of dosage compensation. This suggests that Xist function is restricted in development by the limited activity of epigenetic pathways rather than by a change in the responsiveness of chromatin between embryonic and differentiated cell types.
Collapse
Affiliation(s)
- Fabio Savarese
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
40
|
Ohinata Y, Seki Y, Payer B, O'Carroll D, Surani MA, Saitou M. Germline recruitment in mice: a genetic program for epigenetic reprogramming. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:143-74. [PMID: 16903422 DOI: 10.1007/3-540-31437-7_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Germ cells provide an enduring link between generations and therefore must possess the fundamental ability of reprogramming their genome to generate a totipotent state. We wish to understand the molecular basis of the unique properties of the mammalian germ line. Recently we identified Blimp1, a potent transcriptional repressor of a histone methyltransferase subfamily, as a critical determinant of the germ cell lineage in mice. Surprisingly, Blimp1 expression marks the origin of the germ line in proximal epiblast cells in pregastrulation embryos, substantially earlier than previously thought. Furthermore, we showed that established primordial germ cells undergo extensive erasure of genome-wide histone H3 lysine 9 dimethylation (H3K9me2) and DNA methylation, two major repressive epigenetic modifications, and instead acquire high levels of H3-K27 trimethylation (H3K27me3) in their migration period. We suggest that germline specification is a genetic system for the orderly reprogramming of the cells' epigenome toward a totipotent state, with reacquisition of totipotency-associated transcription factors and continued Blimp1 expression preventing their reversion to an explicit pluripotent state or somatic differentiation.
Collapse
Affiliation(s)
- Y Ohinata
- Riken Center for Developmental Biology, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Lees-Murdock DJ, Shovlin TC, Gardiner T, De Felici M, Walsh CP. DNA methyltransferase expression in the mouse germ line during periods of de novo methylation. Dev Dyn 2005; 232:992-1002. [PMID: 15739230 DOI: 10.1002/dvdy.20288] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
DNA methyltransferase (DNMT) 3A and DNMT3B are both active de novo DNA methyltransferases required for development, whereas DNMT3L, which has no demonstrable methyltransferase activity, is required for methylation of imprinted genes in the oocyte. We show here that different mechanisms are used to restrict access by these proteins to their targets during germ cell development. Transcriptional control of the Dnmt3l promoter guarantees that message is low or absent except during periods of de novo activity. Use of an alternative promoter at the Dnmt3a locus produces the shorter Dnmt3a2 transcript in the germ line and postimplantation embryo only, whereas alternative splicing of the Dnmt3b transcript ensures that Dnmt3b1 is absent in the male prospermatogonia. Control of subcellular protein localization is a common theme for DNMT3A and DNMT3B, as proteins were seen in the nucleus only when methylation was occurring. These mechanisms converge to ensure that the only time that functional products from each locus are present in the germ cell nuclei is around embryonic day 17.5 in males and after birth in the growing oocytes in females.
Collapse
Affiliation(s)
- Diane J Lees-Murdock
- Cancer and Ageing Research Group, School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Smith CA, McClive PJ, Hudson Q, Sinclair AH. Male-specific cell migration into the developing gonad is a conserved process involving PDGF signalling. Dev Biol 2005; 284:337-50. [PMID: 16005453 DOI: 10.1016/j.ydbio.2005.05.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 05/23/2005] [Accepted: 05/24/2005] [Indexed: 10/25/2022]
Abstract
Male-specific migration of cells from the mesonephric kidney into the embryonic gonad is required for testis formation in the mouse. It is unknown, however, whether this process is specific to the mouse embryo or whether it is a fundamental characteristic of testis formation in other vertebrates. The signalling molecule/s underlying the process are also unclear. It has previously been speculated that male-specific cell migration might be limited to mammals. Here, we report that male-specific cell migration is conserved between mammals (mouse) and birds (quail-chicken) and that it involves proper PDGF signalling in both groups. Interspecific co-cultures of embryonic quail mesonephric kidneys together with embryonic chicken gonads showed that quail cells migrated specifically into male chicken gonads at the time of sexual differentiation. The migration process is therefore conserved in birds. Furthermore, this migration involves a conserved signalling pathway/s. When GFP-labelled embryonic mouse mesonephric kidneys were cultured together with embryonic chicken gonads, GFP+ mouse cells migrated specifically into male chicken gonads and not female gonads. The immigrating mouse cells contributed to the interstitial cell population of the developing chicken testis, with most cells expressing the endothelial cell marker, PECAM. The signalling molecule/s released from the embryonic male chicken gonad is therefore recognised by both embryonic quail and mouse mesonephric cells. A candidate signalling molecule mediating the male-specific cell migration is PDGF. We found that PDGF-A and PDGF receptor-alpha are both up-regulated male-specifically in embryonic chicken and mouse gonads. PDGF signalling involves the phosphotidylinositol 3-kinase (PIK3) pathway, an intracellular pathway proposed to be important for mesonephric cell migration in the mammalian gonad. We found that a component of this pathway, PI3KC2alpha, is expressed male-specifically in developing embryonic chicken gonads at the time of sexual differentiation. Treatment of organ cultures with the selective PDGF receptor signalling inhibitor, AG1296 (tyrphostin), blocked or impaired mesonephric cell migration in both the mammalian and avian systems. Taken together, these studies indicate that a key cellular event in gonadal sex differentiation is conserved among higher vertebrates, that it involves PDGF signalling, and that in mammals is an indirect effect of Sry expression.
Collapse
Affiliation(s)
- Craig A Smith
- Department of Paediatrics and Murdoch Children's Research Institute, The University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | | | | | | |
Collapse
|
43
|
Nolen LD, Gao S, Han Z, Mann MRW, Gie Chung Y, Otte AP, Bartolomei MS, Latham KE. X chromosome reactivation and regulation in cloned embryos. Dev Biol 2005; 279:525-40. [PMID: 15733677 DOI: 10.1016/j.ydbio.2005.01.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 01/10/2005] [Accepted: 01/11/2005] [Indexed: 10/25/2022]
Abstract
Somatic cell nuclear transfer embryos exhibit extensive epigenetic abnormalities, including aberrant methylation and abnormal imprinted gene expression. In this study, a thorough analysis of X chromosome inactivation (XCI) was performed in both preimplantation and postimplantation nuclear transfer embryos. Cloned blastocysts reactivated the inactive somatic X chromosome, possibly in a gradient fashion. Analysis of XCI by Xist RNA and Eed protein localization revealed heterogeneity within cloned embryos, with some cells successfully inactivating an X chromosome and others failing to do so. Additionally, a significant proportion of cells contained more than two X chromosomes, which correlated with an increased incidence of tetraploidy. Imprinted XCI, normally found in preimplantation embryos and extraembryonic tissues, was not observed in blastocysts or placentae from later stage clones, although fetuses recapitulated the Xce effect. We conclude that, although SCNT embryos can reactivate, count, and inactivate X chromosomes, they are not able to regulate XCI consistently. These results illustrate the heterogeneity of epigenetic changes found in cloned embryos.
Collapse
MESH Headings
- Animals
- Biomarkers
- Blastocyst/physiology
- Cell Lineage
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Cloning, Organism
- Cyclin-Dependent Kinases/genetics
- Cyclin-Dependent Kinases/metabolism
- DNA Methylation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dosage Compensation, Genetic
- Embryo Implantation
- Embryo, Mammalian/physiology
- Epigenesis, Genetic
- Female
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Male
- Methyl-CpG-Binding Protein 2
- Mice
- Mice, Inbred C57BL
- Nuclear Transfer Techniques
- Polycomb-Group Proteins
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Long Noncoding
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- X Chromosome/genetics
- X Chromosome/metabolism
Collapse
Affiliation(s)
- Leisha D Nolen
- Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104-6148, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol 2005; 278:440-58. [PMID: 15680362 DOI: 10.1016/j.ydbio.2004.11.025] [Citation(s) in RCA: 374] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 11/18/2004] [Indexed: 10/26/2022]
Abstract
Induction of mouse germ cells occurs from the proximal epiblast at around embryonic day (E) 7.0. These germ cells then migrate to, and enter the gonads at about E10.5 after which they undergo epigenetic reprogramming including erasure of parental imprints. However, the epigenetic properties acquired by nascent germ cells and the potential remodeling of these epigenetic marks in the subsequent migratory period have been largely unexplored. Here we have used immunohistochemistry to examine several genome-wide epigenetic modifications occurring in germ cells from their specification to their colonization of the genital ridges. We show that at around E8.0, germ cells concomitantly and significantly reduce H3-K9 dimethylation and DNA methylation, two major repressive modifications for gene expression. These events are preceded by the transient loss of all the DNA methyltransferases from their nuclei. By contrast, germ cells substantially increase the levels of H3-K27 trimethylation, another repressive modification with more plasticity, at E8.5-9.0 and maintain this state until at least E12.5. H3-K4 methylation and H3-K9 acetylation, modifications associated with transcriptionally permissive/active chromatin, are similar in germ and surrounding somatic cells but germ cells transiently increase these marks sharply upon their entry into the genital ridge. H3-K9 trimethylation, a hallmark of centromeric heterochromatin, is kept relatively constant during the periods examined. We suggest that this orderly and extensive epigenetic reprogramming in premigratory and migratory germ cells might be necessary for their reacquisition of underlying totipotency, for subsequent specific epigenetic remodeling, including the resetting of parental imprints, and for the production of gametes with an appropriate epigenotype for supporting normal development.
Collapse
Affiliation(s)
- Yoshiyuki Seki
- Department of Molecular Embryology, Research Institute, Osaka Medical Center for Maternal and Child Health, Izumi, Osaka 594-1101, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Heard E, Chaumeil J, Masui O, Okamoto I. Mammalian X-chromosome inactivation: an epigenetics paradigm. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:89-102. [PMID: 16117637 DOI: 10.1101/sqb.2004.69.89] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- E Heard
- Mammalian Developmental Epigenetics Group, CNRS UMR218, Curie Institute, 75248 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Anne McLaren
- The Wellcome Trust/Cancer Research UK Institute of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
47
|
Lees-Murdock DJ, De Felici M, Walsh CP. Methylation dynamics of repetitive DNA elements in the mouse germ cell lineage. Genomics 2003; 82:230-7. [PMID: 12837272 DOI: 10.1016/s0888-7543(03)00105-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Repetitive DNA elements account for a substantial fraction of the mammalian genome. Many are subject to DNA methylation, which is known to undergo dynamic change during mouse germ cell development. We found that repeat sequences of three different classes retain high levels of methylation at E12.5, when methylation is erased from many single-copy genes. Maximal demethylation of repeats was seen later in development and at different times in male and female germ cells. At none of the time points examined (E12.5, E15.5, and E17.5) did we see complete demethylation, suggesting that methylation patterns on repeats may be passed on from one generation to the next. In male germ cells, we observed a de novo methylation event resulting in complete methylation of all the repeats in the interval between E15.5 and E17.5, which was not seen in females. These results suggest that repeat sequences undergo coordinate changes in methylation during germ cell development and give further insights into germ cell reprogramming in mice.
Collapse
Affiliation(s)
- D J Lees-Murdock
- Cancer and Ageing Research Group, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK
| | | | | |
Collapse
|
48
|
Sato S, Yoshimizu T, Sato E, Matsui Y. Erasure of methylation imprinting of Igf2r during mouse primordial germ-cell development. Mol Reprod Dev 2003; 65:41-50. [PMID: 12658632 DOI: 10.1002/mrd.10264] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During germ cell differentiation in mice, the genome undergoes specific epigenetic modifications. These include demethylation of imprinted genes and subsequent establishment of parental allele-specific methylation. The mouse Igf2r gene is an imprinted gene that shows maternal-specific expression. Maternal-specific methylation of differentially methylated region 2 (DMR2) of this gene may be necessary for its maternal-specific expression. Before the allele-specific methylation is established, DMR2 is demethylated in both male and female primordial germ cells (PGCs) by 13.5 days post coitum (dpc), indicating that the demethylation of this region occurs earlier in PGC development. The timing of the demethylation has been, however, unknown. In this study, we attempted to determine the timing of methylation erasure of Igf2r DMR2 in developing PGCs, using transgenic mice expressing green fluorescent protein specifically in the germ line. We purified migrating PGCs from the transgenic mice and examined the methylation status of DMR2. The results show that some CpG sites within DMR2 start demethylation at 9.5 dpc in some migrating PGCs, before the cells colonize genital ridges, and the progression of demethylation is rapid after colonization of the genital ridges. To examine whether the gonadal environment is involved in demethylation, we analyzed the methylation of DMR2 after culturing migrating PGCs in the absence of a gonadal environment. These culture experiments support the idea that a gonadal environment is not required for demethylation of the region in at least a fraction of PGCs.
Collapse
Affiliation(s)
- Shun Sato
- Department of Molecular Embryology, Research Institute, Osaka Medical Center for Maternal and Child Health, 840, Murodo-cho, Izumi, Japan
| | | | | | | |
Collapse
|
49
|
Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 2002; 117:15-23. [PMID: 12204247 DOI: 10.1016/s0925-4773(02)00181-8] [Citation(s) in RCA: 830] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Genome-wide epigenetic reprogramming in mammalian germ cells, zygote and early embryos, plays a crucial role in regulating genome functions at critical stages of development. We show here that mouse primordial germ cells (PGCs) exhibit dynamic changes in epigenetic modifications between days 10.5 and 12.5 post coitum (dpc). First, contrary to previous suggestions, we show that PGCs do indeed acquire genome-wide de novo methylation during early development and migration into the genital ridge. However, following their entry into the genital ridge, there is rapid erasure of DNA methylation of regions within imprinted and non-imprinted loci. For most genes, the erasure commences simultaneously in PGCs in both male and female embryos, which is completed within 1 day of development. Based on the kinetics of this process, we suggest that this is an active demethylation process initiated upon the entry of PGCs into the gonadal anlagen. The timing of reprogramming in PGCs is crucial since it ensures that germ cells of both sexes acquire an equivalent epigenetic state prior to the differentiation of the definitive male and female germ cells in which new parental imprints are established subsequently. Some repetitive elements, however, show incomplete erasure, which may be essential for chromosome stability and for preventing activation of transposons to reduce the risk of germline mutations. Aberrant epigenetic reprogramming in the germ line would cause the inheritance of epimutations that may have consequences for human diseases as suggested by studies on mouse models.
Collapse
Affiliation(s)
- Petra Hajkova
- Universität des Saarlandes, Fr 8.2 Genetik, Postfach 151150, 66041 Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
de La Casa-Esperón E, Loredo-Osti JC, Pardo-Manuel de Villena F, Briscoe TL, Malette JM, Vaughan JE, Morgan K, Sapienza C. X chromosome effect on maternal recombination and meiotic drive in the mouse. Genetics 2002; 161:1651-9. [PMID: 12196408 PMCID: PMC1462220 DOI: 10.1093/genetics/161.4.1651] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We observed that maternal meiotic drive favoring the inheritance of DDK alleles at the Om locus on mouse chromosome 11 was correlated with the X chromosome inactivation phenotype of (C57BL/6-Pgk1(a) x DDK)F(1) mothers. The basis for this unexpected observation appears to lie in the well-documented effect of recombination on meiotic drive that results from nonrandom segregation of chromosomes. Our analysis of genome-wide levels of meiotic recombination in females that vary in their X-inactivation phenotype indicates that an allelic difference at an X-linked locus is responsible for modulating levels of recombination in oocytes.
Collapse
Affiliation(s)
- Elena de La Casa-Esperón
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|