1
|
Mahan VL. Heme oxygenase/carbon monoxide system and development of the heart. Med Gas Res 2025; 15:10-22. [PMID: 39324891 PMCID: PMC11515065 DOI: 10.4103/mgr.medgasres-d-24-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 06/27/2024] [Indexed: 09/27/2024] Open
Abstract
Progressive differentiation controlled by intercellular signaling between pharyngeal mesoderm, foregut endoderm, and neural crest-derived mesenchyme is required for normal embryonic and fetal development. Gasotransmitters (criteria: 1) a small gas molecule; 2) freely permeable across membranes; 3) endogenously and enzymatically produced and its production regulated; 4) well-defined and specific functions at physiologically relevant concentrations; 5) functions can be mimicked by exogenously applied counterpart; and 6) cellular effects may or may not be second messenger-mediated, but should have specific cellular and molecular targets) are integral to gametogenesis and subsequent embryogenesis, fetal development, and normal heart maturation. Important for in utero development, the heme oxygenase/carbon monoxide system is expressed during gametogenesis, by the placenta, during embryonic development, and by the fetus. Complex sequences of biochemical pathways result in the progressive maturation of the human heart in utero . The resulting myocardial architecture, consisting of working myocardium, coronary arteries and veins, epicardium, valves and cardiac skeleton, endocardial lining, and cardiac conduction system, determines function. Oxygen metabolism in normal and maldeveloping hearts, which develop under reduced and fluctuating oxygen concentrations, is poorly understood. "Normal" hypoxia is critical for heart formation, but "abnormal" hypoxia in utero affects cardiogenesis. The heme oxygenase/carbon monoxide system is important for in utero cardiac development, and other factors also result in alterations of the heme oxygenase/carbon monoxide system during in utero cardiac development. This review will address the role of the heme oxygenase/carbon monoxide system during cardiac development in embryo and fetal development.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Department of Surgery, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Drexel University Medical School, Phildelphia, PA, USA
| |
Collapse
|
2
|
Paredes-Espinosa MB, Paluh JL. Synthetic embryology of the human heart. Front Cell Dev Biol 2025; 12:1478549. [PMID: 39935786 PMCID: PMC11810959 DOI: 10.3389/fcell.2024.1478549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
The evolution of stem cell-based heart models from cells and tissues to organoids and assembloids and recently synthetic embryology gastruloids, is poised to revolutionize our understanding of cardiac development, congenital to adult diseases, and patient customized therapies. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have already been integrated into transplantable patches and are in preclinical efforts to reverse fibrotic scarring from myocardial infarctions. To inform on the complexity of heart diseases, multi-tissue morphogenic heart models are needed that replicate fundamental components of heart function to heart organogenesis in vitro and which require a deep understanding of heart development. Organoid and assembloid models capture selected multicellular cardiac processes, such as chamber formation and priming events for vascularization. Gastruloid heart models offer deeper insights as synthetic embryology to mimic multi-staged developmental events of in vivo heart organogenesis including established heart fields, crescent formation and heart tube development along with vascular systemic foundation and even further steps. The human Elongating Multi-Lineage Organized Cardiac (EMLOC) gastruloid model captures these stages and additional events including chamber genesis, patterned vascularization, and extrinsic central and intrinsic cardiac nervous system (CNS-ICNS) integration guided by spatiotemporal and morphogenic processes with neural crest cells. Gastruloid synthetic embryology heart models offer new insights into previously hidden processes of development and provide powerful platforms for addressing heart disease that extends beyond cardiomyocytes, such as arrhythmogenic diseases, congenital defects, and systemic injury interactions, as in spinal cord injuries. The holistic view that is emerging will reveal heart development and disease in unprecedented detail to drive transformative state-of-the-art innovative applications for heart health.
Collapse
Affiliation(s)
| | - Janet L. Paluh
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science and Engineering, University at Albany, Albany, NY, United States
| |
Collapse
|
3
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
García-Padilla C, Lozano-Velasco E, García-López V, Aránega A, Franco D, García-Martínez V, López-Sánchez C. miR-1 as a Key Epigenetic Regulator in Early Differentiation of Cardiac Sinoatrial Region. Int J Mol Sci 2024; 25:6608. [PMID: 38928314 PMCID: PMC11204236 DOI: 10.3390/ijms25126608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
A large diversity of epigenetic factors, such as microRNAs and histones modifications, are known to be capable of regulating gene expression without altering DNA sequence itself. In particular, miR-1 is considered the first essential microRNA in cardiac development. In this study, miR-1 potential role in early cardiac chamber differentiation was analyzed through specific signaling pathways. For this, we performed in chick embryos functional experiments by means of miR-1 microinjections into the posterior cardiac precursors-of both primitive endocardial tubes-committed to sinoatrial region fates. Subsequently, embryos were subjected to whole mount in situ hybridization, immunohistochemistry and RT-qPCR analysis. As a relevant novelty, our results revealed that miR-1 increased Amhc1, Tbx5 and Gata4, while this microRNA diminished Mef2c and Cripto expressions during early differentiation of the cardiac sinoatrial region. Furthermore, we observed in this developmental context that miR-1 upregulated CrabpII and Rarß and downregulated CrabpI, which are three crucial factors in the retinoic acid signaling pathway. Interestingly, we also noticed that miR-1 directly interacted with Hdac4 and Calm1/Calmodulin, as well as with Erk2/Mapk1, which are three key factors actively involved in Mef2c regulation. Our study shows, for the first time, a key role of miR-1 as an epigenetic regulator in the early differentiation of the cardiac sinoatrial region through orchestrating opposite actions between retinoic acid and Mef2c, fundamental to properly assign cardiac cells to their respective heart chambers. A better understanding of those molecular mechanisms modulated by miR-1 will definitely help in fields applied to therapy and cardiac regeneration and repair.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
| | - Estefanía Lozano-Velasco
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Virginio García-López
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Virginio García-Martínez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
| |
Collapse
|
5
|
The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clin Sci (Lond) 2022; 136:1179-1203. [PMID: 35979890 PMCID: PMC9411751 DOI: 10.1042/cs20220391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Cardiac muscle damage-induced loss of cardiomyocytes (CMs) and dysfunction of the remaining ones leads to heart failure, which nowadays is the number one killer worldwide. Therapies fostering effective cardiac regeneration are the holy grail of cardiovascular research to stop the heart failure epidemic. The main goal of most myocardial regeneration protocols is the generation of new functional CMs through the differentiation of endogenous or exogenous cardiomyogenic cells. Understanding the cellular and molecular basis of cardiomyocyte commitment, specification, differentiation and maturation is needed to devise innovative approaches to replace the CMs lost after injury in the adult heart. The transcriptional regulation of CM differentiation is a highly conserved process that require sequential activation and/or repression of different genetic programs. Therefore, CM differentiation and specification have been depicted as a step-wise specific chemical and mechanical stimuli inducing complete myogenic commitment and cell-cycle exit. Yet, the demonstration that some microRNAs are sufficient to direct ESC differentiation into CMs and that four specific miRNAs reprogram fibroblasts into CMs show that CM differentiation must also involve negative regulatory instructions. Here, we review the mechanisms of CM differentiation during development and from regenerative stem cells with a focus on the involvement of microRNAs in the process, putting in perspective their negative gene regulation as a main modifier of effective CM regeneration in the adult heart.
Collapse
|
6
|
Gonzalez DM, Schrode N, Ebrahim TAM, Broguiere N, Rossi G, Drakhlis L, Zweigerdt R, Lutolf MP, Beaumont KG, Sebra R, Dubois NC. Dissecting mechanisms of chamber-specific cardiac differentiation and its perturbation following retinoic acid exposure. Development 2022; 149:275658. [DOI: 10.1242/dev.200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The specification of distinct cardiac lineages occurs before chamber formation and acquisition of bona fide atrial or ventricular identity. However, the mechanisms underlying these early specification events remain poorly understood. Here, we performed single cell analysis at the murine cardiac crescent, primitive heart tube and heart tube stages to uncover the transcriptional mechanisms underlying formation of atrial and ventricular cells. We find that progression towards differentiated cardiomyocytes occurs primarily based on heart field progenitor identity, and that progenitors contribute to ventricular or atrial identity through distinct differentiation mechanisms. We identify new candidate markers that define such differentiation processes and examine their expression dynamics using computational lineage trajectory methods. We further show that exposure to exogenous retinoic acid causes defects in ventricular chamber size, dysregulation in FGF signaling and a shunt in differentiation towards orthogonal lineages. Retinoic acid also causes defects in cell-cycle exit resulting in formation of hypomorphic ventricles. Collectively, our data identify, at a single cell level, distinct lineage trajectories during cardiac specification and differentiation, and the precise effects of manipulating cardiac progenitor patterning via retinoic acid signaling.
Collapse
Affiliation(s)
- David M. Gonzalez
- Icahn School of Medicine at Mount Sinai 1 Department of Cell, Developmental, and Regenerative Biology , , New York, NY 10029 , USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai 2 , New York, NY 10029 , USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai 3 , New York, NY 10029 , USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai 4 , New York, NY 10029 , USA
| | - Nadine Schrode
- Icahn School of Medicine at Mount Sinai 5 Department of Genetics and Genomic Sciences , , New York, NY 10029 , USA
| | - Tasneem A. M. Ebrahim
- Icahn School of Medicine at Mount Sinai 1 Department of Cell, Developmental, and Regenerative Biology , , New York, NY 10029 , USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai 2 , New York, NY 10029 , USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai 3 , New York, NY 10029 , USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai 4 , New York, NY 10029 , USA
| | - Nicolas Broguiere
- School of Life Sciences, EPFL 6 Laboratory of Stem Cell Bioengineering , , Lausanne CH-1015 , Switzerland
| | - Giuliana Rossi
- School of Life Sciences, EPFL 6 Laboratory of Stem Cell Bioengineering , , Lausanne CH-1015 , Switzerland
| | - Lika Drakhlis
- Roche Institute for Translational Bioengineering 7 , Roche Pharma Research and Early Development , Basel 4052 , Switzerland
| | - Robert Zweigerdt
- Roche Institute for Translational Bioengineering 7 , Roche Pharma Research and Early Development , Basel 4052 , Switzerland
| | - Matthias P. Lutolf
- School of Life Sciences, EPFL 6 Laboratory of Stem Cell Bioengineering , , Lausanne CH-1015 , Switzerland
- Roche Institute for Translational Bioengineering 7 , Roche Pharma Research and Early Development , Basel 4052 , Switzerland
| | - Kristin G. Beaumont
- Icahn School of Medicine at Mount Sinai 5 Department of Genetics and Genomic Sciences , , New York, NY 10029 , USA
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) 8 , Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG) , , Hannover , Germany
- REBIRTH–Research Center for Translational Regenerative Medicine, Hannover Medical School 8 , Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG) , , Hannover , Germany
| | - Robert Sebra
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai 3 , New York, NY 10029 , USA
- Icahn School of Medicine at Mount Sinai 5 Department of Genetics and Genomic Sciences , , New York, NY 10029 , USA
- Sema4, a Mount Sinai venture 9 , Stamford, CT 06902 , USA
| | - Nicole C. Dubois
- Icahn School of Medicine at Mount Sinai 1 Department of Cell, Developmental, and Regenerative Biology , , New York, NY 10029 , USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai 2 , New York, NY 10029 , USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai 3 , New York, NY 10029 , USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai 4 , New York, NY 10029 , USA
| |
Collapse
|
7
|
Inhibition of RhoA and Cdc42 by miR-133a Modulates Retinoic Acid Signalling during Early Development of Posterior Cardiac Tube Segment. Int J Mol Sci 2022; 23:ijms23084179. [PMID: 35456995 PMCID: PMC9025022 DOI: 10.3390/ijms23084179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022] Open
Abstract
It is well known that multiple microRNAs play crucial roles in cardiovascular development, including miR-133a. Additionally, retinoic acid regulates atrial marker expression. In order to analyse the role of miR-133a as a modulator of retinoic acid signalling during the posterior segment of heart tube formation, we performed functional experiments with miR-133a and retinoic acid by means of microinjections into the posterior cardiac precursors of both primitive endocardial tubes in chick embryos. Subsequently, we subjected embryos to whole mount in situ hybridisation, immunohistochemistry and qPCR analysis. Our results demonstrate that miR-133a represses RhoA and Cdc42, as well as Raldh2/Aldh1a2, and the specific atrial markers Tbx5 and AMHC1, which play a key role during differentiation. Furthermore, we observed that miR-133a upregulates p21 and downregulates cyclin A by repressing RhoA and Cdc42, respectively, thus functioning as a cell proliferation inhibitor. Additionally, retinoic acid represses miR-133a, while it increases Raldh2, Tbx5 and AMHC1. Given that RhoA and Cdc42 are involved in Raldh2 expression and that they are modulated by miR-133a, which is influenced by retinoic acid signalling, our results suggest the presence of a negative feedback mechanism between miR-133a and retinoic acid during early development of the posterior cardiac tube segment. Despite additional unexplored factors being possible contributors to this negative feedback mechanism, miR-133a might also be considered as a potential therapeutic tool for the diagnosis, therapy and prognosis of cardiac diseases.
Collapse
|
8
|
Duong TB, Waxman JS. Patterning of vertebrate cardiac progenitor fields by retinoic acid signaling. Genesis 2021; 59:e23458. [PMID: 34665508 DOI: 10.1002/dvg.23458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
The influence of retinoic acid (RA) signaling on vertebrate development has a well-studied history. Cumulatively, we now understand that RA signaling has a conserved requirement early in development restricting cardiac progenitors within the anterior lateral plate mesoderm of vertebrate embryos. Moreover, genetic and pharmacological manipulations of RA signaling in vertebrate models have shown that proper heart development is achieved through the deployment of positive and negative feedback mechanisms, which maintain appropriate RA levels. In this brief review, we present a chronological overview of key work that has led to a current model of the critical role for early RA signaling in limiting the generation of cardiac progenitors within vertebrate embryos. Furthermore, we integrate the previous work in mice and our recent findings using zebrafish, which together show that RA signaling has remarkably conserved influences on the later-differentiating progenitor populations at the arterial and venous poles. We discuss how recognizing the significant conservation of RA signaling on the differentiation of these progenitor populations offers new perspectives and may impact future work dedicated to examining vertebrate heart development.
Collapse
Affiliation(s)
- Tiffany B Duong
- Molecular Genetics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Yang W, Bai J, Song X, Zhang S, Chen N, You T, Yi K, Li Z, Xie D, Xie X. CCN1 gene polymorphisms associated with congenital heart disease susceptibility in Northwest Chinese population from different high-altitude areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56927-56937. [PMID: 34080118 DOI: 10.1007/s11356-021-14428-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
High-altitude hypoxic environment exposure is considered one of the risk factors for congenital heart disease (CHD), but the genetic factors involved are still unclear. CCN1, one of the synergistic molecules in the hypoxic response, is also an indispensable molecule in cardiac development. Considering that CCN1 may play an important role in the occurrence of CHD in high-altitude areas, we investigated the association between CCN1 polymorphisms and CHD susceptibility in Northwest Chinese population from different high-altitude areas. We conducted a case-control study with a total of 395 CHD cases and 486 controls to evaluate the associations of CCN1 polymorphisms with CHD risk. Our results showed that the protective alleles rs3753793-C (OR = 0.59, 95% CI = 0.42-0.81, P = 0.001), rs2297141-A (OR = 0.66, 95% CI = 0.49-0.90, P = 0.001), and C-A haplotype of rs3753793-rs2297141 (OR = 0.58, 95% CI = 0.42-0.82, P = 0.002) were significantly associated with a decreased atrial septal defect (ASD) risk. Further subgroup analysis in different geography populations revealed robust association of SNP rs2297141 with ASD risk in a Han population residing in high altitude of 2500-4287 m. We also found that the frequency of protective alleles was higher in high-altitude population, and the alleles were responsible for the difference of oxygen physiology-related erythrocyte parameters in different high-altitude populations. rs3753793-C and rs2297141-A are likely related to high altitude and hypoxia adaptation, which may also be the reason for the association between CCN1 polymorphism and ASD risk.
Collapse
Affiliation(s)
- Wenke Yang
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Gansu Cardiovascular Institute, People's Hospital of Lanzhou City, Lanzhou, China
| | - Jun Bai
- Department of Hematology, Gansu Provincial Key Laboratory of Hematology, Second Hospital of Lanzhou University, Lanzhou, China
| | - Xinyu Song
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Shasha Zhang
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Nana Chen
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Tao You
- Department of Cardiac Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Kang Yi
- Department of Cardiac Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Zhenglin Li
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Dingxiong Xie
- Gansu Cardiovascular Institute, People's Hospital of Lanzhou City, Lanzhou, China
| | - Xiaodong Xie
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Gansu Cardiovascular Institute, People's Hospital of Lanzhou City, Lanzhou, China.
- Genetics Medicine Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China.
| |
Collapse
|
10
|
Tan HYA, Sim MFM, Tan SX, Ng Y, Gan SY, Li H, Neo SP, Gunaratne J, Xu F, Han W. HOXC10 Suppresses Browning to Maintain White Adipocyte Identity. Diabetes 2021; 70:1654-1663. [PMID: 33990396 PMCID: PMC8385616 DOI: 10.2337/db21-0114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022]
Abstract
Promoting beige adipocyte development within white adipose tissue (WAT) is a potential therapeutic approach to staunch the current obesity epidemic. Previously, we identified homeobox-containing transcription factor HOXC10 as a suppressor of browning in subcutaneous WAT. Here, we provide evidence for the physiological role of HOXC10 in regulating WAT thermogenesis. Analysis of an adipose-specific HOXC10 knockout mouse line with no detectable HOXC10 in mature adipocytes revealed spontaneous subcutaneous WAT browning, increased expression of genes involved in browning, increased basal rectal temperature, enhanced cold tolerance, and improved glucose homeostasis. These phenotypes were further exacerbated by exposure to cold or a β-adrenergic stimulant. Mechanistically, cold and β-adrenergic exposure led to reduced HOXC10 protein level without affecting its mRNA level. Cold exposure induced cAMP-dependent protein kinase-dependent proteasome-mediated degradation of HOXC10 in cultured adipocytes, and shotgun proteomics approach identified KCTD2, 5, and 17 as potential E3 ligases regulating HOXC10 proteasomal degradation. Collectively, these data demonstrate that HOXC10 is a gatekeeper of WAT identity, and targeting HOXC10 could be a plausible therapeutic strategy to unlock WAT thermogenic potentials.
Collapse
Affiliation(s)
- H Y Angeline Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - M F Michelle Sim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shi-Xiong Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yvonne Ng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sin Yee Gan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hongyu Li
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Suat Peng Neo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Feng Xu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
11
|
Lim TB, Foo SYR, Chen CK. The Role of Epigenetics in Congenital Heart Disease. Genes (Basel) 2021; 12:genes12030390. [PMID: 33803261 PMCID: PMC7998561 DOI: 10.3390/genes12030390] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect among newborns worldwide and contributes to significant infant morbidity and mortality. Owing to major advances in medical and surgical management, as well as improved prenatal diagnosis, the outcomes for these children with CHD have improved tremendously so much so that there are now more adults living with CHD than children. Advances in genomic technologies have discovered the genetic causes of a significant fraction of CHD, while at the same time pointing to remarkable complexity in CHD genetics. For this reason, the complex process of cardiogenesis, which is governed by multiple interlinked and dose-dependent pathways, is a well investigated process. In addition to the sequence of the genome, the contribution of epigenetics to cardiogenesis is increasingly recognized. Significant progress has been made dissecting the epigenome of the heart and identified associations with cardiovascular diseases. The role of epigenetic regulation in cardiac development/cardiogenesis, using tissue and animal models, has been well reviewed. Here, we curate the current literature based on studies in humans, which have revealed associated and/or causative epigenetic factors implicated in CHD. We sought to summarize the current knowledge on the functional role of epigenetics in cardiogenesis as well as in distinct CHDs, with an aim to provide scientists and clinicians an overview of the abnormal cardiogenic pathways affected by epigenetic mechanisms, for a better understanding of their impact on the developing fetal heart, particularly for readers interested in CHD research.
Collapse
Affiliation(s)
- Tingsen Benson Lim
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Sik Yin Roger Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Ching Kit Chen
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore 119228, Singapore
- Correspondence:
| |
Collapse
|
12
|
Protze SI, Lee JH, Keller GM. Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell 2020; 25:311-327. [PMID: 31491395 DOI: 10.1016/j.stem.2019.07.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in our understanding of cardiovascular development have provided a roadmap for the directed differentiation of human pluripotent stem cells (hPSCs) to the major cell types found in the heart. In this Perspective, we review the state of the field in generating and maturing cardiovascular cells from hPSCs based on our fundamental understanding of heart development. We then highlight their applications for studying human heart development, modeling disease-performing drug screening, and cell replacement therapy. With the advancements highlighted here, the promise that hPSCs will deliver new treatments for degenerative and debilitating diseases may soon be fulfilled.
Collapse
Affiliation(s)
- Stephanie I Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jee Hoon Lee
- BlueRock Therapeutics ULC, Toronto, ON M5G 1L7, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
13
|
López-Unzu MA, Soto-Navarrete MT, Sans-Coma V, Fernández B, Durán AC. Myosin heavy chain isoforms in the myocardium of the atrioventricular junction of Scyliorhinus canicula (Chondrichthyes, Carcharhiniformes). JOURNAL OF FISH BIOLOGY 2020; 97:734-739. [PMID: 32515493 DOI: 10.1111/jfb.14427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
The atrioventricular junction of the fish heart, namely the segment interposed between the single atrium and the single ventricle, has been studied anatomically and histologically in several chondrichthyan and teleost species. Nonetheless, knowledge about myosin heavy chain (MyHC) in the atrioventricular myocardium remains scarce. The present report is the first one to provide data on the MyHC isoform distribution in the myocardium of the atrioventricular junction in chondrichthyans, specifically in the lesser spotted dogfish, Scyliorhinus canicula, a shark species whose heart reflects the primitive cardiac anatomical design in gnathostomes. Hearts from five dogfish were examined using histochemical and immunohistochemical techniques. The anti-MyHC A4.1025 antibody was used to detect differences in the occurrence of MyHC isoforms in the dogfish, as the fast-twitch isoforms MYH2 and MYH6 have a higher affinity for this antibody than the slow-twitch isoforms MYH7 and MYH7B. The histochemical findings show that myocardium of the atrioventricular junction connects the trabeculated myocardium of the atrium with the trabeculated layer of the ventricular myocardium. The immunohistochemical results indicate that the distribution of MyHC isoforms in the atrioventricular junction is not homogeneous. The atrial portion of the atrioventricular myocardium shows a positive reactivity against the A4.1025 antibody similar to that of the atrial myocardium. In contrast, the ventricular portion of the atrioventricular junction is not labelled, as is the case with the ventricular myocardium. This dual condition suggests that the myocardium of the atrioventricular junction has two contraction patterns: the myocardium of the atrial portion contracts in line with the atrial myocardium, whereas that of the ventricular portion follows the contraction pattern of the ventricular myocardium. Thus, the transition of the contraction wave from the atrium to the ventricle may be established in the atrioventricular segment because of its heterogeneous MyHC isoform distribution. The findings support the hypothesis that a distinct MyHC isoform distribution in the atrioventricular myocardium enables a synchronous contraction of inflow and outflow cardiac segments in vertebrates lacking a specialized cardiac conduction system.
Collapse
Affiliation(s)
- Miguel A López-Unzu
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - María Teresa Soto-Navarrete
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Valentín Sans-Coma
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul (IBYDA), Málaga, Spain
| | - Ana Carmen Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul (IBYDA), Málaga, Spain
| |
Collapse
|
14
|
|
15
|
Hanemaaijer J, Gregorovicova M, Nielsen JM, Moorman AFM, Wang T, Planken RN, Christoffels VM, Sedmera D, Jensen B. Identification of the building blocks of ventricular septation in monitor lizards (Varanidae). Development 2019; 146:dev.177121. [PMID: 31285354 DOI: 10.1242/dev.177121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/25/2019] [Indexed: 12/26/2022]
Abstract
Among lizards, only monitor lizards (Varanidae) have a functionally divided cardiac ventricle. The division results from the combined function of three partial septa, which may be homologous to the ventricular septum of mammals and archosaurs. We show in developing monitors that two septa, the 'muscular ridge' and 'bulbuslamelle', express the evolutionarily conserved transcription factors Tbx5, Irx1 and Irx2, orthologues of which mark the mammalian ventricular septum. Compaction of embryonic trabeculae contributes to the formation of these septa. The septa are positioned, however, to the right of the atrioventricular junction and they do not participate in the separation of incoming atrial blood streams. That separation is accomplished by the 'vertical septum', which expresses Tbx3 and Tbx5 and orchestrates the formation of the electrical conduction axis embedded in the ventricular septum. These expression patterns are more pronounced in monitors than in other lizards, and are associated with a deep electrical activation near the vertical septum, in contrast to the primitive base-to-apex activation of other lizards. We conclude that evolutionarily conserved transcriptional programmes may underlie the formation of the ventricular septa of monitors.
Collapse
Affiliation(s)
- Jermo Hanemaaijer
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Martina Gregorovicova
- Department of Developmental Cardiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic.,Charles University, First Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, 128 00, Prague, Czech Republic
| | - Jan M Nielsen
- Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Skejby, 8200, Aarhus, Denmark
| | - Antoon F M Moorman
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Tobias Wang
- Department of Bioscience, Zoophysiology, Aarhus University, 8000, Aarhus, Denmark
| | - R Nils Planken
- Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - David Sedmera
- Department of Developmental Cardiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic .,Charles University, First Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, 128 00, Prague, Czech Republic
| | - Bjarke Jensen
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Wang S, Moise AR. Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Genesis 2019; 57:e23303. [PMID: 31066193 PMCID: PMC6682438 DOI: 10.1002/dvg.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
The vitamin A metabolite, retinoic acid, carries out essential and conserved roles in vertebrate heart development. Retinoic acid signals via retinoic acid receptors (RAR)/retinoid X receptors (RXRs) heterodimers to induce the expression of genes that control cell fate specification, proliferation, and differentiation. Alterations in retinoic acid levels are often associated with congenital heart defects. Therefore, embryonic levels of retinoic acid need to be carefully regulated through the activity of enzymes, binding proteins and transporters involved in vitamin A metabolism. Here, we review evidence of the complex mechanisms that control the fetal uptake and synthesis of retinoic acid from vitamin A precursors. Next, we highlight recent evidence of the role of retinoic acid in orchestrating myocardial compact zone growth and coronary vascular development.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6 Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
17
|
López-Unzu MA, Durán AC, Soto-Navarrete MT, Sans-Coma V, Fernández B. Differential expression of myosin heavy chain isoforms in cardiac segments of gnathostome vertebrates and its evolutionary implications. Front Zool 2019; 16:18. [PMID: 31198434 PMCID: PMC6558913 DOI: 10.1186/s12983-019-0318-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 05/20/2019] [Indexed: 01/18/2023] Open
Abstract
Background Immunohistochemical studies of hearts from the lesser spotted dogfish, Scyliorhinus canicula (Chondrichthyes) revealed that the pan-myosin heavy chain (pan-MyHC) antibody MF20 homogeneously labels all the myocardium, while the pan-MyHC antibody A4.1025 labels the myocardium of the inflow (sinus venosus and atrium) but not the outflow (ventricle and conus arteriosus) cardiac segments, as opposed to other vertebrates. We hypothesized that the conventional pattern of cardiac MyHC isoform distribution present in most vertebrates, i.e. MYH6 in the inflow and MYH7 in the outflow segments, has evolved from a primitive pattern that persists in Chondrichthyes. In order to test this hypothesis, we conducted protein detection techniques to identify the MyHC isoforms expressed in adult dogfish cardiac segments and to assess the pan-MyHC antibodies reactivity against the cardiac segments of representative species from different vertebrate groups. Results Western and slot blot results confirmed the specificity of MF20 and A4.1025 for MyHC in dogfish and their differential reactivity against distinct myocardial segments. HPLC-ESI-MS/MS and ESI-Quadrupole-Orbitrap revealed abundance of MYH6 and MYH2 in the inflow and of MYH7 and MYH7B in the outflow segments. Immunoprecipitation showed higher affinity of A4.1025 for MYH2 and MYH6 than for MYH7 and almost no affinity for MYH7B. Immunohistochemistry showed that A4.1025 signals are restricted to the inflow myocardial segments of elasmobranchs, homogeneous in all myocardial segments of teleosts and acipenseriforms, and low in the ventricle of polypteriforms. Conclusions The cardiac inflow and outflow segments of the dogfish show predominance of fast- and slow-twitch MyHC isoforms respectively, what can be considered a synapomorphy of gnathostomes. The myocardium of the dogfish contains two isomyosins (MYH2 and MYH7B) not expressed in the adult heart of other vertebrates. We propose that these isomyosins lost their function in cardiac contraction during the evolution of gnathostomes, the later acquiring a regulatory role in myogenesis through its intronic miRNA. Loss of MYH2 and MYH7B expression in the heart possibly occurred before the origin of Osteichthyes, being the latter reacquired in polypteriforms. We raise the hypothesis that the slow tonic MYH7B facilitates the peristaltic contraction of the conus arteriosus of fish with a primitive cardiac anatomical design and of the vertebrate embryo.
Collapse
Affiliation(s)
- Miguel A López-Unzu
- 1Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España.,2Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Ana Carmen Durán
- 1Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España.,2Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - María Teresa Soto-Navarrete
- 1Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España.,2Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Valentín Sans-Coma
- 1Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España.,2Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Borja Fernández
- 1Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España.,2Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain.,CIBERCV Enfermedades Cardiovasculares, Málaga, Spain
| |
Collapse
|
18
|
Perl E, Waxman JS. Reiterative Mechanisms of Retinoic Acid Signaling during Vertebrate Heart Development. J Dev Biol 2019; 7:jdb7020011. [PMID: 31151214 PMCID: PMC6631158 DOI: 10.3390/jdb7020011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 01/07/2023] Open
Abstract
Tightly-regulated levels of retinoic acid (RA) are critical for promoting normal vertebrate development. The extensive history of research on RA has shown that its proper regulation is essential for cardiac progenitor specification and organogenesis. Here, we discuss the roles of RA signaling and its establishment of networks that drive both early and later steps of normal vertebrate heart development. We focus on studies that highlight the drastic effects alternative levels of RA have on early cardiomyocyte (CM) specification and cardiac chamber morphogenesis, consequences of improper RA synthesis and degradation, and known effectors downstream of RA. We conclude with the implications of these findings to our understanding of cardiac regeneration and the etiologies of congenital heart defects.
Collapse
Affiliation(s)
- Eliyahu Perl
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- The Heart Institute and Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Joshua S Waxman
- The Heart Institute and Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
19
|
Growth and Morphogenesis during Early Heart Development in Amniotes. J Cardiovasc Dev Dis 2017; 4:jcdd4040020. [PMID: 29367549 PMCID: PMC5753121 DOI: 10.3390/jcdd4040020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 11/17/2022] Open
Abstract
In this review, we will focus on the growth and morphogenesis of the developing heart, an aspect of cardiovascular development to which Antoon Moorman and colleagues have extensively contributed. Over the last decades, genetic studies and characterization of regionally regulated gene programs have provided abundant novel insights into heart development essential to understand the basis of congenital heart disease. Heart morphogenesis, however, is inherently a complex and dynamic three-dimensional process and we are far from understanding its cellular basis. Here, we discuss recent advances in studying heart morphogenesis and regionalization under the light of the pioneering work of Moorman and colleagues, which allowed the reinterpretation of regional gene expression patterns under a new morphogenetic framework. Two aspects of early heart formation will be discussed in particular: (1) the initial formation of the heart tube and (2) the formation of the cardiac chambers by the ballooning process. Finally, we emphasize that in addition to analyses based on fixed samples, new approaches including clonal analysis, single-cell sequencing, live-imaging and quantitative analysis of the data generated will likely lead to novel insights in understanding early heart tube regionalization and morphogenesis in the near future.
Collapse
|
20
|
Li K, Wu JQ, Jiang LL, Shen LZ, Li JY, He ZH, Wei P, Lv Z, He MF. Developmental toxicity of 2,4-dichlorophenoxyacetic acid in zebrafish embryos. CHEMOSPHERE 2017; 171:40-48. [PMID: 28002765 DOI: 10.1016/j.chemosphere.2016.12.032] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 05/03/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is widely used in agriculture as herbicide/pesticide, plant growth regulator and fruit preservative agent. It progressively accumulates in the environment including surface water, air and soil. It could be detected in human food and urine, which poses great risk to the living organisms. In the present study, we investigated the developmental toxicity of 2,4-D on zebrafish (Danio rerio) embryo. 2,4-D exposure significantly decreased both the survival rate (LC50 = 46.71 mg/L) and hatching rate (IC50 = 46.26 mg/L) of zebrafish embryos. The most common developmental defect in 2,4-D treated embryos was pericardial edema. 2,4-D (25 mg/L) upregulated marker genes of cardiac development (vmhc, amhc, hand2, vegf, and gata1) and downregulated marker genes of oxidative stress (cat and gpx1a). Whole mount in situ hybridization confirmed the vmhc and amhc upregulation by 2,4-D treatment. LC/MS/MS showed that the bioaccumulation of 2,4-D in zebrafish embryos were increased in a time-dependent manner after 25 mg/L of 2,4-D treatment. Taken together, our study investigated the toxic effects of 2,4-D on zebrafish embryonic development and its potential molecular mechanisms, gave evidence for the full understanding of 2,4-D toxicity on living organisms and shed light on its environmental impact.
Collapse
Affiliation(s)
- Kang Li
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Jia-Qi Wu
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Ling-Ling Jiang
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Li-Zhen Shen
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Jian-Ying Li
- Nanjing Emory Biotechnology Company, Nanjing, 210042, PR China
| | - Zhi-Heng He
- School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Ping Wei
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Zhuo Lv
- Shanxi Institute for Food and Drug Control, Xi'an, 710065, PR China
| | - Ming-Fang He
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
| |
Collapse
|
21
|
Pradhan A, Zeng XXI, Sidhwani P, Marques SR, George V, Targoff KL, Chi NC, Yelon D. FGF signaling enforces cardiac chamber identity in the developing ventricle. Development 2017; 144:1328-1338. [PMID: 28232600 DOI: 10.1242/dev.143719] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
Abstract
Atrial and ventricular cardiac chambers behave as distinct subunits with unique morphological, electrophysiological and contractile properties. Despite the importance of chamber-specific features, chamber fate assignments remain relatively plastic, even after differentiation is underway. In zebrafish, Nkx transcription factors are essential for the maintenance of ventricular characteristics, but the signaling pathways that operate upstream of Nkx factors in this context are not well understood. Here, we show that FGF signaling plays an essential part in enforcing ventricular identity. Loss of FGF signaling results in a gradual accumulation of atrial cells, a corresponding loss of ventricular cells, and the appearance of ectopic atrial gene expression within the ventricle. These phenotypes reflect important roles for FGF signaling in promoting ventricular traits, both in early-differentiating cells that form the initial ventricle and in late-differentiating cells that append to its arterial pole. Moreover, we find that FGF signaling functions upstream of Nkx genes to inhibit ectopic atrial gene expression. Together, our data suggest a model in which sustained FGF signaling acts to suppress cardiomyocyte plasticity and to preserve the integrity of the ventricular chamber.
Collapse
Affiliation(s)
- Arjana Pradhan
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin-Xin I Zeng
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pragya Sidhwani
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sara R Marques
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Vanessa George
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Kimara L Targoff
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Neil C Chi
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Foxa2 identifies a cardiac progenitor population with ventricular differentiation potential. Nat Commun 2017; 8:14428. [PMID: 28195173 PMCID: PMC5316866 DOI: 10.1038/ncomms14428] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/22/2016] [Indexed: 12/18/2022] Open
Abstract
The recent identification of progenitor populations that contribute to the developing heart in a distinct spatial and temporal manner has fundamentally improved our understanding of cardiac development. However, the mechanisms that direct atrial versus ventricular specification remain largely unknown. Here we report the identification of a progenitor population that gives rise primarily to cardiovascular cells of the ventricles and only to few atrial cells (<5%) of the differentiated heart. These progenitors are specified during gastrulation, when they transiently express Foxa2, a gene not previously implicated in cardiac development. Importantly, Foxa2+ cells contribute to previously identified progenitor populations in a defined pattern and ratio. Lastly, we describe an analogous Foxa2+ population during differentiation of embryonic stem cells. Together, these findings provide insight into the developmental origin of ventricular and atrial cells, and may lead to the establishment of new strategies for generating chamber-specific cell types from pluripotent stem cells.
Collapse
|
23
|
Xie X, Wu SP, Tsai MJ, Tsai S. The Role of COUP-TFII in Striated Muscle Development and Disease. Curr Top Dev Biol 2017; 125:375-403. [PMID: 28527579 DOI: 10.1016/bs.ctdb.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Skeletal and cardiac muscles are the only striated muscles in the body. Although sharing many structural and functional similarities, skeletal and cardiac muscles have intrinsic differences in terms of physiology and regenerative potential. While skeletal muscle possesses a robust regenerative response, the mammalian heart has limited repair capacity after birth. In this review, we provide an updated view regarding chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) function in vertebrate myogenesis, with particular emphasis on the skeletal and cardiac muscles. We also highlight the new insights of COUP-TFII hyperactivity underlying striated muscle dysfunction. Lastly, we discuss the challenges and strategies in translating COUP-TFII action for clinical intervention.
Collapse
Affiliation(s)
- Xin Xie
- Baylor College of Medicine, Houston, TX, United States
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, United States
| | - Ming-Jer Tsai
- Baylor College of Medicine, Houston, TX, United States; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.
| | - Sophia Tsai
- Baylor College of Medicine, Houston, TX, United States; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
24
|
Stefanovic S, Zaffran S. Mechanisms of retinoic acid signaling during cardiogenesis. Mech Dev 2016; 143:9-19. [PMID: 28007475 DOI: 10.1016/j.mod.2016.12.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
Substantial experimental and epidemiological data have highlighted the interplay between nutritional and genetic factors in the development of congenital heart defects. Retinoic acid (RA), a derivative of vitamin A, plays a key role during vertebrate development including the formation of the heart. Retinoids bind to RA and retinoid X receptors (RARs and RXRs) which then regulate tissue-specific genes. Here, we will focus on the roles of RA signaling and receptors in gene regulation during cardiogenesis, and the consequence of deregulated retinoid signaling on heart formation and congenital heart defects.
Collapse
|
25
|
Cyp26 Enzymes Facilitate Second Heart Field Progenitor Addition and Maintenance of Ventricular Integrity. PLoS Biol 2016; 14:e2000504. [PMID: 27893754 PMCID: PMC5125711 DOI: 10.1371/journal.pbio.2000504] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
Although retinoic acid (RA) teratogenicity has been investigated for decades, the mechanisms underlying RA-induced outflow tract (OFT) malformations are not understood. Here, we show zebrafish embryos deficient for Cyp26a1 and Cyp26c1 enzymes, which promote RA degradation, have OFT defects resulting from two mechanisms: first, a failure of second heart field (SHF) progenitors to join the OFT, instead contributing to the pharyngeal arch arteries (PAAs), and second, a loss of first heart field (FHF) ventricular cardiomyocytes due to disrupted cell polarity and extrusion from the heart tube. Molecularly, excess RA signaling negatively regulates fibroblast growth factor 8a (fgf8a) expression and positively regulates matrix metalloproteinase 9 (mmp9) expression. Although restoring Fibroblast growth factor (FGF) signaling can partially rescue SHF addition in Cyp26 deficient embryos, attenuating matrix metalloproteinase (MMP) function can rescue both ventricular SHF addition and FHF integrity. These novel findings indicate a primary effect of RA-induced OFT defects is disruption of the extracellular environment, which compromises both SHF recruitment and FHF ventricular integrity. Retinoic acid (RA) is the most active metabolic product of vitamin A. The embryonic heart is particularly sensitive to inappropriate RA levels, with cardiac outflow tract (OFT) defects among the most common RA-induced malformations. However, the mechanisms underlying these RA-induced defects are not understood. Cyp26 enzymes facilitate degradation of RA and thus are required to limit RA levels in early development. Here, we present evidence that loss of Cyp26 enzymes induces cardiac OFT defects through two mechanisms. First, we find that Cyp26-deficient zebrafish embryos fail to add later-differentiating ventricular cardiac progenitors to the OFT, with some of these progenitors instead contributing to the nearby arch arteries. Second, Cyp26-deficient embryos cannot maintain the integrity of the nascent heart tube, with ventricular cells within the heart tube losing their polarity and being extruded. Our data indicate that excess expression of matrix metalloproteinase 9, an enzyme that degrades the extracellular matrix, underlies both the cardiac progenitor addition and heart tube integrity defects seen in Cyp26-deficient embryos. Our findings highlight perturbation of the extracellular matrix as a major cause of RA-induced cardiac OFT defects that specifically disrupt ventricular development at later stages than previously appreciated.
Collapse
|
26
|
Anderson C, Khan MAF, Wong F, Solovieva T, Oliveira NMM, Baldock RA, Tickle C, Burt DW, Stern CD. A strategy to discover new organizers identifies a putative heart organizer. Nat Commun 2016; 7:12656. [PMID: 27557800 DOI: 10.1038/ncomms12656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/19/2016] [Indexed: 11/09/2022] Open
Abstract
Organizers are regions of the embryo that can both induce new fates and impart pattern on other regions. So far, surprisingly few organizers have been discovered, considering the number of patterned tissue types generated during development. This may be because their discovery has relied on transplantation and ablation experiments. Here we describe a new approach, using chick embryos, to discover organizers based on a common gene expression signature, and use it to uncover the anterior intestinal portal (AIP) endoderm as a putative heart organizer. We show that the AIP can induce cardiac identity from non-cardiac mesoderm and that it can pattern this by specifying ventricular and suppressing atrial regional identity. We also uncover some of the signals responsible. The method holds promise as a tool to discover other novel organizers acting during development.
Collapse
Affiliation(s)
- Claire Anderson
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Mohsin A F Khan
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Frances Wong
- Department of Genomics and Genetics, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | - Tatiana Solovieva
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nidia M M Oliveira
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Richard A Baldock
- Biomedical Systems Analysis Section, MRC Human Genetics Unit, IGMM, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Cheryll Tickle
- Department of Biology &Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Dave W Burt
- Department of Genomics and Genetics, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | - Claudio D Stern
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
27
|
Li J, Yue Y, Zhao Q. Retinoic Acid Signaling Is Essential for Valvulogenesis by Affecting Endocardial Cushions Formation in Zebrafish Embryos. Zebrafish 2015; 13:9-18. [PMID: 26671342 DOI: 10.1089/zeb.2015.1117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinoic acid (RA) plays important roles in many stages of heart morphogenesis. Zebrafish embryos treated with exogenous RA display defective atrio-ventricular canal (AVC) specification. However, whether endogenous RA signaling takes part in cardiac valve formation remains unknown. Herein, we investigated the role of RA signaling in cardiac valve development by knocking down aldh1a2, the gene encoding an enzyme that is mainly responsible for RA synthesis during early development, in zebrafish embryos. The results showed that partially knocking down aldh1a2 caused defective formation of primitive cardiac valve leaflets at 108 hpf (hour post-fertilization). Inhibiting endogenous RA signaling by 4-diethylaminobenzal-dehyde revealed that 16-26 hpf was a key time window when RA signaling affects the valvulogenesis. The aldh1a2 morphants had defective formation of endocardial cushion (EC) at 76 hpf though they had almost normal hemodynamics and cardiac chamber specification at early development. Examining the expression patterns of AVC marker genes including bmp4, bmp2b, nppa, notch1b, and has2, we found the morphants displayed abnormal development of endocardial AVC but almost normal development of myocardial AVC at 50 hpf. Being consistent with the reduced expression of notch1b in endocardial AVC, the VE-cadherin gene cdh5, the downstream gene of Notch signaling, was ectopically expressed in AVC of aldh1a2 morphants at 50 hpf, and overexpression of cdh5 greatly affected the formation of EC in the embryos at 76 hpf. Taken together, our results suggest that RA signaling plays essential roles in zebrafish cardiac valvulogenesis.
Collapse
Affiliation(s)
- Junbo Li
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University , Nanjing, China
| | - Yunyun Yue
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University , Nanjing, China
| | - Qingshun Zhao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University , Nanjing, China
| |
Collapse
|
28
|
Chaudhry B, Ramsbottom S, Henderson DJ. Genetics of cardiovascular development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 124:19-41. [PMID: 24751425 DOI: 10.1016/b978-0-12-386930-2.00002-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Structural malformations of the heart are the commonest abnormalities found at the time of birth and the incidence is higher in fetuses that are lost during the first trimester. Although the form of the heart has been studied for centuries, it is in the past decades that the genetic pathways that control heart development have been unraveled. Recently, the concept of the second heart field, a population of multipotent cardiac cells that augment the initial simple heart tube, has clarified the development of the heart. Understanding how the second heart field is used in morphogenesis and how genes interact in a subtle and more complex way is moving us closer to understanding how the normal heart forms and why abnormalities occur. In this chapter, we present a description of the morphological processes that create the formed postnatal human heart and emphasize key genetic pathways and genes that control these aspects. Where possible, these are also linked to the common patterns of human cardiac malformation. Undoubtedly, the details will refine or change with further research but emphasis has been placed on areas of greatest certainty and the presentation designed to promote a general understanding.
Collapse
Affiliation(s)
- Bill Chaudhry
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Simon Ramsbottom
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Deborah J Henderson
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
29
|
D'Aniello E, Waxman JS. Input overload: Contributions of retinoic acid signaling feedback mechanisms to heart development and teratogenesis. Dev Dyn 2015; 244:513-23. [PMID: 25418431 DOI: 10.1002/dvdy.24232] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 11/07/2022] Open
Abstract
Appropriate levels of retinoic acid (RA) signaling are critical for normal heart development in vertebrates. A fascinating property of RA signaling is the thoroughness by which positive and negative feedback are employed to promote proper embryonic RA levels. In the present short review, we first cover the advancement of hypotheses regarding the impact of RA signaling on cardiac specification. We then discuss our current understanding of RA signaling feedback mechanisms and the implications of recent studies, which have indicated improperly maintained RA signaling feedback can be a contributing factor to developmental malformations.
Collapse
Affiliation(s)
- Enrico D'Aniello
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | | |
Collapse
|
30
|
Bressan M, Yang PB, Louie JD, Navetta AM, Garriock RJ, Mikawa T. Reciprocal myocardial-endocardial interactions pattern the delay in atrioventricular junction conduction. Development 2014; 141:4149-57. [PMID: 25273084 DOI: 10.1242/dev.110007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Efficient blood flow depends on two developmental processes that occur within the atrioventricular junction (AVJ) of the heart: conduction delay, which entrains sequential chamber contraction; and valve formation, which prevents retrograde fluid movement. Defects in either result in severe congenital heart disease; however, little is known about the interplay between these two crucial developmental processes. Here, we show that AVJ conduction delay is locally assigned by the morphogenetic events that initiate valve formation. Our data demonstrate that physical separation from endocardial-derived factors prevents AVJ myocardium from becoming fast conducting. Mechanistically, this physical separation is induced by myocardial-derived factors that support cardiac jelly deposition at the onset of valve formation. These data offer a novel paradigm for conduction patterning, whereby reciprocal myocardial-endocardial interactions coordinate the processes of valve formation with establishment of conduction delay. This, in turn, synchronizes the electrophysiological and structural events necessary for the optimization of blood flow through the developing heart.
Collapse
Affiliation(s)
- Michael Bressan
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| | - PoAn Brian Yang
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| | - Jonathan D Louie
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| | - Alicia M Navetta
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| | - Robert J Garriock
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| | - Takashi Mikawa
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| |
Collapse
|
31
|
Li M, Wang X, Zhu J, Zhu S, Hu X, Zhu C, Guo X, Yu Z, Han S. Toxic effects of polychlorinated biphenyls on cardiac development in zebrafish. Mol Biol Rep 2014; 41:7973-83. [PMID: 25163633 DOI: 10.1007/s11033-014-3692-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 08/21/2014] [Indexed: 12/15/2022]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants that may pose significant health-risks to various organisms including humans. Although the mixed PCB Aroclor 1254 is widespread in the environment, its potential toxic effect on heart development and the mechanism underlying its developmental toxicity have not been previously studied. Here, we used the zebrafish as a toxicogenomic model to examine the effects of Aroclor 1254 on heart development. We found that PCB exposure during zebrafish development induced heart abnormalities including pericardial edema and cardiac looping defects. Further malformations of the zebrafish embryo were observed and death of the larvae occurred in a time- and dose-dependent manner. Our mechanistic studies revealed that abnormalities in the arylhydrocarbon receptor, Wnt and retinoic acid signaling pathways may underlie the effects of PCBs on zebrafish heart development. Interestingly, co-administration of Aroclor 1254 and diethylaminobenzaldehyde, an inhibitor of retinaldehyde dehydrogenase, partially rescued the toxic effects of PCBs on zebrafish heart development. In conclusion, PCBs can induce developmental defects in the zebrafish heart, which may be mediated by abnormal RA signaling.
Collapse
Affiliation(s)
- Mengmeng Li
- State Key Laboratory of Reproductive Medicine, Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li J, Jia W, Zhao Q. Excessive nitrite affects zebrafish valvulogenesis through yielding too much NO signaling. PLoS One 2014; 9:e92728. [PMID: 24658539 PMCID: PMC3962429 DOI: 10.1371/journal.pone.0092728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/25/2014] [Indexed: 11/19/2022] Open
Abstract
Sodium nitrite, a common food additive, exists widely not only in the environment but also in our body. Excessive nitrite causes toxicological effects on human health; however, whether it affects vertebrate heart valve development remains unknown. In vertebrates, developmental defects of cardiac valves usually lead to congenital heart disease. To understand the toxic effects of nitrite on valvulogenesis, we exposed zebrafish embryos with different concentrations of sodium nitrite. Our results showed that sodium nitrite caused developmental defects of zebrafish heart dose dependently. It affected zebrafish heart development starting from 36 hpf (hour post fertilization) when heart initiates looping process. Comprehensive analysis on the embryos at 24 hpf and 48 hpf showed that excessive nitrite did not affect blood circulation, vascular network, myocardium and endocardium development. But development of endocardial cells in atrioventricular canal (AVC) of the embryos at 48 hpf was disrupted by too much nitrite, leading to defective formation of primitive valve leaflets at 76 hpf. Consistently, excessive nitrite diminished expressions of valve progenitor markers including bmp4, has2, vcana and notch1b at 48 hpf. Furthermore, 3', 5'-cyclic guanosine monophosphate (cGMP), downstream of nitric oxide (NO) signaling, was increased its level significantly in the embryos exposed with excessive nitrite and microinjection of soluble guanylate cyclase inhibitor ODQ (1H-[1], [2], [4]Oxadiazolo[4,3-a] quinoxalin-1-one), an antagonist of NO signaling, into nitrite-exposed embryos could partly rescue the cardiac valve malformation. Taken together, our results show that excessive nitrite affects early valve leaflet formation by producing too much NO signaling.
Collapse
Affiliation(s)
- Junbo Li
- Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Wenshuang Jia
- Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Qingshun Zhao
- Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| |
Collapse
|
33
|
|
34
|
|
35
|
Nolte C, Jinks T, Wang X, Martinez Pastor MT, Krumlauf R. Shadow enhancers flanking the HoxB cluster direct dynamic Hox expression in early heart and endoderm development. Dev Biol 2013; 383:158-73. [PMID: 24055171 DOI: 10.1016/j.ydbio.2013.09.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/03/2013] [Accepted: 09/11/2013] [Indexed: 11/29/2022]
Abstract
The products of Hox genes function in assigning positional identity along the anterior-posterior body axis during animal development. In mouse embryos, Hox genes located at the 3' end of HoxA and HoxB complexes are expressed in nested patterns in the progenitors of the secondary heart field during early cardiogenesis and the combined activities of both of these clusters are required for proper looping of the heart. Using Hox bacterial artificial chromosomes (BACs), transposon reporters, and transgenic analyses in mice, we present the identification of several novel enhancers flanking the HoxB complex which can work over a long range to mediate dynamic reporter expression in the endoderm and embryonic heart during development. These enhancers respond to exogenously added retinoic acid and we have identified two retinoic acid response elements (RAREs) within these control modules that play a role in potentiating their regulatory activity. Deletion analysis in HoxB BAC reporters reveals that these control modules, spread throughout the flanking intergenic region, have regulatory activities that overlap with other local enhancers. This suggests that they function as shadow enhancers to modulate the expression of genes from the HoxB complex during cardiac development. Regulatory analysis of the HoxA complex reveals that it also has enhancers in the 3' flanking region which contain RAREs and have the potential to modulate expression in endoderm and heart tissues. Together, the similarities in their location, enhancer output, and dependence on retinoid signaling suggest that a conserved cis-regulatory cassette located in the 3' proximal regions adjacent to the HoxA and HoxB complexes evolved to modulate Hox gene expression during mammalian cardiac and endoderm development. This suggests a common regulatory mechanism, whereby the conserved control modules act over a long range on multiple Hox genes to generate nested patterns of HoxA and HoxB expression during cardiogenesis.
Collapse
Affiliation(s)
- Christof Nolte
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
36
|
Targoff KL, Colombo S, George V, Schell T, Kim SH, Solnica-Krezel L, Yelon D. Nkx genes are essential for maintenance of ventricular identity. Development 2013; 140:4203-13. [PMID: 24026123 DOI: 10.1242/dev.095562] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Establishment of specific characteristics of each embryonic cardiac chamber is crucial for development of a fully functional adult heart. Despite the importance of defining and maintaining unique features in ventricular and atrial cardiomyocytes, the regulatory mechanisms guiding these processes are poorly understood. Here, we show that the homeodomain transcription factors Nkx2.5 and Nkx2.7 are necessary to sustain ventricular chamber attributes through repression of atrial chamber identity. Mutation of nkx2.5 in zebrafish yields embryos with diminutive ventricular and bulbous atrial chambers. These chamber deformities emerge gradually during development, with a severe collapse in the number of ventricular cardiomyocytes and an accumulation of excess atrial cardiomyocytes as the heart matures. Removal of nkx2.7 function from nkx2.5 mutants exacerbates the loss of ventricular cells and the gain of atrial cells. Moreover, in these Nkx-deficient embryos, expression of vmhc, a ventricular gene, fades, whereas expression of amhc, an atrial gene, expands. Cell-labeling experiments suggest that ventricular cardiomyocytes can transform into atrial cardiomyocytes in the absence of Nkx gene function. Through suggestion of transdifferentiation from ventricular to atrial fate, our data reveal a pivotal role for Nkx genes in maintaining ventricular identity and highlight remarkable plasticity in differentiated myocardium. Thus, our results are relevant to the etiologies of fetal and neonatal cardiac pathology and could direct future innovations in cardiac regenerative medicine.
Collapse
Affiliation(s)
- Kimara L Targoff
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Renal, metabolic and hematological effects of trans-retinoic acid during critical developmental windows in the embryonic chicken. J Comp Physiol B 2013; 184:107-23. [PMID: 24005719 DOI: 10.1007/s00360-013-0777-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 08/12/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
All-trans-retinoic acid (tRA), an active metabolite of vitamin A, directly influences the developing kidney, and is a major regulatory signal during vertebrate organogenesis. The aim of the current study was to specifically target potential critical windows in renal development, and assess altered renal function through disruptions in embryonic fluid compartments. In addition, the effect of exogenous tRA administration on embryonic growth and metabolism was determined. Embryos were exposed to 0.1 or 0.3 mg tRA on embryonic day 8. Morphological and physiological measurements were made on days 12, 14, 16 and 18. Embryo wet mass on day 18 was reduced by 23 % (0.1 mg tRA) and 44 % (0.3 mg tRA). tRA exposure elevated mass-specific oxygen consumption in embryos exposed to 0.1 mg (21.2 ± 0.3 μL(-1) g(-1) min(-1)) and 0.3 mg (23.4 ± 0.4 μL(-1) g(-1) min(-1)) when compared to sham (18.9 ± 0.6 μL(-1) g(-1) min(-1)) on day 14, but not subsequent incubation days. Osmolality of blood plasma was transiently lowered in embryos exposed to 0.3 mg tRA between days 14 and 16. Allantoic fluid osmolality was significantly elevated by tRA to ~220 mmol L(-1) from days 16 to 18 compared to controls. Blood plasma [Na(+)] was reduced by ~17 % over the same period, while allantoic fluid [Na(+)] was elevated in tRA-treated embryos compared to control embryos. Collectively, our data indicates that exogenous administration of tRA produces significant alterations to the developmental trajectory of the developing embryonic chicken.
Collapse
|
38
|
Martínez-Campos E, Hernández-SanMiguel E, López-Sánchez C, De Pablo F, Hernández-Sánchez C. Alternative splicing variants of proinsulin mRNA and the effects of excess proinsulin on cardiac morphogenesis. FEBS Lett 2013; 587:2272-7. [DOI: 10.1016/j.febslet.2013.05.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/17/2013] [Indexed: 12/17/2022]
|
39
|
Behrens AN, Iacovino M, Lohr JL, Ren Y, Zierold C, Harvey RP, Kyba M, Garry DJ, Martin CM. Nkx2-5 mediates differential cardiac differentiation through interaction with Hoxa10. Stem Cells Dev 2013; 22:2211-20. [PMID: 23477547 DOI: 10.1089/scd.2012.0611] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The regulation of cardiac differentiation is complex and incompletely understood. Recent studies have documented that Nkx2-5-positive cells are not limited to the cardiac lineage, but can give rise to endothelial and smooth muscle lineages. Other work has elucidated that, in addition to promoting cardiac development, Nkx2-5 plays a larger role in mesodermal patterning although the transcriptional networks that govern this developmental patterning are undefined. By profiling early Nkx2-5-positive progenitor cells, we discovered that the progenitor pools of the bisected cardiac crescent are differentiating asynchronously. This asymmetry requires Nkx2-5 as it is lost in the Nkx2-5 mutant. Surprisingly, the posterior Hox genes Hoxa9 and Hoxa10 were expressed on the right side of the cardiac crescent, independently of Nkx2-5. We describe a novel, transient, and asymmetric cardiac-specific expression pattern of the posterior Hox genes, Hoxa9 and Hoxa10, and utilize the embryonic stem cell/embryoid body (ES/EB) model system to illustrate that Hoxa10 impairs cardiac differentiation. We suggest a model whereby Hoxa10 cooperates with Nkx2-5 to regulate the timing of cardiac mesoderm differentiation.
Collapse
Affiliation(s)
- Ann N Behrens
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rana MS, Christoffels VM, Moorman AFM. A molecular and genetic outline of cardiac morphogenesis. Acta Physiol (Oxf) 2013; 207:588-615. [PMID: 23297764 DOI: 10.1111/apha.12061] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 10/26/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
Abstract
Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect-related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying heart formation. Cardiogenesis is initiated with the formation of mesodermal multipotent cardiac progenitor cells and is governed by cross-talk between developmental cues emanating from endodermal, mesodermal and ectodermal cells. The molecular and transcriptional machineries that direct the specification and differentiation of these cardiac precursors are part of an evolutionarily conserved programme that includes the Nkx-, Gata-, Hand-, T-box- and Mef2 family of transcription factors. Unravelling the hierarchical networks governing the fate and differentiation of cardiac precursors is crucial for our understanding of congenital heart disease and future stem cell-based and gene therapies. Recent molecular and genetic lineage analyses have revealed that subpopulations of cardiac progenitor cells follow distinctive specification and differentiation paths, which determine their final contribution to the heart. In the last decade, progenitor cells that contribute to the arterial pole and right ventricle have received much attention, as abnormal development of these cells frequently results in congenital defects of the aortic and pulmonary outlets, representing the most commonly occurring congenital cardiac defects. In this review, we provide an overview of the building plan of the vertebrate four-chambered heart, with a special focus on cardiac progenitor cell specification, differentiation and deployment during arterial pole development.
Collapse
Affiliation(s)
- M. S. Rana
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - V. M. Christoffels
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - A. F. M. Moorman
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| |
Collapse
|
41
|
New developments in the second heart field. Differentiation 2012; 84:17-24. [DOI: 10.1016/j.diff.2012.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/24/2012] [Accepted: 03/07/2012] [Indexed: 11/18/2022]
|
42
|
Warkman AS, Whitman SA, Miller MK, Garriock RJ, Schwach CM, Gregorio CC, Krieg PA. Developmental expression and cardiac transcriptional regulation of Myh7b, a third myosin heavy chain in the vertebrate heart. Cytoskeleton (Hoboken) 2012; 69:324-35. [PMID: 22422726 DOI: 10.1002/cm.21029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/23/2012] [Accepted: 03/09/2012] [Indexed: 11/08/2022]
Abstract
The mammalian heart expresses two myosin heavy chain (MYH) genes (Myh6 and Myh7), which are major components of the thick filaments of the sarcomere. We have determined that a third MYH, MYH7B, is also expressed in the myocardium. Developmental analysis shows Myh7b expression in cardiac and skeletal muscle of Xenopus, chick and mouse embryos, and in smooth muscle tissues during later stages of mouse embryogenesis. Myh7b is also expressed in the adult human heart. The promoter region of the Myh7b gene shows remarkable similarity between diverse species, suggesting that transcriptional control mechanisms have been conserved. Using luciferase reporter analysis in rat cardiomyocytes, it can be shown that MEF2, GATA, and E-box regulatory elements are essential for efficient expression of the Myh7b gene. In addition two conserved elements that do not correspond to consensus binding sites for known transcription factors are also essential for full transcriptional activity of the Myh7b reporter. Finally, the Myh7b gene shows a transcriptional response similar to Myh6 in response to cardiac hypertrophy.
Collapse
Affiliation(s)
- Andrew S Warkman
- Department of Cellular and Molecular Medicine, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Dees E, Miller PM, Moynihan KL, Pooley RD, Hunt RP, Galindo CL, Rottman JN, Bader DM. Cardiac-specific deletion of the microtubule-binding protein CENP-F causes dilated cardiomyopathy. Dis Model Mech 2012; 5:468-80. [PMID: 22563055 PMCID: PMC3380710 DOI: 10.1242/dmm.008680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
CENP-F is a large multifunctional protein with demonstrated regulatory roles in cell proliferation, vesicular transport and cell shape through its association with the microtubule (MT) network. Until now, analysis of CENP-F has been limited to in vitro analysis. Here, using a Cre-loxP system, we report the in vivo disruption of CENP-F gene function in murine cardiomyocytes, a cell type displaying high levels of CENP-F expression. Loss of CENP-F function in developing myocytes leads to decreased cell division, blunting of trabeculation and an initially smaller, thin-walled heart. Still, embryos are born at predicted mendelian ratios on an outbred background. After birth, hearts lacking CENP-F display disruption of their intercalated discs and loss of MT integrity particularly at the costamere; these two structures are essential for cell coupling/electrical conduction and force transduction in the heart. Inhibition of myocyte proliferation and cell coupling as well as loss of MT maintenance is consistent with previous reports of generalized CENP-F function in isolated cells. One hundred percent of these animals develop progressive dilated cardiomyopathy with heart block and scarring, and there is a 20% mortality rate. Importantly, although it has long been postulated that the MT cytoskeleton plays a role in the development of heart disease, this study is the first to reveal a direct genetic link between disruption of this network and cardiomyopathy. Finally, this study has broad implications for development and disease because CENP-F loss of function affects a diverse array of cell-type-specific activities in other organs.
Collapse
Affiliation(s)
- Ellen Dees
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232-6300, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
The expression of Visinin-like 1 during mouse embryonic development. Gene Expr Patterns 2011; 12:53-62. [PMID: 22138150 DOI: 10.1016/j.gep.2011.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022]
Abstract
Visinin like 1 (Vsnl1) encodes a calcium binding protein which is well conserved between species. It was originally found in the brain and its biological functions in central nervous system have been addressed in several studies. Low expression levels have also been found in some peripheral organs, but very little information is available regarding its physiological roles in non-neuronal tissues. Except for the kidney, the expression pattern of Vsnl1 mRNA and protein has not yet been addressed during embryogenesis. By in situ hybridization and immunolabeling we have extensively analyzed the expression pattern of Vsnl1 during murine development. Vsnl1 specifies the cardiac primordia and its expression becomes restricted to the atrial myocardium after heart looping. However, in the adult heart, Vsnl1 is expressed by all four cardiac chambers. It also serves as a specific marker for the cardiomyocyte-derived structures in the systemic and pulmonary circulation. Vsnl1 is dynamically expressed also by many other organs during development e.g. taste buds, cochlea, thyroid, tooth, salivary and adrenal gland. The stage specific expression pattern of Vsnl1 makes it a potentially useful marker particularly in studies of cardiac and vascular morphogenesis.
Collapse
|
45
|
Lopez-Sanchez C, Garcia-Martinez V. Molecular determinants of cardiac specification. Cardiovasc Res 2011; 91:185-95. [DOI: 10.1093/cvr/cvr127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
Hox genes define distinct progenitor sub-domains within the second heart field. Dev Biol 2011; 353:266-74. [PMID: 21385575 DOI: 10.1016/j.ydbio.2011.02.029] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/22/2011] [Accepted: 02/28/2011] [Indexed: 12/21/2022]
Abstract
Much of the heart, including the atria, right ventricle and outflow tract (OFT) is derived from a progenitor cell population termed the second heart field (SHF) that contributes progressively to the embryonic heart during cardiac looping. Several studies have revealed anterior-posterior patterning of the SHF, since the anterior region (anterior heart field) contributes to right ventricular and OFT myocardium whereas the posterior region gives rise to the atria. We have previously shown that Retinoic Acid (RA) signal participates to this patterning. We now show that Hoxb1, Hoxa1, and Hoxa3, as downstream RA targets, are expressed in distinct sub-domains within the SHF. Our genetic lineage tracing analysis revealed that Hoxb1, Hoxa1 and Hoxa3-expressing cardiac progenitor cells contribute to both atria and the inferior wall of the OFT, which subsequently gives rise to myocardium at the base of pulmonary trunk. By contrast to Hoxb1(Cre), the contribution of Hoxa1-enhIII-Cre and Hoxa3(Cre)-labeled cells is restricted to the distal regions of the OFT suggesting that proximo-distal patterning of the OFT is related to SHF sub-domains characterized by combinatorial Hox genes expression. Manipulation of RA signaling pathways showed that RA is required for the correct deployment of Hox-expressing SHF cells. This report provides new insights into the regulatory gene network in SHF cells contributing to the atria and sub-pulmonary myocardium.
Collapse
|
47
|
Kobayashi T, Maeda S, Ichise N, Sato T, Iwase T, Seki S, Yamada Y, Tohse N. The beginning of the calcium transient in rat embryonic heart. J Physiol Sci 2011; 61:141-9. [PMID: 21267689 PMCID: PMC10717117 DOI: 10.1007/s12576-010-0131-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 12/28/2010] [Indexed: 11/25/2022]
Abstract
Although many researchers have tried to observe the beginning of the heartbeat, no study has shown the beginning of the calcium transient. Here, we evaluate the beginning of the calcium transient in the Wistar rat heart. We first tried to reveal when the heart of the Wistar rat begins to contract because no previous study has evaluated the beginning of the heartbeat in Wistar rats. Observation of embryos transferred to a small incubator mounted on a microscope revealed that the heart primordium, the so-called cardiac crescent, began to contract at embryonic day 9.99-10.13. Observation of embryos loaded with fluo-3 AM revealed that the beginning of the calcium transient precedes the initiation of contraction which precedes the appearance of the linear heart tube. Nifedipine (1 μM), but not ryanodine (1 μM), abolished the calcium transients. These results indicate that calcium transients in the early embryonic period involve exclusively calcium entry through L-type calcium channels in contrast to the situation in mature hearts. This study provides the first demonstration of the relationship between morphological changes in the heart primordium and the beginning of the calcium transient and contraction.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, South 1 West 17, Chuo-ku, Sapporo, 060-8556, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The myocardium of the heart is composed of multiple highly specialized myocardial lineages, including those of the ventricular and atrial myocardium, and the specialized conduction system. Specification and maturation of each of these lineages during heart development is a highly ordered, ongoing process involving multiple signaling pathways and their intersection with transcriptional regulatory networks. Here, we attempt to summarize and compare much of what we know about specification and maturation of myocardial lineages from studies in several different vertebrate model systems. To date, most research has focused on early specification, and although there is still more to learn about early specification, less is known about factors that promote subsequent maturation of myocardial lineages required to build the functioning adult heart.
Collapse
Affiliation(s)
- Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla CA 92093, USA.
| | | | | | | |
Collapse
|
49
|
López-Sánchez C, Bártulos O, Martínez-Campos E, Gañán C, Valenciano AI, García-Martínez V, De Pablo F, Hernández-Sánchez C. Tyrosine hydroxylase is expressed during early heart development and is required for cardiac chamber formation. Cardiovasc Res 2010; 88:111-20. [PMID: 20525643 DOI: 10.1093/cvr/cvq179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Tyrosine hydroxylase (TH) is the first and rate-limiting enzyme in catecholamine biosynthesis. Whereas the neuroendocrine roles of cathecolamines postnatally are well known, the presence and function of TH in organogenesis is unclear. The aim of this study was to define the expression of TH during cardiac development and to unravel the role it may play in heart formation. METHODS AND RESULTS We studied TH expression in chick embryos by whole mount in situ hybridization and by quantitative reverse transcription-polymerase chain reaction and analysed TH activity by high-performance liquid chromatography. We used gain- and loss-of-function models to characterize the role of TH in early cardiogenesis. We found that TH expression was enriched in the cardiac field of gastrulating chick embryos. By stage 8, TH mRNA was restricted to the splanchnic mesoderm of both endocardial tubes and was subsequently expressed predominantly in the myocardial layer of the atrial segment. Overexpression of TH led to increased atrial myosin heavy chain (AMHC1) and T-box 5 gene (Tbx5) expression in the ventricular region and induced bradyarrhythmia. Similarly, addition of l-3,4-dihydroxyphenylalanine (l-DOPA) or dopamine induced ectopic expression of cardiac transcription factors (cNkx2.5, Tbx5) and AMHC1 as well as sarcomere formation. Conversely, blockage of dopamine biosynthesis and loss of TH activity decreased AMHC1 and Tbx5 expression, whereas exposure to retinoic acid (RA) induced TH expression in parallel to that of AMHC1 and Tbx5. Concordantly, inhibition of endogenous RA synthesis decreased TH expression as well as that of AMHC1 and Tbx5. CONCLUSION TH is expressed in a dynamic pattern during the primitive heart tube formation. TH induces cardiac differentiation in vivo and it is a key regulator of the heart patterning, conferring atriogenic identity.
Collapse
|
50
|
Zile MH. Vitamin A-not for your eyes only: requirement for heart formation begins early in embryogenesis. Nutrients 2010; 2:532-50. [PMID: 22254040 PMCID: PMC3257662 DOI: 10.3390/nu2050532] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/07/2010] [Accepted: 05/18/2010] [Indexed: 12/25/2022] Open
Abstract
Vitamin A insufficiency has profound adverse effects on embryonic development. Major advances in understanding the role of vitamin A in vertebrate heart formation have been made since the discovery that the vitamin A active form, all-trans-retinoic acid, regulates many genes, including developmental genes. Among the experimental models used, the vitamin A-deficient avian embryo has been an important tool to study the function of vitamin A during early heart formation. A cluster of retinoic acid-regulated developmental genes have been identified that participate in building the heart. In the absence of retinoic acid the embryonic heart develops abnormally leading to embryolethality.
Collapse
Affiliation(s)
- Maija H Zile
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|