1
|
Wang F, Wen J, Liu J, Xin L, Fang Y, Sun Y, He M. Demethylase FTO mediates m6A modification of ENST00000619282 to promote apoptosis escape in rheumatoid arthritis and the intervention effect of Xinfeng Capsule. Front Immunol 2025; 16:1556764. [PMID: 40181982 PMCID: PMC11966437 DOI: 10.3389/fimmu.2025.1556764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction The pathological mechanisms of rheumatoid arthritis (RA) are closely associated with the apoptosis escape of fibroblast-like synoviocytes (FLS). The m6A modification of long non-coding RNAs (lncRNAs) plays a critical regulatory role in RA pathogenesis. Xinfeng Capsule (XFC), a clinically effective traditional Chinese medicine formulation, has been shown to alleviate RA by inhibiting FLS apoptosis escape. However, its molecular mechanisms remain unclear. This study aimed to elucidate the mechanism by which the demethylase FTO promoted FLS apoptosis escape through the m6A modification of lncRNA ENST00000619282 and to reveal the therapeutic targets of XFC in treating RA by intervening in this m6A-dependent pathway. Methods A retrospective analysis was conducted on 1603 RA patients using association rule mining and random walk algorithms to evaluate the efficacy of XFC. The proliferation and apoptosis of co-cultured RA-FLS were assessed using CCK-8, flow cytometry (FCM), and molecular biology techniques. Bioinformatics prediction, MeRIP-qPCR, RIP, and RNA pull-down assays were employed to identify the m6A modification sites of ENST00000619282 and their interactions with FTO/YTHDF1. Additionally, FISH, luciferase reporter assays, and rescue experiments were performed to validate the regulatory role of ENST00000619282 and its sponge-like function in RA-FLS. Clinical samples were analyzed to determine the correlation between FTO/YTHDF1/ENST00000619282/Bax/Bcl-2 and immune-inflammatory markers. Furthermore, the binding affinity of XFC active components to NF-κB was assessed through molecular docking. Results Retrospective data mining demonstrated that XFC significantly improved immune-inflammatory markers in RA patients. Mechanistically, FTO reduced the m6A modification level of ENST00000619282, enhancing its stability and promoting YTHDF1-dependent expression, which in turn inhibited PUF60 and activated the NF-κB pathway, ultimately leading to FLS apoptosis escape. XFC downregulated FTO, increased the m6A modification of ENST00000619282, blocked the NF-κB signaling, inhibited RA-FLS proliferation, as well as induced their apoptosis. Clinical validation revealed that FTO/YTHDF1/ENST00000619282/Bax/Bcl-2 was closely associated with immune-inflammatory markers in RA patients. After XFC treatment, FTO, ENST00000619282, and Bcl-2 expressions were decreased, while YTHDF1 and Bax expressions were increased (all P<0.05). Molecular docking confirmed that the active components of XFC (calycosin-7-O-beta-D-glucoside, calycosin, and formononetin) exhibited strong binding affinity to NF-κB p65. Conclusion FTO promoted FLS apoptosis escape and RA progression by activating the NF-κB pathway through the m6A-dependent ENST00000619282/YTHDF1 axis. XFC inhibited this pathway by modulating FTO-mediated m6A modification, providing a novel RNA epigenetic regulatory strategy for RA treatment.
Collapse
Affiliation(s)
- Fanfan Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jianting Wen
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jian Liu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Ling Xin
- Department of Clinical Data Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yanyan Fang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yue Sun
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Mingyu He
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
2
|
Fan Y, Hao Y, Ding Y, Wang X, Ge X. FTO deficiency facilitates epithelia dysfunction in oral lichen planus. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102463. [PMID: 39995976 PMCID: PMC11847738 DOI: 10.1016/j.omtn.2025.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
The fat mass and obesity-associated protein (FTO) is identified as regulating mammalian development and diseases by removing methyl groups from RNAs. However, the roles of FTO in the context of oral lichen planus (OLP) remain unknown. Here, we demonstrated that the protein levels of FTO in the keratinocytes from OLP patients were down-regulated compared to those from healthy participants. At the molecular level, we explained that GSK-3β-induced phosphorylation promoted FTO protein degradation in diseased oral keratinocytes. Using a cell co-culture model, we further confirmed that FTO deficiency facilitated NF-κB activation and apoptosis in oral keratinocytes under inflammatory conditions. Vitamin D receptor (VDR), which plays a protective role in OLP, was mediated by FTO in an RNA N 6-methyladenosine (m6A) methylation-dependent way. FTO overexpression failed to suppress NF-κB and caspase-3 activities upon VDR ablation in oral keratinocytes, suggesting that FTO insufficiency damages oral epithelial by targeting VDR. Collectively, these data reveal that FTO deficiency facilitates epithelial dysfunction in OLP by decreasing VDR expression.
Collapse
Affiliation(s)
- Yufeng Fan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yukai Hao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yan Ding
- Department of Dermatology, Hainan Provincial Hospital of Skin Disease, Haikou, Hainan, China
- Department of Dermatology, Skin Disease Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiangyu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Li B, Wang L, Du M, He H. FTO in oral diseases: Functions, mechanisms, and therapeutic potential. FASEB J 2024; 38:e70115. [PMID: 39436191 DOI: 10.1096/fj.202401406rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Fat mass and obesity-associated protein (FTO) is the first identified N6-methyladenosine (m6A) demethylase widely distributed in various tissues in adults and children. It plays an essential role in diverse mRNA-associated processes including transcriptional stability, selective splicing, mRNA translocation, and also protein translation. Recently, emerging studies have shown that FTO is involved in the genesis and development of oral diseases. However, the correlation between FTO and oral diseases and its specific regulatory mechanism still needs further study. In this review, we will summarize the discovery, distribution, gene expression, protein structure, biological functions, inhibitors, and quantifying methods of FTO, as well as its regulatory role and mechanism in oral diseases. Notably, FTO genetic variants are strongly associated with periodontal diseases (PDs), temporomandibular joint osteoarthritis (TMJOA), and obstructive sleep apnea (OSA). Besides, the latest studies that describe the relationship between FTO and PDs, head and neck squamous cell carcinoma (HNSCCs), TMJOA, and OSA will be discussed. We elaborate on the regulatory roles of FTO in PDs, HNSCCs, and TMJOA, which are modulated through cell proliferation, cell migration, apoptosis, bone metabolism, and immune response. The review will enrich our understanding of RNA epigenetic modifications in oral diseases and present a solid theoretical foundation for FTO to serve as a novel diagnosis and prognostic biomarker for oral diseases.
Collapse
Affiliation(s)
- Biao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Leilei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mingyuan Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Krishnamoorthy S, Muruganantham B, Yu JR, Park WY, Muthusami S. Exploring the utility of FTS as a bonafide binding partner for EGFR: A potential drug target for cervical cancer. Comput Biol Med 2023; 167:107592. [PMID: 37976824 DOI: 10.1016/j.compbiomed.2023.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
Establishment of human papilloma virus (HPV) infection and its progression to cervical cancer (CC) requires the participation of epidermal growth factor (EGF) receptor (EGFR) and fused toes homolog (FTS). This review is an attempt to understand the structure-function relationship between FTS and EGFR as a tool for the development of newer CC drugs. Motif analysis was performed using national center for biotechnology information (NCBI), kyoto encyclopedia of genes and genomes (KEGG), simple modular architecture research tool (SMART) and multiple expectation maximizations for motif elicitation (MEME) database. The secondary and tertiary structure prediction of FTS was performed using DISOPRED3 and threading assembly, respectively. A positive correlation was found between the transcript levels of FTS and EGFR. Amino acids responsible for interaction between EGFR and FTS were determined. The nine micro-RNAs (miRNAs) that regulates the expression of FTS were predicted using Network Analyst 3.0 database. hsa-miR-629-5p and hsa-miR-615-3p are identified as significant positive and negative regulators of FTS gene expression. This review opens up new avenues for the development of CC drugs which interfere with the interaction between FTS and EGFR.
Collapse
Affiliation(s)
- Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Bharathi Muruganantham
- Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Jae-Ran Yu
- Department of Environmental and Tropical Medicine, Konkuk University College of Medicine, Chungju, South Korea
| | - Woo-Yoon Park
- Department of Radiation Oncology Hospital, College of Medicine, Chungbuk National University, Cheongju, South Korea.
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India.
| |
Collapse
|
5
|
Huang C, Chen W, Wang X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases. Genes Dis 2023; 10:2351-2365. [PMID: 37554175 PMCID: PMC10404889 DOI: 10.1016/j.gendis.2022.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022] Open
Abstract
Obesity has become a major health crisis in the past ∼50 years. The fat mass and obesity-associated (FTO) gene, identified by genome-wide association studies (GWAS), was first reported to be positively associated with obesity in humans. Mice with more copies of the FTO gene were observed to be obese, while loss of the gene in mice was found to protect from obesity. Later, FTO was found to encode an m6A RNA demethylase and has a profound effect on many biological and metabolic processes. In this review, we first summarize recent studies that demonstrate the critical roles and regulatory mechanisms of FTO in obesity and metabolic disease. Second, we discuss the ongoing debates concerning the association between FTO polymorphisms and obesity. Third, since several small molecule drugs and micronutrients have been found to regulate metabolic homeostasis through controlling the expression or activity of FTO, we highlight the broad potential of targeting FTO for obesity treatment. Improving our understanding of FTO and the underlying mechanisms may provide new approaches for treating obesity and metabolic diseases.
Collapse
Affiliation(s)
- Chaoqun Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
6
|
Hong J, Xu K, Lee JH. Biological roles of the RNA m 6A modification and its implications in cancer. Exp Mol Med 2022; 54:1822-1832. [PMID: 36446846 PMCID: PMC9722703 DOI: 10.1038/s12276-022-00897-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022] Open
Abstract
The N6-Methyladenosine (m6A) modification of RNA transcripts is the most prevalent and abundant internal modification in eukaryotic messenger RNAs (mRNAs) and plays diverse and important roles in normal biological processes. Extensive studies have indicated that dysregulated m6A modification and m6A-associated proteins play critical roles in tumorigenesis and cancer progression. However, m6A-mediated physiological consequences often lead to opposite outcomes in a biological context-dependent manner. Therefore, context-related complexity must be meaningfully considered to obtain a comprehensive understanding of RNA methylation. Recently, it has been reported that m6A-modified RNAs are closely related to the regulation of the DNA damage response and genomic integrity maintenance. Here, we present an overview of the current knowledge on the m6A modification and its function in human cancer, particularly in relation to the DNA damage response and genomic instability.
Collapse
Affiliation(s)
- Juyeong Hong
- grid.267309.90000 0001 0629 5880Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Kexin Xu
- grid.267309.90000 0001 0629 5880Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Ji Hoon Lee
- grid.267309.90000 0001 0629 5880Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| |
Collapse
|
7
|
Wei J, Yu X, Yang L, Liu X, Gao B, Huang B, Dou X, Liu J, Zou Z, Cui XL, Zhang LS, Zhao X, Liu Q, He PC, Sepich-Poore C, Zhong N, Liu W, Li Y, Kou X, Zhao Y, Wu Y, Cheng X, Chen C, An Y, Dong X, Wang H, Shu Q, Hao Z, Duan T, He YY, Li X, Gao S, Gao Y, He C. FTO mediates LINE1 m 6A demethylation and chromatin regulation in mESCs and mouse development. Science 2022; 376:968-973. [PMID: 35511947 PMCID: PMC9746489 DOI: 10.1126/science.abe9582] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification on mammalian messenger RNA. It is installed by a writer complex and can be reversed by erasers such as the fat mass and obesity-associated protein FTO. Despite extensive research, the primary physiological substrates of FTO in mammalian tissues and development remain elusive. Here, we show that FTO mediates m6A demethylation of long-interspersed element-1 (LINE1) RNA in mouse embryonic stem cells (mESCs), regulating LINE1 RNA abundance and the local chromatin state, which in turn modulates the transcription of LINE1-containing genes. FTO-mediated LINE1 RNA m6A demethylation also plays regulatory roles in shaping chromatin state and gene expression during mouse oocyte and embryonic development. Our results suggest broad effects of LINE1 RNA m6A demethylation by FTO in mammals.
Collapse
Affiliation(s)
- Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Chicago, IL 60637, USA
| | - Xianbin Yu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Chicago, IL 60637, USA
| | - Lei Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xuelian Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Boyang Gao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Chicago, IL 60637, USA
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Xiaoyang Dou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Chicago, IL 60637, USA
| | - Jun Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Chicago, IL 60637, USA
| | - Zhongyu Zou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Chicago, IL 60637, USA
| | - Xiao-Long Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Chicago, IL 60637, USA
| | - Li-Sheng Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Chicago, IL 60637, USA
| | - Xingsen Zhao
- The Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Qinzhe Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Chicago, IL 60637, USA
| | - P. Cody He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Chicago, IL 60637, USA
| | - Caraline Sepich-Poore
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Chicago, IL 60637, USA
| | - Nicole Zhong
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Chicago, IL 60637, USA
| | - Wenqiang Liu
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhe Li
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaochen Kou
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Yanhong Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - You Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xuejun Cheng
- The Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Chuan Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Yiming An
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xueyang Dong
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Chicago, IL 60637, USA
| | - Huanyu Wang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Chicago, IL 60637, USA
| | - Qiang Shu
- The Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Ziyang Hao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Chicago, IL 60637, USA
| | - Tao Duan
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yawei Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Zuidhof HR, Calkhoven CF. Oncogenic and tumor-suppressive functions of the RNA demethylase FTO. Cancer Res 2022; 82:2201-2212. [PMID: 35303057 DOI: 10.1158/0008-5472.can-21-3710] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
Abstract
The epitranscriptome represents the more than 140 types of chemically varying and reversable RNA modifications affecting RNA fate. Among these, the most relevant for this review are the mRNA-modifications N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am). Epitranscriptomic mRNA biology involves RNA methyltransferases (so called "writers"), RNA demethylases ("erasers"), and RNA-binding proteins ("readers") that interact with methylation sites to determine the functional outcome of the modification. In this review, we discuss the role of a specific RNA demethylase encoded by the fat mass and obesity associated gene (FTO) in cancer. FTO initially became known as the strongest genetic link for human obesity. Only in 2010, 16 years after its discovery, was its enzymatic function as a demethylase clarified, and only recently has its role in the development of cancer been revealed. FTO functions are challenging to study and interpret because of its genome-wide effects on transcript turnover and translation. We review the discovery of FTO and its enzymatic function, the tumor-promoting and suppressive roles of FTO in selected cancer types, and its potential as a therapeutic target.
Collapse
|
9
|
Kim H, Jang S, Lee YS. The m6A(m)-independent role of FTO in regulating WNT signaling pathways. Life Sci Alliance 2022; 5:5/5/e202101250. [PMID: 35169043 PMCID: PMC8860091 DOI: 10.26508/lsa.202101250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/02/2023] Open
Abstract
FTO and ALKBH5 are the two enzymes responsible for mRNA demethylation. Hence, the functional study of FTO has been focused on its mechanistic role in dynamic mRNA modification, and how this post-transcriptional regulation modulates signaling pathways. Here, we report that the functional landscape of FTO is largely associated with WNT signaling pathways but in a manner that is independent of its enzymatic activity. Re-analyses of public datasets identified the bifurcation of canonical and noncanonical WNT pathways as the major role of FTO. In FTO-depleted cells, we find that the canonical WNT/β-Catenin signaling is attenuated in a non-cell autonomous manner via the up-regulation of DKK1. Simultaneously, this up-regulation of DKK1 promotes cell migration via activating the noncanonical WNT/PCP pathway. Unexpectedly, this regulation of DKK1 is independent of its RNA methylation status but operates at the transcriptional level, revealing a noncanonical function of FTO in gene regulation. In conclusion, this study places the functional context of FTO at the branch point of multiple WNT signaling pathways and extends its mechanistic role in gene regulation.
Collapse
Affiliation(s)
- Hyunjoon Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea .,School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Soohyun Jang
- Center for RNA Research, Institute for Basic Science, Seoul, Korea.,School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Young-Suk Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
10
|
Involvement of an FTO gene polymorphism in the temporomandibular joint osteoarthritis. Clin Oral Investig 2021; 26:2965-2973. [PMID: 34812958 PMCID: PMC8898224 DOI: 10.1007/s00784-021-04278-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/01/2021] [Indexed: 11/05/2022]
Abstract
Objectives The FTO gene has been reported as an obesity-associated gene and is also considered a risk gene for osteoarthritis (OA). However, its exact function is unclear, and there is conflicting evidence on the involvement of FTO polymorphisms in OA via obesity. The purpose of this study was to determine the effects of FTO polymorphism rs8044769 alleles on OA in the temporomandibular joint (TMJ), which is minimally affected by body weight. Materials and methods A total of 324 TMJs (113 with OA and 211 without OA, serving as controls) from 162 Japanese patients with temporomandibular disorders and undergoing MRI examination were analyzed. Genotyping was conducted, and multivariate analysis was performed after adjusting for the effects of age, sex, body mass index, and TMJ disc abnormalities. Results Mean age, BMI, and sex did not differ between the TMJs with OA and the TMJs without OA, but a significant difference was found for positional and dynamic disc abnormalities (P < 0.05). The allele frequency of FTO polymorphisms also differed significantly between the TMJs with OA and the TMJs without OA (P = 0.011). Moreover, logistic regression analysis showed no significant association between BMI (P = 0.581) and the occurrence of TMJOA but also indicated that the CC allele of rs8044769 is a risk factor for TMJOA (P = 0.040). Conclusions Our results show that rs8044769 in the FTO gene might be involved in TMJOA. Clinical relevance The present study provides a basis for a deeper understanding of the mechanism underlying degenerative skeletal diseases and the more effective selection and development of treatment strategies based on the patients’ genetic characteristics. Supplementary Information The online version contains supplementary material available at 10.1007/s00784-021-04278-9.
Collapse
|
11
|
Boiko AS, Pozhidaev IV, Paderina DZ, Bocharova AV, Mednova IA, Fedorenko OY, Kornetova EG, Loonen AJM, Semke AV, Bokhan NA, Ivanova SA. Search for Possible Associations of FTO Gene Polymorphic Variants with Metabolic Syndrome, Obesity and Body Mass Index in Schizophrenia Patients. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1123-1131. [PMID: 34522123 PMCID: PMC8434933 DOI: 10.2147/pgpm.s327353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
Purpose Metabolic syndrome (MetS) is characterized by abdominal obesity, hyperglycaemia, dyslipidaemia and hypertension. FTO gene has been implicated in the pathogenesis of obesity, but the available scientific data concerning their relationship to antipsychotic drug-induced obesity and metabolic syndrome is still incomplete and inconsistent, which indicates that continuing the investigation of this gene’s role is necessary. Patients and Methods In the present study, 517 patients with schizophrenia underwent antipsychotic drug treatment, and two groups were identified: patients with MetS and without MetS. Genotyping of 6 SNPs in the FTO gene was performed, and the results analyzed using R-programme. Results We performed a statistical analysis to identify possible associations of the frequencies of genotypes and alleles of the studied polymorphisms with the presence of metabolic syndrome in schizophrenia patients, with the presence of abdominal obesity, and with an increased body mass index. The rs7185735 polymorphism did not meet the Hardy-Weinberg criterion and was excluded. After correcting for differences in age, gender and duration of illnesses, none of the variants was shown to be related to metabolic syndrome or abdominal obesity, but rs9939609, rs1421085, rs3751812 and rs8050136 were associated with body mass index. Conclusion The present study provides additional support for these SNP’s roles as a pharmacogenetic biomarker that may become useful in the framework of the personalized medicine approach.
Collapse
Affiliation(s)
- Anastasiia S Boiko
- Molecular Genetics and Biochemistry Laboratory, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Ivan V Pozhidaev
- Molecular Genetics and Biochemistry Laboratory, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Diana Z Paderina
- Molecular Genetics and Biochemistry Laboratory, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Anna V Bocharova
- Laboratory of Evolutionary Genetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Irina A Mednova
- Molecular Genetics and Biochemistry Laboratory, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Olga Yu Fedorenko
- Molecular Genetics and Biochemistry Laboratory, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Elena G Kornetova
- Endogenous Disorders Department, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,University Hospital, Siberian State Medical University, Tomsk, Russian Federation
| | - Anton J M Loonen
- Unit of Pharmacotherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Arkadiy V Semke
- Endogenous Disorders Department, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nikolay A Bokhan
- Addictive Disorders Department, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,Psychiatry, Addiction Psychiatry and Psychotherapy Department, Siberian State Medical University, Tomsk, Russian Federation
| | - Svetlana A Ivanova
- Molecular Genetics and Biochemistry Laboratory, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,Psychiatry, Addiction Psychiatry and Psychotherapy Department, Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
12
|
Farmer DT, Patel P, Choi R, Liu CY, Crump JG. A comprehensive series of Irx cluster mutants reveals diverse roles in facial cartilage development. Development 2021; 148:271157. [PMID: 34338288 DOI: 10.1242/dev.197244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 07/21/2021] [Indexed: 12/28/2022]
Abstract
Proper function of the vertebrate skeleton requires the development of distinct articulating embryonic cartilages. Irx transcription factors are arranged in co-regulated clusters that are expressed in the developing skeletons of the face and appendages. IrxB cluster genes are required for the separation of toes in mice and formation of the hyoid joint in zebrafish, yet whether Irx genes have broader roles in skeletal development remains unclear. Here, we perform a comprehensive loss-of-function analysis of all 11 Irx genes in zebrafish. We uncover conserved requirements for IrxB genes in formation of the fish and mouse scapula. In the face, we find a requirement for IrxAb genes and irx7 in formation of anterior neural crest precursors of the jaw, and for IrxBa genes in formation of endodermal pouches and gill cartilages. We also observe extensive joint loss and cartilage fusions in animals with combinatorial losses of Irx clusters, with in vivo imaging revealing that at least some of these fusions arise through inappropriate chondrogenesis. Our analysis reveals diverse roles for Irx genes in the formation and later segmentation of the facial skeleton.
Collapse
Affiliation(s)
- D'Juan T Farmer
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Punam Patel
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Rachelle Choi
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Chih-Yu Liu
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| |
Collapse
|
13
|
Interaction of TLK1 and AKTIP as a Potential Regulator of AKT Activation in Castration-Resistant Prostate Cancer Progression. PATHOPHYSIOLOGY 2021; 28:339-354. [PMID: 35366279 PMCID: PMC8830441 DOI: 10.3390/pathophysiology28030023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2021] [Accepted: 07/17/2021] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer (PCa) progression is characterized by the emergence of resistance to androgen deprivation therapy (ADT). AKT/PKB has been directly implicated in PCa progression, often due to the loss of PTEN and activation of PI3K>PDK1>AKT signaling. However, the regulatory network of AKT remains incompletely defined. Here, we describe the functional significance of AKTIP in PCa cell growth. AKTIP, identified in an interactome analysis as a substrate of TLK1B (that itself is elevated following ADT), enhances the association of AKT with PDK1 and its phosphorylation at T308 and S473. The interaction between TLK1 and AKTIP led to AKTIP phosphorylation at T22 and S237. The inactivation of TLK1 led to reduced AKT phosphorylation, which was potentiated with AKTIP knockdown. The TLK1 inhibitor J54 inhibited the growth of the LNCaP cells attributed to reduced AKT activation. However, LNCaP cells that expressed constitutively active, membrane-enriched Myr-AKT (which is expected to be active, even in the absence of AKTIP) were also growth-inhibited with J54. This suggested that other pathways (like TLK1>NEK1>YAP) regulating proliferation are also suppressed and can mediate growth inhibition, despite compensation by Myr-AKT. Nonetheless, further investigation of the potential role of TLK1>AKTIP>AKT in suppressing apoptosis, and conversely its reversal with J54, is warranted.
Collapse
|
14
|
Chauhdary Z, Rehman K, Akash MSH. The composite alliance of FTO locus with obesity-related genetic variants. Clin Exp Pharmacol Physiol 2021; 48:954-965. [PMID: 33735452 DOI: 10.1111/1440-1681.13498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Obesity has become a genuine global pandemic due to lifestyle and environmental modifications, and is associated with chronic lethal comorbidities. Various environmental factors such as lack of physical activity due to modernization and higher intake of energy-rich diets are primary obesogenic factors in pathogenesis of obesity. Genome-wide association study has identified the crucial role of FTO (fat mass and obesity) in human obesity. A bunch of SNPs in the first intron of FTO has been identified and subsequently correlated to body mass index and body composition. Findings of in silico, in vitro, and in vivo studies have manifested the robust role of FTO in regulation of energy expenditure and food consumption. Numerous studies have highlighted the mechanistic pathways behind the concomitant functions of FTO in adipogenesis and body size. Current investigation has also revealed the link of FTO neighbouring genes i.e., RPGRIP1L, IRX3 and IRX5 and epigenetic factors with obesity phenotypes. The motive behind this review is to cite the consequences of FTO on obesity vulnerability.
Collapse
Affiliation(s)
- Zunera Chauhdary
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
15
|
Kim H, Lee YS, Kim SM, Jang S, Choi H, Lee JW, Kim TD, Kim VN. RNA demethylation by FTO stabilizes the FOXJ1 mRNA for proper motile ciliogenesis. Dev Cell 2021; 56:1118-1130.e6. [PMID: 33761320 DOI: 10.1016/j.devcel.2021.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 12/10/2020] [Accepted: 02/27/2021] [Indexed: 12/29/2022]
Abstract
Adenosine N6-methylation (m6A) is one of the most pervasive mRNA modifications, and yet the physiological significance of m6A removal (demethylation) remains elusive. Here, we report that the m6A demethylase FTO functions as a conserved regulator of motile ciliogenesis. Mechanistically, FTO demethylates and thereby stabilizes the mRNA that encodes the master ciliary transcription factor FOXJ1. Depletion of Fto in Xenopus laevis embryos caused widespread motile cilia defects, and Foxj1 was identified as one of the major phenocritical targets. In primary human airway epithelium, FTO depletion also led to FOXJ1 mRNA destabilization and a severe loss of ciliated cells with an increase of neighboring goblet cells. Consistently, Fto knockout mice showed strong asthma-like phenotypes upon allergen challenge, a result owing to defective ciliated cells in the airway epithelium. Altogether, our study reveals a conserved role of the FTO-FOXJ1 axis in embryonic and homeostatic motile ciliogenesis.
Collapse
Affiliation(s)
- Hyunjoon Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of the Biological Sciences, Seoul National University, Seoul 08826, Korea.
| | - Young-Suk Lee
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of the Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Seok-Min Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Soohyun Jang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Hyunji Choi
- School of the Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, KRIBB, Cheongju, Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of the Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
16
|
Lee YJ, Kim JY, Lee DY, Park KJ, Kim GH, Kim JE, Roh GS, Lim JY, Koo S, Lim NK, Park HY, Kim WH. Alcohol consumption before pregnancy causes detrimental fetal development and maternal metabolic disorders. Sci Rep 2020; 10:10054. [PMID: 32572070 PMCID: PMC7308355 DOI: 10.1038/s41598-020-66971-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Alcohol consumption before or during pregnancy poses serious health risks to the fetus; however, the underlying mechanisms involved remain obscure. Here, we investigated whether ethanol consumption before pregnancy affects maternal or fetal health and whether pharmacological inhibition of CYP2E1, a major ethanol oxidation enzyme, by 4-methylpyrazole (4-MP) has therapeutic effects. We found that ethanol consumption (5%) 2 weeks before pregnancy resulted in a decrease in the number of viable fetuses and abnormal fetal development, and these effects were accompanied by impaired maternal glucose homeostasis and hepatic steatosis during pregnancy. Neonates of ethanol-fed mice had postnatal macrosomia and significantly decreased growth rates during the lactation period. However, treatment with 4-MP, a CYP2E1 inhibitor, markedly ameliorated the reduction in insulin action and glucose disposal responsiveness in the livers of ethanol-fed mice. Blockage of CYP2E1 significantly reduced the alteration in hepatic lipid deposition, fatty acid oxidation, mitochondrial energy status, and macrophage infiltration observed in ethanol-fed mice. Finally, there was a positive correlation between postnatal macrosomia or growth retardation and increased inflammatory responses. Collectively, our study suggests that even moderate ethanol intake may be detrimental to fetal development and may cause growth retardation through maternal metabolic disorders.
Collapse
Affiliation(s)
- Yoo Jeong Lee
- Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Ji Yeon Kim
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea.,Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Dae Yeon Lee
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea.,Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea.,Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Keon Jae Park
- Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Gyu Hee Kim
- Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Jeong Eun Kim
- Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Joong Yeon Lim
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Seul Koo
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Nam Kyoo Lim
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Hyun Young Park
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Won-Ho Kim
- Division of Cardiovascular Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea. .,Division of Endocrine and Metabolic Disease, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Chungbuk, 28159, Republic of Korea.
| |
Collapse
|
17
|
Chen J, Du B. Novel positioning from obesity to cancer: FTO, an m 6A RNA demethylase, regulates tumour progression. J Cancer Res Clin Oncol 2019; 145:19-29. [PMID: 30465076 DOI: 10.1007/s00432-018-2796-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE The fat mass- and obesity-associated (FTO) gene on chromosome 16q12.2 shows an intimate association with obesity and body mass index. Recently, research into the FTO gene and its expression product has attracted widespread interest due to the identification of FTO as an N6-methyladenosine (m6A) demethylase. FTO primarily regulates the m6A levels of downstream targets via their 3' untranslated regions. FTO not only plays a critical role in obesity-related diseases but also is involved in the occurrence, development and prognosis of many types of cancer, such as acute myeloid leukaemia, glioblastoma and breast cancer. Currently, studies indicate that FTO is a crucial component of m6A modification, it regulates cancer stem cell function, and promotes the growth, self-renewal and metastasis of cancer cells. In this review, we summarized and analysed the data regarding the structural features and biological functions of FTO as well as its association with different cancers and possible molecular mechanisms. METHODS We systematically reviewed the related literatures regarding FTO and its demethylation activity in many pathologic and physiological processes, especially in cancer-related diseases based on PubMed databases in this article. RESULTS Mounting evidence indicated that FTO plays a critical role in occurrence, progression and treatment of various cancers, even acting as a cancer oncogene in acute myeloid leukaemia, research on which is no longer restricted to metabolic diseases such as obesity and diabetes. CONCLUSION Considering FTO's critical role in many diseases, FTO may become a new promising target for the diagnosis and treatment of various diseases in the near future, especially for specific types of cancers, such as acute myeloid leukaemia, glioblastoma and breast cancer.
Collapse
Affiliation(s)
- JiaLing Chen
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Bin Du
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
18
|
Chang JY, Park JH, Park SE, Shon J, Park YJ. The Fat Mass- and Obesity-Associated (FTO) Gene to Obesity: Lessons from Mouse Models. Obesity (Silver Spring) 2018; 26:1674-1686. [PMID: 30311736 DOI: 10.1002/oby.22301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Genetic variants at the fat mass- and obesity-associated (FTO) locus are strongly associated with obesity-related traits by regulating neighboring genes. Nevertheless, it is possible that FTO protein is directly involved in mechanisms regulating body composition and adiposity. Here, the in vivo biological functions of FTO in the risk for obesity were studied by reviewing murine models. METHODS The effects of the locus-specific manipulations of the murine Fto gene on metabolic-related phenotypes in genetically modified mouse models were reviewed and summarized into the following three categories: growth and body composition, eating behaviors, and metabolic homeostasis. RESULTS The mouse models showed different phenotypes depending on target tissues and methods for gene manipulation. Mice harboring deletions or point mutations at the Fto locus had high metabolic rates, while FTO-overexpressing mice showed dyslipidemia. Both deletion and overexpression of the Fto gene led to abnormal eating behaviors. Intriguingly, several phenotypes were differently expressed depending on developmental timing of the genetic manipulations. For instance, a germ line deletion decreased total body fat mass, while the deletion in adult mice increased it. CONCLUSIONS The results highlight that FTO is critical not only for body composition but also normal development, and its function might differ depending on the stage of development.
Collapse
Affiliation(s)
- Jeong Yoon Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Joo Hyun Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Sung Eun Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Jinyoung Shon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Wiegering A, Rüther U, Gerhardt C. The ciliary protein Rpgrip1l in development and disease. Dev Biol 2018; 442:60-68. [DOI: 10.1016/j.ydbio.2018.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/13/2018] [Accepted: 07/28/2018] [Indexed: 12/28/2022]
|
20
|
Exogenous Expressions of FTO Wild-Type and R316Q Mutant Proteins Caused an Increase in HNRPK Levels in 3T3-L1 Cells as Demonstrated by DIGE Analysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8216180. [PMID: 28555196 PMCID: PMC5438842 DOI: 10.1155/2017/8216180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/08/2017] [Accepted: 03/27/2017] [Indexed: 01/16/2023]
Abstract
Fat mass and obesity-associated protein is an enzyme that oxidatively demethylates DNA. Although there are numerous studies regarding the catalytic function of FTO, the overall existence or absence of FTO on cellular proteome has not been investigated. This study investigated the changes in the soluble proteome of 3T3-L1 cells upon expression of the WT and the mutant (R316Q) FTO proteins. Protein extracts prepared from 3T3-L1 cells expressing either the WT or the mutant FTO proteins were used in DIGE experiments. Analysis of the data revealed the number of spots matched to every member and there were 350 ± 20 spots with 30.5% overall mean coefficient of variation. Eleven regulated protein spots were excised from the gels and identified by MALDI-TOF/TOF. One of the identified proteins was heterogeneous nuclear ribonucleoprotein K, which displayed more than 2.6- and 3.7-fold increases in its abundance in the WT and the mutant FTO expressing cells, respectively. Western blot analysis validated these observations. This is the first study revealing the presence of a parallel increase in expressions of FTO and HNRNPK proteins. This increase may codictate the metabolic changes occurring in the cell and may attribute a significance to HNRNPK in FTO-associated transformations.
Collapse
|
21
|
Melnik BC. Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases. J Transl Med 2015; 13:385. [PMID: 26691922 PMCID: PMC4687119 DOI: 10.1186/s12967-015-0746-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
Abstract
Single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity-associated) gene are associated with enhanced FTO expression, increased body weight, obesity and type 2 diabetes mellitus (T2DM). The N6-methyladenosine (m6A) demethylase FTO plays a pivotal regulatory role for postnatal growth and energy expenditure. The purpose of this review is to provide translational evidence that links milk signaling with FTO-activated transcription of the milk recipient. FTO-dependent demethylation of m6A regulates mRNA splicing required for adipogenesis, increases the stability of mRNAs, and affects microRNA (miRNA) expression and miRNA biosynthesis. FTO senses branched-chain amino acids (BCAAs) and activates the nutrient sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), which plays a key role in translation. Milk provides abundant BCAAs and glutamine, critical components increasing FTO expression. CpG hypomethylation in the first intron of FTO has recently been associated with T2DM. CpG methylation is generally associated with gene silencing. In contrast, CpG demethylation generally increases transcription. DNA de novo methylation of CpG sites is facilitated by DNA methyltransferases (DNMT) 3A and 3B, whereas DNA maintenance methylation is controlled by DNMT1. MiRNA-29s target all DNMTs and thus reduce DNA CpG methylation. Cow´s milk provides substantial amounts of exosomal miRNA-29s that reach the systemic circulation and target mRNAs of the milk recipient. Via DNMT suppression, milk exosomal miRNA-29s may reduce the magnitude of FTO methylation, thereby epigenetically increasing FTO expression in the milk consumer. High lactation performance with increased milk yield has recently been associated with excessive miRNA-29 expression of dairy cow mammary epithelial cells (DCMECs). Notably, the galactopoietic hormone prolactin upregulates the transcription factor STAT3, which induces miRNA-29 expression. In a retrovirus-like manner milk exosomes may transfer DCMEC-derived miRNA-29s and bovine FTO mRNA to the milk consumer amplifying FTO expression. There is compelling evidence that obesity, T2DM, prostate and breast cancer, and neurodegenerative diseases are all associated with increased FTO expression. Maximization of lactation performance by veterinary medicine with enhanced miRNA-29s and FTO expression associated with increased exosomal miRNA-29 and FTO mRNA transfer to the milk consumer may represent key epigenetic mechanisms promoting FTO/mTORC1-mediated diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090, Osnabrück, Germany.
| |
Collapse
|
22
|
Abstract
A cluster of single nucleotide polymorphisms (SNPs) in the first intron of the fat mass and obesity related (FTO) gene were the first common variants discovered to be associated with body mass index and body fatness. This review summarises what has been later discovered about the biology of FTO drawing together information from both human and animal studies. Subsequent work showed that the 'at risk' alleles of these SNPs are associated with greater food intake and increased hunger/lowered satiety, but are not associated with altered resting energy expenditure or low physical activity in humans. FTO is an FE (II) and 2-oxoglutarate dependent DNA/RNA methylase. Contrasting the impact of the SNPs on energy balance in humans, knocking out or reducing activity of the Fto gene in the mouse resulted in lowered adiposity, elevated energy expenditure with no impact on food intake (but the impact on expenditure is disputed). In contrast, overexpression of the gene in mice led to elevated food intake and adiposity, with no impact on expenditure. In rodents, the Fto gene is widely expressed in the brain including hypothalamic nuclei linked to food intake regulation. Since its activity is 2-oxoglutarate dependent it could potentially act as a sensor of citrate acid cycle flux, but this function has been dismissed, and instead it has been suggested to be much more likely to act as an amino acid sensor, linking circulating AAs to the mammalian target of rapamycin complex 1. This may be fundamental to its role in development but the link to obesity is less clear. It has been recently suggested that although the obesity related SNPs reside in the first intron of FTO, they may not only impact FTO but mediate their obesity effects via nearby genes (notably RPGRIP1L and IRX3).
Collapse
Affiliation(s)
- John R Speakman
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen xilu, Chaoyang, Beijing, China.
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Ave, Aberdeen, Scotland, AB24 2TZ, UK.
| |
Collapse
|
23
|
Abstract
The fat mass and obesity-associated (FTO) gene was placed center stage when common intronic variants within the gene were robustly associated with human obesity. Murine models of perturbed Fto expression have shown effects on body weight and composition. However, a clear understanding of the link between FTO intronic variants and FTO activity has remained elusive. Two recent reports now indicate that obesity-associated SNPs appear functionally connected not with FTO but with two neighboring genes: IRX3 and RPGRIP1L. Here, we review these new findings and consider the implications for future analysis of GWAS hits.
Collapse
Affiliation(s)
- Y C Loraine Tung
- Medical Research Council Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Giles S H Yeo
- Medical Research Council Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stephen O'Rahilly
- Medical Research Council Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Anthony P Coll
- Medical Research Council Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
24
|
Yeo GSH. The role of the FTO (Fat Mass and Obesity Related) locus in regulating body size and composition. Mol Cell Endocrinol 2014; 397:34-41. [PMID: 25224490 DOI: 10.1016/j.mce.2014.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 01/23/2023]
Abstract
Genomewide association studies (GWAS) have indicated that SNPs on a chromosome 16 locus encompassing FTO, as well as IRX3, 5, 6, FTM and FTL are robustly associated with human obesity. GWAS, however, are by nature gene agnostic, and SNPs reaching the appropriate statistical threshold for a given phenotype can appear anywhere in the genome, within, near or far away from any coding sequence. Thus a major challenge in the field has been to translate these statistical hits into real biological insight. The key question is which of these genes are responsible for the association with obesity, and what is the underlying mechanism? With loss of function FTO mutations in both mice and humans resulting in severe growth retardation and mice globally over-expressing FTO being obese, the initial attention was focussed on this gene. We and others have shown that in vitro, recombinant FTO is able to catalyse the Fe(II)- and 2OG-dependent demethylation of single stranded nucleic-acids, with a preference for RNA. We have shown that FTO expression is regulated by essential amino acids (AAs) and that it couples amino acid levels to mammalian Target of Rapamycin Complex 1 (mTORC1) signalling, through a mechanism dependent on its ability to demethylate. Thus FTO is an AA sensor and plays a key role regulating appropriate growth and translation. However, recent data focussing on obesity associated variants within FTO have implicated two neighbouring genes, RPGRIP1L and IRX3, as having a functional link between the SNP and the observed human phenotypes. As with Fto, perturbing the expression of these genes in mice results in a bodyweight phenotype, with homozygous deletion of Irx3 resulting in a smaller mouse and heterozygous deletion of Rpgrip1l leading to a mild obesity phenotype. Thus it may be that a number of genes in this region play an important role in determining body composition.
Collapse
Affiliation(s)
- Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
25
|
Molecular characterization and expression analysis of fat mass and obesity-associated gene in rabbit. J Genet 2014; 92:481-8. [PMID: 24371169 DOI: 10.1007/s12041-013-0298-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Fat mass and obesity-associated (FTO) gene codes for a nuclear protein of the AlkB related nonhaem iron and 2-oxoglutaratedependent oxygenase superfamily, and is involved in animal fat deposition and human obesity. In this work, the molecular characterization and expression features of rabbit (Oryctolagus cuniculus) FTO cDNA were analysed. The rabbit FTO cDNA with a size of 2158 bp was cloned, including 1515 bp of the open reading frame that encoded a basic protein of 504 amino acids. Homologous comparison indicated that the rabbit FTO shared 36.36-91.88% identity with those from other species and phylogenetic analysis showed that the rabbit FTO is closely related to human, but more distantly related to zebrafish. The New Zealand rabbit FTO mRNA was detected in all tissues examined, with the highest levels found in the spleen and the lowest found in the kidney. However, no significant differences were seen in cerebellum, corpora quadrigemina, medulla oblongata and cerebral cortex of commercial adult rabbits. Moreover, mRNA levels of FTO in liver tissues were significantly increased in lactating New Zealand rabbits compared with 70-day-old, 90-day-old and gestating rabbits (P < 0.05). In contrast, FTO mRNA levels were significantly lower in longissimus dorsi muscle of 90-day-old New Zealand rabbits than in 70-day-old rabbits (P <0.05). However, the expression levels of FTO in mammary gland and ovary of gestating and lactating rabbits were not significantly different (P > 0.05).
Collapse
|
26
|
Hess ME, Brüning JC. The fat mass and obesity-associated (FTO) gene: Obesity and beyond? Biochim Biophys Acta Mol Basis Dis 2014; 1842:2039-47. [PMID: 24518103 DOI: 10.1016/j.bbadis.2014.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/22/2014] [Indexed: 12/11/2022]
Abstract
Genome wide association studies undoubtedly linked variants of the fat mass and obesity-associated protein (FTO) to obesity. To date, however, knowledge on the mechanisms coupling variants in the intron of the FTO gene to its expression or enzymatic activity to alter metabolism remains scarce. Until recently, the investigation of the molecular function of FTO had not led to conclusive results concerning the 'where', 'when' and 'how' of FTO activity. Finally, since FTO was identified as a RNA modifying enzyme, demethylating N6-methyladenosine on single stranded RNA, novel understanding of the molecular function is gathered. These and other studies suggest the requirement for a further reaching approach to further investigate FTO function, since the phenotype of aberrant FTO function may encompass more than just obesity. Taking these new insights and translating them into appropriate paradigms for functional research in humans may lead to a deeper understanding of the human physiology and disease. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- Martin E Hess
- Max Planck Institute for Neurological Research, D-50931 Cologne, Germany; Department of Mouse Genetics and Metabolism, Institute for Genetics, Center of Molecular Medicine Cologne (CMMC), D-50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), D-50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital of Cologne, D-50931 Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Neurological Research, D-50931 Cologne, Germany; Department of Mouse Genetics and Metabolism, Institute for Genetics, Center of Molecular Medicine Cologne (CMMC), D-50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), D-50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital of Cologne, D-50931 Cologne, Germany.
| |
Collapse
|
27
|
Sarin LP, Leidel SA. Modify or die?--RNA modification defects in metazoans. RNA Biol 2014; 11:1555-67. [PMID: 25692999 PMCID: PMC4615230 DOI: 10.4161/15476286.2014.992279] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 12/21/2022] Open
Abstract
Chemical RNA modifications are present in all kingdoms of life and many of these post-transcriptional modifications are conserved throughout evolution. However, most of the research has been performed on single cell organisms, whereas little is known about how RNA modifications contribute to the development of metazoans. In recent years, the identification of RNA modification genes in genome wide association studies (GWAS) has sparked new interest in previously neglected genes. In this review, we summarize recent findings that connect RNA modification defects and phenotypes in higher eukaryotes. Furthermore, we discuss the implications of aberrant tRNA modification in various human diseases including metabolic defects, mitochondrial dysfunctions, neurological disorders, and cancer. As the molecular mechanisms of these diseases are being elucidated, we will gain first insights into the functions of RNA modifications in higher eukaryotes and finally understand their roles during development.
Collapse
MESH Headings
- Amyotrophic Lateral Sclerosis/genetics
- Amyotrophic Lateral Sclerosis/metabolism
- Amyotrophic Lateral Sclerosis/pathology
- Animals
- Dysautonomia, Familial/genetics
- Dysautonomia, Familial/metabolism
- Dysautonomia, Familial/pathology
- Epilepsy, Rolandic/genetics
- Epilepsy, Rolandic/metabolism
- Epilepsy, Rolandic/pathology
- Genome-Wide Association Study
- Humans
- Intellectual Disability/genetics
- Intellectual Disability/metabolism
- Intellectual Disability/pathology
- Mutation
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Nucleic Acid Conformation
- Phenotype
- RNA/genetics
- RNA/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Mitochondrial
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- L Peter Sarin
- Max Planck Institute for Molecular Biomedicine; Münster, Germany
| | - Sebastian A Leidel
- Max Planck Institute for Molecular Biomedicine; Münster, Germany
- Faculty of Medicine; University of Münster; Münster, Germany
| |
Collapse
|
28
|
Abstract
Single nucleotide polymorphisms (SNPs) that cluster in the first intron of fat mass and obesity associated (FTO) gene are associated obesity traits in genome-wide association studies. The minor allele increases BMI by 0.39 kg/m(2) (or 1,130 g in body weight) and risk of obesity by 1.20-fold. This association has been confirmed across age groups and populations of diverse ancestry; the largest effect is seen in young adulthood. The effect of FTO SNPs on obesity traits in populations of African and Asian ancestry is similar or somewhat smaller than in European ancestry populations. However, the BMI-increasing allele in FTO is substantially less prevalent in populations with non-European ancestry. FTO SNPs do not influence physical activity levels; yet, in physically active individuals, FTO's effect on obesity susceptibility is attenuated by approximately 30%. Evidence from epidemiological and functional studies suggests that FTO confers an increased risk of obesity by subtly changing food intake and preference. Moreover, emerging data suggest a role for FTO in nutrient sensing, regulation of mRNA translation and general growth. In this Review, we discuss the genetic epidemiology of FTO and discuss how its complex biology might link to the regulation of body weight.
Collapse
Affiliation(s)
- Ruth J F Loos
- The Genetics of Obesity and Related Metabolic Traits Program, The Charles Bronfman Institute for Personalized Medicine, The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1003, New York, NY 10029-6574, USA
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
29
|
Abstract
Genome-wide association studies have revealed that single-nucleotide polymorphisms in the first intron of the gene encoding fat mass and obesity-associated protein (FTO) are robustly associated with BMI and obesity. Subsequently, this association with body weight, which is replicable across multiple populations and different age groups, has been unequivocally linked to increased food intake. Although evidence from a number of animal models with perturbed FTO expression indicates a role for FTO in energy homeostasis, to date, no conclusive link has been made between the risk alleles and FTO expression or its physiological role. FTO is a nucleic acid demethylase, and a deficiency in FTO leads to a complex phenotype highlighted by postnatal growth retardation, pointing to some fundamental developmental role. Recent emerging data now points to a role for FTO in the sensing of nutrients and the regulation of translation and growth. In this review, we explore the in vivo and in vitro evidence detailing the complex biology of FTO and discuss how these might link to the regulation of body weight.
Collapse
Affiliation(s)
- Pawan Gulati
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Box 289, Cambridge, CB2 0QQ UK
- NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge, UK
| | - Giles S. H. Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Box 289, Cambridge, CB2 0QQ UK
- NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
30
|
Marcadenti A, Fuchs FD, Matte U, Sperb F, Moreira LB, Fuchs SC. Effects of FTO RS9939906 and MC4R RS17782313 on obesity, type 2 diabetes mellitus and blood pressure in patients with hypertension. Cardiovasc Diabetol 2013; 12:103. [PMID: 23849767 PMCID: PMC3711897 DOI: 10.1186/1475-2840-12-103] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/10/2013] [Indexed: 02/07/2023] Open
Abstract
Background Genetic variants of the FTO gene rs9939609 A/T and the MC4R gene rs17782313 C/T have been associated with obesity. Individuals with mutations in MC4R gene have lower blood pressure (BP), independently of obesity. This study aimed to investigate the association of FTO rs9939609 and MC4R rs17782313 with anthropometric indexes, BP, and type 2 diabetes mellitus among hypertensive patients. Methods We genotyped 217 individuals (86 men and 131 women) with hypertension (systolic or diastolic BP ≥ 140/90 mmHg or using antihypertensive drugs). Diabetes mellitus was diagnosed according to the American Diabetes Association criteria. Waist and neck circumferences (cm), Body Adiposity Index (BAI,%), Lipid Accumulation Product Index (LAP, cm.mmol.l) and body mass index (BMI, kg/m2) were analyzed using analysis of covariance or modified Poisson’s regression. Results Rare allele frequencies were 0.40 for A for FTO rs9939609 and 0.18 for C for MC4R rs17782313. A positive association of FTO rs9939609 and MC4R rs17782313 with BMI was observed in the overall sample. Among men and women, neck circumference was associated with the FTO genotype and, for women, MC4R genotype. In contrast, in men we found a negative association of MC4R rs17782313 with diastolic BP (TT 90.1 ±12.2, TC/CC 83.2 ±12.1; P = 0.03) and borderline association for systolic BP after controlling for age and BMI. Conclusions Common genetic variants of FTO rs9939609 have positive associations with BMI and neck circumference and MC4R rs17782313 in women, but a negative association with diastolic and mean blood pressure in men with hypertension.
Collapse
|
31
|
Relation of fat-mass and obesity-associated gene polymorphism to fat mass content and body mass index in obese children. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 756:255-62. [PMID: 22836643 DOI: 10.1007/978-94-007-4549-0_32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Fat mass content, fat distribution, and fat-mass and obesity associated (FTO) gene have been reported among a broad spectrum of genetic variation connected with body weight. The aim of our study was to investigate whether the T/A rs9939609 polymorphism of the FTO gene may influence obesity and metabolic indices in children. A 160 children were examined (136 obese and 24 non-obese). The anthropometric measurements and calculations included: height, weight, waist and hip circumference, sum of the thickness of 3 and 10 skin folds, % of fat content, % FAT- BIA , % LBM-BIA. BMI, SDS of BMI, WHR, and WHtR. Fasting plasma total cholesterol (TC), HDL and LDL-cholesterol, triglycerides (TG), oral glucose tolerance test (OGTT), and HOMA-IR were analyzed and the blood pressure were measured. The rs9939609 polymorphism of FTO gene was genotyped by allele-specific real-time polymerase chain- reaction (RT-PCR). We found that the mean concentrations of TC, TG, LDLC, and HOMA-IR were significantly higher, and HDL was lower in the obese than in non-obese children. The presence of TT, but not AA alleles, related to the percentage of fat content, BMI, and z-score of BMI. None of the other anthropometric indices did differ between the children with gene polymorphism and wild homozygous. In conclusion, rs9939609 polymorphism in the fat-mass and obesity-associated gene is associated with BMI and the percent of fat content in children.
Collapse
|
32
|
Wang Y, Rao K, Yuan L, Everaert N, Buyse J, Grossmann R, Zhao R. Chicken FTO gene: Tissue-specific expression, brain distribution, breed difference and effect of fasting. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:246-52. [DOI: 10.1016/j.cbpa.2012.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 01/01/2023]
|
33
|
Yeo GS, O'Rahilly S. Uncovering the biology of FTO. Mol Metab 2012; 1:32-6. [PMID: 24024116 PMCID: PMC3757649 DOI: 10.1016/j.molmet.2012.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 11/22/2022] Open
Abstract
Genome-wide association studies have revealed that SNPs in the first intron of FTO (Fat mass and Obesity related) are robustly associated with body mass index and obesity. Subsequently, it has become clear that this association with body weight, and increasingly food intake, is replicable across multiple populations and different age groups. However, to date, no conclusive link has been made between the risk alleles and FTO expression or its physiological role. FTO deficiency leads to a complex phenotype including postnatal mortality and growth retardation, pointing to some fundamental developmental role. Yet, the weight of evidence from a number of animal models where FTO expression has been perturbed indicates some role for FTO in energy homoeostasis. In addition, emerging data points to a role for FTO in the sensing of nutrients. In this review, we explore the in vivo and in vitro evidence detailing FTO's different faces and discuss how these might link to the regulation of body weight.
Collapse
Affiliation(s)
- Giles S.H. Yeo
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Stephen O'Rahilly
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
34
|
The effect of caspase-3 inhibition on interdigital tissue regression in explant cultures of developing mouse limbs. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2012.678386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
35
|
Dvořáková V, Bartenschlager H, Stratil A, Horák P, Stupka R, Cítek J, Sprysl M, Hrdlicová A, Geldermann H. Association between polymorphism in the FTO gene and growth and carcass traits in pig crosses. Genet Sel Evol 2012; 44:13. [PMID: 22510482 PMCID: PMC3369214 DOI: 10.1186/1297-9686-44-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 04/17/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Independent studies have shown that several single nucleotide polymorphisms (SNP) in the human FTO (fat mass and obesity associated) gene are associated with obesity. SNP have also been identified in the pig FTO gene, among which some are associated with selected fat-deposition traits in F2 crosses and commercial populations. In this study, using both commercial pig populations and an experimental Meishan × Pietrain F2 population, we have investigated the association between one FTO SNP and several growth and carcass traits. Association analyses were performed with the FTO polymorphism either alone or in combination with polymorphisms in flanking loci. METHODS SNP (FM244720:g.400C>G) in exon 3 of porcine FTO was genotyped by PCR-RFLP and tested for associations with some growth, carcass and fat-related traits. Proportions of genetic variance of four pig chromosome 6 genes (FTO, RYR1, LIPE and TGFB1) on selected traits were evaluated using single- and multi-locus models. RESULTS Linkage analysis placed FTO on the p arm of pig chromosome 6, approximately 22 cM from RYR1. In the commercial populations, allele C of the FTO SNP was significantly associated with back fat depth and allele G with muscling traits. In the Meishan × Pietrain F2 pigs, heterozygotes with allele C from the Pietrain sows and allele G from the Meishan boar were more significantly associated with fat-related traits compared to homozygotes with allele G from the Pietrain and allele G from the Meishan breed. In single- and multi-locus models, genes RYR1, TGFB1 and FTO showed high associations. The contribution in genetic variance from the polymorphism in the FTO gene was highest for back fat depth, meat area on the musculus longissimus lumborum et thoracis tissues and metabolite glucose-6-phosphate dehydrogenase. CONCLUSIONS Our results show that in pig, FTO influences back fat depth in the commercial populations, while in the Meishan × Pietrain F2 pigs with a CG genotype, heterosis occurs for several fat-related traits.
Collapse
Affiliation(s)
- Věra Dvořáková
- Institute of Animal Physiology and Genetics, Academy of Sciences of Czech Republic, 277 21 Liběchov, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Süsleyici-Duman B, Zengin K, Kayhan FE, Koldemir M, Dağıstanlı FK, Cağatay P, Oztürk M, Taşkın M. FTO mRNA expression in extremely obese and type 2 diabetic human omental and subcutaneous adipose tissues. Obes Surg 2012; 21:1766-73. [PMID: 21598006 DOI: 10.1007/s11695-011-0446-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fat mass and obesity-associated protein (FTO) gene expression is known to correlate with obesity. Our aim was to investigate the FTO gene expression in paired omental and subcutaneous human adipose tissues from morbid and obese patients. To understand the role of CD68-positive macrophages in adipose tissues, the correlation with adiposity parameters such as adipocyte diameter and adipocyte radius was also measured. Drug and adiposity correlations were also analyzed. METHODS Paired omental and subcutaneous adipose tissue were excised during elective surgery from morbidly obese (n = 9) and obese (n = 5) patients. FTO expressions were determined by quantitative PCR. Tissue sections were analyzed for their CD68 protein expressions by immunuhistochemistry. RESULTS Omental and subcutaneous adipose tissue FTO gene expression levels were not found to differ significantly among morbidly obese and obese study groups. Serum aspartate aminotransferase e and alanine transaminase levels were found to be in negative correlation with subcutaneous fat tissue FTO expression rate. Antidiabetic drug use was found to be in correlation with adiposity. Both subcutaneous and omental fat cell diameters were found to have correlation with antidiabetic drug use. Omental fat cell diameter was found to enlarge together with omental CD68 protein expression. Subcutaneous macrophage number decreased while omental fat cell radius increased. Omental macrophage number was found in correlation with subcutaneous macrophage number. CONCLUSIONS Antidiabetic therapy was found to increase adiposity in omental and subcutaneous fat. Further research is needed with larger samples to explore the exact role of FTO in obesity.
Collapse
Affiliation(s)
- Belgin Süsleyici-Duman
- Faculty of Science and Arts, Department of Biology, Marmara University, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Genome-wide association studies have been very powerful, uncovering potentially new biology that would not have been possible using a candidate gene approach. A prime example of this is the gene FTO (fat mass and obesity associated), which first came to light in 2007, when single nucleotide polymorphisms in its first intron were robustly associated with body mass index and obesity. Subsequently, as it became clear that this association with body weight, and increasingly food intake, was replicable across multiple populations and different age groups, attention was turned to studying the biology of FTO, about which absolutely nothing was known. This review focuses on the genetic and biochemical approaches as well as animal models that have been used by us and others since 2007 to try and uncover the complex biology of FTO.
Collapse
Affiliation(s)
- Yi-Chun Loraine Tung
- University of Cambridge Metabolic Research Labs, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
38
|
Nock NL, Plummer SJ, Thompson CL, Casey G, Li L. FTO polymorphisms are associated with adult body mass index (BMI) and colorectal adenomas in African-Americans. Carcinogenesis 2011; 32:748-56. [PMID: 21317302 PMCID: PMC3086700 DOI: 10.1093/carcin/bgr026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/31/2011] [Accepted: 02/06/2011] [Indexed: 12/16/2022] Open
Abstract
Obesity is a known risk factor for colon cancer and higher body mass index (BMI) has been associated with colorectal adenomas, which are precursor lesions to most colorectal cancers. Polymorphisms in the fat-mass and obesity-associated (FTO) gene have been associated with BMI and larger effects in older versus younger children have been reported. However, no studies have examined associations between FTO polymorphisms, BMI throughout adulthood and colorectal adenomas. Therefore, we evaluated associations between FTO polymorphisms (rs1421085, rs17817449, rs8050136, rs9939609, rs8044769), adult BMI (at recruitment, 50s, 40s, 30s, 20s age decades) and colorectal adenomas in 759 Caucasians and 469 African-Americans. We found that the highest versus the lowest BMI tertile at recruitment [odds ratio (OR) = 1.82; 95% confidence interval (CI): 1.07-2.16] and in the 30s (OR = 1.50; 95% CI: 1.04-2.15) was associated with higher adenoma risk. Stratification by ethnicity revealed that these associations only remained significant in Caucasians. We found that, in Caucasians, having two versus no copies of the variant allele in rs17817449, rs8050136 and rs9939609, which are all in strong linkage disequilibrium, was associated with higher BMI in the 30s and 40s but none of the polymorphisms were associated with adenomas. In African-Americans, having one or two copies of the variant in rs17817449 (OR = 0.61; 95% CI: 0.39-0.95) and rs8050136 (OR = 0.59; 95% CI: 0.38-0.93) was associated with colorectal adenomas and, having two variant copies in rs17817449 and rs8050136 was associated with higher BMI at recruitment and in the 40s, respectively. Our results are consistent with prior studies and show for the first time that FTO polymorphisms are associated with colorectal adenomas in African-Americans.
Collapse
Affiliation(s)
- Nora L. Nock
- Department of Epidemiology and Biostatistics
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106-7281, USA
| | - Sarah J. Plummer
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033-1006, USA
| | - Cheryl L. Thompson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106-7281, USA
- Department of Family Medicine, Case Western Reserve University, 11001 Cedar Avenue, Suite 306, Cleveland, OH 44106-7136, USA
| | - Graham Casey
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033-1006, USA
| | - Li Li
- Department of Epidemiology and Biostatistics
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106-7281, USA
- Department of Family Medicine, Case Western Reserve University, 11001 Cedar Avenue, Suite 306, Cleveland, OH 44106-7136, USA
| |
Collapse
|
39
|
Kim B, Kim Y, Cooke PS, Rüther U, Jorgensen JS. The fused toes locus is essential for somatic-germ cell interactions that foster germ cell maturation in developing gonads in mice. Biol Reprod 2011; 84:1024-32. [PMID: 21293032 DOI: 10.1095/biolreprod.110.088559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ovarian development absolutely depends on communication between somatic and germ cell components. In contrast, it is not until after birth that interactions between somatic and germ cells play an important role in testicular maturation and spermatogenesis. Previously, we discovered that Irx3 expression was localized specifically to female gonads during embryonic development; therefore, we sought to determine the function of this genetic locus in developing gonads of both sexes. The fused toes (Ft) mutant mouse is missing 1.6 Mb of chromosome 8, which includes the entire IrxB cluster (Irx3, Irx5, Irx6), Ftm, Fts, and Fto genes. Homozygote Ft mutant embryos die around embryonic day 13.5 (E13.5); therefore, to assess later development, we harvested gonads at E11.5 and transplanted them into nude mouse hosts. Our results show defects in somatic and germ cell maturation in developing gonads of both sexes. Testis development was normal initially; however, by 3-wk posttransplantation, expression of Sertoli and peritubular myoid cell markers were decreased. In many cases, gonocytes failed to migrate to structurally impaired basement membranes of seminiferous cords. Developmental abnormalities of the ovary appeared earlier and were more severe. Over time, the Ft mutant ovary formed very few primordial or primary follicles, which contained oocytes that failed to grow and were surrounded by scarce granulosa cells that expressed low levels of FOXL2. By 3 wk after transplantation, it was difficult to identify ovarian tissue in Ft mutant ovary transplants. In summary, we conclude that the Ft locus contains genes essential for somatic-germ cell interactions, without which the germ cell niche fails to mature in both sexes.
Collapse
Affiliation(s)
- Bongki Kim
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
40
|
Conditional expression of the FTO gene product in rat INS-1 cells reveals its rapid turnover and a role in the profile of glucose-induced insulin secretion. Clin Sci (Lond) 2011; 120:403-13. [DOI: 10.1042/cs20100416] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Common polymorphisms within the FTO (fat mass and obesity-associated) gene correlate with increased BMI (body mass index) and a rising risk of Type 2 diabetes. FTO is highly expressed in the brain but has also been detected in peripheral tissues, including the endocrine pancreas, although its function there is unclear. The aim of the present study was to investigate the role of FTO protein in pancreatic β-cells using a conditional expression system developed in INS-1 cells. INS-1 cells were stably transfected with FTO–HA (haemagluttinin) incorporated under the control of a tetracycline-inducible promoter. Induction of FTO protein resulted in localization of the tagged protein to the nucleus. The level of FTO–HA protein achieved in transfected cells was tightly regulated, and experiments with selective inhibitors revealed that FTO–HA is rapidly degraded via the ubiquitin/proteasome pathway. The nuclear localization was not altered by proteasome inhibitors, although following treatment with PYR-41, an inhibitor of ubiquitination, some of the protein adopted a perinuclear localization. Unexpectedly, modestly increased expression of FTO–HA selectively enhanced the first phase of insulin secretion when INS-1 monolayers or pseudoislets were stimulated with 20 mM glucose, whereas the second phase remained unchanged. The mechanism responsible for the potentiation of glucose-induced insulin secretion is unclear; however, further experiments revealed that it did not involve an increase in insulin biosynthesis or any changes in STAT3 (signal transducer and activator of transcription 3) expression. Taken together, these results suggest that the FTO protein may play a hitherto unrecognized role in the control of first-phase insulin secretion in pancreatic β-cells.
Collapse
|
41
|
Kim B, Kim Y, Sakuma R, Hui CC, Rüther U, Jorgensen JS. Primordial germ cell proliferation is impaired in Fused Toes mutant embryos. Dev Biol 2010; 349:417-26. [PMID: 20969841 DOI: 10.1016/j.ydbio.2010.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/06/2010] [Accepted: 10/13/2010] [Indexed: 11/30/2022]
Abstract
Over the first 4 days of their life, primordial germ cells invade the endoderm, migrate into and through the developing hindgut, and traverse to the genital ridge where they cluster and ultimately inhabit the nascent gonad. Specific signal-receptor combinations between primordial germ cells and their immediate environment establish successful migration and colonization. Here we demonstrate that disruption of a cluster of six genes on murine chromosome 8, as exemplified by the Fused Toes (Ft) mutant mouse model, results in severely decreased numbers of primordial germ cells within the early gonad. Primordial germ cell migration appeared normal within Ft mutant embryos; however, germ cell counts progressively decreased during this time. Although no difference in apoptosis was detected, we report a critical decrease in primordial germ cell proliferation by E12.5. The six genes within the Ft locus include the IrxB cluster (Irx3, -5, -6), Fts, Ftm, and Fto, of which only Ftm, Fto, and Fts are expressed in primordial germ cells of the early gonad. From these studies, we have discovered that the Ft locus on mouse chromosome 8 is associated with cell cycle deficits within the primordial germ cell population that initiates just before translocation into the genital ridge.
Collapse
Affiliation(s)
- Bongki Kim
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
42
|
Fawcett KA, Barroso I. The genetics of obesity: FTO leads the way. Trends Genet 2010; 26:266-74. [PMID: 20381893 PMCID: PMC2906751 DOI: 10.1016/j.tig.2010.02.006] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 02/25/2010] [Accepted: 02/26/2010] [Indexed: 01/19/2023]
Abstract
In 2007, an association of single nucleotide polymorphisms (SNPs) in the fat mass and obesity-associated (FTO) gene region with body mass index (BMI) and risk of obesity was identified in multiple populations, making FTO the first locus unequivocally associated with adiposity. At the time, FTO was a gene of unknown function and it was not known whether these SNPs exerted their effect on adiposity by affecting FTO or neighboring genes. Therefore, this breakthrough association inspired a wealth of in silico, in vitro, and in vivo analyses in model organisms and humans to improve knowledge of FTO function. These studies suggested that FTO plays a role in controlling feeding behavior and energy expenditure. Here, we review the approaches taken that provide a blueprint for the study of other obesity-associated genes in the hope that this strategy will result in increased understanding of the biological mechanisms underlying body weight regulation.
Collapse
Affiliation(s)
- Katherine A. Fawcett
- Metabolic Disease Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Inês Barroso
- Metabolic Disease Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science Addenbrooke's Hospital Cambridge CB2 OQQ, UK
| |
Collapse
|
43
|
Ho AJ, Stein JL, Hua X, Lee S, Hibar DP, Leow AD, Dinov ID, Toga AW, Saykin AJ, Shen L, Foroud T, Pankratz N, Huentelman MJ, Craig DW, Gerber JD, Allen AN, Corneveaux JJ, Stephan DA, DeCarli CS, DeChairo BM, Potkin SG, Jack CR, Weiner MW, Raji CA, Lopez OL, Becker JT, Carmichael OT, Thompson PM, the Alzheimer's Disease Neuroimaging Initiative. A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly. Proc Natl Acad Sci U S A 2010; 107:8404-9. [PMID: 20404173 PMCID: PMC2889537 DOI: 10.1073/pnas.0910878107] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A recently identified variant within the fat mass and obesity-associated (FTO) gene is carried by 46% of Western Europeans and is associated with an approximately 1.2 kg higher weight, on average, in adults and an approximately 1 cm greater waist circumference. With >1 billion overweight and 300 million obese persons worldwide, it is crucial to understand the implications of carrying this very common allele for the health of our aging population. FTO is highly expressed in the brain and elevated body mass index (BMI) is associated with brain atrophy, but it is unknown how the obesity-associated risk allele affects human brain structure. We therefore generated 3D maps of regional brain volume differences in 206 healthy elderly subjects scanned with MRI and genotyped as part of the Alzheimer's Disease Neuroimaging Initiative. We found a pattern of systematic brain volume deficits in carriers of the obesity-associated risk allele versus noncarriers. Relative to structure volumes in the mean template, FTO risk allele carriers versus noncarriers had an average brain volume difference of approximately 8% in the frontal lobes and 12% in the occipital lobes-these regions also showed significant volume deficits in subjects with higher BMI. These brain differences were not attributable to differences in cholesterol levels, hypertension, or the volume of white matter hyperintensities; which were not detectably higher in FTO risk allele carriers versus noncarriers. These brain maps reveal that a commonly carried susceptibility allele for obesity is associated with structural brain atrophy, with implications for the health of the elderly.
Collapse
Affiliation(s)
- April J. Ho
- Laboratory of Neuroimaging, Department of Neurology, University of California School of Medicine, Los Angeles, CA 90095
| | - Jason L. Stein
- Laboratory of Neuroimaging, Department of Neurology, University of California School of Medicine, Los Angeles, CA 90095
| | - Xue Hua
- Laboratory of Neuroimaging, Department of Neurology, University of California School of Medicine, Los Angeles, CA 90095
| | - Suh Lee
- Laboratory of Neuroimaging, Department of Neurology, University of California School of Medicine, Los Angeles, CA 90095
| | - Derrek P. Hibar
- Laboratory of Neuroimaging, Department of Neurology, University of California School of Medicine, Los Angeles, CA 90095
| | - Alex D. Leow
- Laboratory of Neuroimaging, Department of Neurology, University of California School of Medicine, Los Angeles, CA 90095
- Resnick Neuropsychiatric Hospital at University of California, Los Angeles, CA 90095
| | - Ivo D. Dinov
- Laboratory of Neuroimaging, Department of Neurology, University of California School of Medicine, Los Angeles, CA 90095
| | - Arthur W. Toga
- Laboratory of Neuroimaging, Department of Neurology, University of California School of Medicine, Los Angeles, CA 90095
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Li Shen
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Nathan Pankratz
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - David W. Craig
- Translational Genomics Research Institute, Phoenix, AZ 85004
| | - Jill D. Gerber
- Translational Genomics Research Institute, Phoenix, AZ 85004
| | - April N. Allen
- Translational Genomics Research Institute, Phoenix, AZ 85004
| | | | | | | | - Bryan M. DeChairo
- Neuroscience and Molecular Medicine, Pfizer Global Research and Development, New London, CT 06320
| | - Steven G. Potkin
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
| | | | - Michael W. Weiner
- Departments of Radiology, Medicine, and Psychiatry, University of California, San Francisco, CA 94143
- Department of Veterans Affairs Medical Center, San Francisco, CA 94121
| | | | | | - James T. Becker
- Psychiatry
- Psychology
- Neurology, University of Pittsburgh, Pittsburgh, PA 15213; and
| | - Owen T. Carmichael
- Department of Neurology and Computer Science, University of California, Davis, CA 95616
| | - Paul M. Thompson
- Laboratory of Neuroimaging, Department of Neurology, University of California School of Medicine, Los Angeles, CA 90095
| | | |
Collapse
Collaborators
Michael Weiner, Leon Thal, Ronald Petersen, Clifford R Jack, William Jagust, John Trojanowki, Arthur W Toga, Laurel Beckett, Robert C Green, Anthony Gamst, William Z Potter, Tom Montine, Dale Anders, Matthew Bernstein, Joel Felmlee, Nick Fox, Paul Thompson, Norbert Schuff, Gene Alexander, Dan Bandy, Robert A Koeppe, Norm Foster, Eric M Reiman, Kewei Chen, John Trojanowki, Les Shaw, Virginia Lee, Magdalena Korecka, Arthur Toga, Karen Crawford, Scott Neu, Danielle Harvey, Anthony Gamst, John Kornak, Zaven Kachaturian, Richard Frank, Peter J Snyder, Susan Molchan, Jeffrey Kaye, Remi Vorobik, Joseph Quinn, Lon Schneider, Sonia Pawluczyk, Bryan Spann, Adam S Fleisher, Helen Vanderswag, Judith L Heidebrink, Joanne L Lord, Kris Johnson, Rachelle S Doody, Javier Villanueva, Munir Chowdhury, Yaakov Stern, Lawrence S Honig, Karen L Bell, John C Morris, Mark A Mintun, Stacy Schneider, Daniel Marson, Randall Griffith, Beverly Badger, Hillel Grossman, Cheuk Tang, Jessica Stern, Leyla deToledo-Morrell, Raj C Shah, Julie Bach, Ranjan Duara, Richard Issacson, Silvia Strauman, Marilyn S Albert, Julia Pedroso, Jaimie Toroney, Henry Rusinek, Mony J de Leon, Susan M De Santi, P Murali Doraiswamy, Jeffrey R Petrella, Marilyn Aiello, Christopher M Clark, Cassie Pham, Jessica Nunez, Charles D Smith, Curtis A Given, Peter Hardy, Steven T DeKosky, Mary Ann Oakley, Donna M Simpson, M Saleem Ismail, Anton Porsteinsson, Colleen McCallum, Steven C Cramer, Ruth A Mulnard, Catherine McAdams-Ortiz, Ramon Diaz-Arrastia, Kristen Martin-Cook, Michael DeVous, Allan I Levey, James J Lah, Janet S Cellar, Jeffrey M Burns, Heather S Anderson, Mary M Laubinger, George Bartzokis, Daniel H S Silverman, Po H Lu, Rita Fletcher, Francine Parfitt, Heather Johnson, Martin Farlow, Scott Herring, Ann Hake, Christopher H Van Dyck, Martha G MacAvoy, Laurel G Bifano, Howard Chertkow, Howard Bergman, Chris Hosein, Sandra Black, Simon Graham, Curtis Caldwell, Howard Feldman, Michele Assaly, Ging-Yuek R Hsiung, Andrew Kertesz, John Rogers, Dick Trost, Charles Bernick, Darren Gitelman, Nancy Johnson, Marsel Mesulam, Carl Sadowsky, Teresa Villena, Scott Mesner, Paul S Aisen, Kathleen B Johnson, Kelly E Behan, Reisa A Sperling, Dorene M Rentz, Keith A Johnson, Allyson Rosen, Jared Tinklenberg, Wes Ashford, Marwan Sabbagh, Donald Connor, Sanja Obradov, Ron Killiany, Alex Norbash, Thomas O Obisesan, Annapurni Jayam-Trouth, Paul Wang, Alexander P Auchus, Juebin Huang, Robert P Friedland, Charles DeCarli, Evan Fletcher, Owen Carmichael, Smita Kittur, Seema Mirje, Sterling C Johnson, Michael Borrie, T -Y Lee, Sanjay Asthana, Cynthia M Carlsson, Steven G Potkin, Diane Highum, Adrian Preda, Dana Nguyen, Pierre N Tariot, Barry A Hendin, Douglas W Scharre, Maria Kataki, David Q Beversdorf, Earl A Zimmerman, Dzintra Celmins, Alice D Brown, Sam Gandy, Marjorie E Marenberg, Barry W Rovner, Godfrey Pearlson, Karen Blank, Karen Anderson, Andrew J Saykin, Robert B Santulli, Nadia Pare, Jeff D Williamson, Kaycee M Sink, Huntington Potter, B Ashok Raj, Amy Giordano, Brian R Ott, Chuang-Kuo Wu, Ronald Cohen, Kerri L Wilks,
Collapse
|
44
|
Church C, Lee S, Bagg EAL, McTaggart JS, Deacon R, Gerken T, Lee A, Moir L, Mecinović J, Quwailid MM, Schofield CJ, Ashcroft FM, Cox RD. A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet 2009; 5:e1000599. [PMID: 19680540 PMCID: PMC2719869 DOI: 10.1371/journal.pgen.1000599] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/14/2009] [Indexed: 01/31/2023] Open
Abstract
Human FTO gene variants are associated with body mass index and type 2 diabetes. Because the obesity-associated SNPs are intronic, it is unclear whether changes in FTO expression or splicing are the cause of obesity or if regulatory elements within intron 1 influence upstream or downstream genes. We tested the idea that FTO itself is involved in obesity. We show that a dominant point mutation in the mouse Fto gene results in reduced fat mass, increased energy expenditure, and unchanged physical activity. Exposure to a high-fat diet enhances lean mass and lowers fat mass relative to control mice. Biochemical studies suggest the mutation occurs in a structurally novel domain and modifies FTO function, possibly by altering its dimerisation state. Gene expression profiling revealed increased expression of some fat and carbohydrate metabolism genes and an improved inflammatory profile in white adipose tissue of mutant mice. These data provide direct functional evidence that FTO is a causal gene underlying obesity. Compared to the reported mouse FTO knockout, our model more accurately reflects the effect of human FTO variants; we observe a heterozygous as well as homozygous phenotype, a smaller difference in weight and adiposity, and our mice do not show perinatal lethality or an age-related reduction in size and length. Our model suggests that a search for human coding mutations in FTO may be informative and that inhibition of FTO activity is a possible target for the treatment of morbid obesity.
Collapse
Affiliation(s)
- Chris Church
- MRC Harwell, Metabolism and Inflammation, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Sheena Lee
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Eleanor A. L. Bagg
- Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, United Kingdom
| | - James S. McTaggart
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert Deacon
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Thomas Gerken
- Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, United Kingdom
| | - Angela Lee
- MRC Harwell, Metabolism and Inflammation, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Lee Moir
- MRC Harwell, Metabolism and Inflammation, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Jasmin Mecinović
- Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, United Kingdom
| | - Mohamed M. Quwailid
- MRC Harwell, Metabolism and Inflammation, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, United Kingdom
| | - Frances M. Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Roger D. Cox
- MRC Harwell, Metabolism and Inflammation, Harwell Science and Innovation Campus, Harwell, United Kingdom
| |
Collapse
|
45
|
Fan B, Du ZQ, Rothschild MF. The fat mass and obesity-associated (FTO) gene is associated with intramuscular fat content and growth rate in the pig. Anim Biotechnol 2009; 20:58-70. [PMID: 19370455 DOI: 10.1080/10495390902800792] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The association of the FTO gene with obesity has been implicated in various human populations. The FTO gene is also most likely involved in the regulation of energy balance and feed intake. Here, the FTO gene was studied as a candidate gene for fatness and growth rate traits in pigs. The amino acid sequence of the FTO gene showed high conservation among human, pig, and other important domestic animals. Twelve variants including ten SNPs and two indels were detected, and then five SNPs within different genomic regions were genotyped in the ISU Berkshire x Yorkshire pig resource family. The linkage disequilibrium analyses revealed that most of these FTO variants were not in strong LD with each other. The SNPs c.46-139A > T within intron 1 and a synonymous mutation c.594C > G (Ala198Ala) within exon 3 had significant (P < 0.01) associations with average daily gain on test and total lipid percentage in muscle, respectively. Five major haplotypes were identified and the subsequent association analyses suggested that haplotype 2 (-CTTGG-) was the most favorable for increased growth rate, while haplotype 1 (-CTACG-) was unfavorably associated with intramuscular fatness traits.
Collapse
Affiliation(s)
- Bin Fan
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, USA
| | | | | |
Collapse
|
46
|
Abstract
Neural tube defects (NTDs) are among the most common structural birth defects observed in humans. Mouse models provide an excellent experimental system to study the underlying causes of NTDs. These models not only allow for identification of the genes required for neurulation, they provide tractable systems for uncovering the developmental, pathological and molecular mechanisms underlying NTDs. In addition, mouse models are essential for elucidating the mechanisms of gene-environment and gene-gene interactions that contribute to the multifactorial inheritance of NTDs. In some cases these studies have led to development of approaches to prevent NTDs and provide an understanding of the underlying molecular mechanism of these therapies prevent NTDs.
Collapse
Affiliation(s)
- Irene E Zohn
- Children's Research Institute, Children's National Medical Center, Washington, DC, USA
| | | |
Collapse
|
47
|
Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Brüning JC, Rüther U. Inactivation of the Fto gene protects from obesity. Nature 2009; 458:894-8. [PMID: 19234441 DOI: 10.1038/nature07848] [Citation(s) in RCA: 733] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 02/02/2009] [Indexed: 11/09/2022]
Abstract
Several independent, genome-wide association studies have identified a strong correlation between body mass index and polymorphisms in the human FTO gene. Common variants in the first intron define a risk allele predisposing to obesity, with homozygotes for the risk allele weighing approximately 3 kilograms more than homozygotes for the low risk allele. Nevertheless, the functional role of FTO in energy homeostasis remains elusive. Here we show that the loss of Fto in mice leads to postnatal growth retardation and a significant reduction in adipose tissue and lean body mass. The leanness of Fto-deficient mice develops as a consequence of increased energy expenditure and systemic sympathetic activation, despite decreased spontaneous locomotor activity and relative hyperphagia. Taken together, these experiments provide, to our knowledge, the first direct demonstration that Fto is functionally involved in energy homeostasis by the control of energy expenditure.
Collapse
Affiliation(s)
- Julia Fischer
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Zabena C, González-Sánchez JL, Martínez-Larrad MT, Torres-García A, Alvarez-Fernández-Represa J, Corbatón-Anchuelo A, Pérez-Barba M, Serrano-Ríos M. The FTO obesity gene. Genotyping and gene expression analysis in morbidly obese patients. Obes Surg 2008; 19:87-95. [PMID: 18855084 DOI: 10.1007/s11695-008-9727-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 09/19/2008] [Indexed: 12/28/2022]
Abstract
BACKGROUND Obesity has emerged as one of the most serious public health concerns in the twenty-first century. the fat mass and obesity associated gene (FTO) has been found to contribute to the risk of obesity in humans. Our aims in this study were to investigate the association of rs9939609 single nucleotide polymorphism (SNP) of the FTO gene with different obesity-related parameters, to assess the FTO gene expression in subcutaneous and visceral adipose tissues from morbidly obese and its correlations with other adipocytokine gene expressions. METHODS The association between the rs9939609 FTO gene variant and obesity related parameters in 75 obese/morbidly obese adult patients and 180 subjects with body mass index (BMI) < 30 kg/m(2) (control group) was examined. Gene expression analyses: subcutaneous adipose tissue samples were obtained from 52 morbidly obese and five subjects with BMI < 30 kg/m(2). Visceral adipose tissue was also obtained from 35 morbidly obese patients. Weight, height, BMI, SBP, DBP, fasting glucose, lipid profile, proinsulin, insulin, leptin, and adiponectin (RIA) of patients were also obtained. Insulin resistance by HOMA(IR). rs9939609 of FTO genotyping using allele discrimination in real-time PCR. Genomic study of RNA extraction of adipose tissue and real-time PCR (RT-PCR) of adipocytokines and a housekeeping gene were quantified using TaqMan probes. Relative quantification was calculated using the DeltaDelta Ct formula. RESULTS The minor-(A) allele frequency of rs9939609 FTO gene in the whole population was 0.39. A strong association between this A allele and obesity was found, even after age-sex adjustment (p = 0.013). We found higher levels of FTO mRNA in subcutaneous adipose tissue from morbidly obese than in the control group (p = 0.021). FTO gene expression was lower in visceral than in subcutaneous adipose depot. However, this finding did not reach the level of statistical significance. A negative correlation between subcutaneous FTO gene expression and serum triglyceride levels and a positive correlation with leptin, perilipin, and visfatin gene expressions was found. In the visceral adipose tissue, these positive correlations were statistically significant only for perilipin. CONCLUSIONS Our results show: (1) A strong association between rs9939609 SNP of the FTO gene variant and obesity in Spanish morbidly obese adult patients; (2) positive correlations between FTO mRNA and leptin, perilipin, and visfatin gene expressions in subcutaneous adipose tissue; (3) FTO and perilipin gene expressions were positively correlated in visceral fat depot. Overall these results may suggest a role of FTO in the regulation of lipolysis as well as in total body fat rather in fat distribution patterns.
Collapse
Affiliation(s)
- Carina Zabena
- Department of Internal Medicine II, Hospital Clínico San Carlos, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Cea Bermúdez 66, 5 G., 28003, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Haupt A, Thamer C, Machann J, Kirchhoff K, Stefan N, Tschritter O, Machicao F, Schick F, Häring HU, Fritsche A. Impact of variation in the FTO gene on whole body fat distribution, ectopic fat, and weight loss. Obesity (Silver Spring) 2008; 16:1969-72. [PMID: 18535549 DOI: 10.1038/oby.2008.283] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polymorphisms in the fat mass- and obesity-associated (FTO) gene have been identified to be associated with obesity and diabetes in large genome-wide association studies. We hypothesized that variation in the FTO gene has an impact on whole body fat distribution and insulin sensitivity, and influences weight change during lifestyle intervention. To test this hypothesis, we genotyped 1,466 German subjects, with increased risk for type 2 diabetes, for single-nucleotide polymorphism rs8050136 in the FTO gene and estimated glucose tolerance and insulin sensitivity from an oral glucose tolerance test (OGTT). Distribution of fat depots was quantified using whole body magnetic resonance (MR) imaging and spectroscopy in 298 subjects. Two-hundred and four subjects participated in a lifestyle intervention program and were examined after a follow-up of 9 months. In the cross-sectional analysis, the A allele of rs8050136 in FTO was associated with a higher BMI, body fat, and lean body mass (all P < 0.001). There was a significant effect of variation in the FTO gene on subcutaneous fat (P < or = 0.05) and a trend for liver fat content, nonvisceral adipose tissue, and visceral fat (all P < or = 0.1). However, the single-nucleotide polymorphism was not associated with insulin sensitivity or secretion independent of BMI (all P > 0.05). During lifestyle intervention, there was also no influence of the FTO polymorphism on changes in body weight or fat distribution. In conclusion, despite an association with BMI and whole body fat distribution, variation in the FTO locus has no effect on the success of a lifestyle intervention program.
Collapse
Affiliation(s)
- Axel Haupt
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sanghera DK, Ortega L, Han S, Singh J, Ralhan SK, Wander GS, Mehra NK, Mulvihill JJ, Ferrell RE, Nath SK, Kamboh MI. Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC MEDICAL GENETICS 2008; 9:59. [PMID: 18598350 PMCID: PMC2481250 DOI: 10.1186/1471-2350-9-59] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 07/03/2008] [Indexed: 12/15/2022]
Abstract
BACKGROUND Recent genome-wide association (GWA) studies have identified several unsuspected genes associated with type 2 diabetes (T2D) with previously unknown functions. In this investigation, we have examined the role of 9 most significant SNPs reported in GWA studies: [peroxisome proliferator-activated receptor gamma 2 (PPARG2; rs 1801282); insulin-like growth factor two binding protein 2 (IGF2BP2; rs 4402960); cyclin-dependent kinase 5, a regulatory subunit-associated protein1-like 1 (CDK5; rs7754840); a zinc transporter and member of solute carrier family 30 (SLC30A8; rs13266634); a variant found near cyclin-dependent kinase inhibitor 2A (CDKN2A; rs10811661); hematopoietically expressed homeobox (HHEX; rs 1111875); transcription factor-7-like 2 (TCF7L2; rs 10885409); potassium inwardly rectifying channel subfamily J member 11(KCNJ11; rs 5219); and fat mass obesity-associated gene (FTO; rs 9939609)]. METHODS We genotyped these SNPs in a case-control sample of 918 individuals consisting of 532 T2D cases and 386 normal glucose tolerant (NGT) subjects of an Asian Sikh community from North India. We tested the association between T2D and each SNP using unconditional logistic regression before and after adjusting for age, gender, and other covariates. We also examined the impact of these variants on body mass index (BMI), waist to hip ratio (WHR), fasting insulin, and glucose and lipid levels using multiple linear regression analysis. RESULTS Four of the nine SNPs revealed a significant association with T2D; PPARG2 (Pro12Ala) [odds ratio (OR) 0.12; 95% confidence interval (CI) (0.03-0.52); p = 0.005], IGF2BP2 [OR 1.37; 95% CI (1.04-1.82); p = 0.027], TCF7L2 [OR 1.64; 95% CI (1.20-2.24); p = 0.001] and FTO [OR 1.46; 95% CI (1.11-1.93); p = 0.007] after adjusting for age, sex and BMI. Multiple linear regression analysis revealed significant association of two of nine investigated loci with diabetes-related quantitative traits. The 'C' (risk) allele of CDK5 (rs 7754840) was significantly associated with decreased HDL-cholesterol levels in both NGT (p = 0.005) and combined (NGT and T2D) (0.005) groups. The less common 'C' (risk) allele of TCF7L2 (rs 10885409) was associated with increased LDL-cholesterol (p = 0.010) in NGT and total and LDL-cholesterol levels (p = 0.008; p = 0.003, respectively) in combined cohort. CONCLUSION To our knowledge, this is first study reporting the role of some recently emerged loci with T2D in a high risk population of Asian Indian origin. Further investigations are warranted to understand the pathway-based functional implications of these important loci in T2D pathophysiology in different ethnicities.
Collapse
Affiliation(s)
- Dharambir K Sanghera
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Pediatrics, Section of Genetics University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-254A, Oklahoma City, OK – 73104, USA
| | - Lyda Ortega
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shizhong Han
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jairup Singh
- Guru Nanak Dev University, Amritsar, Punjab, India
| | | | | | | | - John J Mulvihill
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Robert E Ferrell
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Swapan K Nath
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Mohammed I Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|