1
|
Lepesant JA, Roland-Gosselin F, Guillemet C, Bernard F, Guichet A. The Importance of the Position of the Nucleus in Drosophila Oocyte Development. Cells 2024; 13:201. [PMID: 38275826 PMCID: PMC10814754 DOI: 10.3390/cells13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Oogenesis is a developmental process leading to the formation of an oocyte, a haploid gamete, which upon fertilisation and sperm entry allows the male and the female pronuclei to fuse and give rise to a zygote. In addition to forming a haploid gamete, oogenesis builds up a store of proteins, mRNAs, and organelles in the oocyte needed for the development of the future embryo. In several species, such as Drosophila, the polarity axes determinants of the future embryo must be asymmetrically distributed prior to fertilisation. In the Drosophila oocyte, the correct positioning of the nucleus is essential for establishing the dorsoventral polarity axis of the future embryo and allowing the meiotic spindles to be positioned in close vicinity to the unique sperm entry point into the oocyte.
Collapse
Affiliation(s)
| | | | | | | | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; (J.-A.L.); (F.R.-G.); (C.G.); (F.B.)
| |
Collapse
|
2
|
Vaikakkara Chithran A, Allan DW, O'Connor TP. Adult expression of Semaphorins and Plexins is essential for motor neuron survival. Sci Rep 2023; 13:5894. [PMID: 37041188 PMCID: PMC10090137 DOI: 10.1038/s41598-023-32943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
Axon guidance cues direct the growth and steering of neuronal growth cones, thus guiding the axons to their targets during development. Nonetheless, after axons have reached their targets and established functional circuits, many mature neurons continue to express these developmental cues. The role of axon guidance cues in the adult nervous system has not been fully elucidated. Using the expression pattern data available on FlyBase, we found that more than 96% of the guidance genes that are expressed in the Drosophila melanogaster embryo continue to be expressed in adults. We utilized the GeneSwitch and TARGET systems to spatiotemporally knockdown the expression of these guidance genes selectively in the adult neurons, once the development was completed. We performed an RNA interference (RNAi) screen against 44 guidance genes in the adult Drosophila nervous system and identified 14 genes that are required for adult survival and normal motility. Additionally, we show that adult expression of Semaphorins and Plexins in motor neurons is necessary for neuronal survival, indicating that guidance genes have critical functions in the mature nervous system.
Collapse
Affiliation(s)
- Aarya Vaikakkara Chithran
- Graduate Program in Neuroscience, University of British Columbia, 3402-2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timothy P O'Connor
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
3
|
Shamipour S, Caballero-Mancebo S, Heisenberg CP. Cytoplasm's Got Moves. Dev Cell 2021; 56:213-226. [PMID: 33321104 DOI: 10.1016/j.devcel.2020.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023]
Abstract
Cytoplasm is a gel-like crowded environment composed of various macromolecules, organelles, cytoskeletal networks, and cytosol. The structure of the cytoplasm is highly organized and heterogeneous due to the crowding of its constituents and their effective compartmentalization. In such an environment, the diffusive dynamics of the molecules are restricted, an effect that is further amplified by clustering and anchoring of molecules. Despite the crowded nature of the cytoplasm at the microscopic scale, large-scale reorganization of the cytoplasm is essential for important cellular functions, such as cell division and polarization. How such mesoscale reorganization of the cytoplasm is achieved, especially for large cells such as oocytes or syncytial tissues that can span hundreds of micrometers in size, is only beginning to be understood. In this review, we will discuss recent advances in elucidating the molecular, cellular, and biophysical mechanisms by which the cytoskeleton drives cytoplasmic reorganization across different scales, structures, and species.
Collapse
Affiliation(s)
- Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | | |
Collapse
|
4
|
Lasko P. Patterning the Drosophila embryo: A paradigm for RNA-based developmental genetic regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1610. [PMID: 32543002 PMCID: PMC7583483 DOI: 10.1002/wrna.1610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022]
Abstract
Embryonic anterior–posterior patterning is established in Drosophila melanogaster by maternally expressed genes. The mRNAs of several of these genes accumulate at either the anterior or posterior pole of the oocyte via a number of mechanisms. Many of these mRNAs are also under elaborate translational regulation. Asymmetric RNA localization coupled with spatially restricted translation ensures that their proteins are restricted to the position necessary for the developmental process that they drive. Bicoid (Bcd), the anterior determinant, and Oskar (Osk), the determinant for primordial germ cells and posterior patterning, have been studied particularly closely. In early embryos an anterior–posterior gradient of Bcd is established, activating transcription of different sets of zygotic genes depending on local Bcd concentration. At the posterior pole, Osk seeds formation of polar granules, ribonucleoprotein complexes that accumulate further mRNAs and proteins involved in posterior patterning and germ cell specification. After fertilization, polar granules associate with posterior nuclei and mature into nuclear germ granules. Osk accumulates in these granules, and either by itself or as part of the granules, stimulates germ cell division. This article is categorized under:RNA Export and Localization > RNA Localization Translation > Translation Regulation RNA in Disease and Development > RNA in Development
Collapse
Affiliation(s)
- Paul Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada.,Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
5
|
Microtubule-microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes. Proc Natl Acad Sci U S A 2016; 113:E4995-5004. [PMID: 27512034 DOI: 10.1073/pnas.1522424113] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule-microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants.
Collapse
|
6
|
Abstract
Objects are commonly moved within the cell by either passive diffusion or active directed transport. A third possibility is advection, in which objects within the cytoplasm are moved with the flow of the cytoplasm. Bulk movement of the cytoplasm, or streaming, as required for advection, is more common in large cells than in small cells. For example, streaming is observed in elongated plant cells and the oocytes of several species. In the Drosophila oocyte, two stages of streaming are observed: relatively slow streaming during mid-oogenesis and streaming that is approximately ten times faster during late oogenesis. These flows are implicated in two processes: polarity establishment and mixing. In this review, I discuss the underlying mechanism of streaming, how slow and fast streaming are differentiated, and what we know about the physiological roles of the two types of streaming.
Collapse
Affiliation(s)
- Margot E Quinlan
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, California 90095;
| |
Collapse
|
7
|
Monteith CE, Brunner ME, Djagaeva I, Bielecki AM, Deutsch JM, Saxton WM. A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows. Biophys J 2016; 110:2053-65. [PMID: 27166813 PMCID: PMC4939475 DOI: 10.1016/j.bpj.2016.03.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/21/2016] [Indexed: 11/20/2022] Open
Abstract
The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions for fast plus-end directed fluid flows that facilitate mixing in a low Reynolds number regime.
Collapse
Affiliation(s)
- Corey E Monteith
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Matthew E Brunner
- Department of Physics, University of California Santa Cruz, Santa Cruz, California
| | - Inna Djagaeva
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Anthony M Bielecki
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Joshua M Deutsch
- Department of Physics, University of California Santa Cruz, Santa Cruz, California.
| | - William M Saxton
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California.
| |
Collapse
|
8
|
Wu J, Bao A, Chatterjee K, Wan Y, Hopper AK. Genome-wide screen uncovers novel pathways for tRNA processing and nuclear-cytoplasmic dynamics. Genes Dev 2016; 29:2633-44. [PMID: 26680305 PMCID: PMC4699390 DOI: 10.1101/gad.269803.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this resource, Wu et al. present the first comprehensive unbiased analysis of the role of nearly an entire proteome in tRNA biology and describe 162 novel and 12 previously known Saccharomyces cerevisiae gene products that function in tRNA processing, turnover, and subcellular movement. The findings from this genome-wide screen describe putative novel pathways for tRNA nuclear export and extensive links between tRNA biology and other aspects of cell physiology. Transfer ribonucleic acids (tRNAs) are essential for protein synthesis. However, key gene products involved in tRNA biogenesis and subcellular movement remain to be discovered. We conducted the first comprehensive unbiased analysis of the role of nearly an entire proteome in tRNA biology and describe 162 novel and 12 previously known Saccharomyces cerevisiae gene products that function in tRNA processing, turnover, and subcellular movement. tRNA nuclear export is of particular interest because it is essential, but the known tRNA exporters (Los1 [exportin-t] and Msn5 [exportin-5]) are unessential. We report that mutations of CRM1 (Exportin-1), MEX67/MTR2 (TAP/p15), and five nucleoporins cause accumulation of unspliced tRNA, a hallmark of defective tRNA nuclear export. CRM1 mutation genetically interacts with los1Δ and causes altered tRNA nuclear–cytoplasmic distribution. The data implicate roles for the protein and mRNA nuclear export machineries in tRNA nuclear export. Mutations of genes encoding actin cytoskeleton components and mitochondrial outer membrane proteins also cause accumulation of unspliced tRNA, likely due to defective splicing on mitochondria. Additional gene products, such as chromatin modification enzymes, have unanticipated effects on pre-tRNA end processing. Thus, this genome-wide screen uncovered putative novel pathways for tRNA nuclear export and extensive links between tRNA biology and other aspects of cell physiology.
Collapse
Affiliation(s)
- Jingyan Wu
- Department of Molecular Genetics, Center for RNA biology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | - Kunal Chatterjee
- Department of Molecular Genetics, Center for RNA biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yao Wan
- Department of Molecular Genetics, Center for RNA biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics, Center for RNA biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
9
|
Montaville P, Kühn S, Compper C, Carlier MF. Role of the C-terminal Extension of Formin 2 in Its Activation by Spire Protein and Processive Assembly of Actin Filaments. J Biol Chem 2015; 291:3302-18. [PMID: 26668326 DOI: 10.1074/jbc.m115.681379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 11/06/2022] Open
Abstract
Formin 2 (Fmn2), a member of the FMN family of formins, plays an important role in early development. This formin cooperates with profilin and Spire, a WASP homology domain 2 (WH2) repeat protein, to stimulate assembly of a dynamic cytoplasmic actin meshwork that facilitates translocation of the meiotic spindle in asymmetric division of mouse oocytes. The kinase-like non-catalytic domain (KIND) of Spire directly interacts with the C-terminal extension of the formin homology domain 2 (FH2) domain of Fmn2, called FSI. This direct interaction is required for the synergy between the two proteins in actin assembly. We have recently demonstrated how Spire, which caps barbed ends via its WH2 domains, activates Fmn2. Fmn2 by itself associates very poorly to filament barbed ends but is rapidly recruited to Spire-capped barbed ends via the KIND domain, and it subsequently displaces Spire from the barbed end to elicit rapid processive assembly from profilin·actin. Here, we address the mechanism by which Spire and Fmn2 compete at barbed ends and the role of FSI in orchestrating this competition as well as in the processivity of Fmn2. We have combined microcalorimetric, fluorescence, and hydrodynamic binding assays, as well as bulk solution and single filament measurements of actin assembly, to show that removal of FSI converts Fmn2 into a Capping Protein. This activity is mimicked by association of KIND to Fmn2. In addition, FSI binds actin at filament barbed ends as a weak capper and plays a role in displacing the WH2 domains of Spire from actin, thus allowing the association of actin-binding regions of FH2 to the barbed end.
Collapse
Affiliation(s)
- Pierre Montaville
- From the Cytoskeleton Dynamics and Motility, Institut de Biologie Intégrative de la Cellule, CNRS, 91198 Gif-sur-Yvette, France
| | - Sonja Kühn
- From the Cytoskeleton Dynamics and Motility, Institut de Biologie Intégrative de la Cellule, CNRS, 91198 Gif-sur-Yvette, France
| | - Christel Compper
- From the Cytoskeleton Dynamics and Motility, Institut de Biologie Intégrative de la Cellule, CNRS, 91198 Gif-sur-Yvette, France
| | - Marie-France Carlier
- From the Cytoskeleton Dynamics and Motility, Institut de Biologie Intégrative de la Cellule, CNRS, 91198 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Deng S, Bothe I, Baylies MK. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation. PLoS Genet 2015; 11:e1005381. [PMID: 26295716 PMCID: PMC4546610 DOI: 10.1371/journal.pgen.1005381] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 06/23/2015] [Indexed: 11/19/2022] Open
Abstract
The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia), which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.
Collapse
Affiliation(s)
- Su Deng
- Graduate Program in Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
| | - Ingo Bothe
- Program in Developmental Biology, Sloan Kettering Institute, New York, New York, United States of America
| | - Mary K. Baylies
- Graduate Program in Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
- Program in Developmental Biology, Sloan Kettering Institute, New York, New York, United States of America
| |
Collapse
|
11
|
Control of polarized assembly of actin filaments in cell motility. Cell Mol Life Sci 2015; 72:3051-67. [PMID: 25948416 PMCID: PMC4506460 DOI: 10.1007/s00018-015-1914-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/02/2015] [Accepted: 04/23/2015] [Indexed: 10/25/2022]
Abstract
Actin cytoskeleton remodeling, which drives changes in cell shape and motility, is orchestrated by a coordinated control of polarized assembly of actin filaments. Signal responsive, membrane-bound protein machineries initiate and regulate polarized growth of actin filaments by mediating transient links with their barbed ends, which elongate from polymerizable actin monomers. The barbed end of an actin filament thus stands out as a hotspot of regulation of filament assembly. It is the target of both soluble and membrane-bound agonists as well as antagonists of filament assembly. Here, we review the molecular mechanisms by which various regulators of actin dynamics bind, synergize or compete at filament barbed ends. Two proteins can compete for the barbed end via a mutually exclusive binding scheme. Alternatively, two regulators acting individually at barbed ends may be bound together transiently to terminal actin subunits at barbed ends, leading to the displacement of one by the other. The kinetics of these reactions is a key in understanding how filament length and membrane-filament linkage are controlled. It is also essential for understanding how force is produced to shape membranes by mechano-sensitive, processive barbed end tracking machineries like formins and by WASP-Arp2/3 branched filament arrays. A combination of biochemical and biophysical approaches, including bulk solution assembly measurements using pyrenyl-actin fluorescence, single filament dynamics, single molecule fluorescence imaging and reconstituted self-organized filament assemblies, have provided mechanistic insight into the role of actin polymerization in motile processes.
Collapse
|
12
|
Newton ILG, Savytskyy O, Sheehan KB. Wolbachia utilize host actin for efficient maternal transmission in Drosophila melanogaster. PLoS Pathog 2015; 11:e1004798. [PMID: 25906062 PMCID: PMC4408098 DOI: 10.1371/journal.ppat.1004798] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/11/2015] [Indexed: 11/23/2022] Open
Abstract
Wolbachia pipientis is a ubiquitous, maternally transmitted bacterium that infects the germline of insect hosts. Estimates are that Wolbachia infect nearly 40% of insect species on the planet, making it the most prevalent infection on Earth. The bacterium, infamous for the reproductive phenotypes it induces in arthropod hosts, has risen to recent prominence due to its use in vector control. Wolbachia infection prevents the colonization of vectors by RNA viruses, including Drosophila C virus and important human pathogens such as Dengue and Chikungunya. Here we present data indicating that Wolbachia utilize the host actin cytoskeleton during oogenesis for persistence within and transmission between Drosophila melanogaster generations. We show that phenotypically wild type flies heterozygous for cytoskeletal mutations in Drosophila profilin (chic(221/+) and chic(1320/+)) or villin (qua(6-396/+)) either clear a Wolbachia infection, or result in significantly reduced infection levels. This reduction of Wolbachia is supported by PCR evidence, Western blot results and cytological examination. This phenotype is unlikely to be the result of maternal loading defects, defects in oocyte polarization, or germline stem cell proliferation, as the flies are phenotypically wild type in egg size, shape, and number. Importantly, however, heterozygous mutant flies exhibit decreased total G-actin in the ovary, compared to control flies and chic(221) heterozygous mutants exhibit decreased expression of profilin. Additionally, RNAi knockdown of profilin during development decreases Wolbachia titers. We analyze evidence in support of alternative theories to explain this Wolbachia phenotype and conclude that our results support the hypothesis that Wolbachia utilize the actin skeleton for efficient transmission and maintenance within Drosophila.
Collapse
Affiliation(s)
- Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Oleksandr Savytskyy
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Kathy B. Sheehan
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
13
|
Bor B, Bois JS, Quinlan ME. Regulation of the formin Cappuccino is critical for polarity of Drosophila oocytes. Cytoskeleton (Hoboken) 2015; 72:1-15. [PMID: 25557988 DOI: 10.1002/cm.21205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/19/2014] [Indexed: 11/06/2022]
Abstract
The Drosophila formin Cappuccino (Capu) creates an actin mesh-like structure that traverses the oocyte during midoogenesis. This mesh is thought to prevent premature onset of fast cytoplasmic streaming which normally happens during late-oogenesis. Proper cytoskeletal organization and cytoplasmic streaming are crucial for localization of polarity determinants such as osk, grk, bcd, and nanos mRNAs. Capu mutants disrupt these events, leading to female sterility. Capu is regulated by another nucleator, Spire, as well as by autoinhibition in vitro. Studies in vivo confirm that Spire modulates Capu's function in oocytes; however, how autoinhibition contributes is still unclear. To study the role of autoinhibition in flies, we expressed a Capu construct that is missing the Capu Inhibitory Domain, CapuΔN. Consistent with a gain of activity due to loss of autoinhibition, the actin mesh was denser in CapuΔN oocytes. Further, cytoplasmic streaming was delayed and fertility levels decreased. Localization of osk mRNA in early stages, and bcd and nanos in late stages, were disrupted in CapuΔN-expressing oocytes. Finally, evidence that these phenotypes were due to a loss of autoinhibition comes from coexpression of the N-terminal half of Capu with CapuΔN, which suppressed the defects in actin, cytoplasmic streaming and fertility. From these results, we conclude that Capu can be autoinhibited during Drosophila oocyte development.
Collapse
Affiliation(s)
- Batbileg Bor
- Molecular Biology Interdepartmental PhD Program, University of California, Los Angeles, California, 90095-1570
| | | | | |
Collapse
|
14
|
Chong LP, Wang Y, Gad N, Anderson N, Shah B, Zhao R. A highly charged region in the middle domain of plant endoplasmic reticulum (ER)-localized heat-shock protein 90 is required for resistance to tunicamycin or high calcium-induced ER stresses. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:113-24. [PMID: 25297550 PMCID: PMC4265155 DOI: 10.1093/jxb/eru403] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Heat-shock protein 90 (HSP90) is a highly conserved molecular chaperone that is involved in modulating a multitude of cellular processes under both physiological and stress conditions. In Arabidopsis, there are seven HSP90 isoforms (HSP90.1-HSP90.7) that are localized in the cytoplasm/nucleus, mitochondrion, chloroplast, and endoplasmic reticulum (ER) where protein folding actively takes place. In this study, we analysed the sequence of ER-localized Arabidopsis HSP90.7 and the other ER GRP94 proteins from plants and animals, and identified a short, charged region that is specifically present in the middle domain of plant-derived GRP94 proteins. To understand the role of this charged region, we analysed transgenic plants that expressed a mutant protein, HSP90.7(Δ22), which had this charged region deleted. We showed that seedlings expressing HSP90.7(Δ22) had significantly enhanced sensitivity to ER stress induced by tunicamycin or a high concentration of calcium, although its general chaperone activity in preventing the model protein from heat-induced aggregation was not significantly affected. We also analysed the ATP-binding and hydrolysis activity of both wild-type and mutant HSP90.7 proteins, and found that they had slightly different ATP-binding affinities. Finally, using a yeast two-hybrid screen, we identified a small set of HSP90.7 interactors and showed that the charged region is not required for the candidate client interaction, although it may affect their binding affinity, thus providing potential targets for further investigation of HSP90.7 functions.
Collapse
Affiliation(s)
- Lisa P Chong
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Yao Wang
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Nanette Gad
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Nathaniel Anderson
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Bhavank Shah
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
15
|
Spire and Formin 2 synergize and antagonize in regulating actin assembly in meiosis by a ping-pong mechanism. PLoS Biol 2014; 12:e1001795. [PMID: 24586110 PMCID: PMC3934834 DOI: 10.1371/journal.pbio.1001795] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/14/2014] [Indexed: 11/24/2022] Open
Abstract
An in vitro study reveals how the three actin binding proteins profilin, formin 2, and Spire functionally cooperate by a ping-pong mechanism to regulate actin assembly during reproductive cell division. In mammalian oocytes, three actin binding proteins, Formin 2 (Fmn2), Spire, and profilin, synergistically organize a dynamic cytoplasmic actin meshwork that mediates translocation of the spindle toward the cortex and is required for successful fertilization. Here we characterize Fmn2 and elucidate the molecular mechanism for this synergy, using bulk solution and individual filament kinetic measurements of actin assembly dynamics. We show that by capping filament barbed ends, Spire recruits Fmn2 and facilitates its association with barbed ends, followed by rapid processive assembly and release of Spire. In the presence of actin, profilin, Spire, and Fmn2, filaments display alternating phases of rapid processive assembly and arrested growth, driven by a “ping-pong” mechanism, in which Spire and Fmn2 alternately kick off each other from the barbed ends. The results are validated by the effects of injection of Spire, Fmn2, and their interacting moieties in mouse oocytes. This original mechanism of regulation of a Rho-GTPase–independent formin, recruited by Spire at Rab11a-positive vesicles, supports a model for modulation of a dynamic actin-vesicle meshwork in the oocyte at the origin of asymmetric positioning of the meiotic spindle. Mammalian reproduction requires successful meiosis, which consists of two strongly asymmetric cell divisions. In meiosis I, movement of the spindle (the subcellular structure that segregates chromosomes during division) toward the oocyte cortex (the outer layer of the egg) is essential for fertility. This process requires that actin filaments assemble in a dynamic mesh, driven by three actin binding proteins, profilin, formin 2, and Spire. To date the molecular mechanisms by which these three proteins cooperate are not known. We now explore this in vitro by a combination of bulk solution and single actin filament assembly assays in the presence of profilin, Spire, and formin 2. Individually, Spire binds to actin filament ends to block their growth, and by itself, formin 2 associates poorly with filament ends, promoting fast processive assembly from the profilin-actin complex. However, when present together, Spire and formin 2 interact with one another (the formin 2 C-terminal binds to the N terminal Spire KIND domain), forming transient complexes at filament ends from which each binds alternately to the filament ends to regulate actin assembly by a ping-pong mechanism. Our in vitro observations are validated by injection studies in mouse oocytes. In oocytes, the additional interaction of Spire and formin 2 with Rab11a-myosin Vb vesicles couples high actin dynamics to vesicle traffic.
Collapse
|
16
|
Oskar is targeted for degradation by the sequential action of Par-1, GSK-3, and the SCF⁻Slimb ubiquitin ligase. Dev Cell 2013; 26:303-14. [PMID: 23948254 PMCID: PMC3744808 DOI: 10.1016/j.devcel.2013.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/24/2013] [Accepted: 06/11/2013] [Indexed: 02/02/2023]
Abstract
Translation of oskar messenger RNA (mRNA) is activated at the posterior of the Drosophila oocyte, producing Long Oskar, which anchors the RNA, and Short Oskar, which nucleates the pole plasm, containing the posterior and germline determinants. Here, we show that Oskar is phosphorylated by Par-1 and GSK-3/Shaggy to create a phosphodegron that recruits the SCF(-Slimb) ubiquitin ligase, which targets Short Oskar for degradation. Phosphorylation site mutations cause Oskar overaccumulation, leading to an increase in pole cell number and embryonic patterning defects. Furthermore, the nonphosphorylatable mutant produces bicaudal embryos when oskar mRNA is mislocalized. Thus, the Par-1/GSK-3/Slimb pathway plays important roles in limiting the amount of pole plasm posteriorly and in degrading any mislocalized Oskar that results from leaky translational repression. These results reveal that Par-1 controls the timing of pole plasm assembly by promoting the localization of oskar mRNA but inhibiting the accumulation of Short Oskar protein.
Collapse
|
17
|
Leibfried A, Müller S, Ephrussi A. A Cdc42-regulated actin cytoskeleton mediates Drosophila oocyte polarization. Development 2013; 140:362-71. [DOI: 10.1242/dev.089250] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polarity of the Drosophila oocyte is essential for correct development of the egg and future embryo. The Par proteins Par-6, aPKC and Bazooka are needed to maintain oocyte polarity and localize to specific domains early in oocyte development. To date, no upstream regulator or mechanism for localization of the Par proteins in the oocyte has been identified. We have analyzed the role of the small GTPase Cdc42 in oocyte polarity. We show that Cdc42 is required to maintain oocyte fate, which it achieves by mediating localization of Par proteins at distinct sites within this cell. We establish that Cdc42 localization itself is polarized to the anterolateral cortex of the oocyte and that Cdc42 is needed for maintenance of oocyte polarity throughout oogenesis. Our data show that Cdc42 ensures the integrity of the oocyte actin network and that disruption of this network with Latrunculin A phenocopies loss of Cdc42 or Par protein function in early stages of oogenesis. Finally, we show that Cdc42 and Par proteins, as well as Cdc42/Par and Arp3, interact in the context of oocyte polarity, and that loss of Par proteins reciprocally affects Cdc42 localization and the actin network. These results reveal a mutual dependence between Par proteins and Cdc42 for their localization, regulation of the actin cytoskeleton and, consequently, for the establishment of oocyte polarity. This most likely allows for the robustness in symmetry breaking in the cell.
Collapse
Affiliation(s)
- Andrea Leibfried
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sandra Müller
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
18
|
ROMET-LEMONNE GUILLAUME, HELFER EMMANUELE, DELATOUR VINCENT, BUGYI BEATA, BOSCH MONTSERRAT, ROMERO STEPHANE, CARLIER MARIEFRANCE, SCHMIDT STEPHAN, FERY ANDREAS. BIOMIMETIC SYSTEMS SHED LIGHT ON ACTIN-BASED MOTILITY DOWN TO THE MOLECULAR SCALE. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048009000909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell motility, one of the modular activities of living cells, elicits the response of the cell to extra-cellular signals, to move directionally, feed, divide or transport materials. The combined actions of molecular motors and re-modeling of the cytoskeleton generate forces and movement. Here we describe mechanistic approaches of force and movement produced by site-directed assembly of actin filaments. The insight derived from a biochemical analysis of the protein machineries involved in "actin-based motile processes" like cell protrusions, invaginations, organelle propulsion, is used to build reconstituted assays that mimic cellular processes, using several protein machineries known to initiate filament assembly by different mechanisms. Reconstitution of complex self-organized systems presents a broad variety of interests. Reconstituting actin-based movement of a functionalized particle from a minimum number of pure proteins, first used to prove the general thermodynamic principles at work in motility, then was the basis for fully controlled physical measurements of forces produced by polymerization of actin against an obstacle and of the mechanical properties of the resulting polymer arrays. In addition, measurements at the mesoscopic scale (trajectories, velocity, polymer mechanics, fluorescence of specifically labeled components of the actin array, use of mutated proteins) can provide further insight into the molecular mechanisms underlying motility.
Collapse
Affiliation(s)
- GUILLAUME ROMET-LEMONNE
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - EMMANUELE HELFER
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - VINCENT DELATOUR
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - BEATA BUGYI
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - MONTSERRAT BOSCH
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - STEPHANE ROMERO
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - MARIE-FRANCE CARLIER
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - STEPHAN SCHMIDT
- Department of Physical Chemistry II, University of Bayreuth, D-95440 Bayreuth, Germany
| | - ANDREAS FERY
- Department of Physical Chemistry II, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
19
|
|
20
|
Chang CW, Nashchekin D, Wheatley L, Irion U, Dahlgaard K, Montague TG, Hall J, St. Johnston D. Anterior-posterior axis specification in Drosophila oocytes: identification of novel bicoid and oskar mRNA localization factors. Genetics 2011; 188:883-96. [PMID: 21625003 PMCID: PMC3176101 DOI: 10.1534/genetics.111.129312] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/19/2011] [Indexed: 12/17/2022] Open
Abstract
The Drosophila melanogaster anterior-posterior axis is established during oogenesis by the localization of bicoid and oskar mRNAs to the anterior and posterior poles of the oocyte. Although genetic screens have identified some trans-acting factors required for the localization of these transcripts, other factors may have been missed because they also function at other stages of oogenesis. To circumvent this problem, we performed a screen for revertants and dominant suppressors of the bicaudal phenotype caused by expressing Miranda-GFP in the female germline. Miranda mislocalizes oskar mRNA/Staufen complexes to the oocyte anterior by coupling them to the bicoid localization pathway, resulting in the formation of an anterior abdomen in place of the head. In one class of revertants, Miranda still binds Staufen/oskar mRNA complexes, but does not localize to the anterior, identifying an anterior targeting domain at the N terminus of Miranda. This has an almost identical sequence to the N terminus of vertebrate RHAMM, which is also a large coiled-coil protein, suggesting that it may be a divergent Miranda ortholog. In addition, we recovered 30 dominant suppressors, including multiple alleles of the spectroplakin, short stop, a lethal complementation group that prevents oskar mRNA anchoring, and a female sterile complementation group that disrupts the anterior localization of bicoid mRNA in late oogenesis. One of the single allele suppressors proved to be a mutation in the actin nucleator, Cappuccino, revealing a previously unrecognized function of Cappuccino in pole plasm anchoring and the induction of actin filaments by Long Oskar protein.
Collapse
Affiliation(s)
| | | | - Lucy Wheatley
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | | | | | - Tessa G. Montague
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Jacqueline Hall
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Daniel St. Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
21
|
Kwon S, Lim HJ. Small GTPases and formins in mammalian oocyte maturation: cytoskeletal organizers. Clin Exp Reprod Med 2011; 38:1-5. [PMID: 22384410 PMCID: PMC3283043 DOI: 10.5653/cerm.2011.38.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 12/19/2022] Open
Abstract
The maturation process of mammalian oocytes accompanies an extensive rearrangement of the cytoskeleton and associated proteins. As this process requires a delicate interplay between the cytoskeleton and its regulators, it is often targeted by various external and internal adversaries that affect the congression and/or segregation of chromosomes. Asymmetric cell division in oocytes also requires specific regulators of the cytoskeleton, including formin-2 and small GTPases. Recent literature providing clues regarding how actin filaments and microtubules interact during spindle migration in mouse oocytes are highlighted in this review.
Collapse
Affiliation(s)
- Sojung Kwon
- Department of Biomedical Science & Technology, Institute of Biomedical Science & Technology, Research Center for Transcription Control, Konkuk University, Seoul, Korea
| | | |
Collapse
|
22
|
Belaya K, St Johnston D. Using the mRNA-MS2/MS2CP-FP system to study mRNA transport during Drosophila oogenesis. Methods Mol Biol 2011; 714:265-283. [PMID: 21431747 DOI: 10.1007/978-1-61779-005-8_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Asymmetric mRNA localisation to specific compartments of the cell is a fundamental mechanism of -spatial and temporal regulation of gene expression. It is used by a variety of organisms and cell types to achieve different cellular functions. However, the mechanisms of mRNA localisation are not well understood. An important advance in this field has been the development of techniques that allow the visualisation of mRNA movements in living cells in real time. In this paper, we describe one approach to visualising mRNA localisation in vivo, in which RNAs containing MS2 binding sites are labelled by the MS2 coat protein fused to fluorescent reporters. We discuss the use of this mRNA-MS2/MS2CP-FP system to study mRNA localisation during Drosophila oogenesis, and provide a detailed explanation of the steps required for this approach, including the design of the mRNA-MS2 and MS2CP-FP constructs, the preparation of fly oocytes for imaging, the optimal microscope configurations for live cell imaging, and strategies for image processing and analysis.
Collapse
|
23
|
Carlier MF, Husson C, Renault L, Didry D. Control of Actin Assembly by the WH2 Domains and Their Multifunctional Tandem Repeats in Spire and Cordon-Bleu. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:55-85. [DOI: 10.1016/b978-0-12-386037-8.00005-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
24
|
Liu R, Linardopoulou EV, Osborn GE, Parkhurst SM. Formins in development: orchestrating body plan origami. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:207-25. [PMID: 18996154 PMCID: PMC2838992 DOI: 10.1016/j.bbamcr.2008.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 08/21/2008] [Accepted: 09/26/2008] [Indexed: 01/21/2023]
Abstract
Formins, proteins defined by the presence of an FH2 domain and their ability to nucleate linear F-actin de novo, play a key role in the regulation of the cytoskeleton. Initially thought to primarily regulate actin, recent studies have highlighted a role for formins in the regulation of microtubule dynamics, and most recently have uncovered the ability of some formins to coordinate the organization of both the microtubule and actin cytoskeletons. While biochemical analyses of this family of proteins have yielded many insights into how formins regulate diverse cytoskeletal reorganizations, we are only beginning to appreciate how and when these functional properties are relevant to biological processes in a developmental or organismal context. Developmental genetic studies in fungi, Dictyostelium, vertebrates, plants and other model organisms have revealed conserved roles for formins in cell polarity, actin cable assembly and cytokinesis. However, roles have also been discovered for formins that are specific to particular organisms. Thus, formins perform both global and specific functions, with some of these roles concurring with previous biochemical data and others exposing new properties of formins. While not all family members have been examined across all organisms, the analyses to date highlight the significance of the flexibility within the formin family to regulate a broad spectrum of diverse cytoskeletal processes during development.
Collapse
Affiliation(s)
- Raymond Liu
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Elena V. Linardopoulou
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Gregory E. Osborn
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Susan M. Parkhurst
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| |
Collapse
|
25
|
Aspenström P. Formin-binding proteins: modulators of formin-dependent actin polymerization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:174-82. [PMID: 19589360 DOI: 10.1016/j.bbamcr.2009.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 06/22/2009] [Accepted: 06/26/2009] [Indexed: 12/27/2022]
Abstract
Formins represent a major branch of actin nucleators along with the Arp2/3 complex, Spire and Cordon-bleu. Formin-mediated actin nucleation requires the formin homology 2 domain and, although the nucleation per se does not require additional factors, formin-binding proteins have been shown to be essential for the regulation of formin-dependent actin assembly in vivo. This regulation could be accomplished by formin-binding proteins being directly involved in formin-driven actin nucleation, by formin-binding proteins influencing the activated state of the formins, by linking formin-driven actin polymerization to Arp2/3 driven actin polymerization, or by influencing the subcellular localization of the formins. This review article will focus on mammalian formin-binding proteins and their roles during vital cellular processes, such as cell migration, cell division and intracellular trafficking.
Collapse
Affiliation(s)
- Pontus Aspenström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Box 280, Nobels väg 16, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
26
|
Qualmann B, Kessels MM. New players in actin polymerization--WH2-domain-containing actin nucleators. Trends Cell Biol 2009; 19:276-85. [PMID: 19406642 DOI: 10.1016/j.tcb.2009.03.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/24/2009] [Accepted: 03/09/2009] [Indexed: 01/07/2023]
Abstract
Actin nucleators promote the polymerization of the different types of actin arrays formed in a variety of cellular processes, such as cell migration, cellular morphogenesis and membrane trafficking processes. Several novel nucleators have been discovered recently. They all contain Wiskott-Aldrich syndrome protein (WASP) homology 2 (WH2 or W) domains for actin nucleation but seem to employ different molecular mechanisms and serve distinct cellular functions. Here, we summarize what is currently known about the different molecular mechanisms that Spire, Cordon-Bleu and Leiomodin seem to use and, also, the bacterial counterparts that mimic them (VopF, VopL and TARP). Recent studies on these WH2 proteins offer unique insight into the biological problem of actin-filament formation and how cells use specialized molecular machines to bring about so many different cytoskeletal structures.
Collapse
Affiliation(s)
- Britta Qualmann
- Institute for Biochemistry I, Friedrich-Schiller-University Jena, Nonnenplan 2, Jena, Germany
| | | |
Collapse
|
27
|
Actin filaments: key players in the control of asymmetric divisions in mouse oocytes. Biol Cell 2009; 101:69-76. [PMID: 19076067 DOI: 10.1042/bc20080003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Meiotic maturation is characterized by the succession of two asymmetric divisions each giving rise to a small polar body and a large oocyte. These highly asymmetric divisions are characteristic of meiosis in higher organisms. They allow most of the maternal stores to be retained in the oocyte, a vital property for further embryo development. In mouse oocytes, the asymmetry is ensured by the migration and the anchoring of the division spindle to the cortex in meiosis I and by its anchoring to the cortex in meiosis II. In addition, and subsequent to this off-centre positioning of the spindle, a differentiation of the cortex overhanging the chromosomes takes place and is necessary for the extrusion of small polar bodies. In the present review, we will emphasize the role of the actin cytoskeleton in the control of spindle positioning, spindle anchoring to the cortex and cortical differentiation.
Collapse
|
28
|
Zimyanin VL, Belaya K, Pecreaux J, Gilchrist MJ, Clark A, Davis I, St Johnston D. In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 2008; 134:843-53. [PMID: 18775316 PMCID: PMC2585615 DOI: 10.1016/j.cell.2008.06.053] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/30/2008] [Accepted: 06/25/2008] [Indexed: 12/30/2022]
Abstract
oskar mRNA localization to the posterior of the Drosophila oocyte defines where the abdomen and germ cells form in the embryo. Although this localization requires microtubules and the plus end-directed motor, kinesin, its mechanism is controversial and has been proposed to involve active transport to the posterior, diffusion and trapping, or exclusion from the anterior and lateral cortex. By following oskar mRNA particles in living oocytes, we show that the mRNA is actively transported along microtubules in all directions, with a slight bias toward the posterior. This bias is sufficient to localize the mRNA and is reversed in mago, barentsz, and Tropomyosin II mutants, which mislocalize the mRNA anteriorly. Since almost all transport is mediated by kinesin, oskar mRNA localizes by a biased random walk along a weakly polarized cytoskeleton. We also show that each component of the oskar mRNA complex plays a distinct role in particle formation and transport.
Collapse
Affiliation(s)
- Vitaly L. Zimyanin
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, CB2 1QN Cambridge, UK
| | - Katsiaryna Belaya
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, CB2 1QN Cambridge, UK
| | | | - Michael J. Gilchrist
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, CB2 1QN Cambridge, UK
| | - Alejandra Clark
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Ilan Davis
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, CB2 1QN Cambridge, UK
| |
Collapse
|
29
|
Spire and Cordon-bleu: multifunctional regulators of actin dynamics. Trends Cell Biol 2008; 18:494-504. [PMID: 18774717 DOI: 10.1016/j.tcb.2008.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/27/2008] [Accepted: 07/03/2008] [Indexed: 12/20/2022]
Abstract
WASP-homology 2 (WH2) domains, which were first identified in the WASP/Scar (suppressor of cAMP receptor)/WAVE (WASP-family verprolin homologous protein) family of proteins, are multifunctional regulators of actin assembly. Two recently discovered actin-binding proteins, Spire and Cordon-bleu (Cobl), which have roles in axis patterning in developmental processes, use repeats of WH2 domains to generate a large repertoire of novel regulatory activities, including G-actin sequestration, actin-filament nucleation, filament severing and barbed-end dynamics regulation. We describe how these multiple functions selectively operate in a cellular context to control the dynamics of the actin cytoskeleton. In vivo, Spire and Cobl can synergize with other actin regulators. As an example, we outline potential methods to gain insight into the functional basis for reported genetic interactions among Spire, profilin and formin.
Collapse
|
30
|
Pechanova O, Stone WD, Monroe W, Nebeker TE, Klepzig KD, Yuceer C. Global and comparative protein profiles of the pronotum of the southern pine beetle, Dendroctonus frontalis. INSECT MOLECULAR BIOLOGY 2008; 17:261-277. [PMID: 18477241 DOI: 10.1111/j.1365-2583.2008.00801.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The southern pine beetle (Dendroctonus frontalis Zimmermann) kills all pines within its range and is among the most important forest pest species in the US. Using a specialized mycangium surrounded by gland cells in the pronotum, adult females culture, transport, and inoculate two fungi into beetle galleries during oviposition. These fungal symbionts, to varying degrees, exclude antagonistic fungi and provide nutrients to larvae. However, the mechanisms (e.g. secreted antibiotic chemicals or nutrients, proteins or pathways) by which this relationship is maintained are not known. Here we present the first global and differential proteome profile of the southern pine beetle pronotum. Two-dimensional polyacrylamide electrophoresis, tandem mass spectrometry, and database searches revealed that the majority of pronotal proteins were related to energy-yielding metabolism, contractile apparati, cell structure, and defence. The identified proteins provide important insights into the molecular and biochemical processes of, and candidates for functional genomics to understand mycangia and pronotum functions in, the southern pine beetle.
Collapse
Affiliation(s)
- O Pechanova
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | |
Collapse
|
31
|
How do in vitro reconstituted actin-based motility assays provide insight into in vivo behavior? FEBS Lett 2008; 582:2086-92. [PMID: 18328266 DOI: 10.1016/j.febslet.2008.02.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 02/25/2008] [Indexed: 11/20/2022]
Abstract
Recent live cell image analysis of actin dynamics in lamellipodia of motile cells has shown that regulated treadmilling, which supports actin-based propulsion of functionalized particles in biomimetic reconstituted motility assays, is also responsible for lamellipodia extension. In both cases, filaments are created by branching with Arp2/3 complex only at the membrane or particle surface, grow transiently and are capped; ADF/cofilin enhances the treadmilling but does not sever filaments in the body of the meshwork. Differences between the cellular and biomimetic systems suggest that additional regulatory mechanisms take place in lamellipodia.
Collapse
|
32
|
Bosch M, Le KHD, Bugyi B, Correia JJ, Renault L, Carlier MF. Analysis of the function of Spire in actin assembly and its synergy with formin and profilin. Mol Cell 2008; 28:555-68. [PMID: 18042452 DOI: 10.1016/j.molcel.2007.09.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 08/10/2007] [Accepted: 09/23/2007] [Indexed: 01/18/2023]
Abstract
The Spire protein, together with the formin Cappuccino and profilin, plays an important role in actin-based processes that establish oocyte polarity. Spire contains a cluster of four actin-binding WH2 domains. It has been shown to nucleate actin filaments and was proposed to remain bound to their pointed ends. Here we show that the multifunctional character of the WH2 domains allows Spire to sequester four G-actin subunits binding cooperatively in a tight SA(4) complex and to nucleate, sever, and cap filaments at their barbed ends. Binding of Spire to barbed ends does not affect the thermodynamics of actin assembly at barbed ends but blocks barbed end growth from profilin-actin. The resulting Spire-induced increase in profilin-actin concentration enhances processive filament assembly by formin. The synergy between Spire and formin is reconstituted in an in vitro motility assay, which provides a functional basis for the genetic interplay between Spire, formin, and profilin in oogenesis.
Collapse
Affiliation(s)
- Montserrat Bosch
- Cytoskeleton Dynamics and Motility Group, Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
33
|
Quinlan ME, Hilgert S, Bedrossian A, Mullins RD, Kerkhoff E. Regulatory interactions between two actin nucleators, Spire and Cappuccino. ACTA ACUST UNITED AC 2008; 179:117-28. [PMID: 17923532 PMCID: PMC2064741 DOI: 10.1083/jcb.200706196] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spire and Cappuccino are actin nucleation factors that are required to establish the polarity of Drosophila melanogaster oocytes. Their mutant phenotypes are nearly identical, and the proteins interact biochemically. We find that the interaction between Spire and Cappuccino family proteins is conserved across metazoan phyla and is mediated by binding of the formin homology 2 (FH2) domain from Cappuccino (or its mammalian homologue formin-2) to the kinase noncatalytic C-lobe domain (KIND) from Spire. In vitro, the KIND domain is a monomeric folded domain. Two KIND monomers bind each FH2 dimer with nanomolar affinity and strongly inhibit actin nucleation by the FH2 domain. In contrast, formation of the Spire-Cappuccino complex enhances actin nucleation by Spire. In Drosophila oocytes, Spire localizes to the cortex early in oogenesis and disappears around stage 10b, coincident with the onset of cytoplasmic streaming.
Collapse
Affiliation(s)
- Margot E Quinlan
- Bayerisches Genomforschungsnetzwerk (BayGene), Institut für funktionelle Genomik, Universität Regensburg, 93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
34
|
Abstract
The body axes of the fruit fly are established in mid-oogenesis by the localization of three mRNA determinants, bicoid, oskar, and gurken, within the oocyte. General mechanisms of RNA localization and cell polarization, applicable to many cell types, have emerged from investigation of these determinants in Drosophila oogenesis. Localization of these RNAs is dependent on the germline microtubules, which reorganize to form a polarized array at mid-oogenesis in response to a signaling relay between the oocyte and the surrounding somatic follicle cells. Here we describe what is known about this microtubule reorganization and the signaling relay that triggers it. Recent studies have identified a number of ubiquitous RNA binding proteins essential for this process. So far, no targets for any of these proteins have been identified, and future work will be needed to illuminate how they function to reorganize microtubes and whether similar mechanisms also exist in other cell types.
Collapse
Affiliation(s)
- Josefa Steinhauer
- Skirball Institute for Biomolecular Medicine and Department of Developmental Genetics, New York University School of Medicine, New York, New York 10016,USA.
| | | |
Collapse
|
35
|
Poulton JS, Deng WM. Cell-cell communication and axis specification in the Drosophila oocyte. Dev Biol 2007; 311:1-10. [PMID: 17884037 PMCID: PMC2174919 DOI: 10.1016/j.ydbio.2007.08.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 07/13/2007] [Accepted: 08/08/2007] [Indexed: 01/23/2023]
Abstract
Intercellular communication between the somatic and germline cells is vital to development of the Drosophila egg chamber. One critical outcome of this communication is the polarization of the oocyte along the anterior-posterior axis, a process induced by an unknown signal from the somatic follicle cells to the oocyte. The existence of this signal has been inferred from several reports demonstrating that the differentiation and patterning of the follicle cells by the spatially restricted activation of certain cell-signaling pathways is necessary for axis formation in the oocyte. These reports have also provided a framework for understanding how these signaling pathways are integrated to generate the follicle-cell pattern, but the precise role of the follicle cells in anterior-posterior axis formation remains enigmatic. Research has identified several genes that appear to be involved in the polarizing communication from the follicle cells to the oocyte. Interestingly the proteins encoded by most of these genes are associated with the extracellular matrix, suggesting a pivotal role for this complex biological component in the polarizing communication between the follicle cells and the oocyte. This review summarizes the findings in this area, and uses the experimental analyses of these genes to evaluate various models describing the possible nature of the polarizing signal, and the role of these genes in it.
Collapse
Affiliation(s)
- John S. Poulton
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| |
Collapse
|
36
|
Dahlgaard K, Raposo AA, Niccoli T, St Johnston D. Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the Drosophila oocyte. Dev Cell 2007; 13:539-53. [PMID: 17925229 PMCID: PMC2034408 DOI: 10.1016/j.devcel.2007.09.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 07/26/2007] [Accepted: 09/07/2007] [Indexed: 12/18/2022]
Abstract
Mutants in the actin nucleators Cappuccino and Spire disrupt the polarized microtubule network in the Drosophila oocyte that defines the anterior-posterior axis, suggesting that microtubule organization depends on actin. Here, we show that Cappuccino and Spire organize an isotropic mesh of actin filaments in the oocyte cytoplasm. capu and spire mutants lack this mesh, whereas overexpressed truncated Cappuccino stabilizes the mesh in the presence of Latrunculin A and partially rescues spire mutants. Spire overexpression cannot rescue capu mutants, but prevents actin mesh disassembly at stage 10B and blocks late cytoplasmic streaming. We also show that the actin mesh regulates microtubules indirectly, by inhibiting kinesin-dependent cytoplasmic flows. Thus, the Capu pathway controls alternative states of the oocyte cytoplasm: when active, it assembles an actin mesh that suppresses kinesin motility to maintain a polarized microtubule cytoskeleton. When inactive, unrestrained kinesin movement generates flows that wash microtubules to the cortex.
Collapse
Affiliation(s)
- Katja Dahlgaard
- The Wellcome Trust/Cancer Research UK Gurdon Institute and The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Alexandre A.S.F. Raposo
- The Wellcome Trust/Cancer Research UK Gurdon Institute and The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Teresa Niccoli
- The Wellcome Trust/Cancer Research UK Gurdon Institute and The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Daniel St Johnston
- The Wellcome Trust/Cancer Research UK Gurdon Institute and The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
37
|
Wang Y, Riechmann V. Microtubule anchoring by cortical actin bundles prevents streaming of the oocyte cytoplasm. Mech Dev 2007; 125:142-52. [PMID: 18053693 DOI: 10.1016/j.mod.2007.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/20/2007] [Accepted: 09/21/2007] [Indexed: 01/25/2023]
Abstract
The localisation of the determinants of the body axis during Drosophila oogenesis is dependent on the microtubule (MT) cytoskeleton. Mutations in the actin binding proteins Profilin, Cappuccino (Capu) and Spire result in premature streaming of the cytoplasm and a reorganisation of the oocyte MT network. As a consequence, the localisation of axis determinants is abolished in these mutants. It is unclear how actin regulates the organisation of the MTs, or what the spatial relationship between these two cytoskeletal elements is. Here, we report a careful analysis of the oocyte cytoskeleton. We identify thick actin bundles at the oocyte cortex, in which the minus ends of the MTs are embedded. Disruption of these bundles results in cortical release of the MT minus ends, and premature onset of cytoplasmic streaming. Thus, our data indicate that the actin bundles anchor the MTs minus ends at the oocyte cortex, and thereby prevent streaming of the cytoplasm. We further show that actin bundle formation requires Profilin but not Capu and Spire. Thus, our results support a model in which Profilin acts in actin bundle nucleation, while Capu and Spire link the bundles to MTs. Finally, our data indicate how cytoplasmic streaming contributes to the reorganisation of the MT cytoskeleton. We show that the release of the MT minus ends from the cortex occurs independently of streaming, while the formation of MT bundles is streaming dependent.
Collapse
Affiliation(s)
- Ying Wang
- Institut für Entwicklungsbiologie, Universität zu Köln, Gyrhofstrasse 17, Köln, Germany
| | | |
Collapse
|
38
|
Abstract
Profilins are small proteins involved in actin dynamics. In accordance with this function, they are found in all eukaryotes and are structurally highly conserved. However, their precise role in regulating actin-related functions is just beginning to emerge. This article recapitulates the wealth of information on structure, expression and functions accumulated on profilins from many different organisms in the 30 years after their discovery as actin-binding proteins. Emphasis is given to their interaction with a plethora of many different ligands in the cytoplasm as well as in the nucleus, which is considered the basis for their various activities and the significance of the tissue-specific expression of profilin isoforms.
Collapse
Affiliation(s)
- B M Jockusch
- Cell Biology, Zoological Institute, Technical University of Braunschweig, 38092 Braunschweig, Germany.
| | | | | |
Collapse
|
39
|
Ganot P, Kallesøe T, Thompson EM. The cytoskeleton organizes germ nuclei with divergent fates and asynchronous cycles in a common cytoplasm during oogenesis in the chordate Oikopleura. Dev Biol 2006; 302:577-90. [PMID: 17123503 DOI: 10.1016/j.ydbio.2006.10.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/25/2006] [Accepted: 10/14/2006] [Indexed: 11/15/2022]
Abstract
Germline cysts are conserved structures in which cells initiating meiosis are interconnected by ring canals. In many species, the cyst phase is of limited duration, but the chordate, Oikopleura, maintains it throughout prophase I as a unique cell, the coenocyst. We show that despite sharing one common cytoplasm with meiotic and nurse nuclei evenly distributed in a 1:1 ratio, both entry into meiosis and subsequent endocycles of nurse nuclei were asynchronous. Coenocyst cytoskeletal elements played central roles as oogenesis progressed from a syncytial state of indistinguishable germ nuclei, to a final arrangement where the common cytoplasm had been equally partitioned into resolved, mature oocytes. During chromosomal bouquet formation in zygotene, nuclear pore complexes clustered and anchored meiotic nuclei to the coenocyst F-actin network opposite ring canals, polarizing oocytes early in prophase I. F-actin synthesis was required for oocyte growth but movement of cytoplasmic organelles into oocytes did not require cargo transport along colchicine-sensitive microtubules. Instead, microtubules maintained nurse nuclei on the F-actin scaffold and prevented their entry into growing oocytes. Finally, it was possible to both decouple meiotic progression from cellular mechanisms governing oocyte growth, and to advance the timing of oocyte growth in response to external cues.
Collapse
Affiliation(s)
- Philippe Ganot
- Sars Centre for Marine Molecular Biology, Bergen High Technology Centre, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | | | | |
Collapse
|
40
|
Verdier V, Johndrow JE, Betson M, Chen GC, Hughes DA, Parkhurst SM, Settleman J. Drosophila Rho-kinase (DRok) is required for tissue morphogenesis in diverse compartments of the egg chamber during oogenesis. Dev Biol 2006; 297:417-32. [PMID: 16887114 PMCID: PMC2504748 DOI: 10.1016/j.ydbio.2006.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 05/11/2006] [Accepted: 05/15/2006] [Indexed: 11/16/2022]
Abstract
The Rho-kinases are widely utilized downstream targets of the activated Rho GTPase that have been directly implicated in many aspects of Rho-dependent effects on F-actin assembly, acto-myosin contractility, and microtubule stability, and consequently play an essential role in regulating cell shape, migration, polarity, and division. We have determined that the single closely related Drosophila Rho-kinase ortholog, DRok, is required for several aspects of oogenesis, including maintaining the integrity of the oocyte cortex, actin-mediated tethering of nurse cell nuclei, "dumping" of nurse cell contents into the oocyte, establishment of oocyte polarity, and the trafficking of oocyte yolk granules. These defects are associated with abnormalities in DRok-dependent actin dynamics and appear to be mediated by multiple downstream effectors of activated DRok that have previously been implicated in oogenesis. DRok regulates at least one of these targets, the membrane cytoskeletal cross-linker DMoesin, via a direct phosphorylation that is required to promote localization of DMoesin to the oocyte cortex. The collective oogenesis defects associated with DRok deficiency reveal its essential role in multiple aspects of proper oocyte formation and suggest that DRok defines a novel class of oogenesis determinants that function as key regulators of several distinct actin-dependent processes required for proper tissue morphogenesis.
Collapse
Affiliation(s)
- Valerie Verdier
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - James E. Johndrow
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A1-162, PO Box 19024, Seattle, WA 98109-1024, USA
| | | | - Guang-Chao Chen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - David A. Hughes
- The Faculty of Life Sciences, The University of Manchester, Sackville Street, Manchester, United Kingdom
| | - Susan M. Parkhurst
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A1-162, PO Box 19024, Seattle, WA 98109-1024, USA
| | - Jeffrey Settleman
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| |
Collapse
|
41
|
Kerkhoff E. Cellular functions of the Spir actin-nucleation factors. Trends Cell Biol 2006; 16:477-83. [PMID: 16901698 DOI: 10.1016/j.tcb.2006.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 07/12/2006] [Accepted: 07/27/2006] [Indexed: 11/18/2022]
Abstract
The initiation of actin polymerization from free monomers requires actin-nucleation factors. Spir proteins nucleate actin polymerization by a novel mechanism that is distinct from actin nucleation by the Arp2/3 complex or by formins. In vitro actin polymerization assays and electron microscopic data show that Spire nucleates actin polymerization by binding four actin monomers to a cluster of four Wiskott-Aldrich syndrome protein-homology domain 2 (WH2) domains in the central region of the proteins. Although the exact cell biological function and regulation of Spir proteins is still unknown, data from genetic studies in Drosophila, cell biological studies and protein interaction experiments have provided insight into the biology of these interesting and novel actin-nucleation factors and suggest a role in vesicle transport processes and in the coordination of cortical microtubule and actin filaments. Phosphorylation by mitogen-activated protein kinases and interaction with Rho GTPases have been proposed as regulatory mechanisms.
Collapse
Affiliation(s)
- Eugen Kerkhoff
- Institut für medizinsche Strahlenkunde und Zellforschung (MSZ), Universität Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany.
| |
Collapse
|
42
|
Rosales-Nieves AE, Johndrow JE, Keller LC, Magie CR, Pinto-Santini DM, Parkhurst SM. Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire and Cappuccino. Nat Cell Biol 2006; 8:367-76. [PMID: 16518391 PMCID: PMC1997291 DOI: 10.1038/ncb1385] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 02/20/2006] [Indexed: 11/08/2022]
Abstract
The actin-nucleation factors Spire and Cappuccino (Capu) regulate the onset of ooplasmic streaming in Drosophila melanogaster. Although this streaming event is microtubule-based, actin assembly is required for its timing. It is not understood how the interaction of microtubules and microfilaments is mediated in this context. Here, we demonstrate that Capu and Spire have microtubule and microfilament crosslinking activity. The spire locus encodes several distinct protein isoforms (SpireA, SpireC and SpireD). SpireD was recently shown to nucleate actin, but the activity of the other isoforms has not been addressed. We find that SpireD does not have crosslinking activity, whereas SpireC is a potent crosslinker. We show that SpireD binds to Capu and inhibits F-actin/microtubule crosslinking, and activated Rho1 abolishes this inhibition, establishing a mechanistic basis for the regulation of Capu and Spire activity. We propose that Rho1, cappuccino and spire are elements of a conserved developmental cassette that is capable of directly mediating crosstalk between microtubules and microfilaments.
Collapse
Affiliation(s)
- Alicia E. Rosales-Nieves
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109-1024, USA
| | - James E. Johndrow
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109-1024, USA
| | - Lani C. Keller
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109-1024, USA
| | - Craig R. Magie
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109-1024, USA
| | - Delia M. Pinto-Santini
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109-1024, USA
| | - Susan M. Parkhurst
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109-1024, USA
| |
Collapse
|
43
|
Zhou F, Leder P, Martin SS. Formin-1 protein associates with microtubules through a peptide domain encoded by exon-2. Exp Cell Res 2006; 312:1119-26. [PMID: 16480715 DOI: 10.1016/j.yexcr.2005.12.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 12/21/2005] [Accepted: 12/21/2005] [Indexed: 12/16/2022]
Abstract
Formin family proteins coordinate actin filaments and microtubules. The mechanisms by which formins bind and regulate the actin cytoskeleton have recently been well defined. However, the molecular mechanism by which formins coordinate actin filaments and microtubules remains poorly understood. We demonstrate here that Isoform-Ib of the Formin-1 protein (Fmn1-Ib) binds to microtubules via a protein domain that is physically separated from the known actin-binding domains. When expressed at low levels in NIH3T3 fibroblasts, Fmn1-Ib protein localizes to cytoplasmic filaments that nocodazole disruption confirmed as interphase microtubules. A series of progressive mutants of Fmn1-Ib demonstrated that deletion of exon-2 caused dissociation from microtubules and a stronger association with actin membrane ruffles. The exon-2-encoded peptide binds purified tubulin in vitro and is also sufficient to localize GFP to microtubules. Exon-2 does not contain any known formin homology domains. Deletion of exon 5, 7, 8, the FH1 domain or FH2 domain did not affect microtubule binding. Thus, our results indicate that exon-2 of Fmn1-Ib encodes a novel microtubule-binding peptide. Since formin proteins associate with actin filaments through the FH1 and FH2 domains, binding to interphase microtubules through this exon-2-encoded domain provides a novel mechanism by which Fmn1-Ib could coordinate actin filaments and microtubules.
Collapse
Affiliation(s)
- Fen Zhou
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur-NRB 355, Boston, MA 02115, USA
| | | | | |
Collapse
|
44
|
Deeks MJ, Cvrcková F, Machesky LM, Mikitová V, Ketelaar T, Zársky V, Davies B, Hussey PJ. Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. THE NEW PHYTOLOGIST 2005; 168:529-40. [PMID: 16313636 DOI: 10.1111/j.1469-8137.2005.01582.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The closely related proteins AtFH4 and AtFH8 represent the group Ie clade of Arabidopsis formin homologues. The subcellular localization of these proteins and their ability to affect the actin cytoskeleton were examined. AtFH4 protein activity was identified using fluorimetric techniques. Interactions between Arabidopsis profilin isoforms and AtFH4 were assayed in vitro and in vivo using pull-down assays and yeast-2-hybrid. The subcellular localization of group Ie formins was observed with indirect immunofluorescence (AtFH4) and an ethanol-inducible green fluorescent protein (GFP) fusion construct (AtFH8). AtFH4 protein affected actin dynamics in vitro, and yeast-2-hybrid assays suggested isoform-specific interactions with the actin-binding protein profilin in vivo. Indirect immunofluorescence showed that AtFH4 localized specifically to the cell membrane at borders between adjoining cells. Expression of an AtFH8 fusion protein resulted in GFP localization to cell membrane zones, similar to AtFH4. Furthermore, aberrant expression of AtFH8 resulted in the inhibition of root hair elongation. Taken together, these data suggest that the group Ie formins act with profilin to regulate actin polymerization at specific sites associated with the cell membrane.
Collapse
Affiliation(s)
- Michael J Deeks
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The rate limiting step for actin filament polymerisation is nucleation, and two types of nucleator have been described: the Arp2/3 complex and the formins. A recent study has now identified in Spire a third class of actin nucleator. The four short WH2 repeats within Spire bind four consecutive actin monomers to form a novel single strand nucleus for 'barbed end' actin filament elongation.
Collapse
Affiliation(s)
- Buzz Baum
- Ludwig Institute for Cancer Research, UCL Branch, London, UK.
| | | |
Collapse
|
46
|
Ryley DA, Wu HH, Leader B, Zimon A, Reindollar RH, Gray MR. Characterization and mutation analysis of the human () gene in women with unexplained infertility. Fertil Steril 2005; 83:1363-71. [PMID: 15866570 DOI: 10.1016/j.fertnstert.2004.10.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 10/28/2004] [Accepted: 10/28/2004] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Formin-2 (Fmn2) mutant mice produce oocytes with meiosis I arrest. Our aim was to describe the human FORMIN-2 (FMN2) gene and to identify DNA sequence polymorphisms in patients with unexplained infertility and multiple failed IVF cycles. DESIGN Institutional review board-approved observational case-control study. SETTING Infertility center and university hospital. PATIENT(S) Sixty-two fertile controls and seven subjects with unexplained infertility. INTERVENTION(S) BLASTP (www.ncbi.nlm.nih.gov) was used to map the genomic DNA and complementary DNA sequence of FMN2. Genomic DNA was extracted from blood leukocyte samples. The polymerase chain reaction was used to amplify FMN2 gene exons for analysis by denaturing gradient gel electrophoresis. MAIN OUTCOME MEASURE(S) Characterization of the FMN2 gene and identification of fragment melting polymorphisms (FMPs). RESULT(S) FMN2 includes 411,960 base pairs (bp) of DNA with 6,204 bp in 18 exons. There was no difference in FMN2 FMP allele frequencies between the controls and subjects. One patient was homozygous for one FMP. CONCLUSION(S) The human FMN2 gene is conserved between evolutionarily diverse vertebrates. It is likely that FMN2 has the same function as Fmn2 in the mouse (i.e., maintenance of the meiotic spindle). Prospective identification of patients with meiosis I arrest is necessary to determine whether FMN2 mutations are a cause of unexplained infertility.
Collapse
|
47
|
Quinlan ME, Heuser JE, Kerkhoff E, Mullins RD. Drosophila Spire is an actin nucleation factor. Nature 2005; 433:382-8. [PMID: 15674283 DOI: 10.1038/nature03241] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 11/29/2004] [Indexed: 11/09/2022]
Abstract
The actin cytoskeleton is essential for many cellular functions including shape determination, intracellular transport and locomotion. Previous work has identified two factors--the Arp2/3 complex and the formin family of proteins--that nucleate new actin filaments via different mechanisms. Here we show that the Drosophila protein Spire represents a third class of actin nucleation factor. In vitro, Spire nucleates new filaments at a rate that is similar to that of the formin family of proteins but slower than in the activated Arp2/3 complex, and it remains associated with the slow-growing pointed end of the new filament. Spire contains a cluster of four WASP homology 2 (WH2) domains, each of which binds an actin monomer. Maximal nucleation activity requires all four WH2 domains along with an additional actin-binding motif, conserved among Spire proteins. Spire itself is conserved among metazoans and, together with the formin Cappuccino, is required for axis specification in oocytes and embryos, suggesting that multiple actin nucleation factors collaborate to construct essential cytoskeletal structures.
Collapse
Affiliation(s)
- Margot E Quinlan
- Department of Cellular and Molecular Pharmacology, UCSF Medical School, San Francisco, California 94107, USA
| | | | | | | |
Collapse
|
48
|
Dorman JB, James KE, Fraser SE, Kiehart DP, Berg CA. bullwinkle is required for epithelial morphogenesis during Drosophila oogenesis. Dev Biol 2004; 267:320-41. [PMID: 15013797 DOI: 10.1016/j.ydbio.2003.10.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 10/04/2003] [Accepted: 10/07/2003] [Indexed: 11/29/2022]
Abstract
Many organs, such as the liver, neural tube, and lung, form by the precise remodeling of flat epithelial sheets into tubes. Here we investigate epithelial tubulogenesis in Drosophila melanogaster by examining the development of the dorsal respiratory appendages of the eggshell. We employ a culture system that permits confocal analysis of stage 10-14 egg chambers. Time-lapse imaging of GFP-Moesin-expressing egg chambers reveals three phases of morphogenesis: tube formation, anterior extension, and paddle maturation. The dorsal-appendage-forming cells, previously thought to represent a single cell fate, consist of two subpopulations, those forming the tube roof and those forming the tube floor. These two cell types exhibit distinct morphological and molecular features. Roof-forming cells constrict apically and express high levels of Broad protein. Floor cells lack Broad, express the rhomboid-lacZ marker, and form the floor by directed cell elongation. We examine the morphogenetic phenotype of the bullwinkle (bwk) mutant and identify defects in both roof and floor formation. Dorsal appendage formation is an excellent system in which cell biological, molecular, and genetic tools facilitate the study of epithelial morphogenesis.
Collapse
Affiliation(s)
- Jennie B Dorman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-7730, USA
| | | | | | | | | |
Collapse
|
49
|
Babu K, Cai Y, Bahri S, Yang X, Chia W. Roles of Bifocal, Homer, and F-actin in anchoring Oskar to the posterior cortex of Drosophila oocytes. Genes Dev 2004; 18:138-43. [PMID: 14752008 PMCID: PMC324420 DOI: 10.1101/gad.282604] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transport, translation, and anchoring of osk mRNA and proteins are essential for posterior patterning of Drosophila embryos. Here we show that Homer and Bifocal act redundantly to promote posterior anchoring of the osk gene products. Disruption of actin microfilaments, which causes delocalization of Bifocal but not Homer from the oocyte cortex, severely disrupts anchoring of osk gene products only when Homer (not Bifocal) is absent. Our data suggest that two processes, one requiring Bifocal and an intact F-actin cytoskeleton and a second requiring Homer but independent of intact F-actin, may act redundantly to mediate posterior anchoring of the osk gene products.
Collapse
Affiliation(s)
- Kavita Babu
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
50
|
Hudson AM, Cooley L. Understanding the function of actin-binding proteins through genetic analysis of Drosophila oogenesis. Annu Rev Genet 2003; 36:455-88. [PMID: 12429700 DOI: 10.1146/annurev.genet.36.052802.114101] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Much of our knowledge of the actin cytoskeleton has been derived from biochemical and cell biological approaches, through which actin-binding proteins have been identified and their in vitro interactions with actin have been characterized. The study of actin-binding proteins (ABPs) in genetic model systems has become increasingly important for validating and extending our understanding of how these proteins function. New ABPs have been identified through genetic screens, and genetic results have informed the interpretation of in vitro experiments. In this review, we describe the molecular and ultrastructural characteristics of the actin cytoskeleton in the Drosophila ovary, and discuss recent genetic analyses of actin-binding proteins that are required for oogenesis.
Collapse
Affiliation(s)
- Andrew M Hudson
- Departments of Genetics Yale University School of Medicine, P.O. Box 208005, New Haven, Connecticut 06520-8005, USA.
| | | |
Collapse
|