1
|
Salzer J, Feltri ML, Jacob C. Schwann Cell Development and Myelination. Cold Spring Harb Perspect Biol 2024; 16:a041360. [PMID: 38503507 PMCID: PMC11368196 DOI: 10.1101/cshperspect.a041360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Glial cells in the peripheral nervous system (PNS), which arise from the neural crest, include axon-associated Schwann cells (SCs) in nerves, synapse-associated SCs at the neuromuscular junction, enteric glia, perikaryon-associated satellite cells in ganglia, and boundary cap cells at the border between the central nervous system (CNS) and the PNS. Here, we focus on axon-associated SCs. These SCs progress through a series of formative stages, which culminate in the generation of myelinating SCs that wrap large-caliber axons and of nonmyelinating (Remak) SCs that enclose multiple, small-caliber axons. In this work, we describe SC development, extrinsic signals from the axon and extracellular matrix (ECM) and the intracellular signaling pathways they activate that regulate SC development, and the morphogenesis and organization of myelinating SCs and the myelin sheath. We review the impact of SCs on the biology and integrity of axons and their emerging role in regulating peripheral nerve architecture. Finally, we explain how transcription and epigenetic factors control and fine-tune SC development and myelination.
Collapse
Affiliation(s)
- James Salzer
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203, USA
- IRCCS Neurological Institute Carlo Besta, Milano 20133, Italy
- Department of Biotechnology and Translational Sciences, Universita' Degli Studi di Milano, Milano 20133, Italy
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| |
Collapse
|
2
|
Wei C, Guo Y, Ci Z, Li M, Zhang Y, Zhou Y. Advances of Schwann cells in peripheral nerve regeneration: From mechanism to cell therapy. Biomed Pharmacother 2024; 175:116645. [PMID: 38729050 DOI: 10.1016/j.biopha.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Peripheral nerve injuries (PNIs) frequently occur due to various factors, including mechanical trauma such as accidents or tool-related incidents, as well as complications arising from diseases like tumor resection. These injuries frequently result in persistent numbness, impaired motor and sensory functions, neuropathic pain, or even paralysis, which can impose a significant financial burden on patients due to outcomes that often fall short of expectations. The most frequently employed clinical treatment for PNIs involves either direct sutures of the severed ends or bridging the proximal and distal stumps using autologous nerve grafts. However, autologous nerve transplantation may result in sensory and motor functional loss at the donor site, as well as neuroma formation and scarring. Transplantation of Schwann cells/Schwann cell-like cells has emerged as a promising cellular therapy to reconstruct the microenvironment and facilitate peripheral nerve regeneration. In this review, we summarize the role of Schwann cells and recent advances in Schwann cell therapy in peripheral nerve regeneration. We summarize current techniques used in cell therapy, including cell injection, 3D-printed scaffolds for cell delivery, cell encapsulation techniques, as well as the cell types employed in experiments, experimental models, and research findings. At the end of the paper, we summarize the challenges and advantages of various cells (including ESCs, iPSCs, and BMSCs) in clinical cell therapy. Our goal is to provide the theoretical and experimental basis for future treatments targeting peripheral nerves, highlighting the potential of cell therapy and tissue engineering as invaluable resources for promoting nerve regeneration.
Collapse
Affiliation(s)
- Chuqiao Wei
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuanxin Guo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhen Ci
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Mucong Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Willows JW, Gunsch G, Paradie E, Blaszkiewicz M, Tonniges JR, Pino MF, Smith SR, Sparks LM, Townsend KL. Schwann cells contribute to demyelinating diabetic neuropathy and nerve terminal structures in white adipose tissue. iScience 2023; 26:106189. [PMID: 36895649 PMCID: PMC9989657 DOI: 10.1016/j.isci.2023.106189] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/09/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Peripheral neuropathy, which can include axonal degeneration and/or demyelination, impacts adipose tissues with obesity, diabetes, and aging. However, the presence of demyelinating neuropathy had not yet been explored in adipose. Both demyelinating neuropathies and axonopathies implicate Schwann cells (SCs), a glial support cell that myelinates axons and contributes to nerve regeneration after injury. We performed a comprehensive assessment of SCs and myelination patterns of subcutaneous white adipose tissue (scWAT) nerves, and changes across altered energy balance states. We found that mouse scWAT contains both myelinated and unmyelinated nerves and is populated by SCs, including SCs that were associated with synaptic vesicle-containing nerve terminals. BTBR ob/ob mice, a model of diabetic peripheral neuropathy, exhibited small fiber demyelinating neuropathy and alterations in SC marker gene expression in adipose that were similar to obese human adipose. These data indicate that adipose SCs regulate the plasticity of tissue nerves and become dysregulated in diabetes.
Collapse
Affiliation(s)
- Jake W Willows
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Gilian Gunsch
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Emma Paradie
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | | | - Jeffrey R Tonniges
- Campus Microscopy and Imaging Facility, The Ohio State University, Columbus, OH, USA
| | - Maria F Pino
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Steven R Smith
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Abstract
Satellite glial cells (SGCs) that surround sensory neurons in the peripheral nervous system ganglia originate from neural crest cells. Although several studies have focused on SGCs, the origin and characteristics of SGCs are unknown, and their lineage remains unidentified. Traditionally, it has been considered that SGCs regulate the environment around neurons under pathological conditions, and perform functions of supporting, nourishing, and protecting neurons. However, recent studies demonstrated that SGCs may have the characteristics of stem cells. After nerve injury, SGCs up-regulate the expression of stem cell markers and can differentiate into functional sensory neurons. Moreover, SGCs express several markers of Schwann cell precursors and Schwann cells, such as CDH19, MPZ, PLP1, SOX10, ERBB3, and FABP7. Schwann cell precursors have also been proposed as a potential source of neurons in the peripheral nervous system. The similarity in function and markers suggests that SGCs may represent a subgroup of Schwann cell precursors. Herein, we discuss the roles and functions of SGCs, and the lineage relationship between SGCs and Schwann cell precursors. We also describe a new perspective on the roles and functions of SGCs. In the DRG located on the posterior root of spinal nerves, satellite glial cells wrap around each sensory neuron to form an anatomically and functionally distinct unit with the sensory neurons. Following nerve injury, satellite glial cells up-regulate the expression of progenitor markers, and can differentiate into neurons.
Collapse
|
5
|
Hörner SJ, Couturier N, Gueiber DC, Hafner M, Rudolf R. Development and In Vitro Differentiation of Schwann Cells. Cells 2022; 11:3753. [PMID: 36497014 PMCID: PMC9739763 DOI: 10.3390/cells11233753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Schwann cells are glial cells of the peripheral nervous system. They exist in several subtypes and perform a variety of functions in nerves. Their derivation and culture in vitro are interesting for applications ranging from disease modeling to tissue engineering. Since primary human Schwann cells are challenging to obtain in large quantities, in vitro differentiation from other cell types presents an alternative. Here, we first review the current knowledge on the developmental signaling mechanisms that determine neural crest and Schwann cell differentiation in vivo. Next, an overview of studies on the in vitro differentiation of Schwann cells from multipotent stem cell sources is provided. The molecules frequently used in those protocols and their involvement in the relevant signaling pathways are put into context and discussed. Focusing on hiPSC- and hESC-based studies, different protocols are described and compared, regarding cell sources, differentiation methods, characterization of cells, and protocol efficiency. A brief insight into developments regarding the culture and differentiation of Schwann cells in 3D is given. In summary, this contribution provides an overview of the current resources and methods for the differentiation of Schwann cells, it supports the comparison and refinement of protocols and aids the choice of suitable methods for specific applications.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Daniele Caroline Gueiber
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Department of Electronics Engineering, Federal University of Technology Paraná, Ponta Grossa 84017-220, Brazil
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| |
Collapse
|
6
|
Zotter B, Dagan O, Brady J, Baloui H, Samanta J, Salzer JL. Gli1 Regulates the Postnatal Acquisition of Peripheral Nerve Architecture. J Neurosci 2022; 42:183-201. [PMID: 34772739 PMCID: PMC8802940 DOI: 10.1523/jneurosci.3096-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
Peripheral nerves are organized into discrete compartments. Axons, Schwann cells (SCs), and endoneurial fibroblasts (EFs) reside within the endoneurium and are surrounded by the perineurium, a cellular sheath comprised of layers of perineurial glia (PNG). SC secretion of Desert Hedgehog (Dhh) regulates this organization. In Dhh nulls, the perineurium is deficient and the endoneurium is subdivided into small compartments termed minifascicles. Human Dhh mutations cause a neuropathy with similar defects. Here we examine the role of Gli1, a canonical transcriptional effector of hedgehog signaling, in regulating peripheral nerve organization in mice of both genders. We identify PNG, EFs, and pericytes as Gli1-expressing cells by genetic fate mapping. Although expression of Dhh by SCs and Gli1 in target cells is coordinately regulated with myelination, Gli1 expression unexpectedly persists in Dhh null EFs. Thus, Gli1 is expressed in EFs noncanonically (i.e., independent of hedgehog signaling). Gli1 and Dhh also have nonredundant activities. Unlike Dhh nulls, Gli1 nulls have a normal perineurium. Like Dhh nulls, Gli1 nulls form minifascicles, which we show likely arise from EFs. Thus, Dhh and Gli1 are independent signals: Gli1 is dispensable for perineurial development but functions cooperatively with Dhh to drive normal endoneurial development. During development, Gli1 also regulates endoneurial extracellular matrix production, nerve vascular organization, and has modest, nonautonomous effects on SC sorting and myelination of axons. Finally, in adult nerves, induced deletion of Gli1 is sufficient to drive minifascicle formation. Thus, Gli1 regulates the development and is required to maintain the endoneurial architecture of peripheral nerves.SIGNIFICANCE STATEMENT Peripheral nerves are organized into distinct cellular/ECM compartments: the epineurium, perineurium, and endoneurium. This organization, with its associated cellular constituents, is critical for the structural and metabolic support of nerves and their response to injury. Here, we show that Gli1, a transcription factor normally expressed downstream of hedgehog signaling, is required for the proper organization of the endoneurium but not the perineurium. Unexpectedly, Gli1 expression by endoneurial cells is independent of, and functions nonredundantly with, Schwann Cell-derived Desert Hedgehog in regulating peripheral nerve architecture. These results further delineate how peripheral nerves acquire their distinctive organization during normal development, and highlight mechanisms that may regulate their reorganization in pathologic settings, including peripheral neuropathies and nerve injury.
Collapse
Affiliation(s)
- Brendan Zotter
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, New York 10016
| | - Or Dagan
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, New York 10016
| | - Jacob Brady
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, New York 10016
| | - Hasna Baloui
- Departments of Neuroscience and Clinical Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Jayshree Samanta
- Department of Comparative Biosciences, School of Veterinary Medicine, Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - James L Salzer
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, New York 10016
| |
Collapse
|
7
|
Sardella-Silva G, Mietto BS, Ribeiro-Resende VT. Four Seasons for Schwann Cell Biology, Revisiting Key Periods: Development, Homeostasis, Repair, and Aging. Biomolecules 2021; 11:1887. [PMID: 34944531 PMCID: PMC8699407 DOI: 10.3390/biom11121887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/28/2023] Open
Abstract
Like the seasons of the year, all natural things happen in stages, going through adaptations when challenged, and Schwann cells are a great example of that. During maturation, these cells regulate several steps in peripheral nervous system development. The Spring of the cell means the rise and bloom through organized stages defined by time-dependent regulation of factors and microenvironmental influences. Once matured, the Summer of the cell begins: a high energy stage focused on maintaining adult homeostasis. The Schwann cell provides many neuron-glia communications resulting in the maintenance of synapses. In the peripheral nervous system, Schwann cells are pivotal after injuries, balancing degeneration and regeneration, similarly to when Autumn comes. Their ability to acquire a repair phenotype brings the potential to reconnect axons to targets and regain function. Finally, Schwann cells age, not only by growing old, but also by imposed environmental cues, like loss of function induced by pathologies. The Winter of the cell presents as reduced activity, especially regarding their role in repair; this reflects on the regenerative potential of older/less healthy individuals. This review gathers essential information about Schwann cells in different stages, summarizing important participation of this intriguing cell in many functions throughout its lifetime.
Collapse
Affiliation(s)
- Gabriela Sardella-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25255-030, RJ, Brazil
| | - Bruno Siqueira Mietto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil;
| | - Victor Túlio Ribeiro-Resende
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25255-030, RJ, Brazil
| |
Collapse
|
8
|
Remyelination in PNS and CNS: current and upcoming cellular and molecular strategies to treat disabling neuropathies. Mol Biol Rep 2021; 48:8097-8110. [PMID: 34731366 DOI: 10.1007/s11033-021-06755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/15/2021] [Indexed: 10/19/2022]
Abstract
Myelin is a lipid-rich nerve cover that consists of glial cell's plasmalemma layers and accelerates signal conduction. Axon-myelin contact is a source for many developmental and regenerative signals of myelination. Intra- or extracellular factors including both enhancers and inhibitors are other factors affecting the myelination process. Myelin damages are observed in several congenital and hereditary diseases, physicochemical conditions, infections, or traumatic insults, and remyelination is known as an intrinsic response to injuries. Here we discuss some molecular events and conditions involved in de- and remyelination and compare the phenomena of remyelination in CNS and PNS. We have explained applying some of these molecular events in myelin restoration. Finally, the current and upcoming treatment strategies for myelin restoration are explained in three groups of immunotherapy, endogenous regeneration enhancement, and cell therapy to give a better insight for finding the more effective rehabilitation strategies considering the underlying molecular events of a lesion formation and its current condition.
Collapse
|
9
|
Sencar L, Coşkun G, Şaker D, Sapmaz T, Kara S, Çelenk A, Polat S, Yılmaz DM, Dağlıoğlu YK, Polat S. Effects of Theranekron and alpha-lipoic acid combined treatment on GAP-43 and Krox-20 gene expressions and inflammation markers in peripheral nerve injury. Ultrastruct Pathol 2021; 45:167-181. [PMID: 34184615 DOI: 10.1080/01913123.2021.1923600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Peripheral nerve injury (PNI) is a major health problem that results in loss of motor and sensory functions. In treatment of PNI, various methods such as anastomosis, nerve grafts, nonneural tissue grafts, and nerve conduits are applied. In the present study, it was aimed to investigate the effects of Theranekron and Alpha-lipoic acid (ALA) combined treatment on nerve healing in experimental PNI by using histomorphometric, electron microscopic, immunohistochemical and molecular biological methods. Sixty-two Wistar rats were divided into six groups; the normal control group, sham operation group, experimental control group having a crush type injury with no treatment, Theranekron treatment group, ALA treatment group and Theranekron+ALA combined treatment group. Sciatic nerve tissue samples were obtained on days 1, 7 and 14 following injury in all groups. GAP-43 expression was upregulated in all PNI received groups compared to the control group. Krox-20 expression was downregulated in all groups that received PNI compared to the control group. While intensely positive TNF-α and IL-6 expressions were observed up to the 1st to the 14th day for the experimental control group, these expressions were seen as "weakly positive" in the treatment groups from the 1st day to the 14th day. The number of myelinated fibers was higher in the control and sham operation groups. Additionally, the number of myelinated nerve fibers increased in the combined treatment group. In conclusion, these findings suggest that combined therapy of Theranekron and ALA promotes structural recovery and it should be considered as an effective treatment protocol following PNI.
Collapse
Affiliation(s)
- Leman Sencar
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Gülfidan Coşkun
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Dilek Şaker
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Tuğçe Sapmaz
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Samet Kara
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Alper Çelenk
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Sema Polat
- Department of Anatomy, Faculty of Medicine, Çukurova University, Adana, Turkey
| | | | - Y Kenan Dağlıoğlu
- Medical Sciences and Experimental Research and Application Center of Çukurova University, Adana, Turkey
| | - Sait Polat
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
10
|
Muppirala AN, Limbach LE, Bradford EF, Petersen SC. Schwann cell development: From neural crest to myelin sheath. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e398. [PMID: 33145925 DOI: 10.1002/wdev.398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Vertebrate nervous system function requires glial cells, including myelinating glia that insulate axons and provide trophic support that allows for efficient signal propagation by neurons. In vertebrate peripheral nervous systems, neural crest-derived glial cells known as Schwann cells (SCs) generate myelin by encompassing and iteratively wrapping membrane around single axon segments. SC gliogenesis and neurogenesis are intimately linked and governed by a complex molecular environment that shapes their developmental trajectory. Changes in this external milieu drive developing SCs through a series of distinct morphological and transcriptional stages from the neural crest to a variety of glial derivatives, including the myelinating sublineage. Cues originate from the extracellular matrix, adjacent axons, and the developing SC basal lamina to trigger intracellular signaling cascades and gene expression changes that specify stages and transitions in SC development. Here, we integrate the findings from in vitro neuron-glia co-culture experiments with in vivo studies investigating SC development, particularly in zebrafish and mouse, to highlight critical factors that specify SC fate. Ultimately, we connect classic biochemical and mutant studies with modern genetic and visualization tools that have elucidated the dynamics of SC development. This article is categorized under: Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Anoohya N Muppirala
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neuroscience, Kenyon College, Gambier, Ohio, USA
| | | | | | - Sarah C Petersen
- Department of Neuroscience, Kenyon College, Gambier, Ohio, USA.,Department of Biology, Kenyon College, Gambier, Ohio, USA
| |
Collapse
|
11
|
MicroRNAs 93-5p, 106b-5p, 17-5p, and 140-5p target the expression of early growth response protein 2 in Schwann cells. Neuroreport 2019; 30:241-246. [PMID: 30614908 DOI: 10.1097/wnr.0000000000001193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Early growth response protein 2 (EGR2) is an essential transcription factor for peripheral nerve myelination. Schwann cells (SCs), the peripheral myelin-forming glial cells, express high levels of EGR2 during postnatal myelination. In contrast, SCs exhibit low EGR2 expression during Wallerian degeneration after injury. In this study, we screened 10 potential microRNAs (miRNAs) (20a-5p, 137-5p, 140-5p, 148b-3p, 150-5p, 17-5p, 93-5p, 20b-5p, 106b-5p, and 152-3p) that potentially target EGR2 using miRNA algorithms and identified that miRNAs 106b-5p, 140-5p, 93-5p, and 17-5p target EGR2 in SCs. These miRNAs directly target EGR2 by binding to the 3'-untranslated region to suppress EGR2 mRNA levels. Additionally, the levels of miRNAs 93-5p, 106b-5p, 17-5p, and 140-5p were decreased in the sciatic nerves during postnatal development; however, these miRNAs were increased on day 1 after sciatic nerve injury. Taken together, these findings suggest that the expression of EGR2 during postnatal development and Wallerian degeneration could be regulated by the inverse expression of miRNAs 106b-5p, 140-5p, 93-5p, and 17-5p, which target EGR2.
Collapse
|
12
|
Chan WH, Anderson CR, Gonsalvez DG. From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development. Cell Tissue Res 2017; 372:171-193. [PMID: 28971249 DOI: 10.1007/s00441-017-2693-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
The sympathetic division of the autonomic nervous system includes a variety of cells including neurons, endocrine cells and glial cells. A recent study (Furlan et al. 2017) has revised thinking about the developmental origin of these cells. It now appears that sympathetic neurons and chromaffin cells of the adrenal medulla do not have an immediate common ancestor in the form a "sympathoadrenal cell", as has been long believed. Instead, chromaffin cells arise from Schwann cell precursors. This review integrates the new findings with the expanding body of knowledge on the signalling pathways and transcription factors that regulate the origin of cells of the sympathetic division of the autonomic nervous system.
Collapse
Affiliation(s)
- W H Chan
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - C R Anderson
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - David G Gonsalvez
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
13
|
Martinez-Moreno M, O'Shea TM, Zepecki JP, Olaru A, Ness JK, Langer R, Tapinos N. Regulation of Peripheral Myelination through Transcriptional Buffering of Egr2 by an Antisense Long Non-coding RNA. Cell Rep 2017; 20:1950-1963. [PMID: 28834756 PMCID: PMC5800313 DOI: 10.1016/j.celrep.2017.07.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/25/2017] [Accepted: 07/24/2017] [Indexed: 10/24/2022] Open
Abstract
Precise regulation of Egr2 transcription is fundamentally important to the control of peripheral myelination. Here, we describe a long non-coding RNA antisense to the promoter of Egr2 (Egr2-AS-RNA). During peripheral nerve injury, the expression of Egr2-AS-RNA is increased and correlates with decreased Egr2 transcript and protein levels. Ectopic expression of Egr2-AS-RNA in dorsal root ganglion (DRG) cultures inhibits the expression of Egr2 mRNA and induces demyelination. In vivo inhibition of Egr2-AS-RNA using oligonucleotide GapMers released from a biodegradable hydrogel following sciatic nerve injury reverts the EGR2-mediated gene expression profile and significantly delays demyelination. Egr2-AS-RNA gradually recruits H3K27ME3, AGO1, AGO2, and EZH2 on the Egr2 promoter following sciatic nerve injury. Furthermore, expression of Egr2-AS-RNA is regulated through ERK1/2 signaling to YY1, while loss of Ser184 of YY1 regulates binding to Egr2-AS-RNA. In conclusion, we describe functional exploration of an antisense long non-coding RNA in peripheral nervous system (PNS) biology.
Collapse
Affiliation(s)
- Margot Martinez-Moreno
- Molecular Neuroscience and Neuro-Oncology Laboratory, Geisinger Clinic, Danville, PA 17822, USA
| | - Timothy Mark O'Shea
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John P Zepecki
- Molecular Neuroscience and Neuro-Oncology Laboratory, Geisinger Clinic, Danville, PA 17822, USA
| | - Alexander Olaru
- Molecular Neuroscience and Neuro-Oncology Laboratory, Geisinger Clinic, Danville, PA 17822, USA
| | - Jennifer K Ness
- Molecular Neuroscience and Neuro-Oncology Laboratory, Geisinger Clinic, Danville, PA 17822, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nikos Tapinos
- Molecular Neuroscience and Neuro-Oncology Laboratory, Geisinger Clinic, Danville, PA 17822, USA.
| |
Collapse
|
14
|
Rodríguez-Molina JF, Lopez-Anido C, Ma KH, Zhang C, Olson T, Muth KN, Weider M, Svaren J. Dual specificity phosphatase 15 regulates Erk activation in Schwann cells. J Neurochem 2017; 140:368-382. [PMID: 27891578 PMCID: PMC5250571 DOI: 10.1111/jnc.13911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
Schwann cells and oligodendrocytes are the myelinating cells of the peripheral and central nervous system, respectively. Despite having different myelin components and different transcription factors driving their terminal differentiation there are shared molecular mechanisms between the two. Sox10 is one common transcription factor required for several steps in development of myelinating glia. However, other factors are divergent as Schwann cells need the transcription factor early growth response 2/Krox20 and oligodendrocytes require Myrf. Likewise, some signaling pathways, like the Erk1/2 kinases, are necessary in both cell types for proper myelination. Nonetheless, the molecular mechanisms that control this shared signaling pathway in myelinating cells remain only partially characterized. The hypothesis of this study is that signaling pathways that are similarly regulated in both Schwann cells and oligodendrocytes play central roles in coordinating the differentiation of myelinating glia. To address this hypothesis, we have used genome-wide binding data to identify a relatively small set of genes that are similarly regulated by Sox10 in myelinating glia. We chose one such gene encoding Dual specificity phosphatase 15 (Dusp15) for further analysis in Schwann cell signaling. RNA interference and gene deletion by genome editing in cultured RT4 and primary Schwann cells showed Dusp15 is necessary for full activation of Erk1/2 phosphorylation. In addition, we show that Dusp15 represses expression of several myelin genes, including myelin basic protein. The data shown here support a mechanism by which early growth response 2 activates myelin genes, but also induces a negative feedback loop through Dusp15 to limit over-expression of myelin genes.
Collapse
Affiliation(s)
- José F. Rodríguez-Molina
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Camila Lopez-Anido
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ki H. Ma
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Chongyu Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tyler Olson
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Katharina N. Muth
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
15
|
Sowa Y, Kishida T, Tomita K, Yamamoto K, Numajiri T, Mazda O. Direct Conversion of Human Fibroblasts into Schwann Cells that Facilitate Regeneration of Injured Peripheral Nerve In Vivo. Stem Cells Transl Med 2017; 6:1207-1216. [PMID: 28186702 PMCID: PMC5442846 DOI: 10.1002/sctm.16-0122] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022] Open
Abstract
Schwann cells (SCs) play pivotal roles in the maintenance and regeneration of the peripheral nervous system. Although transplantation of SCs enhances repair of experimentally damaged peripheral and central nerve tissues, it is difficult to prepare a sufficient number of functional SCs for transplantation therapy without causing adverse events for the donor. Here, we generated functional SCs by somatic cell reprogramming procedures and demonstrated their capability to promote peripheral nerve regeneration. Normal human fibroblasts were phenotypically converted into SCs by transducing SOX10 and Krox20 genes followed by culturing for 10 days resulting in approximately 43% directly converted Schwann cells (dSCs). The dSCs expressed SC‐specific proteins, secreted neurotrophic factors, and induced neuronal cells to extend neurites. The dSCs also displayed myelin‐forming capability both in vitro and in vivo. Moreover, transplantation of the dSCs into the transected sciatic nerve in mice resulted in significantly accelerated regeneration of the nerve and in improved motor function at a level comparable to that with transplantation of the SCs obtained from a peripheral nerve. The dSCs induced by our procedure may be applicable for novel regeneration therapy for not only peripheral nerve injury but also for central nerve damage and for neurodegenerative disorders related to SC dysfunction. Stem Cells Translational Medicine2017;6:1207–1216
Collapse
Affiliation(s)
- Yoshihiro Sowa
- Department of Immunology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji Kajii-cho 465, Kamigyo-ku, Kyoto, 602-8566, Japan.,Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji Kajii-cho 465, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tsunao Kishida
- Department of Immunology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji Kajii-cho 465, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Koichi Tomita
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji Kajii-cho 465, Kamigyo-ku, Kyoto, 602-8566, Japan.,Department of Dental Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji Kajii-cho 465, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshiaki Numajiri
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji Kajii-cho 465, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji Kajii-cho 465, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
16
|
Lopes S, Lopes A, Pinto V, Guimarães MR, Sardinha VM, Duarte‐Silva S, Pinheiro S, Pizarro J, Oliveira JF, Sousa N, Leite‐Almeida H, Sotiropoulos I. Absence of Tau triggers age-dependent sciatic nerve morphofunctional deficits and motor impairment. Aging Cell 2016; 15:208-16. [PMID: 26748966 PMCID: PMC4783352 DOI: 10.1111/acel.12391] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2015] [Indexed: 11/29/2022] Open
Abstract
Dementia is the cardinal feature of Alzheimer's disease (AD), yet the clinical symptoms of this disorder also include a marked loss of motor function. Tau abnormal hyperphosphorylation and malfunction are well‐established key events in AD neuropathology but the impact of the loss of normal Tau function in neuronal degeneration and subsequent behavioral deficits is still debated. While Tau reduction has been increasingly suggested as therapeutic strategy against neurodegeneration, particularly in AD, there is controversial evidence about whether loss of Tau progressively impacts on motor function arguing about damage of CNS motor components. Using a variety of motor‐related tests, we herein provide evidence of an age‐dependent motor impairment in Tau−/− animals that is accompanied by ultrastructural and functional impairments of the efferent fibers that convey motor‐related information. Specifically, we show that the sciatic nerve of old (17–22‐months) Tau−/− mice displays increased degenerating myelinated fibers and diminished conduction properties, as compared to age‐matched wild‐type (Tau+/+) littermates and younger (4–6 months) Tau−/− and Tau+/+ mice. In addition, the sciatic nerves of Tau−/− mice exhibit a progressive hypomyelination (assessed by g‐ratio) specifically affecting large‐diameter, motor‐related axons in old animals. These findings suggest that loss of Tau protein may progressively impact on peripheral motor system.
Collapse
Affiliation(s)
- Sofia Lopes
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - André Lopes
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Vítor Pinto
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Marco R. Guimarães
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Vanessa Morais Sardinha
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Sara Duarte‐Silva
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Sara Pinheiro
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - João Pizarro
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Hugo Leite‐Almeida
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
17
|
Ness JK, Skiles AA, Yap EH, Fajardo EJ, Fiser A, Tapinos N. Nuc-ErbB3 regulates H3K27me3 levels and HMT activity to establish epigenetic repression during peripheral myelination. Glia 2016; 64:977-92. [PMID: 27017927 PMCID: PMC5021170 DOI: 10.1002/glia.22977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 02/01/2016] [Indexed: 12/04/2022]
Abstract
Nuc‐ErbB3 an alternative transcript from the ErbB3 locus binds to a specific DNA motif and associates with Schwann cell chromatin. Here we generated a nuc‐ErbB3 knockin mouse that lacks nuc‐ErbB3 expression in the nucleus without affecting the neuregulin‐ErbB3 receptor signaling. Nuc‐ErbB3 knockin mice exhibit hypermyelination and aberrant myelination at the paranodal region. This phenotype is attributed to de‐repression of myelination associated gene transcription following loss of nuc‐ErbB3 and histone H3K27me3 promoter occupancy. Nuc‐ErbB3 knockin mice exhibit reduced association of H3K27me3 with myelination‐associated gene promoters and increased RNA Pol‐II rate of transcription of these genes. In addition, nuc‐ErbB3 directly regulates levels of H3K27me3 in Schwann cells. Nuc‐ErbB3 knockin mice exhibit significant decrease of histone H3K27me3 methyltransferase (HMT) activity and reduced levels of H3K27me3. Collectively, nuc‐ErbB3 is a master transcriptional repressor, which regulates HMT activity to establish a repressive chromatin landscape on promoters of genes during peripheral myelination. GLIA 2016;64:977–992 Nuc‐ErbB3 knock‐in mice exhibit peripheral hypermyelination. Nuc‐ErbB3 regulates total levels of H3K27me3 and HMT activity. Nuc‐ErbB3 induces transcriptional repression of myelination associated genes.
Collapse
Affiliation(s)
- Jennifer K Ness
- Molecular Neuroscience and Neurooncology Laboratory, Geisinger Clinic, Danville, Pennsylvania
| | - Amanda A Skiles
- Molecular Neuroscience and Neurooncology Laboratory, Geisinger Clinic, Danville, Pennsylvania
| | - Eng-Hui Yap
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Eduardo J Fajardo
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Nikos Tapinos
- Molecular Neuroscience and Neurooncology Laboratory, Geisinger Clinic, Danville, Pennsylvania
| |
Collapse
|
18
|
Jacob C. Transcriptional control of neural crest specification into peripheral glia. Glia 2015; 63:1883-1896. [PMID: 25752517 DOI: 10.1002/glia.22816] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/29/2015] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
Abstract
The neural crest is a transient migratory multipotent cell population that originates from the neural plate border and is formed at the end of gastrulation and during neurulation in vertebrate embryos. These cells give rise to many different cell types of the body such as chondrocytes, smooth muscle cells, endocrine cells, melanocytes, and cells of the peripheral nervous system including different subtypes of neurons and peripheral glia. Acquisition of lineage-specific markers occurs before or during migration and/or at final destination. What are the mechanisms that direct specification of neural crest cells into a specific lineage and how do neural crest cells decide on a specific migration route? Those are fascinating and complex questions that have existed for decades and are still in the research focus of developmental biologists. This review discusses transcriptional events and regulations occurring in neural crest cells and derived lineages, which control specification of peripheral glia, namely Schwann cell precursors that interact with peripheral axons and further differentiate into myelinating or nonmyelinating Schwann cells, satellite cells that remain tightly associated with neuronal cell bodies in sensory and autonomous ganglia, and olfactory ensheathing cells that wrap olfactory axons, both at the periphery in the olfactory mucosa and in the central nervous system in the olfactory bulb. Markers of the different peripheral glia lineages including intermediate multipotent cells such as boundary cap cells, as well as the functions of these specific markers, are also reviewed. Enteric ganglia, another type of peripheral glia, will not be discussed in this review. GLIA 2015;63:1883-1896.
Collapse
Affiliation(s)
- Claire Jacob
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
19
|
Sheean ME, McShane E, Cheret C, Walcher J, Müller T, Wulf-Goldenberg A, Hoelper S, Garratt AN, Krüger M, Rajewsky K, Meijer D, Birchmeier W, Lewin GR, Selbach M, Birchmeier C. Activation of MAPK overrides the termination of myelin growth and replaces Nrg1/ErbB3 signals during Schwann cell development and myelination. Genes Dev 2014; 28:290-303. [PMID: 24493648 PMCID: PMC3923970 DOI: 10.1101/gad.230045.113] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/20/2013] [Indexed: 12/11/2022]
Abstract
Myelination depends on the synthesis of large amounts of myelin transcripts and proteins and is controlled by Nrg1/ErbB/Shp2 signaling. We developed a novel pulse labeling strategy based on stable isotope labeling with amino acids in cell culture (SILAC) to measure the dynamics of myelin protein production in mice. We found that protein synthesis is dampened in the maturing postnatal peripheral nervous system, and myelination then slows down. Remarkably, sustained activation of MAPK signaling by expression of the Mek1DD allele in mice overcomes the signals that end myelination, resulting in continuous myelin growth. MAPK activation leads to minor changes in transcript levels but massively up-regulates protein production. Pharmacological interference in vivo demonstrates that the effects of activated MAPK signaling on translation are mediated by mTOR-independent mechanisms but in part also by mTOR-dependent mechanisms. Previous work demonstrated that loss of ErbB3/Shp2 signaling impairs Schwann cell development and disrupts the myelination program. We found that activated MAPK signaling strikingly compensates for the absence of ErbB3 or Shp2 during Schwann cell development and myelination.
Collapse
Affiliation(s)
| | | | | | - Jan Walcher
- Molecular Physiology of Somatic Sensation, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | - Soraya Hoelper
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | - Markus Krüger
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Dies Meijer
- Department of Cell Biology and Genetics, Erasmus University Medical Center, 3000 DR Rotterdam, Netherlands
| | - Walter Birchmeier
- Signal Transduction, Invasion, and Metastasis, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Gary R. Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | |
Collapse
|
20
|
Glenn TD, Talbot WS. Signals regulating myelination in peripheral nerves and the Schwann cell response to injury. Curr Opin Neurobiol 2013; 23:1041-8. [PMID: 23896313 PMCID: PMC3830599 DOI: 10.1016/j.conb.2013.06.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 06/20/2013] [Accepted: 06/27/2013] [Indexed: 11/23/2022]
Abstract
In peripheral nerves, Schwann cells form myelin, which facilitates the rapid conduction of action potentials along axons in the vertebrate nervous system. Myelinating Schwann cells are derived from neural crest progenitors in a step-wise process that is regulated by extracellular signals and transcription factors. In addition to forming the myelin sheath, Schwann cells orchestrate much of the regenerative response that occurs after injury to peripheral nerves. In response to injury, myelinating Schwann cells dedifferentiate into repair cells that are essential for axonal regeneration, and then redifferentiate into myelinating Schwann cells to restore nerve function. Although this remarkable plasticity has long been recognized, many questions remain unanswered regarding the signaling pathways regulating both myelination and the Schwann cell response to injury.
Collapse
Affiliation(s)
- Thomas D. Glenn
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - William S. Talbot
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
21
|
Apra C, Richard L, Coulpier F, Blugeon C, Gilardi-Hebenstreit P, Vallat JM, Lindner V, Charnay P, Decker L. Cthrc1 is a negative regulator of myelination in Schwann cells. Glia 2013; 60:393-403. [PMID: 22379615 DOI: 10.1002/glia.22273] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The analysis of the molecular mechanisms involved in the initial interaction between neurons and Schwann cells is a key issue in understanding the myelination process. We recently identified Cthrc1 (Collagen triple helix repeat containing 1) as a gene upregulated in Schwann cells upon interaction with the axon. Cthrc1 encodes a secreted protein previously shown to be involved in migration and proliferation in different cell types. We performed a functional analysis of Cthrc1 in Schwann cells by loss-of- and gain-of-function approaches using RNA interference knockdown in cell culture and a transgenic mouse line that overexpresses the gene. This work establishes that Cthrc1 enhances Schwann cell proliferation but prevents myelination. In particular, time-course analysis of myelin formation intransgenic animals reveals that overexpression of Cthrc1 in Schwann cells leads to a delay in myelin formation with cells maintaining a proliferative state. Our data, therefore, demonstrate that Cthrc1 plays a negative regulatory role, fine-tuning the onset of peripheral myelination.
Collapse
Affiliation(s)
- Caroline Apra
- Ecole Normale Supérieure, IBENS, Developmental Biology Section, 75230 Paris cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Brázda V, Klusáková I, Hradilová Svíženská I, Dubový P. Dynamic response to peripheral nerve injury detected by in situ hybridization of IL-6 and its receptor mRNAs in the dorsal root ganglia is not strictly correlated with signs of neuropathic pain. Mol Pain 2013; 9:42. [PMID: 23953943 PMCID: PMC3844395 DOI: 10.1186/1744-8069-9-42] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/14/2013] [Indexed: 12/15/2022] Open
Abstract
Background IL-6 is a typical injury-induced mediator. Together with its receptors, IL-6 contributes to both induction and maintenance of neuropathic pain deriving from changes in activity of primary sensory neurons in dorsal root ganglia (DRG). We used in situ hybridization to provide evidence of IL-6 and IL-6 receptors (IL-6R and gp130) synthesis in DRG along the neuraxis after unilateral chronic constriction injury (CCI) of the sciatic nerve as an experimental model of neuropathic pain. Results All rats operated upon to create unilateral CCI displayed mechanical allodynia and thermal hyperalgesia in ipsilateral hind paws. Contralateral hind paws and forepaws of both sides exhibited only temporal and nonsignificant changes of sensitivity. Very low levels of IL-6 and IL-6R mRNAs were detected in naïve DRG. IL-6 mRNA was bilaterally increased not only in DRG neurons but also in satellite glial cells (SGC) activated by unilateral CCI. In addition to IL-6 mRNA, substantial increase of IL-6R mRNA expression occurred in DRG neurons and SGC following CCI, while the level of gp130 mRNA remained similar to that of DRG from naïve rats. Conclusions Here we evidence for the first time increased synthesis of IL-6 and IL-6R in remote cervical DRG nonassociated with the nerve injury. Our results suggest that unilateral CCI of the sciatic nerve induced not only bilateral elevation of IL-6 and IL-6R mRNAs in L4–L5 DRG but also their propagation along the neuraxis to remote cervical DRG as a general neuroinflammatory reaction of the nervous system to local nerve injury without correlation with signs of neuropathic pain. Possible functional involvement of IL-6 signaling is discussed.
Collapse
Affiliation(s)
- Václav Brázda
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | | | | | | |
Collapse
|
23
|
The characterisation of Pax3 expressant cells in adult peripheral nerve. PLoS One 2013; 8:e59184. [PMID: 23527126 PMCID: PMC3602598 DOI: 10.1371/journal.pone.0059184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/12/2013] [Indexed: 12/25/2022] Open
Abstract
Pax3 has numerous integral functions in embryonic tissue morphogenesis and knowledge of its complex function in cells of adult tissue continues to unfold. Across a variety of adult tissue lineages, the role of Pax3 is principally linked to maintenance of the tissue’s resident stem/progenitor cell population. In adult peripheral nerves, Pax3 is reported to be expressed in nonmyelinating Schwann cells, however, little is known about the purpose of this expression. Based on the evidence of the role of Pax3 in other adult tissue stem and progenitor cells, it was hypothesised that the cells in adult peripheral nerve that express Pax3 may be peripheral glioblasts. Here, methods have been developed for identification and visualisation of Pax3 expressant cells in normal 60 day old mouse peripheral nerve that allowed morphological and phenotypic distinctions to be made between Pax3 expressing cells and other nonmyelinating Schwann cells. The distinctions described provide compelling support for a resident glioblast population in adult mouse peripheral nerve.
Collapse
|
24
|
Kipanyula MJ, Woodhoo A, Rahman M, Payne D, Jessen KR, Mirsky R. Calcineurin-nuclear factor of activated T cells regulation of Krox-20 expression in Schwann cells requires elevation of intracellular cyclic AMP. J Neurosci Res 2013; 91:105-15. [PMID: 23073893 PMCID: PMC5722200 DOI: 10.1002/jnr.23131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 07/09/2012] [Accepted: 07/20/2012] [Indexed: 12/13/2022]
Abstract
The transcription factor Krox-20 (Egr2) is a master regulator of Schwann cell myelination. In mice from which calcineurin B had been excised in cells of the neural crest lineage, calcineurin-nuclear factor of activated T cells (NFAT) signaling was required for neuregulin-related Schwann cell myelination (Kao et al. [2009] Immunity 12:359-372). Whether NFAT signaling required simultaneous elevation of intracellular cAMP levels was not explored. In vivo, Krox-20 expression requires continuous axon-Schwann cell signaling that in Schwann cell cultures can be mimicked by elevation of intracellular cAMP. We have investigated the role of the calcineurin-NFAT pathway in Krox-20 induction in purified rat Schwann cell cultures. Activation of this pathway requires elevation of intracellular Ca(2+) levels. The calcium ionophore A23187 or ionomycin was used to increase intracellular Ca(2+) levels in Schwann cell cultures that had been treated with dibutyryl cAMP to induce Krox-20. Increase in Ca(2+) levels significantly potentiated Krox-20 induction, determined by Krox-20 immunolabeling of individual cells and Western blotting. Levels of the myelin proteins periaxin and P(0) were also elevated. The potentiating effect was blocked by cyclosporin A, a specific blocker of the calcineurin-NFAT pathway. We found that, in the absence of cAMP elevation, treatment with A23187 alone failed to induce Krox-20 expression, indicating that NFAT upregulation of Krox-20 requires elevation of cAMP levels in Schwann cells. P-VIVIT, another specific inhibitor of calcineurin-NFAT interaction, blocked Krox-20 induction in response to dibutyryl cAMP and ionophore. HA-NFAT1 (1-460)-GFP translocated to the nucleus on treatment with dibutyryl cAMP with or without added ionophore. NFAT isoforms 1-4 were detected in purified Schwann cells by quantitative RT-PCR.
Collapse
Affiliation(s)
- Maulilio J. Kipanyula
- Department of Veterinary Anatomy, Sokoine University of Agriculture, Chuo Kikuu, Morogoro, Tanzania
| | - Ashwin Woodhoo
- Metabolomics Unit, CICbioGune, Parque Tecnológico de Bizcaia, Derio, Bizcaia, Spain
| | - Mary Rahman
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Donna Payne
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Kristján R. Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
25
|
Hossain S, de la Cruz-Morcillo MA, Sanchez-Prieto R, Almazan G. Mitogen-activated protein kinase p38 regulates krox-20 to direct schwann cell differentiation and peripheral myelination. Glia 2012; 60:1130-44. [DOI: 10.1002/glia.22340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 03/16/2012] [Indexed: 12/24/2022]
|
26
|
Chang YW, Winkelstein BA. Schwann Cell Proliferation and Macrophage Infiltration Are Evident at Day 14 after Painful Cervical Nerve Root Compression in the Rat. J Neurotrauma 2011; 28:2429-38. [DOI: 10.1089/neu.2011.1918] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yu-Wen Chang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Schira J, Gasis M, Estrada V, Hendricks M, Schmitz C, Trapp T, Kruse F, Kögler G, Wernet P, Hartung HP, Müller HW. Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood. ACTA ACUST UNITED AC 2011; 135:431-46. [PMID: 21903726 DOI: 10.1093/brain/awr222] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stem cell therapy is a potential treatment for spinal cord injury and different stem cell types have been grafted into animal models and humans suffering from spinal trauma. Due to inconsistent results, it is still an important and clinically relevant question which stem cell type will prove to be therapeutically effective. Thus far, stem cells of human sources grafted into spinal cord mostly included barely defined heterogeneous mesenchymal stem cell populations derived from bone marrow or umbilical cord blood. Here, we have transplanted a well-defined unrestricted somatic stem cell isolated from human umbilical cord blood into an acute traumatic spinal cord injury of adult immune suppressed rat. Grafting of unrestricted somatic stem cells into the vicinity of a dorsal hemisection injury at thoracic level eight resulted in hepatocyte growth factor-directed migration and accumulation within the lesion area, reduction in lesion size and augmented tissue sparing, enhanced axon regrowth and significant functional locomotor improvement as revealed by three behavioural tasks (open field Basso-Beattie-Bresnahan locomotor score, horizontal ladder walking test and CatWalk gait analysis). To accomplish the beneficial effects, neither neural differentiation nor long-lasting persistence of the grafted human stem cells appears to be required. The secretion of neurite outgrowth-promoting factors in vitro further suggests a paracrine function of unrestricted somatic stem cells in spinal cord injury. Given the highly supportive functional characteristics in spinal cord injury, production in virtually unlimited quantities at GMP grade and lack of ethical concerns, unrestricted somatic stem cells appear to be a highly suitable human stem cell source for clinical application in central nervous system injuries.
Collapse
Affiliation(s)
- Jessica Schira
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Centre Düsseldorf, Moorenstr. 5, 40223 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Latasa MJ, Cosgaya JM. Regulation of retinoid receptors by retinoic acid and axonal contact in Schwann cells. PLoS One 2011; 6:e17023. [PMID: 21386894 PMCID: PMC3046125 DOI: 10.1371/journal.pone.0017023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/18/2011] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Schwann cells (SCs) are the cell type responsible for the formation of the myelin sheath in the peripheral nervous system (PNS). As retinoic acid (RA) and other retinoids have a profound effect as regulators of the myelination program, we sought to investigate how their nuclear receptors levels were regulated in this cell type. METHODOLOGY/PRINCIPAL FINDINGS In the present study, by using Schwann cells primary cultures from neonatal Wistar rat pups, as well as myelinating cocultures of Schwann cells with embryonic rat dorsal root ganglion sensory neurons, we have found that sustained expression of RXR-γ depends on the continuous presence of a labile activator, while axonal contact mimickers produced an increase in RXR-γ mRNA and protein levels, increment that could be prevented by RA. The upregulation by axonal contact mimickers and the transcriptional downregulation by RA were dependent on de novo protein synthesis and did not involve changes in mRNA stability. On the other hand, RAR-β mRNA levels were only slightly modulated by axonal contact mimickers, while RA produced a strong transcriptional upregulation that was independent of de novo protein synthesis without changes in mRNA stability. CONCLUSIONS/SIGNIFICANCE All together, our results show that retinoid receptors are regulated in a complex manner in Schwann cells, suggesting that they could have a prominent role as regulators of Schwann cell physiology.
Collapse
Affiliation(s)
- Maria-Jesus Latasa
- Department of Endocrine and Nervous System Physiopathology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose Miguel Cosgaya
- Department of Endocrine and Nervous System Physiopathology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
29
|
Arthur-Farraj P, Wanek K, Hantke J, Davis CM, Jayakar A, Parkinson DB, Mirsky R, Jessen KR. Mouse schwann cells need both NRG1 and cyclic AMP to myelinate. Glia 2011; 59:720-33. [PMID: 21322058 DOI: 10.1002/glia.21144] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 12/20/2010] [Indexed: 12/13/2022]
Abstract
Genetically modified mice have been a major source of information about the molecular control of Schwann-cell myelin formation, and the role of β-neuregulin 1 (NRG1) in this process in vivo. In vitro, on the other hand, Schwann cells from rats have been used in most analyses of the signaling pathways involved in myelination. To correlate more effectively in vivo and in vitro data, we used purified cultures of mouse Schwann cells in addition to rat Schwann cells to examine two important myelin-related signals, cyclic adenosine monophosphate (cAMP), and NRG1 and to determine whether they interact to control myelin differentiation. We find that in mouse Schwann cells, neither cAMP nor NRG1, when used separately, induced markers of myelin differentiation. When combined, however, they induced strong protein expression of the myelin markers, Krox-20 and P(0) . Importantly, the level of cAMP signaling was crucial in switching NRG1 from a proliferative signal to a myelin differentiation signal. Also in cultured rat Schwann cells, NRG1 promoted cAMP-induced Krox-20 and P(0) expression. Finally, we found that cAMP/NRG1-induced Schwann-cell differentiation required the activity of the cAMP response element binding family of transcription factors in both mouse and rat cells. These observations reconcile observations in vivo and on neuron-Schwann-cell cultures with studies on purified Schwann cells. They demonstrate unambiguously the promyelin effects of NRG1 in purified cells, and they show that the cAMP pathway determines whether NRG1 drives proliferation or induces myelin differentiation.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Newbern JM, Li X, Shoemaker SE, Zhou J, Zhong J, Wu Y, Bonder D, Hollenback S, Coppola G, Geschwind DH, Landreth GE, Snider WD. Specific functions for ERK/MAPK signaling during PNS development. Neuron 2011; 69:91-105. [PMID: 21220101 DOI: 10.1016/j.neuron.2010.12.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
Abstract
We have established functions of the stimulus-dependent MAPKs, ERK1/2 and ERK5, in DRG, motor neuron, and Schwann cell development. Surprisingly, many aspects of early DRG and motor neuron development were found to be ERK1/2 independent, and Erk5 deletion had no obvious effect on embryonic PNS. In contrast, Erk1/2 deletion in developing neural crest resulted in peripheral nerves that were devoid of Schwann cell progenitors, and deletion of Erk1/2 in Schwann cell precursors caused disrupted differentiation and marked hypomyelination of axons. The Schwann cell phenotypes are similar to those reported in neuregulin-1 and ErbB mutant mice, and neuregulin effects could not be elicited in glial precursors lacking Erk1/2. ERK/MAPK regulation of myelination was specific to Schwann cells, as deletion in oligodendrocyte precursors did not impair myelin formation, but reduced precursor proliferation. Our data suggest a tight linkage between developmental functions of ERK/MAPK signaling and biological actions of specific RTK-activating factors.
Collapse
|
31
|
Abstract
The myelin sheath is an essential component of the vertebrate nervous system, and its disruption causes numerous diseases, including multiple sclerosis (MS), and neurodegeneration. Although we understand a great deal about the early development of the glial cells that make myelin (Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system), we know much less about the cellular and molecular mechanisms that regulate the later stages of differentiation that orchestrate myelin formation. Over the past decade, the zebrafish has been employed as a model with which to dissect the development of myelinated axons. Forward genetic screens have revealed new genes essential for myelination, as well as new roles for genes previously implicated in myelinated axon formation in other systems. High-resolution in vivo imaging in zebrafish has also begun to illuminate novel cell behaviors during myelinating glial cell development. Here we review the contribution of zebrafish research to our understanding of myelinated axon formation to date. We also describe and discuss many of the methodologies used in these studies and preview future endeavors that will ensure that the zebrafish remains at the cutting edge of this important area of research.
Collapse
Affiliation(s)
- Tim Czopka
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK
| | | |
Collapse
|
32
|
Blugeon C, Le Crom S, Richard L, Vallat JM, Charnay P, Decker L. Dok4 is involved in Schwann cell myelination and axonal interaction in vitro. Glia 2010; 59:351-62. [DOI: 10.1002/glia.21106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/20/2010] [Accepted: 10/12/2010] [Indexed: 12/22/2022]
|
33
|
He Y, Kim JY, Dupree J, Tewari A, Melendez-Vasquez C, Svaren J, Casaccia P. Yy1 as a molecular link between neuregulin and transcriptional modulation of peripheral myelination. Nat Neurosci 2010; 13:1472-1480. [PMID: 21057508 PMCID: PMC3142946 DOI: 10.1038/nn.2686] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/27/2010] [Indexed: 11/09/2022]
Abstract
Fast axonal conduction depends on myelin, which is formed by Schwann cells in the PNS. We found that the transcription factor Yin Yang 1 (YY1) is crucial for peripheral myelination. Conditional ablation of Yy1 in the Schwann cell lineage resulted in severe hypomyelination, which occurred independently of altered Schwann cell proliferation or apoptosis. In Yy1 mutant mice, Schwann cells established a 1:1 relationship with axons but were unable to myelinate them. The Schwann cells expressed low levels of myelin proteins and of Egr2 (also called Krox20), which is an important regulator of peripheral myelination. In vitro, Schwann cells that lacked Yy1 did not upregulate Egr2 in response to neuregulin1 and did not express myelin protein zero. This phenotype was rescued by overexpression of Egr2. In addition, neuregulin-induced phosphorylation of YY1 was required for transcriptional activation of Egr2. Thus, YY1 emerges as an important activator of peripheral myelination that links neuregulin signaling with Egr2 expression.
Collapse
Affiliation(s)
- Ye He
- Department of Neuroscience and Genetics and Genomics, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Latasa MJ, Ituero M, Moran-Gonzalez A, Aranda A, Cosgaya JM. Retinoic acid regulates myelin formation in the peripheral nervous system. Glia 2010; 58:1451-64. [PMID: 20648638 DOI: 10.1002/glia.21020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Understanding the mechanisms that control myelin formation is essential for the development of demyelinating diseases treatments. All-trans-retinoic acid (RA) plays an essential role during the development of the nervous system as a potent regulator of morphogenesis, cell growth, and differentiation. In this study, we show that RA is also a potent inhibitor of peripheral nervous system (PNS) myelination. RA acts through its binding to RA receptors (RAR) and retinoid X receptors (RXR), two members of the superfamily of nuclear receptors that act as ligand-dependent transcription factors. Schwann cells (SCs) express all retinoid receptors during the relevant stages of myelin formation. Through the activation of RXR, RA produces an upregulation of Krox20, a SC-specific regulatory transcription factor that plays a central role during myelination. Krox20 upregulation translates into Mbp and Mpz overexpression, therefore blocking myelin formation. This increase in myelin protein expression is accompanied by the induction of an adaptive ER stress response. At the same time, through a RAR-dependent mechanism, RA downregulates myelin-associated glycoprotein, which also contributes to the dysmyelinating effect of the retinoid.
Collapse
Affiliation(s)
- Maria-Jesus Latasa
- Department of Endocrine and Nervous System Physiopathology, Instituto de Investigaciones Biomédicas, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
35
|
Hossain S, Fragoso G, Mushynski WE, Almazan G. Regulation of peripheral myelination by Src-like kinases. Exp Neurol 2010; 226:47-57. [DOI: 10.1016/j.expneurol.2010.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/13/2010] [Accepted: 08/02/2010] [Indexed: 01/06/2023]
|
36
|
Babiarz J, Kane-Goldsmith N, Basak S, Liu K, Young W, Grumet M. Juvenile and adult olfactory ensheathing cells bundle and myelinate dorsal root ganglion axons in culture. Exp Neurol 2010; 229:72-9. [PMID: 20850435 DOI: 10.1016/j.expneurol.2010.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/29/2010] [Accepted: 08/25/2010] [Indexed: 01/09/2023]
Abstract
Olfactory ensheathing cells (OEC), which normally associate closely with but do not myelinate axons in situ, myelinate axons in the adult mammalian spinal cord. They are of clinical interest as candidate cells for autologous transplantation but the ability of OEC to myelinate axons in vitro has been controversial. To clarify this issue, we isolated OEC from olfactory bulbs (OB) of juvenile and adult rats expressing GFP and analyzed their ability to myelinate axons. Using a well-defined assay for myelination of dorsal root ganglia (DRG) axons in culture, we found that OEC from juvenile pups associated with and then myelinated DRG axons. OEC assembled into bundles with the axons by 1week and required more than a week before myelination on axons was detected. In contrast, rat Schwann cells did not bundle axons and they formed P0(+) and MBP(+) myelin segments after as little as 1week. Most of the OEC in culture exhibited staining for calponin, a marker that was not found on Schwann cells in culture, whereas in both OEC and Schwann cell populations nearly all cells were positive for p75NTR and GFAP. These results confirm previous reports showing only subtle immunological differences between Schwann cells and OEC. Besides differences in the rate of myelination, we detected two additional functional differences in the interactions of OEC and Schwann cells with DRG axons. First, the diameter of OEC generated myelin was greater than for Schwann cell myelin on DRG axons. Second, OEC but not Schwann cells myelinated DRG axons in the absence of vitamin C. OEC isolated from adult OB were also found to bundle and myelinate DRG axons but the latter occurred only after incubation times of at least 3weeks. The results indicate that adult OEC require longer incubation times than juvenile OEC to myelinate axons and suggest that patterns of myelination by OEC and Schwann cells are distinguishable at least on axons in vitro. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Joanne Babiarz
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, 604 Allison Rd., Piscataway, NJ 08854-8082, USA
| | | | | | | | | | | |
Collapse
|
37
|
Newbern J, Birchmeier C. Nrg1/ErbB signaling networks in Schwann cell development and myelination. Semin Cell Dev Biol 2010; 21:922-8. [PMID: 20832498 DOI: 10.1016/j.semcdb.2010.08.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 08/20/2010] [Indexed: 11/30/2022]
Abstract
Neuregulin-1 (Nrg1) provides a key axonal signal that regulates Schwann cell proliferation, migration and myelination through binding to ErbB2/3 receptors. The analysis of a number of genetic models has unmasked fundamental mechanisms underlying the specificity of the Nrg1/ErbB signaling axis. Differential expression of Nrg1 isoforms, Nrg1 processing, and ErbB receptor localization and trafficking represent important regulatory themes in the control of Nrg1/ErbB function. Nrg1 binding to ErbB2/3 receptors results in the activation of intracellular signal transduction pathways that initiate changes in Schwann cell behavior. Here, we review data that has defined the role of key Nrg1/ErbB signaling components like Shp2, ERK1/2, FAK, Rac1/Cdc42 and calcineurin in development of the Schwann cell lineage in vivo. Many of these regulators receive converging signals from other cues that are provided by Notch, integrin or G-protein coupled receptors. Signaling by multiple extracellular factors may act as key modifiers and allow Schwann cells at different developmental stages to respond in distinct manners to the Nrg1/ErbB signal.
Collapse
Affiliation(s)
- Jason Newbern
- Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA. jason
| | | |
Collapse
|
38
|
Ohara PT, Vit JP, Bhargava A, Romero M, Sundberg C, Charles AC, Jasmin L. Gliopathic pain: when satellite glial cells go bad. Neuroscientist 2010; 15:450-63. [PMID: 19826169 DOI: 10.1177/1073858409336094] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurons in sensory ganglia are surrounded by satellite glial cells (SGCs) that perform similar functions to the glia found in the CNS. When primary sensory neurons are injured, the surrounding SGCs undergo characteristic changes. There is good evidence that the SGCs are not just bystanders to the injury but play an active role in the initiation and maintenance of neuronal changes that underlie neuropathic pain. In this article the authors review the literature on the relationship between SGCs and nociception and present evidence that changes in SGC potassium ion buffering capacity and glutamate recycling can lead to neuropathic pain-like behavior in animal models. The role that SGCs play in the immune responses to injury is also considered. We propose the term gliopathic pain to describe those conditions in which central or peripheral glia are thought to be the principal generators of principal pain generators.
Collapse
Affiliation(s)
- Peter T Ohara
- Department of Anatomy, University of California, San Francisco, California 95143-0452, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Wu HH, Bellmunt E, Scheib JL, Venegas V, Burkert C, Reichardt LF, Zhou Z, Fariñas I, Carter BD. Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nat Neurosci 2009; 12:1534-41. [PMID: 19915564 PMCID: PMC2834222 DOI: 10.1038/nn.2446] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Accepted: 10/07/2009] [Indexed: 12/14/2022]
Abstract
During the development of peripheral ganglia, 50% of the neurons that are generated undergo apoptosis. How the massive numbers of corpses are removed is unknown. We found that satellite glial cell precursors are the primary phagocytic cells for apoptotic corpse removal in developing mouse dorsal root ganglia (DRG). Confocal and electron microscopic analysis revealed that glial precursors, rather than macrophages, were responsible for clearing most of the dead DRG neurons. Moreover, we identified Jedi-1, an engulfment receptor, and MEGF10, a purported engulfment receptor, as homologs of the invertebrate engulfment receptors Draper and CED-1 expressed in the glial precursor cells. Expression of Jedi-1 or MEGF10 in fibroblasts facilitated binding to dead neurons, and knocking down either protein in glial cells or overexpressing truncated forms lacking the intracellular domain inhibited engulfment of apoptotic neurons. Together, these results suggest a cellular and molecular mechanism by which neuronal corpses are culled during DRG development.
Collapse
Affiliation(s)
- Hsiao-Huei Wu
- The Center for Molecular Neuroscience, Kennedy Center For Human Development, and Department of Biochemistry, Vanderbilt University Medical School, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The tyrosine phosphatase Shp2 (PTPN11) directs Neuregulin-1/ErbB signaling throughout Schwann cell development. Proc Natl Acad Sci U S A 2009; 106:16704-9. [PMID: 19805360 DOI: 10.1073/pnas.0904336106] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nonreceptor tyrosine phosphatase Shp2 (PTPN11) has been implicated in tyrosine kinase, cytokine, and integrin receptor signaling. We show here that conditional mutation of Shp2 in neural crest cells and in myelinating Schwann cells resulted in deficits in glial development that are remarkably similar to those observed in mice mutant for Neuregulin-1 (Nrg1) or the Nrg1 receptors, ErbB2 and ErbB3. In cultured Shp2 mutant Schwann cells, Nrg1-evoked cellular responses like proliferation and migration were virtually abolished, and Nrg1-dependent intracellular signaling was altered. Pharmacological inhibition of Src family kinases mimicked all cellular and biochemical effects of the Shp2 mutation, implicating Src as a primary Shp2 target during Nrg1 signaling. Together, our genetic and biochemical analyses demonstrate that Shp2 is an essential component in the transduction of Nrg1/ErbB signals.
Collapse
|
41
|
Brázda V, Klusáková I, Svízenská I, Veselková Z, Dubový P. Bilateral changes in IL-6 protein, but not in its receptor gp130, in rat dorsal root ganglia following sciatic nerve ligature. Cell Mol Neurobiol 2009; 29:1053-62. [PMID: 19330444 PMCID: PMC11505828 DOI: 10.1007/s10571-009-9396-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 03/16/2009] [Indexed: 01/19/2023]
Abstract
Local intracellular signaling cascades following peripheral nerve injury lead to robust axon regeneration and neuropathic pain induction. Cytokines are classic injury-induced mediators. We used sciatic nerve ligature (ScNL) to investigate temporal changes in IL-6 and its receptor gp130 in both ipsilateral and contralateral lumbal (L4-L5) dorsal root ganglia (DRG). Rats were operated aseptically on unilateral ScNL and allowed to survive for 1, 3, 7, and 14 days. Immunohistochemistry and Western blot analysis were used to determine levels of IL-6 and gp130 in DRG. A distinct increase in immunostaining for IL-6 was found in the neuronal cell bodies of sections through both ipsilateral and contralateral DRG at 1 and 3 days after operation. After 7 and 14 days, the DRG sections displayed only a moderate elevation in immunostaining when compared with sections of naïve DRG. The levels of IL-6 protein increased in both ipsilateral and contralateral lumbal DRG following peripheral nerve injury. The elevation of IL-6 protein was significant in both ipsilateral and contralateral DRG 1, 3, 7, and 14 days after operation. On the other hand, the levels of gp130 receptor did not change significantly. The data provide evidence for changes in IL-6 levels not only in the DRG associated with the damaged nerve but also in those unassociated with nerve injury during the experimental neuropathic pain model.
Collapse
Affiliation(s)
- Václav Brázda
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
42
|
Birchmeier C, Nave KA. Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 2009; 56:1491-1497. [PMID: 18803318 DOI: 10.1002/glia.20753] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interactions between neuronal and glial cells are crucial for establishing a functional nervous system. Many aspects of Schwann cell development and physiology are regulated by neuronal signals; possibly the most spectacular is the elaboration of the myelin sheath. An extensive line of research has revealed that one neuronal factor, termed "neuregulin", promotes Schwann cell growth and survival, migration along the extending axon, and myelination. The versatility of glial responses elicited by this factor is thus clearly astounding.
Collapse
Affiliation(s)
- Carmen Birchmeier
- Max-Delbrueck-Centrum, Robert-Roessle-Strasse 10, Berlin-Buch, Germany.
| | | |
Collapse
|
43
|
Abstract
The past 15 years have witnessed the identification of more than 25 genes responsible for inherited neuropathies in humans, many associated with primary alterations of the myelin sheath. A remarkable body of work in patients, as well as animal and cellular models, has defined the clinical and molecular genetics of these illnesses and shed light on how mutations in associated genes produce the heterogeneity of dysmyelinating and demyelinating phenotypes. Here, we review selected recent developments from work on the molecular mechanisms of these disorders and their implications for treatment strategies.
Collapse
Affiliation(s)
- Steven S Scherer
- The University of Pennsylvania Medical School, Philadelphia, Pennsylvania
| | | |
Collapse
|
44
|
Zheng H, Chang L, Patel N, Yang J, Lowe L, Burns DK, Zhu Y. Induction of abnormal proliferation by nonmyelinating schwann cells triggers neurofibroma formation. Cancer Cell 2008; 13:117-28. [PMID: 18242512 DOI: 10.1016/j.ccr.2008.01.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 11/12/2007] [Accepted: 01/03/2008] [Indexed: 01/09/2023]
Abstract
Recent evidence suggests that alterations in the self-renewal program of stem/progenitor cells can cause tumorigenesis. By utilizing genetically engineered mouse models of neurofibromatosis type 1 (NF1), we demonstrated that plexiform neurofibroma, the only benign peripheral nerve sheath tumor with potential for malignant transformation, results from Nf1 deficiency in fetal stem/progenitor cells of peripheral nerves. Surprisingly, this did not cause hyperproliferation or tumorigenesis in early postnatal period. Instead, peripheral nerve development appeared largely normal in the absence of Nf1 except for abnormal Remak bundles, the nonmyelinated axon-Schwann cell unit, identified in postnatal mutant nerves. Subsequent degeneration of abnormal Remak bundles was accompanied by initial expansion of nonmyelinating Schwann cells. We suggest abnormally differentiated Remak bundles as a cell of origin for plexiform neurofibroma.
Collapse
Affiliation(s)
- Huarui Zheng
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Iacovelli J, Lopera J, Bott M, Baldwin E, Khaled A, Uddin N, Fernandez-Valle C. Serum and forskolin cooperate to promote G1 progression in Schwann cells by differentially regulating cyclin D1, cyclin E1, and p27Kip expression. Glia 2007; 55:1638-47. [PMID: 17849471 DOI: 10.1002/glia.20578] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proliferation of Schwann cells in vitro, unlike most mammalian cells, is not induced by serum alone but additionally requires cAMP elevation and mitogenic stimulation. How these agents cooperate to promote progression through the G1 phase of the cell cycle is unclear. We studied the integrative effects of these compounds on receptor-mediated signaling pathways and regulators of G1 progression. We show that serum alone induces strong cyclical expression of cyclin D1 and E1, 6 and 12 h after addition, respectively. Serum also promotes strong but transient erbB2, ERK, and Akt phosphorylation, but Schwann cells remain arrested in G1 due to high levels of the inhibitor, p27(Kip). Forskolin with serum promotes G1 progression in 22% of Schwann cells between 18 and 24 h by inducing a steady decline in p27(Kip) levels that reaches a nadir at 12 h coinciding with peak cyclin E1 expression. Forskolin also delays neuregulin-induced loss of erbB2 receptors allowing strong acute activation of PI3K, sustained erbB2 phosphorylation and G1 progression in 31% of Schwann cells. We find that the ability of forskolin to decrease p27(Kip) is associated with its ability to decrease Krox-20 expression that is induced by serum and further increased by neuregulin. Our results explain why serum is required but insufficient to stimulate proliferation and identify two routes by which forskolin promotes proliferation in the presence of serum and neuregulin. These findings provide insights into how G1 progression and, cell cycle arrest leading to myelination are regulated in Schwann cells.
Collapse
Affiliation(s)
- Jared Iacovelli
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhang PL, Levy AM, Ben-Simchon L, Haggiag S, Chebath J, Revel M. Induction of neuronal and myelin-related gene expression by IL-6-receptor/IL-6: A study on embryonic dorsal root ganglia cells and isolated Schwann cells. Exp Neurol 2007; 208:285-96. [DOI: 10.1016/j.expneurol.2007.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/31/2007] [Accepted: 08/30/2007] [Indexed: 12/19/2022]
|
47
|
D'Antonio M, Michalovich D, Paterson M, Droggiti A, Woodhoo A, Mirsky R, Jessen KR. Gene profiling and bioinformatic analysis of Schwann cell embryonic development and myelination. Glia 2006; 53:501-15. [PMID: 16369933 DOI: 10.1002/glia.20309] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To elucidate the molecular mechanisms involved in Schwann cell development, we profiled gene expression in the developing and injured rat sciatic nerve. The genes that showed significant changes in expression in developing and dedifferentiated nerve were validated with RT-PCR, in situ hybridisation, Western blot and immunofluorescence. A comprehensive approach to annotating micro-array probes and their associated transcripts was performed using Biopendium, a database of sequence and structural annotation. This approach significantly increased the number of genes for which a functional insight could be found. The analysis implicates agrin and two members of the collapsin response-mediated protein (CRMP) family in the switch from precursors to Schwann cells, and synuclein-1 and alphaB-crystallin in peripheral nerve myelination. We also identified a group of genes typically related to chondrogenesis and cartilage/bone development, including type II collagen, that were expressed in a manner similar to that of myelin-associated genes. The comprehensive function annotation also identified, among the genes regulated during nerve development or after nerve injury, proteins belonging to high-interest families, such as cytokines and kinases, and should therefore provide a uniquely valuable resource for future research.
Collapse
Affiliation(s)
- Maurizio D'Antonio
- Department of Anatomy and Developmental Biology, University College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Kamholz J, Awatramani R, Menichella D, Jiang H, Xu W, Shy M. Regulation of Myelin-Specific Gene Expression: Relevance to CMT1. Ann N Y Acad Sci 2006; 883:91-108. [PMID: 29086995 DOI: 10.1111/j.1749-6632.1999.tb08572.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Schwann cells, the myelinating cells of the peripheral nervous system, are derived from the neural crest. Once neural crest cells are committed to the Schwann cell fate, they can take on one of two phenotypes to become myelinating or nonmyelinating Schwann cells, a decision that is determined by interactions with axons. The critical step in the differentiation of myelinating Schwann cells is the establishment of a one-to-one relationship with axons, the so-called "promyelinating" stage of Schwann cell development. The transition from the promyelinating to the myelinating stage of development is then accompanied by a number of significant changes in the pattern of gene expression, including the activation of a set of genes encoding myelin structural proteins and lipid biosynthetic enzymes, and the inactivation of a set of genes expressed only in immature or nonmyelinating Schwann cells. These changes are regulated mainly at the transcriptional level and also require continuous interaction between Schwann cells and their axons. Two transcription factors, Krox 20 (EGR2) and Oct 6 (SCIP/Tst1), are necessary for the transition from the promyelinating to the myelinating stage of Schwann cell development. Krox 20, expressed in myelinating but not promyelinating Schwann cells, is absolutely required for this transition, and myelination cannot occur in its absence. Oct 6, expressed mainly in promyelinating Schwann cells and then downregulated before myelination, is necessary for the correct timing of this transition, since myelination is delayed in its absence. Neither Krox 20 nor Oct 6, however, is required for the initial activation of myelin gene expression. Although the mechanisms of Krox 20 and Oct 6 action during myelination are not known, mutation in Krox 20 has been shown to cause CMT1, further implicating this protein in the pathogenesis of this disease. Identifying the molecular mechanisms of Krox 20 and Oct 6 action will thus be important both for understanding myelination and for designing future treatments for CMT1. Point mutations in the genes encoding the myelin proteins PMP22 and P0 cause CMT1A without a gene duplication and CMT1B, respectively. Although the clinical and pathological phenotypes of CMT1A and CMT1B are similar, their molecular pathogenesis is quite different. Point mutations in PMP22 alter the trafficking of the protein, so that it accumulates in the endoplasmic reticulum (ER) and intermediate compartment (IC). Mutant PMP22 also sequesters its normal counterpart in the ER, further reducing the amount of PMP22 available for myelin synthesis at the membrane, and accounting, at least in part, for its severe effect on myelination. Mutant PMP22 probably also activates an ER-to-nucleus signal transduction pathway associated with misfolded proteins, which may account for the decrease of myelin gene expression in Schwann cells in Trembler mutant mice. In contrast, absence of expression of the homotypic adhesion molecule, P0, in mice in which the gene has been inactivated, produces a unique pattern of Schwann cell gene expression, demonstrating that P0 plays a regulatory as well as a structural role in myelination. Whether this role is direct, through a P0-mediated adhesion pathway, or indirect, through adhesion pathways mediated by cadherins or integrins, however, remains to be determined. The molecular mechanisms underlying dysmyelination in CMT1 are thus complex, with pleitropic effects on Schwann cell physiology that are determined both by the type of mutation and the protein mutated. Identifying these molecular mechanisms, however, are important both for understanding myelination and for designing future treatments for CMT1. Although demyelination is the hallmark of CMT1, the clinical signs and symptoms of this disease are probably produced by axonal degeneration, not demyelination. Interestingly, a number of recent studies have demonstrated that Schwann cells from Trembler mice or patients with CMT1A can induce local axonal abnormalities, including decreased axonal transport, and altered neurofilament phosphorylation. These data thus suggest that disability of patients with CMT1 is caused by abnormal Schwann cell-axonal interactions. Efforts both to understand the effects of myelinating Schwann cells on their axons and to prevent axonal degeneration or promote axonal regeneration are thus central for the future development of a rational molecular therapy for CMT1.
Collapse
Affiliation(s)
- John Kamholz
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Raj Awatramani
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Daniela Menichella
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Huiyuan Jiang
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Wenbo Xu
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Michael Shy
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| |
Collapse
|
50
|
Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S, Xu X, Esper RM, Loeb JA, Shrager P, Chao MV, Falls DL, Role L, Salzer JL. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 2005; 47:681-94. [PMID: 16129398 PMCID: PMC2387056 DOI: 10.1016/j.neuron.2005.08.017] [Citation(s) in RCA: 548] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 06/15/2005] [Accepted: 08/15/2005] [Indexed: 10/25/2022]
Abstract
The signals that determine whether axons are ensheathed or myelinated by Schwann cells have long been elusive. We now report that threshold levels of neuregulin-1 (NRG1) type III on axons determine their ensheathment fate. Ensheathed axons express low levels whereas myelinated fibers express high levels of NRG1 type III. Sensory neurons from NRG1 type III deficient mice are poorly ensheathed and fail to myelinate; lentiviral-mediated expression of NRG1 type III rescues these defects. Expression also converts the normally unmyelinated axons of sympathetic neurons to myelination. Nerve fibers of mice haploinsufficient for NRG1 type III are disproportionately unmyelinated, aberrantly ensheathed, and hypomyelinated, with reduced conduction velocities. Type III is the sole NRG1 isoform retained at the axon surface and activates PI 3-kinase, which is required for Schwann cell myelination. These results indicate that levels of NRG1 type III, independent of axon diameter, provide a key instructive signal that determines the ensheathment fate of axons.
Collapse
Affiliation(s)
- Carla Taveggia
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|