1
|
Kuroda Y, Yoda M, Kawaai K, Tatenuma M, Mizoguchi T, Ito S, Kasahara M, Wu Y, Takano H, Momose A, Matsuo K. Developing long bones respond to surrounding tissues by trans-pairing of periosteal osteoclasts and endocortical osteoblasts. Development 2024; 151:dev202194. [PMID: 39119717 PMCID: PMC11423808 DOI: 10.1242/dev.202194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Developing long bones alter their shape while maintaining uniform cortical thickness via coordinated activity of bone-forming osteoblasts and bone-resorbing osteoclasts at periosteal and endosteal surfaces, a process we designate trans-pairing. Two types of trans-pairing shift cortical bone in opposite orientations: peri-forming trans-pairing (peri-t-p) increases bone marrow space and endo-forming trans-pairing (endo-t-p) decreases it, via paired activity of bone resorption and formation across the cortex. Here, we focused on endo-t-p in growing bones. Analysis of endo-t-p activity in the cortex of mouse fibulae revealed osteoclasts under the periosteum compressed by muscles, and expression of RANKL in periosteal cells of the cambium layer. Furthermore, mature osteoblasts were localized on the endosteum, while preosteoblasts were at the periosteum and within cortical canals. X-ray tomographic microscopy revealed the presence of cortical canals more closely associated with endo- than with peri-t-p. Sciatic nerve transection followed by muscle atrophy and unloading induced circumferential endo-t-p with concomitant spread of cortical canals. Such canals likely supply the endosteum with preosteoblasts from the periosteum under endo-t-p, allowing bone shape to change in response to mechanical stress or nerve injury.
Collapse
Affiliation(s)
- Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Masaki Yoda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Motoharu Tatenuma
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | | | - Shinichirou Ito
- Department of Pharmacology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Yanlin Wu
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba, Sendai Miyagi 980-8577, Japan
| | - Hidekazu Takano
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba, Sendai Miyagi 980-8577, Japan
| | - Atsushi Momose
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba, Sendai Miyagi 980-8577, Japan
- JASRI/SPring-8, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5198, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
2
|
Kawaai K, Kuroda Y, Matsuo K. Calcified Cartilage-Guided Identification of Osteogenic Molecules and Geometries. ACS Biomater Sci Eng 2024; 10:2983-2994. [PMID: 38634615 PMCID: PMC11094677 DOI: 10.1021/acsbiomaterials.3c01799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Calcified cartilage digested by chondroclasts provides an excellent scaffold to initiate bone formation. We analyzed bioactive proteins and microarchitecture of calcified cartilage either separately or in combination and evaluated biomimetic osteogenic culture conditions of surface-coated micropatterning. To do so, we prepared a crude extract from porcine femoral growth plates, which enhanced in vitro mineralization when coated on flat-bottom culture dishes, and identified four candidate proteins by fractionation and mass spectrometry. Murine homologues of two candidates, desmoglein 4 (DSG4) and peroxiredoxin 6 (PRDX6), significantly promoted osteogenic activity based on in vitro mineralization and osteoblast differentiation. Moreover, we observed DSG4 and PRDX6 protein expression in mouse femur. In addition, we designed circular, triangular, and honeycomb micropatterns with 30 or 50 μm units, either isolated or connected, to mimic hypertrophic chondrocyte-sized compartments. Isolated, larger honeycomb patterns particularly enhanced osteogenesis in vitro. Mineralization on micropatterns was positively correlated with the reduction of osteoblast migration distance in live cell imaging. Finally, we evaluated possible combinatorial effects of coat proteins and micropatterns and observed an additive effect of DSG4 or PRDX6 coating with micropatterns. These data suggest that combining a bioactive surface coating with osteogenic micropatterns may recapitulate initiation of bone formation during endochondral ossification.
Collapse
Affiliation(s)
- Katsuhiro Kawaai
- Laboratory of Cell and Tissue
Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yukiko Kuroda
- Laboratory of Cell and Tissue
Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue
Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
3
|
Delsmann MM, Peichl J, Yorgan TA, Beil FT, Amling M, Demay MB, Rolvien T. Prevention of Hypomineralization In Auditory Ossicles of Vitamin D Receptor (Vdr) Deficient Mice. Front Endocrinol (Lausanne) 2022; 13:901265. [PMID: 35733772 PMCID: PMC9207527 DOI: 10.3389/fendo.2022.901265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
Intact mineralization of the auditory ossicles - the smallest bones in the body - is essential for sound transmission in the middle ear, while ossicular hypomineralization is associated with conductive hearing loss. Here, we performed a high-resolution analysis of the ossicles in vitamin D receptor deficient mice (Vdr-/- ), which are characterized by hypocalcemia and skeletal mineralization defects, and investigated whether local hypomineralization can be prevented by feeding a calcium-rich rescue diet (Vdr-/- res ). In Vdr-/- mice fed a regular diet (Vdr-/- reg ), quantitative backscattered electron imaging (qBEI) revealed an increased void volume (porosity, p<0.0001) along with lower mean calcium content (CaMean, p=0.0008) and higher heterogeneity of mineralization (CaWidth, p=0.003) compared to WT mice. Furthermore, a higher osteoid volume per bone volume (OV/BV; p=0.0002) and a higher osteocyte lacunar area (Lc.Ar; p=0.01) were found in histomorphometric analysis in Vdr-/- reg mice. In Vdr-/- res mice, full rescue of OV/BV and Lc.Ar (both p>0.05 vs. WT) and partial rescue of porosity and CaWidth (p=0.02 and p=0.04 vs. WT) were observed. Compared with Hyp mice, a model of X-linked hypophosphatemic rickets, Vdr-/- reg mice showed a lower osteoid volume in the ossicles (p=0.0002), but similar values in the lumbar spine. These results are consistent with later postnatal impairment of mineral homeostasis in Vdr-/- mice than in Hyp mice, underscoring the importance of intact mineral homeostasis for ossicle mineralization during development. In conclusion, we revealed a distinct phenotype of hypomineralization in the auditory ossicles of Vdr-/- mice that can be partially prevented by a rescue diet. Since a positive effect of a calcium-rich diet on ossicular mineralization was demonstrated, our results open new treatment strategies for conductive hearing loss. Future studies should investigate the impact of improved ossicular mineralization on hearing function.
Collapse
Affiliation(s)
- Maximilian M. Delsmann
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Jonathan Peichl
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur A. Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Frank Timo Beil
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Marie B. Demay
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Tim Rolvien,
| |
Collapse
|
4
|
Matsuo K, Tamura R, Hotta K, Okada M, Takeuchi A, Wu Y, Hashimoto K, Takano H, Momose A, Nishino A. Bilaterally Asymmetric Helical Myofibrils in Ascidian Tadpole Larvae. Front Cell Dev Biol 2021; 9:800455. [PMID: 34950666 PMCID: PMC8688927 DOI: 10.3389/fcell.2021.800455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
The locomotor system is highly bilateral at the macroscopic level. Homochirality of biological molecules is fully compatible with the bilateral body. However, whether and how single-handed cells contribute to the bilateral locomotor system is obscure. Here, exploiting the small number of cells in the swimming tadpole larva of the ascidian Ciona, we analyzed morphology of the tail at cellular and subcellular scales. Quantitative phase-contrast X-ray tomographic microscopy revealed a high-density midline structure ventral to the notochord in the tail. Muscle cell nuclei on each side of the notochord were roughly bilaterally aligned. However, fluorescence microscopy detected left-right asymmetry of myofibril inclination relative to the longitudinal axis of the tail. Zernike phase-contrast X-ray tomographic microscopy revealed the presence of left-handed helices of myofibrils in muscle cells on both sides. Therefore, the locomotor system of ascidian larvae harbors symmetry-breaking left-handed helical cells, while maintaining bilaterally symmetrical cell alignment. These results suggest that bilateral animals can override cellular homochirality to generate the bilateral locomotor systems at the supracellular scale.
Collapse
Affiliation(s)
- Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Mayu Okada
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Akihisa Takeuchi
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Japan
| | - Yanlin Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Koh Hashimoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Hidekazu Takano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Atsushi Momose
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Atsuo Nishino
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
5
|
Delsmann MM, Seist R, Stürznickel J, Schmidt FN, Mansour A, Kobelski MM, Broocks G, Peichl J, Oheim R, Praetorius M, Schinke T, Amling M, Demay MB, Stankovic KM, Rolvien T. Conductive Hearing Loss in the Hyp Mouse Model of X-Linked Hypophosphatemia Is Accompanied by Hypomineralization of the Auditory Ossicles. J Bone Miner Res 2021; 36:2317-2328. [PMID: 34523743 PMCID: PMC8688200 DOI: 10.1002/jbmr.4443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023]
Abstract
X-linked hypophosphatemia (XLH) is a hereditary musculoskeletal disorder caused by loss-of-function mutations in the PHEX gene. In XLH, increased circulating fibroblast growth factor 23 (FGF23) levels cause renal phosphate wasting and low concentrations of 1,25-dihydroxyvitamin D, leading to an early clinical manifestation of rickets. Importantly, hearing loss is commonly observed in XLH patients. We present here data from two XLH patients with marked conductive hearing loss. To decipher the underlying pathophysiology of hearing loss in XLH, we utilized the Hyp mouse model of XLH and measured auditory brain stem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) to functionally assess hearing. As evidenced by the increased ABR/DPOAE threshold shifts in the mid-frequency range, these measurements indicated a predominantly conductive hearing loss in Hyp mice compared to wild-type (WT) mice. Therefore, we carried out an in-depth histomorphometric and scanning electron microscopic analysis of the auditory ossicles. Quantitative backscattered electron imaging (qBEI) indicated a severe hypomineralization of the ossicles in Hyp mice, evidenced by lower calcium content (CaMean) and higher void volume (ie, porosity) compared to WT mice. Histologically, voids correlated with unmineralized bone (ie, osteoid), and the osteoid volume per bone volume (OV/BV) was markedly higher in Hyp mice than WT mice. The density of osteocyte lacunae was lower in Hyp mice than in WT mice, whereas osteocyte lacunae were enlarged. Taken together, our findings highlight the importance of ossicular mineralization for hearing conduction and point toward the potential benefit of improving mineralization to prevent hearing loss in XLH. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Maximilian M Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard Seist
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA.,Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Amer Mansour
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Margaret M Kobelski
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan Peichl
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Mark Praetorius
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Konstantina M Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA.,Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Kuroda Y, Kawaai K, Hatano N, Wu Y, Takano H, Momose A, Ishimoto T, Nakano T, Roschger P, Blouin S, Matsuo K. Hypermineralization of Hearing-Related Bones by a Specific Osteoblast Subtype. J Bone Miner Res 2021; 36:1535-1547. [PMID: 33905562 PMCID: PMC8453739 DOI: 10.1002/jbmr.4320] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Auditory ossicles in the middle ear and bony labyrinth of the inner ear are highly mineralized in adult mammals. Cellular mechanisms underlying formation of dense bone during development are unknown. Here, we found that osteoblast-like cells synthesizing highly mineralized hearing-related bones produce both type I and type II collagens as the bone matrix, while conventional osteoblasts and chondrocytes primarily produce type I and type II collagens, respectively. Furthermore, these osteoblast-like cells were not labeled in a "conventional osteoblast"-specific green fluorescent protein (GFP) mouse line. Type II collagen-producing osteoblast-like cells were not chondrocytes as they express osteocalcin, localize along alizarin-labeled osteoid, and form osteocyte lacunae and canaliculi, as do conventional osteoblasts. Auditory ossicles and the bony labyrinth exhibit not only higher bone matrix mineralization but also a higher degree of apatite orientation than do long bones. Therefore, we conclude that these type II collagen-producing hypermineralizing osteoblasts (termed here auditory osteoblasts) represent a new osteoblast subtype. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Naoya Hatano
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Yanlin Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Hidekazu Takano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Atsushi Momose
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Nishida D, Arai A, Zhao L, Yang M, Nakamichi Y, Horibe K, Hosoya A, Kobayashi Y, Udagawa N, Mizoguchi T. RANKL/OPG ratio regulates odontoclastogenesis in damaged dental pulp. Sci Rep 2021; 11:4575. [PMID: 33633362 PMCID: PMC7907144 DOI: 10.1038/s41598-021-84354-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
Bone-resorbing osteoclasts are regulated by the relative ratio of the differentiation factor, receptor activator NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG). Dental tissue-localized-resorbing cells called odontoclasts have regulatory factors considered as identical to those of osteoclasts; however, it is still unclear whether the RANKL/OPG ratio is a key factor for odontoclast regulation in dental pulp. Here, we showed that odontoclast regulators, macrophage colony-stimulating factor-1, RANKL, and OPG were detectable in mouse pulp of molars, but OPG was dominantly expressed. High OPG expression was expected to have a negative regulatory effect on odontoclastogenesis; however, odontoclasts were not detected in the dental pulp of OPG-deficient (KO) mice. In contrast, damage induced odontoclast-like cells were seen in wild-type pulp tissues, with their number significantly increased in OPG-KO mice. Relative ratio of RANKL/OPG in the damaged pulp was significantly higher than in undamaged control pulp. Pulp damages enhanced hypoxia inducible factor-1α and -2α, reported to increase RANKL or decrease OPG. These results reveal that the relative ratio of RANKL/OPG is significant to pulpal odontoclastogenesis, and that OPG expression is not required for maintenance of pulp homeostasis, but protects pulp from odontoclastogenesis caused by damages.
Collapse
Affiliation(s)
- Daisuke Nishida
- grid.265070.60000 0001 1092 3624Oral Health Science Center, Tokyo Dental College, Tokyo, 101-0061 Japan
| | - Atsushi Arai
- grid.411611.20000 0004 0372 3845Department of Orthodontics, Matsumoto Dental University, Nagano, 399-0781 Japan
| | - Lijuan Zhao
- grid.411611.20000 0004 0372 3845Institute for Oral Science, Matsumoto Dental University, Nagano, 399-0781 Japan
| | - Mengyu Yang
- grid.411611.20000 0004 0372 3845Institute for Oral Science, Matsumoto Dental University, Nagano, 399-0781 Japan
| | - Yuko Nakamichi
- grid.411611.20000 0004 0372 3845Institute for Oral Science, Matsumoto Dental University, Nagano, 399-0781 Japan
| | - Kanji Horibe
- grid.411611.20000 0004 0372 3845Department of Oral Histology, Matsumoto Dental University, Nagano, 399-0781 Japan
| | - Akihiro Hosoya
- grid.412021.40000 0004 1769 5590Department of Histology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293 Japan
| | - Yasuhiro Kobayashi
- grid.411611.20000 0004 0372 3845Institute for Oral Science, Matsumoto Dental University, Nagano, 399-0781 Japan
| | - Nobuyuki Udagawa
- grid.411611.20000 0004 0372 3845Department of Oral Biochemistry, Matsumoto Dental University, Nagano, 399-0781 Japan
| | - Toshihide Mizoguchi
- grid.265070.60000 0001 1092 3624Oral Health Science Center, Tokyo Dental College, Tokyo, 101-0061 Japan ,grid.411611.20000 0004 0372 3845Department of Oral Biochemistry, Matsumoto Dental University, Nagano, 399-0781 Japan
| |
Collapse
|
8
|
Distinct Osteogenic Potentials of BMP-2 and FGF-2 in Extramedullary and Medullary Microenvironments. Int J Mol Sci 2020; 21:ijms21217967. [PMID: 33120952 PMCID: PMC7662681 DOI: 10.3390/ijms21217967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2) have been regarded as the major cytokines promoting bone formation, however, several studies have reported unexpected results with failure of bone formation or bone resorption of these growth factors. In this study, BMP-2 and FGF-2 adsorbed into atellocollagen sponges were transplanted into bone defects in the bone marrow-scarce calvaria (extramedullary environment) and bone marrow-abundant femur (medullary environment) for analysis of their in vivo effects not only on osteoblasts, osteoclasts but also on bone marrow cells. The results showed that BMP-2 induced high bone formation in the bone marrow-scarce calvaria, but induced bone resorption in the bone marrow-abundant femurs. On the other hand, FGF-2 showed opposite effects compared to those of BMP-2. Analysis of cellular dynamics revealed numerous osteoblasts and osteoclasts present in the newly-formed bone induced by BMP-2 in calvaria, but none were seen in either control or FGF-2-transplanted groups. On the other hand, in the femur, numerous osteoclasts were observed in the vicinity of the BMP-2 pellet, while a great number of osteoblasts were seen near the FGF-2 pellets or in the control group. Of note, FCM analysis showed that both BMP-2 and FGF-2 administrated in the femur did not significantly affect the hematopoietic cell population, indicating a relatively safe application of the two growth factors. Together, these results indicate that BMP-2 could be suitable for application in extramedullary bone regeneration, whereas FGF-2 could be suitable for application in medullary bone regeneration.
Collapse
|
9
|
Abstract
Under the JST-ERATO project in progress to develop X-ray and neutron phase-imaging methods together, recent achievements have been selected and reviewed after describing the merit and the principle of the phase imaging method. For X-ray phase imaging, recent developments of four-dimensional phase tomography and phase microscopy at SPring-8, Japan are mainly presented. For neutron phase imaging, an approach in combination with the time-of-flight method developed at J-PARC, Japan is described with the description of new Gd grating fabrication.
Collapse
|
10
|
Yang M, Arai A, Udagawa N, Zhao L, Nishida D, Murakami K, Hiraga T, Takao-Kawabata R, Matsuo K, Komori T, Kobayashi Y, Takahashi N, Isogai Y, Ishizuya T, Yamaguchi A, Mizoguchi T. Parathyroid Hormone Shifts Cell Fate of a Leptin Receptor-Marked Stromal Population from Adipogenic to Osteoblastic Lineage. J Bone Miner Res 2019; 34:1952-1963. [PMID: 31173642 DOI: 10.1002/jbmr.3811] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022]
Abstract
Intermittent parathyroid hormone (iPTH) treatment induces bone anabolic effects that result in the recovery of osteoporotic bone loss. Human PTH is usually given to osteoporotic patients because it induces osteoblastogenesis. However, the mechanism by which PTH stimulates the expansion of stromal cell populations and their maturation toward the osteoblastic cell lineage has not be elucidated. Mouse genetic lineage tracing revealed that iPTH treatment induced osteoblastic differentiation of bone marrow (BM) mesenchymal stem and progenitor cells (MSPCs), which carried the leptin receptor (LepR)-Cre. Although these findings suggested that part of the PTH-induced bone anabolic action is exerted because of osteoblastic commitment of MSPCs, little is known about the in vivo mechanistic details of these processes. Here, we showed that LepR+ MSPCs differentiated into type I collagen (Col1)+ mature osteoblasts in response to iPTH treatment. Along with osteoblastogenesis, the number of Col1+ mature osteoblasts increased around the bone surface, although most of them were characterized as quiescent cells. However, the number of LepR-Cre-marked lineage cells in a proliferative state also increased in the vicinity of bone tissue after iPTH treatment. The expression levels of SP7/osterix (Osx) and Col1, which are markers for osteoblasts, were also increased in the LepR+ MSPCs population in response to iPTH treatment. In contrast, the expression levels of Cebpb, Pparg, and Zfp467, which are adipocyte markers, decreased in this population. Consistent with these results, iPTH treatment inhibited 5-fluorouracil- or ovariectomy (OVX)-induced LepR+ MSPC-derived adipogenesis in BM and increased LepR+ MSPC-derived osteoblasts, even under the adipocyte-induced conditions. Treatment of OVX rats with iPTH significantly affected the osteoporotic bone tissue and expansion of the BM adipose tissue. These results indicated that iPTH treatment induced transient proliferation of the LepR+ MSPCs and skewed their lineage differentiation from adipocytes toward osteoblasts, resulting in an expanded, quiescent, and mature osteoblast population. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mengyu Yang
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Atsushi Arai
- Department of Orthodontics, Matsumoto Dental University, Nagano, Japan
| | - Nobuyuki Udagawa
- Department of Oral Biochemistry, Matsumoto Dental University, Nagano, Japan
| | - Lijuan Zhao
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Daisuke Nishida
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Kohei Murakami
- Department of Oral Biochemistry, Matsumoto Dental University, Nagano, Japan
| | - Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Nagano, Japan
| | - Ryoko Takao-Kawabata
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Unit of Basic Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Yukihiro Isogai
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Toshinori Ishizuya
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Akira Yamaguchi
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Toshihide Mizoguchi
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
11
|
Matsuo K, Ji S, Miya A, Yoda M, Hamada Y, Tanaka T, Takao-Kawabata R, Kawaai K, Kuroda Y, Shibata S. Innervation of the tibial epiphysis through the intercondylar foramen. Bone 2019; 120:297-304. [PMID: 30439572 DOI: 10.1016/j.bone.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
The periosteum and mineralized bone are innervated by nerves that sense pain. These include both myelinated and unmyelinated neurons with either free nerve endings or bearing nociceptors. Parasympathetic and sympathetic autonomic nerves also innervate bone. However, little is known about the route sensory nerves take leaving the epiphyses of long bones at the adult knee joint. Here, we used transgenic mice that express fluorescent Venus protein in Schwann cells (Sox10-Venus mice) to visualize myelinated and unmyelinated nerves in the tibial epiphysis. Immunofluorescence to detect a pan-neuronal marker and the sensory neuron markers calcitonin gene-related peptide (CGRP) and tropomyosin receptor kinase A (TrkA) also revealed Schwann cell-associated sensory neurons. Foramina in the intercondylar area of the tibia were conserved between rodents and primates. Venus-labeled fibers were detected within bone marrow of the proximal epiphysis, exited through foramina along with blood vessels in the intercondylar area of the tibia, and joined Venus-labeled fibers of the synovial membrane and meniscus. These data suggest that innervation of the subchondral plate and trabecular bone within the tibial epiphysis carries pain signals from the knee joint to the brain through intercondylar foramina.
Collapse
Affiliation(s)
- Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Shuting Ji
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ayako Miya
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaki Yoda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuzuru Hamada
- Morphology Section, Primate Research Institute, Kyoto University, 41 Kanrin, Inuyama 484-8506, Japan
| | - Tomoya Tanaka
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Ryoko Takao-Kawabata
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
12
|
Edamoto M, Kuroda Y, Yoda M, Kawaai K, Matsuo K. Trans-pairing between osteoclasts and osteoblasts shapes the cranial base during development. Sci Rep 2019; 9:1956. [PMID: 30760811 PMCID: PMC6374512 DOI: 10.1038/s41598-018-38471-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
Bone growth is linked to expansion of nearby organs, as is the case for the cranial base and the brain. Here, we focused on development of the mouse clivus, a sloping surface of the basioccipital bone, to define mechanisms underlying morphological changes in bone in response to brain enlargement. Histological analysis indicated that both endocranial and ectocranial cortical bone layers in the basioccipital carry the osteoclast surface dorsally and the osteoblast surface ventrally. Finite element analysis of mechanical stress on the clivus revealed that compressive and tensile stresses appeared mainly on respective dorsal and ventral surfaces of the basioccipital bone. Osteoclastic bone resorption occurred primarily in the compression area, whereas areas of bone formation largely coincided with the tension area. These data collectively suggest that compressive and tensile stresses govern respective localization of osteoclasts and osteoblasts. Developmental analysis of the basioccipital bone revealed the clivus to be angled in early postnatal wild-type mice, whereas its slope was less prominent in Tnfsf11−/− mice, which lack osteoclasts. We propose that osteoclast-osteoblast “trans-pairing” across cortical bone is primarily induced by mechanical stress from growing organs and regulates shape and size of bones that encase the brain.
Collapse
Affiliation(s)
- Mio Edamoto
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masaki Yoda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
13
|
Nguyen HT, Ono M, Oida Y, Hara ES, Komori T, Akiyama K, Nguyen HTT, Aung KT, Pham HT, Tosa I, Takarada T, Matsuo K, Mizoguchi T, Oohashi T, Kuboki T. Bone Marrow Cells Inhibit BMP-2-Induced Osteoblast Activity in the Marrow Environment. J Bone Miner Res 2019; 34:327-332. [PMID: 30352125 DOI: 10.1002/jbmr.3598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 01/04/2023]
Abstract
Bone morphogenetic protein 2 (BMP-2) is widely known as a potent growth factor that promotes bone formation. However, an increasing number of studies have demonstrated side effects of BMP-2 therapy. A deeper understanding of the effect of BMP-2 on cells other than those involved directly in bone remodeling is of fundamental importance to promote a more effective delivery of BMP-2 to patients. In this study, we aimed to investigate the effect of BMP-2 in the marrow environment. First, BMP-2 adsorbed onto titanium implants was delivered at the tooth extraction socket (marrow-absent site) or in the mandible marrow of beagle dogs. BMP-2 could induce marked bone formation around the implant at the tooth extraction socket. Surprisingly, however, no bone formation was observed in the BMP-2-coated titanium implants inserted in the mandible marrow. In C57BL/6 mice, BMP-2 adsorbed in freeze-dried collagen pellets could induce bone formation in marrow-absent calvarial bone. However, similar to the canine model, BMP-2 could not induce bone formation in the femur marrow. Analysis of osteoblast differentiation using Col1a1(2.3)-GFP transgenic mice revealed a scarce number of osteoblasts in BMP-2-treated femurs, whereas in the control group, osteoblasts were abundant. Ablation of femur marrow recovered the BMP-2 ability to induce bone formation. In vitro experiments analyzing luciferase activity of C2C12 cells with the BMP-responsive element and alkaline phosphatase activity of MC3T3-E1 osteoblasts further revealed that bone marrow cells inhibit the BMP-2 effect on osteoblasts by direct cell-cell contact. Collectively, these results showed that the effect of BMP-2 in inducing bone formation is remarkably repressed by marrow cells via direct cell-cell contact with osteoblasts; this opens new perspectives on the clarification of the side-effects associated with BMP-2 application. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasutaka Oida
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Emilio Satoshi Hara
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Taishi Komori
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaro Akiyama
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ha Thi Thu Nguyen
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kyaw Thu Aung
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hai Thanh Pham
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ikue Tosa
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | | | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
14
|
Yang M, Arai A, Udagawa N, Hiraga T, Lijuan Z, Ito S, Komori T, Moriishi T, Matsuo K, Shimoda K, Zahalka AH, Kobayashi Y, Takahashi N, Mizoguchi T. Osteogenic Factor Runx2 Marks a Subset of Leptin Receptor-Positive Cells that Sit Atop the Bone Marrow Stromal Cell Hierarchy. Sci Rep 2017; 7:4928. [PMID: 28694469 PMCID: PMC5503992 DOI: 10.1038/s41598-017-05401-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
Bone marrow mesenchymal stem and progenitor cells (BM-MSPCs) maintain homeostasis of bone tissue by providing osteoblasts. Although several markers have been identified for labeling of MSPCs, these labeled cells still contain non-BM-MSPC populations. Studies have suggested that MSPCs are observed as leptin receptor (LepR)-positive cells, whereas osteoblasts can be classified as positive for Runx2, a master regulator for osteoblastogenesis. Here, we demonstrate, using Runx2-GFP reporter mice, that the LepR-labeled population contains Runx2-GFPlow sub-population, which possesses higher fibroblastic colony-forming units (CFUs) and mesensphere capacity, criteria for assessing stem cell activity, than the Runx2-GFP− population. In response to parathyroid hormone (PTH), a bone anabolic hormone, LepR+Runx2-GFPlow cells increase Runx2 expression and form multilayered structures near the bone surface. Subsequently, the multilayered cells express Osterix and Type I collagen α, resulting in generation of mature osteoblasts. Therefore, our results indicate that Runx2 is weakly expressed in the LepR+ population without osteoblastic commitment, and the LepR+Runx2-GFPlow stromal cells sit atop the BM stromal hierarchy.
Collapse
Affiliation(s)
- Mengyu Yang
- Institute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Atsushi Arai
- Department of Orthodontics, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Nobuyuki Udagawa
- Department of Oral Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Zhao Lijuan
- Institute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Susumu Ito
- Division of Instrumental Analysis, Research Center for Human and Environmental Sciences, Shinshu University, Nagano, 390-8621, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Unit of Basic Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Takeshi Moriishi
- Department of Cell Biology, Unit of Basic Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kouji Shimoda
- Laboratory Animal Center, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Ali H Zahalka
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Toshihide Mizoguchi
- Institute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan.
| |
Collapse
|
15
|
Sakamoto A, Kuroda Y, Kanzaki S, Matsuo K. Dissection of the Auditory Bulla in Postnatal Mice: Isolation of the Middle Ear Bones and Histological Analysis. J Vis Exp 2017. [PMID: 28117786 PMCID: PMC5408703 DOI: 10.3791/55054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In most mammals, auditory ossicles in the middle ear, including the malleus, incus and stapes, are the smallest bones. In mice, a bony structure called the auditory bulla houses the ossicles, whereas the auditory capsule encloses the inner ear, namely the cochlea and semicircular canals. Murine ossicles are essential for hearing and thus of great interest to researchers in the field of otolaryngology, but their metabolism, development, and evolution are highly relevant to other fields. Altered bone metabolism can affect hearing function in adult mice, and various gene-deficient mice show changes in morphogenesis of auditory ossicles in utero. Although murine auditory ossicles are tiny, their manipulation is feasible if one understands their anatomical orientation and 3D structure. Here, we describe how to dissect the auditory bulla and capsule of postnatal mice and then isolate individual ossicles by removing part of the bulla. We also discuss how to embed the bulla and capsule in different orientations to generate paraffin or frozen sections suitable for preparation of longitudinal, horizontal, or frontal sections of the malleus. Finally, we enumerate anatomical differences between mouse and human auditory ossicles. These methods would be useful in analyzing pathological, developmental and evolutionary aspects of auditory ossicles and the middle ear in mice.
Collapse
Affiliation(s)
- Ayako Sakamoto
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine
| | - Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine
| | - Sho Kanzaki
- Department of Otolaryngology Head and Neck Surgery, Keio University School of Medicine
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine;
| |
Collapse
|
16
|
Nango N, Kubota S, Hasegawa T, Yashiro W, Momose A, Matsuo K. Osteocyte-directed bone demineralization along canaliculi. Bone 2016; 84:279-288. [PMID: 26709236 DOI: 10.1016/j.bone.2015.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/30/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022]
Abstract
The mammalian skeleton stores calcium and phosphate ions in bone matrix. Osteocytes in osteocyte lacunae extend numerous dendrites into canaliculi less than a micron in diameter and which are distributed throughout bone matrix. Although osteoclasts are the primary bone-resorbing cells, osteocytes also reportedly dissolve hydroxyapatite at peri-lacunar bone matrix. However, robust three-dimensional evidence for peri-canalicular bone mineral dissolution has been lacking. Here we applied a previously reported Talbot-defocus multiscan tomography method for synchrotron X-ray microscopy and analyzed the degree of bone mineralization in mouse cortical bone around the lacuno-canalicular network, which is connected both to blood vessels and the peri- and endosteum. We detected cylindrical low mineral density regions spreading around canaliculi derived from a subset of osteocytes. Transmission electron microscopy revealed both intact and demineralized bone matrix around the canaliculus. Peri-canalicular low mineral density regions were also observed in osteopetrotic mice lacking osteoclasts, indicating that osteoclasts are dispensable for peri-canalicular demineralization. These data suggest demineralization can occur from within bone through the canalicular system, and that peri-canalicular demineralization occurs not uniformly but directed by individual osteocytes. Blockade of peri-canalicular demineralization may be a therapeutic strategy to increase bone mass and quality.
Collapse
Affiliation(s)
- Nobuhito Nango
- Ratoc System Engineering Co., Ltd, Tokyo 112-0014, Japan.
| | - Shogo Kubota
- Ratoc System Engineering Co., Ltd, Tokyo 112-0014, Japan.
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Wataru Yashiro
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi 980-8577, Japan.
| | - Atsushi Momose
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi 980-8577, Japan.
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|