1
|
Subcellular spatial transcriptomics identifies three mechanistically different classes of localizing RNAs. Nat Commun 2022; 13:6355. [PMID: 36289223 PMCID: PMC9606379 DOI: 10.1038/s41467-022-34004-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/03/2022] [Indexed: 12/25/2022] Open
Abstract
Intracellular RNA localization is a widespread and dynamic phenomenon that compartmentalizes gene expression and contributes to the functional polarization of cells. Thus far, mechanisms of RNA localization identified in Drosophila have been based on a few RNAs in different tissues, and a comprehensive mechanistic analysis of RNA localization in a single tissue is lacking. Here, by subcellular spatial transcriptomics we identify RNAs localized in the apical and basal domains of the columnar follicular epithelium (FE) and we analyze the mechanisms mediating their localization. Whereas the dynein/BicD/Egl machinery controls apical RNA localization, basally-targeted RNAs require kinesin-1 to overcome a default dynein-mediated transport. Moreover, a non-canonical, translation- and dynein-dependent mechanism mediates apical localization of a subgroup of dynein-activating adaptor-encoding RNAs (BicD, Bsg25D, hook). Altogether, our study identifies at least three mechanisms underlying RNA localization in the FE, and suggests a possible link between RNA localization and dynein/dynactin/adaptor complex formation in vivo.
Collapse
|
2
|
Oshizuki S, Matsumoto E, Tanaka S, Kataoka N. Mutations equivalent to Drosophila
mago nashi
mutants imply reduction of Magoh protein incorporation into exon junction complex. Genes Cells 2022; 27:505-511. [DOI: 10.1111/gtc.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Saya Oshizuki
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences Graduate School of Agriculture and Life Sciences, The University of Tokyo Japan
| | - Eri Matsumoto
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences Graduate School of Agriculture and Life Sciences, The University of Tokyo Japan
| | - Satoshi Tanaka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences Graduate School of Agriculture and Life Sciences, The University of Tokyo Japan
| | - Naoyuki Kataoka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences Graduate School of Agriculture and Life Sciences, The University of Tokyo Japan
- Laboratory for Malignancy Control Research, Medical Innovation Center Kyoto University Graduate School of Medicine Kyoto Japan
- Institute for Virus Research Kyoto University Kyoto Japan
| |
Collapse
|
3
|
Kwon OS, Mishra R, Safieddine A, Coleno E, Alasseur Q, Faucourt M, Barbosa I, Bertrand E, Spassky N, Le Hir H. Exon junction complex dependent mRNA localization is linked to centrosome organization during ciliogenesis. Nat Commun 2021; 12:1351. [PMID: 33649372 PMCID: PMC7921557 DOI: 10.1038/s41467-021-21590-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Exon junction complexes (EJCs) mark untranslated spliced mRNAs and are crucial for the mRNA lifecycle. An imbalance in EJC dosage alters mouse neural stem cell (mNSC) division and is linked to human neurodevelopmental disorders. In quiescent mNSC and immortalized human retinal pigment epithelial (RPE1) cells, centrioles form a basal body for ciliogenesis. Here, we report that EJCs accumulate at basal bodies of mNSC or RPE1 cells and decline when these cells differentiate or resume growth. A high-throughput smFISH screen identifies two transcripts accumulating at centrosomes in quiescent cells, NIN and BICD2. In contrast to BICD2, the localization of NIN transcripts is EJC-dependent. NIN mRNA encodes a core component of centrosomes required for microtubule nucleation and anchoring. We find that EJC down-regulation impairs both pericentriolar material organization and ciliogenesis. An EJC-dependent mRNA trafficking towards centrosome and basal bodies might contribute to proper mNSC division and brain development. Exon junction complexes (EJCs) that mark untranslated mRNA are involved in transport, translation and nonsense-mediated mRNA decay. Here the authors show centrosomal localization of EJCs which appears to be required for both the localization of NIN mRNA around centrosomes and ciliogenesis.
Collapse
Affiliation(s)
- Oh Sung Kwon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Rahul Mishra
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Adham Safieddine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Emeline Coleno
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Quentin Alasseur
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Isabelle Barbosa
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
4
|
Obrdlik A, Lin G, Haberman N, Ule J, Ephrussi A. The Transcriptome-wide Landscape and Modalities of EJC Binding in Adult Drosophila. Cell Rep 2020; 28:1219-1236.e11. [PMID: 31365866 DOI: 10.1016/j.celrep.2019.06.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022] Open
Abstract
Exon junction complex (EJC) assembles after splicing at specific positions upstream of exon-exon junctions in mRNAs of all higher eukaryotes, affecting major regulatory events. In mammalian cell cytoplasm, EJC is essential for efficient RNA surveillance, while in Drosophila, EJC is essential for localization of oskar mRNA. Here we developed a method for isolation of protein complexes and associated RNA targets (ipaRt) to explore the EJC RNA-binding landscape in a transcriptome-wide manner in adult Drosophila. We find the EJC at canonical positions, preferably on mRNAs from genes comprising multiple splice sites and long introns. Moreover, EJC occupancy is highest at junctions adjacent to strong splice sites, CG-rich hexamers, and RNA structures. Highly occupied mRNAs tend to be maternally localized and derive from genes involved in differentiation or development. These modalities, which have not been reported in mammals, specify EJC assembly on a biologically coherent set of transcripts in Drosophila.
Collapse
Affiliation(s)
- Ales Obrdlik
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Gen Lin
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nejc Haberman
- Department for Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Jernej Ule
- Department for Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Anne Ephrussi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
5
|
Sepe RM, Ghiron JHL, Zucchetti I, Caputi L, Tarallo R, Crocetta F, De Santis R, D'Aniello S, Sordino P. The EJC component Magoh in non-vertebrate chordates. Dev Genes Evol 2020; 230:295-304. [PMID: 32632492 DOI: 10.1007/s00427-020-00664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/01/2020] [Indexed: 11/26/2022]
Abstract
Earliest craniates possess a newly enlarged, elaborated forebrain with new cell types and neuronal networks. A key question in vertebrate evolution is when and how this cerebral expansion took place. The exon-junction complex (EJC) plays an essential role in mRNA processing of all Eukarya. Recently, it has been proposed that the EJC represses recursive RNA splicing in Deuterostomes, with implication in human brain diseases like microcephaly and depression. However, the EJC or EJC subunit contribution to brain development in non-vertebrate Deuterostomes remained unknown. Being interested in the evolution of chordate characters, we focused on the model species, Branchiostoma lanceolatum (Cephalochordata) and Ciona robusta (Tunicata), with the aim to investigate the ancestral and the derived expression state of Magoh orthologous genes. This study identifies that Magoh is part of a conserved syntenic group exclusively in vertebrates and suggests that Magoh has experienced duplication and loss events in mammals. During early development in amphioxus and ascidian, maternal contribution and zygotic expression of Magoh genes in various types of progenitor cells and tissues are consistent with the condition observed in other Bilateria. Later in development, we also show expression of Magoh in the brain of cephalochordate and ascidian larvae. Collectively, these results provide a basis to further define what functional role(s) Magoh exerted during nervous system development and evolution.
Collapse
Affiliation(s)
- Rosa Maria Sepe
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Jung Hee Levialdi Ghiron
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Ivana Zucchetti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Luigi Caputi
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Raffaella Tarallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Fabio Crocetta
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Rosaria De Santis
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy.
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy.
| |
Collapse
|
6
|
Kimball C, Powers K, Dustin J, Poirier V, Pellettieri J. The exon junction complex is required for stem and progenitor cell maintenance in planarians. Dev Biol 2020; 457:119-127. [PMID: 31557470 PMCID: PMC8544814 DOI: 10.1016/j.ydbio.2019.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/31/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
Named for its assembly near exon-exon junctions during pre-mRNA splicing, the exon junction complex (EJC) regulates multiple aspects of RNA biochemistry, including export of spliced mRNAs from the nucleus and translation. Transcriptome analyses have revealed broad EJC occupancy of spliced metazoan transcripts, yet inhibition of core subunits has been linked to surprisingly specific phenotypes and a growing number of studies support gene-specific regulatory roles. Here we report results from a classroom-based RNAi screen revealing the EJC is necessary for regeneration in the planarian flatworm Schmidtea mediterranea. RNAi animals rapidly lost the stem and progenitor cells that drive formation of new tissue during both regeneration and cell turnover, but exhibited normal amputation-induced changes in gene expression in differentiated tissues. Together with previous reports that partial loss of EJC function causes stem cell defects in Drosophila and mice, our observations implicate the EJC as a conserved, posttranscriptional regulator of gene expression in stem cell lineages. This work also highlights the combined educational and scientific impacts of discovery-based research in the undergraduate biology curriculum.
Collapse
Affiliation(s)
- Casey Kimball
- Department of Biology, Keene State College, Keene, NH, USA
| | - Kaleigh Powers
- Department of Biology, Keene State College, Keene, NH, USA
| | - John Dustin
- Department of Biology, Keene State College, Keene, NH, USA
| | | | | |
Collapse
|
7
|
PIE-1 Translation in the Germline Lineage Contributes to PIE-1 Asymmetry in the Early Caenorhabditis elegans Embryo. G3-GENES GENOMES GENETICS 2018; 8:3791-3801. [PMID: 30279189 PMCID: PMC6288838 DOI: 10.1534/g3.118.200744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the C. elegans embryo, the germline lineage is established through successive asymmetric cell divisions that each generate a somatic and a germline daughter cell. PIE-1 is an essential maternal factor that is enriched in embryonic germline cells and is required for germline specification. We estimated the absolute concentration of PIE-1::GFP in germline cells and find that PIE-1::GFP concentration increases by roughly 4.5 fold, from 92 nM to 424 nM, between the 1 and 4-cell stages. Previous studies have shown that the preferential inheritance of PIE-1 by germline daughter cells and the degradation of PIE-1 in somatic cells are important for PIE-1 enrichment in germline cells. In this study, we provide evidence that the preferential translation of maternal PIE-1::GFP transcripts in the germline also contributes to PIE-1::GFP enrichment. Through an RNAi screen, we identified Y14 and MAG-1 (Drosophila tsunagi and mago nashi) as regulators of embryonic PIE-1::GFP levels. We show that Y14 and MAG-1 do not regulate PIE-1 degradation, segregation or synthesis in the early embryo, but do regulate the concentration of maternally-deposited PIE-1::GFP. Taken together, or findings point to an important role for translational control in the regulation of PIE-1 levels in the germline lineage.
Collapse
|
8
|
Gong P, Li J, He C. Exon junction complex (EJC) core genes play multiple developmental roles in Physalis floridana. PLANT MOLECULAR BIOLOGY 2018; 98:545-563. [PMID: 30426309 PMCID: PMC6280879 DOI: 10.1007/s11103-018-0795-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE Molecular and functional characterization of four gene families of the Physalis exon junction complex (EJC) core improved our understanding of the evolution and function of EJC core genes in plants. The exon junction complex (EJC) plays significant roles in posttranscriptional regulation of genes in eukaryotes. However, its developmental roles in plants are poorly known. We characterized four EJC core genes from Physalis floridana that were named PFMAGO, PFY14, PFeIF4AIII and PFBTZ. They shared a similar phylogenetic topology and were expressed in all examined organs. PFMAGO, PFY14 and PFeIF4AIII were localized in both the nucleus and cytoplasm while PFBTZ was mainly localized in the cytoplasm. No protein homodimerization was observed, but they could form heterodimers excluding the PFY14-PFBTZ heterodimerization. Virus-induced gene silencing (VIGS) of PFMAGO or PFY14 aborted pollen development and resulted in low plant survival due to a leaf-blight-like phenotype in the shoot apex. Carpel functionality was also impaired in the PFY14 knockdowns, whereas pollen maturation was uniquely affected in PFBTZ-VIGS plants. Once PFeIF4AIII was strongly downregulated, plant survival was reduced via a decomposing root collar after flowering and Chinese lantern morphology was distorted. The expression of Physalis orthologous genes in the DYT1-TDF1-AMS-bHLH91 regulatory cascade that is associated with pollen maturation was significantly downregulated in PFMAGO-, PFY14- and PFBTZ-VIGS flowers. Intron-retention in the transcripts of P. floridana dysfunctional tapetum1 (PFDYT1) occurred in these mutated flowers. Additionally, the expression level of WRKY genes in defense-related pathways in the shoot apex of PFMAGO- or PFY14-VIGS plants and in the root collar of PFeIF4AIII-VIGS plants was significantly downregulated. Taken together, the Physalis EJC core genes play multiple roles including a conserved role in male fertility and newly discovered roles in Chinese lantern development, carpel functionality and defense-related processes. These data increase our understanding of the evolution and functions of EJC core genes in plants.
Collapse
Affiliation(s)
- Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jing Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Gáspár I, Sysoev V, Komissarov A, Ephrussi A. An RNA-binding atypical tropomyosin recruits kinesin-1 dynamically to oskar mRNPs. EMBO J 2016; 36:319-333. [PMID: 28028052 PMCID: PMC5286366 DOI: 10.15252/embj.201696038] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 11/14/2022] Open
Abstract
Localization and local translation of oskar mRNA at the posterior pole of the Drosophila oocyte directs abdominal patterning and germline formation in the embryo. The process requires recruitment and precise regulation of motor proteins to form transport‐competent mRNPs. We show that the posterior‐targeting kinesin‐1 is loaded upon nuclear export of oskar mRNPs, prior to their dynein‐dependent transport from the nurse cells into the oocyte. We demonstrate that kinesin‐1 recruitment requires the DmTropomyosin1‐I/C isoform, an atypical RNA‐binding tropomyosin that binds directly to dimerizing oskar 3′UTRs. Finally, we show that a small but dynamically changing subset of oskar mRNPs gets loaded with inactive kinesin‐1 and that the motor is activated during mid‐oogenesis by the functionalized spliced oskar RNA localization element. This inefficient, dynamic recruitment of Khc decoupled from cargo‐dependent motor activation constitutes an optimized, coordinated mechanism of mRNP transport, by minimizing interference with other cargo‐transport processes and between the cargo‐associated dynein and kinesin‐1.
Collapse
Affiliation(s)
- Imre Gáspár
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vasiliy Sysoev
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Artem Komissarov
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
10
|
Woodward LA, Mabin JW, Gangras P, Singh G. The exon junction complex: a lifelong guardian of mRNA fate. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 28008720 DOI: 10.1002/wrna.1411] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/27/2016] [Accepted: 11/09/2016] [Indexed: 12/28/2022]
Abstract
During messenger RNA (mRNA) biogenesis and processing in the nucleus, many proteins are imprinted on mRNAs assembling them into messenger ribonucleoproteins (mRNPs). Some of these proteins remain stably bound within mRNPs and have a long-lasting impact on their fate. One of the best-studied examples is the exon junction complex (EJC), a multiprotein complex deposited primarily 24 nucleotides upstream of exon-exon junctions as a consequence of pre-mRNA splicing. The EJC maintains a stable, sequence-independent, hold on the mRNA until its removal during translation in the cytoplasm. Acting as a molecular shepherd, the EJC travels with mRNA across the cellular landscape coupling pre-mRNA splicing to downstream, posttranscriptional processes such as mRNA export, mRNA localization, translation, and nonsense-mediated mRNA decay (NMD). In this review, we discuss our current understanding of the EJC's functions during these processes, and expound its newly discovered functions (e.g., pre-mRNA splicing). Another focal point is the recently unveiled in vivo EJC interactome, which has shed new light on the EJC's location on the spliced RNAs and its intimate relationship with other mRNP components. We summarize new strides being made in connecting the EJC's molecular function with phenotypes, informed by studies of human disorders and model organisms. The progress toward understanding EJC functions has revealed, in its wake, even more questions, which are discussed throughout. WIREs RNA 2017, 8:e1411. doi: 10.1002/wrna.1411 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Lauren A Woodward
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Justin W Mabin
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Pooja Gangras
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Guramrit Singh
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Yang ZP, Li HL, Guo D, Peng SQ. Identification and characterization of MAGO and Y14 genes in Hevea brasiliensis. Genet Mol Biol 2016; 39:73-85. [PMID: 27007901 PMCID: PMC4807384 DOI: 10.1590/1678-4685-gmb-2014-0387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 06/08/2015] [Indexed: 11/30/2022] Open
Abstract
Mago nashi (MAGO) and Y14 proteins are highly conserved among eukaryotes. In this study, we identified two MAGO (designated as HbMAGO1 andHbMAGO2) and two Y14 (designated as HbY14aand HbY14b) genes in the rubber tree (Hevea brasiliensis) genome annotation. Multiple amino acid sequence alignments predicted that HbMAGO and HbY14 proteins are structurally similar to homologous proteins from other species. Tissue-specific expression profiles showed that HbMAGO and HbY14 genes were expressed in at least one of the tissues (bark, flower, latex, leaf and root) examined. HbMAGOs and HbY14s were predominately located in the nucleus and were found to interact in yeast two-hybrid analysis (YTH) and bimolecular fluorescence complementation (BiFC) assays. HbMAGOs and HbY14s showed the highest transcription in latex and were regulated by ethylene and jasmonate. Interaction between HbMAGO2 and gp91phox (a large subunit of nicotinamide adenine dinucleotide phosphate) was identified using YTH and BiFC assays. These findings suggested that HbMAGO may be involved in the aggregation of rubber particles in H. brasiliensis.
Collapse
Affiliation(s)
- Zi-Ping Yang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hui-Liang Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dong Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shi-Qing Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
12
|
Lee J, Lee S, Chen C, Shim H, Kim-Ha J. shotregulates the microtubule reorganization required for localization of axis-determining mRNAs during oogenesis. FEBS Lett 2016; 590:431-44. [DOI: 10.1002/1873-3468.12086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/15/2016] [Accepted: 01/25/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Jiyeon Lee
- Department of Integrative Bioscience and Biotechnology; College of Life Sciences; Sejong University; Gwangjin-gu Seoul South Korea
| | - Sujung Lee
- Department of Integrative Bioscience and Biotechnology; College of Life Sciences; Sejong University; Gwangjin-gu Seoul South Korea
| | - Cheng Chen
- Department of Integrative Bioscience and Biotechnology; College of Life Sciences; Sejong University; Gwangjin-gu Seoul South Korea
| | - Hyeran Shim
- Department of Integrative Bioscience and Biotechnology; College of Life Sciences; Sejong University; Gwangjin-gu Seoul South Korea
| | - Jeongsil Kim-Ha
- Department of Integrative Bioscience and Biotechnology; College of Life Sciences; Sejong University; Gwangjin-gu Seoul South Korea
| |
Collapse
|
13
|
Ihsan H, Khan MR, Ajmal W, Ali GM. WsMAGO2, a duplicated MAGO NASHI protein with fertility attributes interacts with MPF2-like MADS-box proteins. PLANTA 2015; 241:1173-1187. [PMID: 25630441 DOI: 10.1007/s00425-015-2247-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/16/2015] [Indexed: 06/04/2023]
Abstract
WsMAGO2 a duplicated protein in Withania through interactions with MPF2-like proteins affects male fertility by producing fewer flowers and aborted non-viable pollens/seeds regulated by anther-specific GAATTTGTGA motif. The MAGO NASHIs are highly conserved genes that encode proteins known to be involved in RNA physiology and many other developmental processes including germ cell differentiation in animals. However, their structural and functional implications in plants as fertility function proteins remained fragmented. MAGO (shorter name of MAGO NASHI) proteins form heterodimers with MPF2-like MADS-box proteins which are recruited in calyx identity and male fertility in Solanaceous plants. Four MAGO genes namely WsMAGO1 and WsMAGO2 and TaMAGO1 and TaMAGO2 were isolated from Withania somnifera and Tubocapsicum anomalum, respectively. These genes have duplicated probably due to whole genome duplication event. Dysfunction of WsMAGO2 through double-stranded RNAi in Withania revealed suppression of RNA transcripts, non-viable pollens, fewer flowers and aborted non-viable seeds in the developing berry suggesting a role of this protein in many traits particularly male fertility. WsMAGO2 flaunted stronger yeast 2-hybrid interactions with MPF2-like proteins WSA206, WSB206 and TAB201 than other MAGO counterparts. The native transcripts of WsMAGO2 culminated in stamens and seed-bearing berries though other MAGO orthologs also exhibited expression albeit at lower level. Coding sequences of the two orthologs are highly conserved, but they differ substantially in their upstream promoter regions. Remarkably, WsMAGO2 promoter is enriched with many anther-specific cis-motifs common in fertility function genes promoters. Among them, disruption of GAATTTGTGA abolished YFP/GUS gene expression in anthers alluding towards its involvement in regulating expression of MAGO in anther. Our findings support a possible recruitment of WsMAGO2 in fertility trait in Withania. These genes have practical application in hybrid production through cytoplasmic male sterility maintenance for enhancement in crops yield.
Collapse
Affiliation(s)
- Humera Ihsan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad, Pakistan
| | | | | | | |
Collapse
|
14
|
Wolniak SM, Boothby TC, van der Weele CM. Posttranscriptional control over rapid development and ciliogenesis in Marsilea. Methods Cell Biol 2015; 127:403-44. [PMID: 25837402 DOI: 10.1016/bs.mcb.2015.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Marsilea vestita is a semiaquatic fern that produces its spores (meiotic products) as it undergoes a process of natural desiccation. During the period of desiccation, the spores mature, and produce large quantities of pre-mRNA, which is partially processed and stored in nuclear speckles and can remain stable during a period of extended quiescence in the dry spore. Rehydration of the spores initiates a highly coordinated developmental program, featuring nine successive mitotic division cycles that occur at precise times and in precise planes within the spore wall to produce 39 cells, 32 of which are spermatids. The spermatids then undergo de novo basal body formation, the assembly of a massive cytoskeleton, nuclear and cell elongation, and finally ciliogenesis, before being released from the spore wall. The entire developmental program requires only 11 h to reach completion, and is synchronous in a population of spores rehydrated at the same time. Rapid development in this endosporic gametophyte is controlled posttranscriptionally, where stored pre-mRNAs, many of which are intron-retaining transcripts, are unmasked, processed, and translated under tight spatial and temporal control. Here, we describe posttranscriptional mechanisms that exert temporal and spatial control over this developmental program, which culminates in the production of ∼140 ciliary axonemes in each spermatozoid.
Collapse
Affiliation(s)
- Stephen M Wolniak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742, USA
| | - Thomas C Boothby
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742, USA
| | - Corine M van der Weele
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742, USA
| |
Collapse
|
15
|
Burn KM, Shimada Y, Ayers K, Vemuganti S, Lu F, Hudson AM, Cooley L. Somatic insulin signaling regulates a germline starvation response in Drosophila egg chambers. Dev Biol 2015; 398:206-17. [PMID: 25481758 PMCID: PMC4340711 DOI: 10.1016/j.ydbio.2014.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/17/2014] [Accepted: 11/22/2014] [Indexed: 12/31/2022]
Abstract
Egg chambers from starved Drosophila females contain large aggregates of processing (P) bodies and cortically enriched microtubules. As this response to starvation is rapidly reversed upon re-feeding females or culturing egg chambers with exogenous bovine insulin, we examined the role of endogenous insulin signaling in mediating the starvation response. We found that systemic Drosophila insulin-like peptides (dILPs) activate the insulin pathway in follicle cells, which then regulate both microtubule and P body organization in the underlying germline cells. This organization is modulated by the motor proteins Dynein and Kinesin. Dynein activity is required for microtubule and P body organization during starvation, while Kinesin activity is required during nutrient-rich conditions. Blocking the ability of egg chambers to form P body aggregates in response to starvation correlated with reduced progeny survival. These data suggest a potential mechanism to maximize fecundity even during periods of poor nutrient availability, by mounting a protective response in immature egg chambers.
Collapse
Affiliation(s)
- K Mahala Burn
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Yuko Shimada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Seinou-tou D301, Tennoudai 1-1-1, Tsukuba,, Ibaraki 305-8572, Japan
| | - Kathleen Ayers
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Soumya Vemuganti
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Feiyue Lu
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Andrew M Hudson
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Lynn Cooley
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Prospect Street, New Haven, CT 06510, United States.
| |
Collapse
|
16
|
Xu M, Li Y, Zhang Q, Xu T, Qiu L, Fan Y, Wang L. Novel miRNA and phasiRNA biogenesis networks in soybean roots from two sister lines that are resistant and susceptible to SCN race 4. PLoS One 2014; 9:e110051. [PMID: 25356812 PMCID: PMC4214822 DOI: 10.1371/journal.pone.0110051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
The soybean cyst nematode (SCN), Heterodera glycines, is the most devastating pathogen of soybean worldwide. SiRNAs (small interfere RNAs) have been proven to induce the silencing of cyst nematode genes. However, whether small RNAs from soybean root have evolved a similar mechanism against SCN is unknown. Two genetically related soybean sister lines (ZP03-5373 and ZP03-5413), which are resistant and susceptible, respectively, to SCN race 4 infection were selected for small RNA deep sequencing to identify small RNAs targeted to SCN. We identified 71 less-conserved miRNAs-miRNAs* counterparts belonging to 32 families derived from 91 loci, and 88 novel soybean-specific miRNAs with distinct expression patterns. The identified miRNAs targeted 42 genes representing a wide range of enzymatic and regulatory activities. Roots of soybean conserved one TAS (Trans-acting siRNA) gene family with a similar but unique trans-acting small interfering RNA (tasiRNA) biogenesis profile. In addition, we found that six miRNAs (gma-miR393, 1507, 1510, 1515, 171, 2118) guide targets to produce secondary phasiRNAs (phased, secondary, small interfering RNAs) in soybean root. Multiple targets of these phasiRNAs were predicted and detected. Importantly, we also found that the expression of 34 miRNAs differed significantly between the two lines. Seven ZP03-5373-specific miRNAs were differentially expressed after SCN infection. Forty-four transcripts from SCN were predicted to be potential targets of ZP03-5373-specific differential miRNAs. These findings suggest that miRNAs play an important role in the soybean response to SCN.
Collapse
Affiliation(s)
- Miaoyun Xu
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinghui Li
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuxue Zhang
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Xu
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Qiu
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunliu Fan
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Wang
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Morais-de-Sá E, Mukherjee A, Lowe N, St Johnston D. Slmb antagonises the aPKC/Par-6 complex to control oocyte and epithelial polarity. Development 2014; 141:2984-92. [PMID: 25053432 PMCID: PMC4197659 DOI: 10.1242/dev.109827] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Drosophila anterior-posterior axis is specified when the posterior follicle cells signal to polarise the oocyte, leading to the anterior/lateral localisation of the Par-6/aPKC complex and the posterior recruitment of Par-1, which induces a microtubule reorganisation that localises bicoid and oskar mRNAs. Here we show that oocyte polarity requires Slmb, the substrate specificity subunit of the SCF E3 ubiquitin ligase that targets proteins for degradation. The Par-6/aPKC complex is ectopically localised to the posterior of slmb mutant oocytes, and Par-1 and oskar mRNA are mislocalised. Slmb appears to play a related role in epithelial follicle cells, as large slmb mutant clones disrupt epithelial organisation, whereas small clones show an expansion of the apical domain, with increased accumulation of apical polarity factors at the apical cortex. The levels of aPKC and Par-6 are significantly increased in slmb mutants, whereas Baz is slightly reduced. Thus, Slmb may induce the polarisation of the anterior-posterior axis of the oocyte by targeting the Par-6/aPKC complex for degradation at the oocyte posterior. Consistent with this, overexpression of the aPKC antagonist Lgl strongly rescues the polarity defects of slmb mutant germline clones. The role of Slmb in oocyte polarity raises an intriguing parallel with C. elegans axis formation, in which PAR-2 excludes the anterior PAR complex from the posterior cortex to induce polarity, but its function can be substituted by overexpressing Lgl.
Collapse
Affiliation(s)
- Eurico Morais-de-Sá
- The Gurdon Institute, The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Avik Mukherjee
- The Gurdon Institute, The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Nick Lowe
- The Gurdon Institute, The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Daniel St Johnston
- The Gurdon Institute, The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
18
|
Malone CD, Mestdagh C, Akhtar J, Kreim N, Deinhard P, Sachidanandam R, Treisman J, Roignant JY. The exon junction complex controls transposable element activity by ensuring faithful splicing of the piwi transcript. Genes Dev 2014; 28:1786-99. [PMID: 25104425 PMCID: PMC4197963 DOI: 10.1101/gad.245829.114] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The exon junction complex (EJC) is a highly conserved ribonucleoprotein complex that binds RNAs during splicing and remains associated with them following export to the cytoplasm. Malone et al. describe a novel function for the EJC and its splicing subunit, RnpS1, in controlling piwi transcript splicing, where, in the absence of RnpS1, the fourth intron of piwi is retained. RnpS1-dependent removal of this intron requires splicing of the flanking introns. These data demonstrate a novel role for the EJC in regulating piwi intron excision and provide a mechanism for its function during splicing. The exon junction complex (EJC) is a highly conserved ribonucleoprotein complex that binds RNAs during splicing and remains associated with them following export to the cytoplasm. While the role of this complex in mRNA localization, translation, and degradation has been well characterized, its mechanism of action in splicing a subset of Drosophila and human transcripts remains to be elucidated. Here, we describe a novel function for the EJC and its splicing subunit, RnpS1, in preventing transposon accumulation in both Drosophila germline and surrounding somatic follicle cells. This function is mediated specifically through the control of piwi transcript splicing, where, in the absence of RnpS1, the fourth intron of piwi is retained. This intron contains a weak polypyrimidine tract that is sufficient to confer dependence on RnpS1. Finally, we demonstrate that RnpS1-dependent removal of this intron requires splicing of the flanking introns, suggesting a model in which the EJC facilitates the splicing of weak introns following its initial deposition at adjacent exon junctions. These data demonstrate a novel role for the EJC in regulating piwi intron excision and provide a mechanism for its function during splicing.
Collapse
Affiliation(s)
- Colin D Malone
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA; Howard Hughes Medical Institute
| | | | - Junaid Akhtar
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Nastasja Kreim
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Pia Deinhard
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jessica Treisman
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
19
|
The EJC binding and dissociating activity of PYM is regulated in Drosophila. PLoS Genet 2014; 10:e1004455. [PMID: 24967911 PMCID: PMC4072592 DOI: 10.1371/journal.pgen.1004455] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/08/2014] [Indexed: 11/25/2022] Open
Abstract
In eukaryotes, RNA processing events in the nucleus influence the fate of transcripts in the cytoplasm. The multi-protein exon junction complex (EJC) associates with mRNAs concomitant with splicing in the nucleus and plays important roles in export, translation, surveillance and localization of mRNAs in the cytoplasm. In mammalian cells, the ribosome associated protein PYM (HsPYM) binds the Y14-Mago heterodimer moiety of the EJC core, and disassembles EJCs, presumably during the pioneer round of translation. However, the significance of the association of the EJC with mRNAs in a physiological context has not been tested and the function of PYM in vivo remains unknown. Here we address PYM function in Drosophila, where the EJC core proteins are genetically required for oskar mRNA localization during oogenesis. We provide evidence that the EJC binds oskar mRNA in vivo. Using an in vivo transgenic approach, we show that elevated amounts of the Drosophila PYM (DmPYM) N-terminus during oogenesis cause dissociation of EJCs from oskar RNA, resulting in its mislocalization and consequent female sterility. We find that, in contrast to HsPYM, DmPYM does not interact with the small ribosomal subunit and dismantles EJCs in a translation-independent manner upon over-expression. Biochemical analysis shows that formation of the PYM-Y14-Mago ternary complex is modulated by the PYM C-terminus revealing that DmPYM function is regulated in vivo. Furthermore, we find that whereas under normal conditions DmPYM is dispensable, its loss of function is lethal to flies with reduced y14 or mago gene dosage. Our analysis demonstrates that the amount of DmPYM relative to the EJC proteins is critical for viability and fertility. This, together with the fact that the EJC-disassembly activity of DmPYM is regulated, implicates PYM as an effector of EJC homeostasis in vivo. The multi-protein exon junction complex (EJC) is deposited at exon-exon junctions on mRNAs upon splicing. EJCs, with Y14, Mago, eIF4AIII and Barentsz proteins at their core, are landmarks of the nuclear history of RNAs and play important roles in their post-transcriptional regulation. In mammalian cells, the Y14-Mago interacting protein PYM associates with ribosomes and disassembles EJCs in the cytoplasm. However, the physiological function of PYM and its regulation in vivo remains unknown. We have analysed PYM function during Drosophila oogenesis, where the EJC is essential for oskar mRNA localization in the oocyte, a prerequisite for embryonic patterning and germline formation. We find that Drosophila PYM interacts with Y14-Mago but, in contrast to mammalian PYM, does not bind ribosomes. We demonstrate that EJCs associated with oskar mRNA in vivo are disassembled by PYM over-expression in a translation-independent manner, causing oskar mislocalization. Our in vivo analysis shows that the Drosophila PYM C-terminal domain modulates PYM-Y14-Mago interaction, revealing that PYM is regulated in Drosophila. Furthermore, PYM is essential for viability of flies lacking one functional copy of y14 or mago, supporting a role of PYM in EJC homeostasis. Our results highlight a distinct mode of regulation of the EJC-dissociating protein PYM in Drosophila.
Collapse
|
20
|
Gong P, Zhao M, He C. Slow co-evolution of the MAGO and Y14 protein families is required for the maintenance of their obligate heterodimerization mode. PLoS One 2014; 9:e84842. [PMID: 24416299 PMCID: PMC3885619 DOI: 10.1371/journal.pone.0084842] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/19/2013] [Indexed: 11/18/2022] Open
Abstract
The exon junction complex (EJC) plays important roles in RNA metabolisms and the development of eukaryotic organisms. MAGO (short form of MAGO NASHI) and Y14 (also Tsunagi or RBM8) are the EJC core components. Their biological roles have been well investigated in various species, but the evolutionary patterns of the two gene families and their protein-protein interactions are poorly known. Genome-wide survey suggested that the MAGO and Y14 two gene families originated in eukaryotic organisms with the maintenance of a low copy. We found that the two protein families evolved slowly; however, the MAGO family under stringent purifying selection evolved more slowly than the Y14 family that was under relative relaxed purifying selection. MAGO and Y14 were obliged to form heterodimer in a eukaryotic organism, and this obligate mode was plesiomorphic. Lack of binding of MAGO to Y14 as functional barrier was observed only among distantly species, suggesting that a slow co-evolution of the two protein families. Inter-protein co-evolutionary signal was further quantified in analyses of the Tol-MirroTree and co-evolution analysis using protein sequences. About 20% of the 41 significantly correlated mutation groups (involving 97 residues) predicted between the two families was clade-specific. Moreover, around half of the predicted co-evolved groups and nearly all clade-specific residues fell into the minimal interaction domains of the two protein families. The mutagenesis effects of the clade-specific residues strengthened that the co-evolution is required for obligate MAGO-Y14 heterodimerization mode. In turn, the obliged heterodimerization in an organism serves as a strong functional constraint for the co-evolution of the MAGO and Y14 families. Such a co-evolution allows maintaining the interaction between the proteins through large evolutionary time scales. Our work shed a light on functional evolution of the EJC genes in eukaryotes, and facilitates to understand the co-evolutionary processes among protein families.
Collapse
Affiliation(s)
- Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China ; University of Chinese Academy of Sciences, Beijing, China
| | - Man Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China ; University of Chinese Academy of Sciences, Beijing, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Zhang F, Wang J, Xu J, Zhang Z, Koppetsch BS, Schultz N, Vreven T, Meignin C, Davis I, Zamore PD, Weng Z, Theurkauf WE. UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery. Cell 2013; 151:871-884. [PMID: 23141543 DOI: 10.1016/j.cell.2012.09.040] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/09/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022]
Abstract
piRNAs silence transposons during germline development. In Drosophila, transcripts from heterochromatic clusters are processed into primary piRNAs in the perinuclear nuage. The nuclear DEAD box protein UAP56 has been previously implicated in mRNA splicing and export, whereas the DEAD box protein Vasa has an established role in piRNA production and localizes to nuage with the piRNA binding PIWI proteins Ago3 and Aub. We show that UAP56 colocalizes with the cluster-associated HP1 variant Rhino, that nuage granules containing Vasa localize directly across the nuclear envelope from cluster foci containing UAP56 and Rhino, and that cluster transcripts immunoprecipitate with both Vasa and UAP56. Significantly, a charge-substitution mutation that alters a conserved surface residue in UAP56 disrupts colocalization with Rhino, germline piRNA production, transposon silencing, and perinuclear localization of Vasa. We therefore propose that UAP56 and Vasa function in a piRNA-processing compartment that spans the nuclear envelope.
Collapse
Affiliation(s)
- Fan Zhang
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jie Wang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jia Xu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Zhao Zhang
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Birgit S Koppetsch
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nadine Schultz
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Carine Meignin
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67 084 Strasbourg Cedex, France
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Phillip D Zamore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Howard Hughes Medical Institute
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - William E Theurkauf
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
22
|
Abstract
How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We showed that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments.
Collapse
|
23
|
Wolniak SM, van der Weele CM, Deeb F, Boothby T, Klink VP. Extremes in rapid cellular morphogenesis: post-transcriptional regulation of spermatogenesis in Marsilea vestita. PROTOPLASMA 2011; 248:457-73. [PMID: 21487804 DOI: 10.1007/s00709-011-0276-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/30/2011] [Indexed: 05/07/2023]
Abstract
The endosporic male gametophyte of the water fern, Marsilea vestita, provides a unique opportunity to study the mechanisms that control cell fate determination during a burst of rapid development. In this review, we show how the spatial and temporal control of development in this simple gametophyte involves several distinct modes of RNA processing that allow the translation of specific mRNAs at distinct stages during gametogenesis. During the early part of development, nine successive cell division cycles occur in precise planes within a closed volume to produce seven sterile cells and 32 spermatids. There is no cell movement in the gametophyte; so, cell position and size within the spore wall define cell fate. After the division cycles have been completed, the spermatids become sites for the de novo formation of basal bodies, for the assembly of a complex cytoskeleton, for nuclear and cell elongation, and for ciliogenesis. In contrast, the adjacent sterile cells exhibit none of these changes. The spermatids differentiate into multiciliated, corkscrew-shaped gametes that resemble no other cells in the entire plant. Development is controlled post-transcriptionally. The transcripts stored in the microspore are released (unmasked) in the gametophyte at different times during development. At the start of these studies, we identified several key mRNAs that undergo translation at specific stages of gametophyte development. We developed RNA silencing protocols that enabled us to block the translation of these proteins and thereby establish their necessity and sufficiency for the completion of specific stages of gametogenesis. In addition, RNAi enabled us to identify additional proteins that are essential for other phases of development. Since the distributions of mRNAs and the proteins they encode are not identical in the gametophyte, transcript processing is apparently important in allowing translation to occur under strict temporal and spatial control. Transcript polyadenylation occurs in the spermatogenous cells in ways that match the translation of specific mRNAs. We have found that the exon junction complex plays key roles in transcript regulation and modifications that underlie cell specification in the gametophyte. We have recently become interested in the mechanisms that control the unmasking of the stored transcripts and have linked the synthesis and redistribution of spermidine in the gametophyte to the control of mRNA release from storage during early development and later to basal body formation, cytoskeletal assembly, and nuclear and cell elongation in the differentiating spermatids.
Collapse
Affiliation(s)
- Stephen M Wolniak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | |
Collapse
|
24
|
Exon junction complex subunits are required to splice Drosophila MAP kinase, a large heterochromatic gene. Cell 2010; 143:238-50. [PMID: 20946982 DOI: 10.1016/j.cell.2010.09.036] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 08/04/2010] [Accepted: 09/02/2010] [Indexed: 02/04/2023]
Abstract
The exon junction complex (EJC) is assembled on spliced mRNAs upstream of exon-exon junctions and can regulate their subsequent translation, localization, or degradation. We isolated mutations in Drosophila mago nashi (mago), which encodes a core EJC subunit, based on their unexpectedly specific effects on photoreceptor differentiation. Loss of Mago prevents epidermal growth factor receptor signaling, due to a large reduction in MAPK mRNA levels. MAPK expression also requires the EJC subunits Y14 and eIF4AIII and EJC-associated splicing factors. Mago depletion does not affect the transcription or stability of MAPK mRNA but alters its splicing pattern. MAPK expression from an exogenous promoter requires Mago only when the template includes introns. MAPK is the primary functional target of mago in eye development; in cultured cells, Mago knockdown disproportionately affects other large genes located in heterochromatin. These data support a nuclear role for EJC components in splicing a specific subset of introns.
Collapse
|
25
|
Parton RM, Vallés AM, Dobbie IM, Davis I. Live cell imaging in Drosophila melanogaster. Cold Spring Harb Protoc 2010; 2010:pdb.top75. [PMID: 20360379 DOI: 10.1101/pdb.top75] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although many of the techniques of live cell imaging in Drosophila melanogaster are also used by the greater community of cell biologists working on other model systems, studying living fly tissues presents unique difficulties with regard to keeping the cells alive, introducing fluorescent probes, and imaging through thick, hazy cytoplasm. This article outlines the major tissue types amenable to study by time-lapse cinematography and different methods for keeping the cells alive. It describes various imaging and associated techniques best suited to following changes in the distribution of fluorescently labeled molecules in real time in these tissues. Imaging, in general, is a rapidly developing discipline, and recent advances in imaging technology are able to greatly extend what can be achieved with live cell imaging of Drosophila tissues. As far as possible, this article includes the latest technical developments and discusses likely future developments in imaging methods that could have an impact on research using Drosophila.
Collapse
|
26
|
Gonsalvez GB, Rajendra TK, Wen Y, Praveen K, Matera AG. Sm proteins specify germ cell fate by facilitating oskar mRNA localization. Development 2010; 137:2341-51. [PMID: 20570937 DOI: 10.1242/dev.042721] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sm and Sm-like proteins are RNA-binding factors found in all three domains of life. Eukaryotic Sm proteins play essential roles in pre-mRNA splicing, forming the cores of spliceosomal small nuclear ribonucleoproteins (snRNPs). Recently, Sm proteins have been implicated in the specification of germ cells. However, a mechanistic understanding of their involvement in germline specification is lacking and a germline-specific RNA target has not been identified. We demonstrate that Drosophila SmB and SmD3 are specific components of the oskar messenger ribonucleoprotein (mRNP), proper localization of which is required for establishing germline fate and embryonic patterning. Importantly, oskar mRNA is delocalized in females harboring a hypomorphic mutation in SmD3, and embryos from mutant mothers are defective in germline specification. We conclude that Sm proteins function to establish the germline in Drosophila, at least in part by mediating oskar mRNA localization.
Collapse
Affiliation(s)
- Graydon B Gonsalvez
- Departments of Biology and Genetics, Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | | | | | | | | |
Collapse
|
27
|
Zhao W, Zhou F, Zhou X, Hou Y, He Y, Cheng H, Zhou R. Mago, a vertebrate homolog of Drosophila Mago nashi protein, is a component of the chromatoid body in the cytoplasm of the postmeiotic spermatid. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:232-41. [PMID: 19908226 DOI: 10.1002/jez.b.21331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Post-transcriptional regulations play a crucial role during spermatogenesis of the vertebrates. Chromatoid body (CB) is a characteristic spermatid organelle that is supposed to exert its role in post-transcriptional processes, but its real functions remain largely unknown. Here we report identification of Mago from the rice field eel, and show its evolutionary conservation, differential expression and localization during gonadal transformation. The Mago interacts with Y14, which may facilitate nuclear export of both proteins in the Sertoli cells. Importantly, we have determined Mago as a novel component of the CB in the cytoplasm of the developing spermatid. Addition of Mago to the component list of the CB undoubtedly provides new clue as to the functions of the CB during spermatogenesis in the vertebrates.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Genetics and Center for Developmental Biology, College of Life Science, Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
28
|
The identification, expression profile, and preliminary characterization of Tsunagi protein from Schistosoma japonicum. Parasitol Res 2010; 107:615-21. [PMID: 20467751 DOI: 10.1007/s00436-010-1904-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
Tsunagi is an evolutionarily conserved protein, which is required for germ line differentiation during the development of Drosophila melanogaster and Caenorhabditis elegans. In this paper, we describe a homologue of the Tsunagi protein from Schistosoma japonicum (SjTsunagi). The gene for this protein was isolated from S. japonicum using degenerate and anchored polymerase chain reaction (PCR), and the deduced protein has sequence homology and similarity to Tsunagi protein of other species, including C. elegans, D. melanogaster, Xenopus laevis, Mus musculus, and human. Amino acid sequence analysis showed the presence of a conserved RNA recognition motif. The predicted protein encoded by SjTsunagi gene is 177 amino acids in length with an estimated molecular mass of 20 kD. Immunoblot and reverse transcription-PCR analysis confirms SjTsunagi protein is expressed in eggs, cercariae, schistosomula, and adult female and adult male parasites. Pull-down and co-immunoprecipitation assay confirms that protein of SjTsunagi can interact with SjMago nashi in vitro. Taken together, this is the first report of the expression and preliminary characterization analysis of the SjTsunagi gene from S. japonicum.
Collapse
|
29
|
Lewandowski JP, Sheehan KB, Bennett PE, Boswell RE. Mago Nashi, Tsunagi/Y14, and Ranshi form a complex that influences oocyte differentiation in Drosophila melanogaster. Dev Biol 2010; 339:307-19. [PMID: 20045686 DOI: 10.1016/j.ydbio.2009.12.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/15/2009] [Accepted: 12/19/2009] [Indexed: 12/25/2022]
Abstract
During Drosophila melanogaster oogenesis, a germline stem cell divides forming a cyst of 16 interconnected cells. One cell enters the oogenic pathway, and the remaining 15 differentiate as nurse cells. Although directed transport and localization of oocyte differentiation factors within the single cell are indispensible for selection, maintenance, and differentiation of the oocyte, the mechanisms regulating these events are poorly understood. Mago Nashi and Tsunagi/Y14, core components of the exon junction complex (a multiprotein complex assembled on spliced RNAs), are essential for restricting oocyte fate to a single cell and for localization of oskar mRNA. Here we provide evidence that Mago Nashi and Tsunagi/Y14 form an oogenic complex with Ranshi, a protein with a zinc finger-associated domain and zinc finger domains. Genetic analyses of ranshi reveal that (1) 16-cell cysts are formed, (2) two cells retain synaptonemal complexes, (3) all cells have endoreplicated DNA (as observed in nurse cells), and (4) oocyte-specific cytoplasmic markers accumulate and persist within a single cell but are not localized within the posterior pole of the presumptive oocyte. Our results indicate that Ranshi interacts with the exon junction complex to localize components essential for oocyte differentiation within the posterior pole of the presumptive oocyte.
Collapse
Affiliation(s)
- Jordan P Lewandowski
- Cell and Molecular Biology Graduate Program, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
30
|
Repetto O, Rogniaux H, Firnhaber C, Zuber H, Küster H, Larré C, Thompson R, Gallardo K. Exploring the nuclear proteome of Medicago truncatula at the switch towards seed filling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:398-410. [PMID: 18643982 DOI: 10.1111/j.1365-313x.2008.03610.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Despite its importance in determining seed composition, and hence quality, regulation of the development of legume seeds is incompletely understood. Because of the cardinal role played by the nucleus in gene expression and regulation, we have characterized the nuclear proteome of Medicago truncatula at the 12 days after pollination (dap) stage that marks the switch towards seed filling. Nano-liquid chromatography-tandem mass spectrometry analysis of nuclear protein bands excised from one-dimensional SDS-PAGE identified 179 polypeptides (143 different proteins), providing an insight into the complexity and distinctive feature of the seed nuclear proteome and highlighting new plant nuclear proteins with possible roles in the biogenesis of ribosomal subunits (PESCADILLO-like) or nucleocytoplasmic trafficking (dynamin-like GTPase). The results revealed that nuclei of 12-dap seeds store a pool of ribosomal proteins in preparation for intense protein synthesis activity, occurring subsequently during seed filling. Diverse proteins of the molecular machinery leading to the synthesis of ribosomal subunits were identified along with proteins involved in transcriptional regulation, RNA processing or transport. Some had already been shown to play a role during the early stages of seed formation whereas for others the findings are novel (e.g. the DIP2 and ES43 transcriptional regulators or the RNA silencing-related ARGONAUTE proteins). This study also revealed the presence of chromatin-modifying enzymes and RNA interference proteins that have roles in RNA-directed DNA methylation and may be involved in modifying genome architecture and accessibility during seed filling and maturation.
Collapse
Affiliation(s)
- Ombretta Repetto
- INRA, UMR102 Genetics and Ecophysiology of Grain Legumes, 21000 Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
PYM binds the cytoplasmic exon-junction complex and ribosomes to enhance translation of spliced mRNAs. Nat Struct Mol Biol 2007; 14:1173-9. [PMID: 18026120 DOI: 10.1038/nsmb1321] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 09/21/2007] [Indexed: 11/08/2022]
Abstract
Messenger RNAs produced by splicing are translated more efficiently than those produced from similar intronless precursor mRNAs (pre-mRNAs). The exon-junction complex (EJC) probably mediates this enhancement; however, the specific link between the EJC and the translation machinery has not been identified. The EJC proteins Y14 and magoh remain bound to spliced mRNAs after their export from the nucleus to the cytoplasm and are removed only when these mRNAs are translated. Here we show that PYM, a 29-kDa protein that binds the Y14-magoh complex in the cytoplasm, also binds, via a separate domain, to the small (40S) ribosomal subunit and the 48S preinitiation complex. Furthermore, PYM knockdown reduces the translation efficiency of a reporter protein produced from intron-containing, but not intronless, pre-mRNA. We suggest that PYM functions as a bridge between EJC-bearing spliced mRNAs and the translation machinery to enhance translation of the mRNAs.
Collapse
|
32
|
Abstract
The body axes of the fruit fly are established in mid-oogenesis by the localization of three mRNA determinants, bicoid, oskar, and gurken, within the oocyte. General mechanisms of RNA localization and cell polarization, applicable to many cell types, have emerged from investigation of these determinants in Drosophila oogenesis. Localization of these RNAs is dependent on the germline microtubules, which reorganize to form a polarized array at mid-oogenesis in response to a signaling relay between the oocyte and the surrounding somatic follicle cells. Here we describe what is known about this microtubule reorganization and the signaling relay that triggers it. Recent studies have identified a number of ubiquitous RNA binding proteins essential for this process. So far, no targets for any of these proteins have been identified, and future work will be needed to illuminate how they function to reorganize microtubes and whether similar mechanisms also exist in other cell types.
Collapse
Affiliation(s)
- Josefa Steinhauer
- Skirball Institute for Biomolecular Medicine and Department of Developmental Genetics, New York University School of Medicine, New York, New York 10016,USA.
| | | |
Collapse
|
33
|
Knobloch J, Beckmann S, Burmeister C, Quack T, Grevelding CG. Tyrosine kinase and cooperative TGFβ signaling in the reproductive organs of Schistosoma mansoni. Exp Parasitol 2007; 117:318-36. [PMID: 17553494 DOI: 10.1016/j.exppara.2007.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 04/06/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
Drug-induced suppression of female schistosome sexual maturation is an auspicious strategy to combat schistosomiasis since the eggs are the causative agent. The establishment of drug targets requires knowledge about the molecular mechanisms that regulate the development of the female reproductive organs, which include vitellarium and ovary. This review summarizes recent studies suggesting tyrosine kinases as important factors for the regulation of female gonad development. In this context, especially cytoplasmatic tyrosine kinases of the Src class seem to play dominant roles. Moreover, experimental data and theoretical concepts are provided supporting a crosstalk between tyrosine kinase and TGFbeta signaling in the production of vitellocytes. Finally, we take advantage from the schistosome genome project to propose a model for the regulation of vitelline-cell production and differentiation.
Collapse
Affiliation(s)
- Jürgen Knobloch
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine-University, D-40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
34
|
Parma DH, Bennett PE, Boswell RE. Mago Nashi and Tsunagi/Y14, respectively, regulate Drosophila germline stem cell differentiation and oocyte specification. Dev Biol 2007; 308:507-19. [PMID: 17628520 PMCID: PMC3010412 DOI: 10.1016/j.ydbio.2007.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 05/21/2007] [Accepted: 06/07/2007] [Indexed: 12/27/2022]
Abstract
A protein complex consisting of Mago Nashi and Tsunagi/Y14 is required to establish the major body axes and for the localization of primordial germ cell determinants during Drosophila melanogaster oogenesis. The Mago Nashi:Tsunagi/Y14 heterodimer also serves as the core of the exon junction complex (EJC), a multiprotein complex assembled on spliced mRNAs. In previous studies, reduced function alleles of mago nashi and tsunagi/Y14 were used to characterize the roles of the genes in oogenesis. Here, we investigated mago nashi and tsunagi/Y14 using null alleles and clonal analysis. Germline clones lacking mago nashi function divide but fail to differentiate. The mago nashi null germline stem cells produce clones over a period of at least 11 days, suggesting that mago nashi is not necessary for stem cell self-renewal. However, germline stem cells lacking tsunagi/Y14 function are indistinguishable from wild type. Additionally, in tsunagi/Y14 null germline cysts, centrosomes and oocyte-specific components fail to concentrate within a single cell and oocyte fate is not restricted to a single cell. Together, our results suggest not only that mago nashi is required for germline stem cell differentiation but that surprisingly mago nashi functions independently of tsunagi/Y14 in this process. On the other hand, Tsunagi/Y14 is essential for restricting oocyte fate to a single cell and may function with mago nashi in this process.
Collapse
Affiliation(s)
- David H. Parma
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Paul E. Bennett
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Robert E. Boswell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| |
Collapse
|
35
|
van der Weele CM, Tsai CW, Wolniak SM. Mago nashi is essential for spermatogenesis in Marsilea. Mol Biol Cell 2007; 18:3711-22. [PMID: 17634289 PMCID: PMC1995738 DOI: 10.1091/mbc.e06-11-0979] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spermatogenesis in Marsilea vestita is a rapid process that is activated by placing dry microspores into water. Nine division cycles produce seven somatic cells and 32 spermatids, where size and position define identity. Spermatids undergo de novo formation of basal bodies in a particle known as a blepharoplast. We are interested in mechanisms responsible for spermatogenous initial formation. Mago nashi (Mv-mago) is a highly conserved gene present as stored mRNA and stored protein in the microspore. Mv-mago protein increases in abundance during development and it localizes at discrete cytoplasmic foci (Mago-dots). RNA interference experiments show that new Mv-mago protein is required for development. With Mv-mago silenced, asymmetric divisions become symmetric, cell fate is disrupted, and development stops. The alpha-tubulin protein distribution, centrin translation, and Mv-PRP19 mRNA distribution are no longer restricted to the spermatogenous cells. Centrin aggregations, resembling blepharoplasts, occur in jacket cells. Mago-dots are undetectable after the silencing of Mv-mago, Mv-Y14, or Mv-eIF4AIII, three core components of the exon junction complex (EJC), suggesting that Mago-dots are either EJCs in the cytoplasm, or Mv-mago protein aggregations dependent on EJCs. Mv-mago protein and other EJC components apparently function in cell fate determination in developing male gametophytes of M. vestita.
Collapse
Affiliation(s)
- Corine M. van der Weele
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Chia-Wei Tsai
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Stephen M. Wolniak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
36
|
He C, Sommer H, Grosardt B, Huijser P, Saedler H. PFMAGO, a MAGO NASHI-like factor, interacts with the MADS-domain protein MPF2 from Physalis floridana. Mol Biol Evol 2007; 24:1229-41. [PMID: 17339635 DOI: 10.1093/molbev/msm041] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MADS-domain proteins serve as regulators of plant development and often form dimers and higher order complexes to function. Heterotopic expression of MPF2, a MADS-box gene, in reproductive tissues is a key component in the evolution of the inflated calyx syndrome in Physalis, but RNAi studies demonstrate that MPF2 has also acquired a role in male fertility in Physalis floridana. Using the yeast 2-hybrid system, we have now identified numerous MPF2-interacting MADS-domain proteins from Physalis, including homologs of SOC1, AP1, SEP1, SEP3, AG, and AGL6. Among the many non-MADS-domain proteins recovered was a homolog of MAGO NASHI, a highly conserved RNA-binding protein known to be involved in many developmental processes including germ cell differentiation. Two MAGO genes, termed P. floridana mago nashi1 (PFMAGO1) and PFMAGO2, were isolated from P. floridana. Both copies were found to be coexpressed in leaves, fruits, and, albeit at lower level, also in roots, stems, and flowers. DNA sequence analysis revealed that, although the coding sequences of the 2 genes are highly conserved, they differ substantially in their intron and promoter sequences. Two-hybrid screening of a Physalis expression library with both PFMAGO1 and PFMAGO2 as baits yielded numerous gene products, including an Y14-like protein. Y14 is an RNA-binding protein that forms part of various "gene expression machines." The function of MPF2 and 2 PFMAGO proteins in ensuring male fertility and evolution of calyx development in Physalis is discussed.
Collapse
Affiliation(s)
- Chaoying He
- Department of Molecular Plant Genetics, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany.
| | | | | | | | | |
Collapse
|
37
|
Doerflinger H, Benton R, Torres IL, Zwart MF, St Johnston D. Drosophila Anterior-Posterior Polarity Requires Actin-Dependent PAR-1 Recruitment to the Oocyte Posterior. Curr Biol 2006; 16:1090-5. [PMID: 16753562 DOI: 10.1016/j.cub.2006.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 03/30/2006] [Accepted: 04/03/2006] [Indexed: 11/18/2022]
Abstract
The Drosophila anterior-posterior axis is established at stage 7 of oogenesis when the posterior follicle cells signal to polarize the oocyte microtubule cytoskeleton. This requires the conserved PAR-1 kinase, which can be detected at the posterior of the oocyte in immunostainings from stage 9. However, this localization depends on Oskar localization, which requires the earlier PAR-1-dependent microtubule reorganization, indicating that Oskar-associated PAR-1 cannot establish oocyte polarity. Here we analyze the function of the different PAR-1 isoforms and find that only PAR-1 N1 isoforms can completely rescue the oocyte polarity phenotype. Furthermore, PAR-1 N1 is recruited to the posterior cortex of the oocyte at stage 7 in response to the polarizing follicle cell signal, and this requires actin, but not microtubules. This suggests that posterior PAR-1 N1 polarizes the microtubule cytoskeleton. PAR-1 N1 localization is mediated by a cortical targeting domain and a conserved anterior-lateral exclusion signal in its C-terminal linker domain. PAR-1 is also required for the polarization of the C. elegans zygote and is recruited to the posterior cortex in an actin-dependent manner. Our results therefore identify a molecular parallel between axis formation in Drosophila and C. elegans and make Drosophila PAR-1 N1 the earliest known marker for the polarization of the oocyte.
Collapse
Affiliation(s)
- Hélène Doerflinger
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Conti E, Izaurralde E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr Opin Cell Biol 2005; 17:316-25. [PMID: 15901503 DOI: 10.1016/j.ceb.2005.04.005] [Citation(s) in RCA: 345] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is an mRNA surveillance pathway that ensures the rapid degradation of mRNAs containing premature translation termination codons (PTCs), thereby preventing the synthesis of truncated and potentially harmful proteins. In addition, this pathway regulates the expression of approximately 10% of the transcriptome and is essential in mice. Although NMD is conserved in eukaryotes, recent studies in several organisms have revealed that different mechanisms have evolved to discriminate natural from premature stop codons and to degrade the targeted mRNAs. With the elucidation of the first crystal structures of components of the NMD machinery, the way is paved towards a molecular understanding of the protein interaction network underlying this process.
Collapse
Affiliation(s)
- Elena Conti
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
39
|
Norvell A, Debec A, Finch D, Gibson L, Thoma B. Squid is required for efficient posterior localization of oskar mRNA during Drosophila oogenesis. Dev Genes Evol 2005; 215:340-9. [PMID: 15791421 DOI: 10.1007/s00427-005-0480-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 03/02/2005] [Indexed: 11/28/2022]
Abstract
The nuclear-cytoplasmic shuttling heterogeneous nuclear RNA-binding protein (hnRNP) Squid (Sqd) is required during Drosophila melanogaster oogenesis, where it plays a critical role in the regulation of the TGFalpha-like molecule Gurken (Grk). Three Sqd isoforms have been described, SqdA, S and B, and two of these, SqdA and SqdS, differentially function in grk mRNA nuclear export, cytoplasmic transport and translational control during oogenesis. Here, we report that Sqd is also required for the regulation of oskar (osk) mRNA, functioning in the cytoplasmic localization of the osk transcript. In oocytes from sqd females, osk mRNA is not efficiently localized to the posterior pole, but rather accumulates at the anterior cortex. Furthermore, anterior patterning defects observed in embryos from sqd females expressing only the SqdS protein isoform suggest that Sqd may also play a role in the translational regulation of the mislocalized osk mRNA. These findings provide additional support for models of mRNA regulation in which cytoplasmic events, such as localization and translational regulation, are coupled. These results also place Sqd among an emerging class of proteins, including such other members as Bruno (Bru) and Hrb27C/Hrp48, which function in multiple aspects of both grk and osk mRNA regulation during Drosophila oogenesis.
Collapse
Affiliation(s)
- Amanda Norvell
- Department of Biology, The College of New Jersey, PO Box 7718, Ewing, NJ 08628-0718, USA.
| | | | | | | | | |
Collapse
|
40
|
Pozzoli O, Gilardelli CN, Sordino P, Doniselli S, Lamia CL, Cotelli F. Identification and expression pattern of mago nashi during zebrafish development. Gene Expr Patterns 2004; 5:265-72. [PMID: 15567724 DOI: 10.1016/j.modgep.2004.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 07/09/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
In a search for zebrafish genes expressed during early stages of development, we have identified two ESTs encoding proteins related to Drosophila mago nashi. Zebrafish mago nashi codes for a small protein with no clearly identified functional domains, and which is highly conserved during evolution. This paper describes the identification and a detailed gene expression analysis of zebrafish mago nashi during development. Our results demonstrate that mago nashi encodes a maternal transcript detected in both blastomeres and yolk cell at the 1-2 cell stages, and in the blastoderm during segmentation. We show that a putative microtubule-mediated transport of mago nashi mRNA from the vegetal hemisphere into animal blastomeres determines the localization of the transcript in the animal pole, immediately after fertilization. Furthermore, the microtubule array contained into the yolk cell seems to be responsible for the high level of mago nashi transcript detected in the central blastomeres at the 8-16 cell stages. Zygotic mago nashi is expressed into the dorsal-marginal region during gastrulation, and starting from somitogenesis to 24 hpf, the expression domain becomes progressively restricted to the developing neural tube and paraxial structures, and ventrally to the pronephric ducts.
Collapse
Affiliation(s)
- Ombretta Pozzoli
- Department of Biology, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Kawano T, Kataoka N, Dreyfuss G, Sakamoto H. Ce-Y14 and MAG-1, components of the exon-exon junction complex, are required for embryogenesis and germline sexual switching in Caenorhabditis elegans. Mech Dev 2004; 121:27-35. [PMID: 14706697 DOI: 10.1016/j.mod.2003.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Y14 is a component of the splicing-dependent exon-exon junction complex (EJC) and is involved in the mRNA quality control system called nonsense-mediated mRNA decay. It has recently been shown that together with another EJC component, Mago, the Drosophila homologue DmY14/Tsunagi is required for proper localization of oskar mRNA during oogenesis, a process critical for posterior formation in Drosophila development. Here we show that the nematode Caenorhabditis elegans Ce-Y14 and MAG-1 (Mago homologue) are required for late embryogenesis and proper germline sexual differentiation. Like in other organisms, Ce-Y14 preferentially binds to spliced mRNA and specifically interacts with MAG-1. Consistent with the evolutionarily conserved interaction between Y14 and Mago homologues, suppression of Ce-Y14 by RNAi resulted in the same phenotypes as those caused by RNAi of mag-1 lethality during late embryogenesis and masculinization of the adult hermaphrodite germline. Our results demonstrate that the evolutionarily conserved interaction between two EJC components, Ce-Y14 and MAG-1, has critical developmental roles in C. elegans.
Collapse
Affiliation(s)
- Taizo Kawano
- Department of Life Science, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nadaku, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|
42
|
Yano T, López de Quinto S, Matsui Y, Shevchenko A, Shevchenko A, Ephrussi A. Hrp48, a Drosophila hnRNPA/B homolog, binds and regulates translation of oskar mRNA. Dev Cell 2004; 6:637-48. [PMID: 15130489 DOI: 10.1016/s1534-5807(04)00132-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 03/23/2004] [Accepted: 03/30/2004] [Indexed: 10/26/2022]
Abstract
Establishment of the Drosophila embryonic axes provides a striking example of RNA localization as an efficient mechanism for protein targeting within a cell. oskar mRNA encodes the posterior determinant and is essential for germline and abdominal development in the embryo. Tight restriction of Oskar activity to the posterior is achieved by mRNA localization-dependent translational control, whereby unlocalized mRNA is translationally repressed and repression is overcome upon mRNA localization. Here we identify the previously reported oskar RNA binding protein p50 as Hrp48, an abundant Drosophila hnRNP. Analysis of three hrp48 mutant alleles reveals that Hrp48 levels are crucial for polarization of the oocyte during mid-oogenesis. Our data also show that Hrp48, which binds to the 5' and 3' regions of oskar mRNA, plays an important role in restricting Oskar activity to the posterior of the oocyte, by repressing oskar mRNA translation during transport.
Collapse
Affiliation(s)
- Tamaki Yano
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Huynh JR, Munro TP, Smith-Litière K, Lepesant JA, St Johnston D. The Drosophila hnRNPA/B homolog, Hrp48, is specifically required for a distinct step in osk mRNA localization. Dev Cell 2004; 6:625-35. [PMID: 15130488 DOI: 10.1016/s1534-5807(04)00130-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 02/13/2004] [Accepted: 03/29/2004] [Indexed: 11/30/2022]
Abstract
The Staufen-dependent localization of oskar mRNA to the posterior of the Drosophila oocyte induces the formation of the pole plasm, which contains the abdominal and germline determinants. In a germline clone screen for mutations that disrupt the posterior localization of GFP-Staufen, we isolated three missense alleles in the hnRNPA/B homolog, Hrp48. These mutants specifically abolish osk mRNA localization, without affecting its translational control or splicing, or the localization of bicoid and gurken mRNAs and the organization of the microtubule cytoskeleton. Hrp48 colocalizes with osk mRNA throughout oogenesis, and interacts with its 5' and 3' regulatory regions, suggesting that it binds directly to oskar mRNA to mediate its posterior transport. The hrp48 alleles cause a different oskar mRNA localization defect from other mutants, and disrupt the formation of GFP-Staufen particles. This suggests a new step in the localization pathway, which may correspond to the assembly of Staufen/oskar mRNA transport particles.
Collapse
Affiliation(s)
- Jean-René Huynh
- The Wellcome Trust/Cancer Research UK, Gurdon Institute and Department of Genetics, Cambridge University, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Palacios IM, Gatfield D, St Johnston D, Izaurralde E. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 2004; 427:753-7. [PMID: 14973490 DOI: 10.1038/nature02351] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 01/19/2004] [Indexed: 11/09/2022]
Abstract
The specification of both the germ line and abdomen in Drosophila depends on the localization of oskar messenger RNA to the posterior of the oocyte. This localization requires several trans-acting factors, including Barentsz and the Mago-Y14 heterodimer, which assemble with oskar mRNA into ribonucleoprotein particles (RNPs) and localize with it at the posterior pole. Although Barentsz localization in the germ line depends on Mago-Y14, no direct interaction between these proteins has been detected. Here, we demonstrate that the translation initiation factor eIF4AIII interacts with Barentsz and is a component of the oskar messenger RNP localization complex. Moreover, eIF4AIII interacts with Mago-Y14 and thus provides a molecular link between Barentsz and the heterodimer. The mammalian Mago (also known as Magoh)-Y14 heterodimer is a component of the exon junction complex. The exon junction complex is deposited on spliced mRNAs and functions in nonsense-mediated mRNA decay (NMD), a surveillance mechanism that degrades mRNAs with premature translation-termination codons. We show that both Barentsz and eIF4AIII are essential for NMD in human cells. Thus, we have identified eIF4AIII and Barentsz as components of a conserved protein complex that is essential for mRNA localization in flies and NMD in mammals.
Collapse
Affiliation(s)
- Isabel M Palacios
- Wellcome Trust/Cancer Research UK Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | |
Collapse
|
45
|
Petkov PM, Zavadil J, Goetz D, Chu T, Carver R, Rogler CE, Bottinger EP, Shafritz DA, Dabeva MD. Gene expression pattern in hepatic stem/progenitor cells during rat fetal development using complementary DNA microarrays. Hepatology 2004; 39:617-27. [PMID: 14999680 DOI: 10.1002/hep.20088] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
To identify new and differentially expressed genes in rat fetal liver epithelial stem/progenitor cells during their proliferation, lineage commitment, and differentiation, we used a high throughput method-mouse complementary DNA (cDNA) microarrays-for analysis of gene expression. The gene expression pattern of rat hepatic cells was studied during their differentiation in vivo: from embryonic day (ED) 13 until adulthood. The differentially regulated genes were grouped into two clusters: a cluster of up-regulated genes comprised of 281 clones and a cluster of down-regulated genes comprised of 230 members. The expression of the latter increased abruptly between ED 16 and ED 17. Many of the overexpressed genes from the first cluster fall into distinct, differentially expressed functional groups: genes related to development, morphogenesis, and differentiation; calcium- and phospholipid-binding proteins and signal transducers; and cell adhesion, migration, and matrix proteins. Several other functional groups of genes that are initially down-regulated, then increase during development, also emerged: genes related to inflammation, blood coagulation, detoxification, serum proteins, amino acids, lipids, and carbohydrate metabolism. Twenty-eight genes overexpressed in fetal liver that were not detected in adult liver are suggested as potential markers for identification of liver progenitor cells. In conclusion, our data show that the gene expression program of fetal hepatoblasts differs profoundly from that of adult hepatocytes and that it is regulated in a specific manner with a major switch at ED 16 to 17, marking a dramatic change in the gene expression program during the transition of fetal liver progenitor cells from an undifferentiated to a differentiated state. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html).
Collapse
Affiliation(s)
- Petko M Petkov
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bono F, Ebert J, Unterholzner L, Güttler T, Izaurralde E, Conti E. Molecular insights into the interaction of PYM with the Mago-Y14 core of the exon junction complex. EMBO Rep 2004; 5:304-10. [PMID: 14968132 PMCID: PMC1299003 DOI: 10.1038/sj.embor.7400091] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 12/12/2003] [Accepted: 12/15/2003] [Indexed: 11/09/2022] Open
Abstract
The exon junction complex (EJC) is deposited on mRNAs as a consequence of splicing and influences postsplicing mRNA metabolism. The Mago-Y14 heterodimer is a core component of the EJC. Recently, the protein PYM has been identified as an interacting partner of Mago-Y14. Here we show that PYM is a cytoplasmic RNA-binding protein that is excluded from the nucleus by Crm1. PYM interacts directly with Mago-Y14 by means of its N-terminal domain. The crystal structure of the Drosophila ternary complex at 1.9 A resolution reveals that PYM binds Mago and Y14 simultaneously, capping their heterodimerization interface at conserved surface residues. Formation of this ternary complex is also observed with the human proteins. Mago residues involved in the interaction with PYM have been implicated in nonsense-mediated mRNA decay (NMD). Consistently, human PYM is active in NMD tethering assays. Together, these data suggest a role for PYM in NMD.
Collapse
Affiliation(s)
- Fulvia Bono
- European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Judith Ebert
- European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Leonie Unterholzner
- European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Thomas Güttler
- European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Elisa Izaurralde
- European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Elena Conti
- European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
- Tel: +49 6221 387 536; Fax: +49 6221 387 306; E-mail:
| |
Collapse
|
47
|
Longman D, Johnstone IL, Cáceres JF. The Ref/Aly proteins are dispensable for mRNA export and development in Caenorhabditis elegans. RNA (NEW YORK, N.Y.) 2003; 9:881-891. [PMID: 12810921 PMCID: PMC1370454 DOI: 10.1261/rna.5420503] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Accepted: 04/14/2003] [Indexed: 05/24/2023]
Abstract
The mRNA export pathway is highly conserved throughout evolution. We have used RNA interference (RNAi) to functionally characterize bona fide RNA export factors and components of the exon-exon junction complex (EJC) in Caenorhabditis elegans. RNAi of CeNXT1/p15, the binding partner of CeNXF1/TAP, caused early embryonic lethality, demonstrating an essential function of this gene during C. elegans development. Moreover, depletion of this protein resulted in nuclear accumulation of poly(A)(+) RNAs, supporting a direct role of NXT1/p15 in mRNA export in C. elegans. Previously, we have shown that RNAi of CeSRm160, a protein of the EJC complex, resulted in wild-type phenotype; in the present study, we demonstrate that RNAi of CeY14, another component of this complex, results in embryonic lethality. In contrast, depletion of the EJC component CeRNPS1 results in no discernible phenotype. Proteins of the REF/Aly family act as adaptor proteins mediating the recruitment of the mRNA export factor, NXF1/TAP, to mRNAs. The C. elegans genome encodes three members of the REF/Aly family. RNAi of individual Ref genes, or codepletion of two Ref genes in different combinations, resulted in wild-type phenotype. Simultaneous suppression of all three Ref genes did not compromise viability or progression through developmental stages in the affected progeny, and only caused a minor defect in larval mobility. Furthermore, no defects in mRNA export were observed upon simultaneous depletion of all three REF proteins. These results suggest the existence of multiple adaptor proteins that mediate mRNA export in C. elegans.
Collapse
Affiliation(s)
- Dasa Longman
- MRC Human Genetics Unit, Edinburgh EH4 2XU, Scotland, UK
| | | | | |
Collapse
|
48
|
Fribourg S, Gatfield D, Izaurralde E, Conti E. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat Struct Mol Biol 2003; 10:433-9. [PMID: 12730685 DOI: 10.1038/nsb926] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Accepted: 04/14/2003] [Indexed: 11/08/2022]
Abstract
Y14 and Mago are conserved eukaryotic proteins that associate with spliced mRNAs in the nucleus and remain associated at exon junctions during and after nuclear export. In the cytoplasm, Y14 is involved in mRNA quality control via the nonsense-mediated mRNA decay (NMD) pathway and, together with Mago, is involved in localization of osk (oskar) mRNA. We have determined the crystal structure of the complex between Drosophila melanogaster Y14 and Mago at a resolution of 2.5 A. The structure reveals an atypical mode of protein-protein recognition mediated by an RNA-binding domain (RBD). Instead of binding RNA, the RBD of Y14 engages its RNP1 and RNP2 motifs to bind Mago. Using structure-guided mutagenesis, we show that Mago is also a component of the NMD pathway, and that its association with Y14 is essential for function. Heterodimerization creates a single structural platform that interacts with the NMD machinery via phylogenetically conserved residues.
Collapse
Affiliation(s)
- Sébastien Fribourg
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
49
|
Abstract
BACKGROUND Splicing of pre-mRNA in eukaryotes imprints the resulting mRNA with a specific multiprotein complex, the exon-exon junction complex (EJC), at the sites of intron removal. The proteins of the EJC, Y14, Magoh, Aly/REF, RNPS1, Srm160, and Upf3, play critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. Y14 and Magoh are of particular interest because they remain associated with the mRNA in the same position after its export to the cytoplasm and require translation of the mRNA for removal. This tenacious, persistent, splicing-dependent, yet RNA sequence-independent, association suggests an important signaling function and must require distinct structural features for these proteins. RESULTS We describe the high-resolution structure and biochemical properties of the highly conserved human Y14 and Magoh proteins. Magoh has an unusual structure comprised of an extremely flat, six-stranded anti-parallel beta sheet packed against two helices. Surprisingly, Magoh binds with high affinity to the RNP motif RNA binding domain (RBD) of Y14 and completely masks its RNA binding surface. CONCLUSIONS The structure and properties of the Y14-Magoh complex suggest how the pre-mRNA splicing machinery might control the formation of a stable EJC-mRNA complex at splice junctions.
Collapse
Affiliation(s)
- Chi-Kong Lau
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Pre-mRNA splicing is essential for generating mature mRNA and is also important for subsequent mRNA export and quality control. The splicing history is imprinted on spliced mRNA through the deposition of a splicing-dependent multiprotein complex, the exon junction complex (EJC), at approximately 20 nucleotides upstream of exon-exon junctions. The EJC is a dynamic structure containing proteins functioning in the nuclear export and nonsense-mediated decay of spliced mRNAs. Mago nashi (Mago) and Y14 are core components of the EJC, and they form a stable heterodimer that strongly associates with spliced mRNA. Here we report a 1.85 A-resolution structure of the Drosophila Mago-Y14 complex. Surprisingly, the structure shows that the canonical RNA-binding surface of the Y14 RNA recognition motif (RRM) is involved in extensive protein-protein interactions with Mago. This unexpected finding provides important insights for understanding the molecular mechanisms of EJC assembly and RRM-mediated protein-protein interactions.
Collapse
Affiliation(s)
- Hang Shi
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|