1
|
Clarkson-Paredes C, Karl MT, Popratiloff A, Miller RH. A unique cell population expressing the Epithelial-Mesenchymal Transition-transcription factor Snail moderates microglial and astrocyte injury responses. PNAS NEXUS 2023; 2:pgad334. [PMID: 37901440 PMCID: PMC10612478 DOI: 10.1093/pnasnexus/pgad334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Insults to the central nervous system (CNS) elicit common glial responses including microglial activation evidenced by functional, morphological, and phenotypic changes, as well as astrocyte reactions including hypertrophy, altered process orientation, and changes in gene expression and function. However, the cellular and molecular mechanisms that initiate and modulate such glial response are less well-defined. Here we show that an adult cortical lesion generates a population of ultrastructurally unique microglial-like cells that express Epithelial-Mesenchymal Transcription factors including Snail. Knockdown of Snail with antisense oligonucleotides results in a postinjury increase in activated microglial cells, elevation in astrocyte reactivity with increased expression of C3 and phagocytosis, disruption of astrocyte junctions and neurovascular structure, increases in neuronal cell death, and reduction in cortical synapses. These changes were associated with alterations in pro-inflammatory cytokine expression. By contrast, overexpression of Snail through microglia-targeted an adeno-associated virus (AAV) improved many of the injury characteristics. Together, our results suggest that the coordination of glial responses to CNS injury is partly mediated by epithelial-mesenchymal transition-factors (EMT-Fsl).
Collapse
Affiliation(s)
- Cheryl Clarkson-Paredes
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street NW, Ross 735, Washington, DC 20052, USA
- Nanofabrication and Imaging Center, The George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Molly T Karl
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street NW, Ross 735, Washington, DC 20052, USA
| | - Anastas Popratiloff
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street NW, Ross 735, Washington, DC 20052, USA
- Nanofabrication and Imaging Center, The George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Robert H Miller
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street NW, Ross 735, Washington, DC 20052, USA
| |
Collapse
|
2
|
Almeida Machado Costa C, Wang XF, Ellsworth C, Deng WM. Polyploidy in development and tumor models in Drosophila. Semin Cancer Biol 2021; 81:106-118. [PMID: 34562587 DOI: 10.1016/j.semcancer.2021.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
Polyploidy, a cell status defined as more than two sets of genomic DNA, is a conserved strategy across species that can increase cell size and biosynthetic production, but the functional aspects of polyploidy are nuanced and vary across cell types. Throughout Drosophila developmental stages (embryo, larva, pupa and adult), polyploid cells are present in numerous organs and help orchestrate development while contributing to normal growth, well-being and homeostasis of the organism. Conversely, increasing evidence has shown that polyploid cells are prevalent in Drosophila tumors and play important roles in tumor growth and invasiveness. Here, we summarize the genes and pathways involved in polyploidy during normal and tumorigenic development, the mechanisms underlying polyploidization, and the functional aspects of polyploidy in development, homeostasis and tumorigenesis in the Drosophila model.
Collapse
Affiliation(s)
- Caique Almeida Machado Costa
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Calder Ellsworth
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States.
| |
Collapse
|
3
|
Gheisari E, Aakhte M, Müller HAJ. Gastrulation in Drosophila melanogaster: Genetic control, cellular basis and biomechanics. Mech Dev 2020; 163:103629. [PMID: 32615151 DOI: 10.1016/j.mod.2020.103629] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 01/31/2023]
Abstract
Gastrulation is generally understood as the morphogenetic processes that result in the spatial organization of the blastomere into the three germ layers, ectoderm, mesoderm and endoderm. This review summarizes our current knowledge of the morphogenetic mechanisms in Drosophila gastrulation. In addition to the events that drive mesoderm invagination and germband elongation, we pay particular attention to other, less well-known mechanisms including midgut invagination, cephalic furrow formation, dorsal fold formation, and mesoderm layer formation. This review covers topics ranging from the identification and functional characterization of developmental and morphogenetic control genes to the analysis of the physical properties of cells and tissues and the control of cell and tissue mechanics of the morphogenetic movements in the gastrula.
Collapse
Affiliation(s)
- Elham Gheisari
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany
| | - Mostafa Aakhte
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany
| | - H-Arno J Müller
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany.
| |
Collapse
|
4
|
Totonchi M, Hassani SN, Sharifi-Zarchi A, Tapia N, Adachi K, Arand J, Greber B, Sabour D, Araúzo-Bravo MJ, Walter J, Pakzad M, Gourabi H, Schöler HR, Baharvand H. Blockage of the Epithelial-to-Mesenchymal Transition Is Required for Embryonic Stem Cell Derivation. Stem Cell Reports 2017; 9:1275-1290. [PMID: 28919260 PMCID: PMC5639184 DOI: 10.1016/j.stemcr.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022] Open
Abstract
Pluripotent cells emanate from the inner cell mass (ICM) of the blastocyst and when cultivated under optimal conditions immortalize as embryonic stem cells (ESCs). The fundamental mechanism underlying ESC derivation has, however, remained elusive. Recently, we have devised a highly efficient approach for establishing ESCs, through inhibition of the MEK and TGF-β pathways. This regimen provides a platform for dissecting the molecular mechanism of ESC derivation. Via temporal gene expression analysis, we reveal key genes involved in the ICM to ESC transition. We found that DNA methyltransferases play a pivotal role in efficient ESC generation. We further observed a tight correlation between ESCs and preimplantation epiblast cell-related genes and noticed that fundamental events such as epithelial-to-mesenchymal transition blockage play a key role in launching the ESC self-renewal program. Our study provides a time course transcriptional resource highlighting the dynamics of the gene regulatory network during the ICM to ESC transition.
Collapse
Affiliation(s)
- Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Ali Sharifi-Zarchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Chitsaz Lab, Department of Computer Science, Colorado State University, Fort Collins 80523, CO, USA
| | - Natalia Tapia
- Institute of Biomedicine of Valencia, Spanish National Research Council, Jaime Roig 11, 46010 Valencia, Spain
| | - Kenjiro Adachi
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Julia Arand
- University of Saarland, FR 8.3, Biological Sciences, Genetics/Epigenetics, Campus A2.4, 66123 Saarbrücken, Germany
| | - Boris Greber
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany; Chemical Genomics Centre of the Max Planck Society, Dortmung, Germany
| | - Davood Sabour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
| | - Jörn Walter
- University of Saarland, FR 8.3, Biological Sciences, Genetics/Epigenetics, Campus A2.4, 66123 Saarbrücken, Germany
| | - Mohammad Pakzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
5
|
Ferraro T, Esposito E, Mancini L, Ng S, Lucas T, Coppey M, Dostatni N, Walczak AM, Levine M, Lagha M. Transcriptional Memory in the Drosophila Embryo. Curr Biol 2016; 26:212-218. [PMID: 26748851 PMCID: PMC4970865 DOI: 10.1016/j.cub.2015.11.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/05/2015] [Accepted: 11/12/2015] [Indexed: 02/04/2023]
Abstract
Transmission of active transcriptional states from mother to daughter cells has the potential to foster precision in the gene expression programs underlying development. Such transcriptional memory has been specifically proposed to promote rapid reactivation of complex gene expression profiles after successive mitoses in Drosophila development [1]. By monitoring transcription in living Drosophila embryos, we provide the first evidence for transcriptional memory in animal development. We specifically monitored the activities of stochastically expressed transgenes in order to distinguish active and inactive mother cells and the behaviors of their daughter nuclei after mitosis. Quantitative analyses reveal that there is a 4-fold higher probability for rapid reactivation after mitosis when the mother experienced transcription. Moreover, memory nuclei activate transcription twice as fast as neighboring inactive mothers, thus leading to augmented levels of gene expression. We propose that transcriptional memory is a mechanism of precision, which helps coordinate gene activity during embryogenesis.
Collapse
Affiliation(s)
- Teresa Ferraro
- Institut Curie, PSL Research University, UMR 3664/UMR 168, Paris 75248, France; CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; Sorbonne Universités, UPMC University Paris 06, UMR 3664/UMR 168, Paris 75248, France; PSL, Ecole Normale Supérieure, UMR 8549, Paris 75005, France
| | - Emilia Esposito
- Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA; Lewis-Sigler Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Laure Mancini
- Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sam Ng
- Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tanguy Lucas
- Institut Curie, PSL Research University, UMR 3664/UMR 168, Paris 75248, France; CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; Sorbonne Universités, UPMC University Paris 06, UMR 3664/UMR 168, Paris 75248, France
| | - Mathieu Coppey
- Institut Curie, PSL Research University, UMR 3664/UMR 168, Paris 75248, France; CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; Sorbonne Universités, UPMC University Paris 06, UMR 3664/UMR 168, Paris 75248, France
| | - Nathalie Dostatni
- Institut Curie, PSL Research University, UMR 3664/UMR 168, Paris 75248, France; CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; Sorbonne Universités, UPMC University Paris 06, UMR 3664/UMR 168, Paris 75248, France
| | - Aleksandra M Walczak
- CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; PSL, Ecole Normale Supérieure, UMR 8549, Paris 75005, France
| | - Michael Levine
- Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA; Lewis-Sigler Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Mounia Lagha
- Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA; IGMM, CNRS, UMR 5535, Montpellier 34293, France.
| |
Collapse
|
6
|
Carrell SN, Reeves GT. Imaging the dorsal-ventral axis of live and fixed Drosophila melanogaster embryos. Methods Mol Biol 2015; 1189:63-78. [PMID: 25245687 DOI: 10.1007/978-1-4939-1164-6_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Optimal imaging conditions are of critical importance in developmental biology, as much of the data in the discipline is acquired through microscopy. However, imaging deep sections of tissue, especially live tissue, can be a technical challenge due to light scattering and difficulties in mounting the sample. In particular, capturing high-quality images of dorsal-ventral cross sections requires "end-on" mounting to orient the anterior-posterior axis vertically. Here we present methods to mount and image dorsal-ventral cross sections of both live and fixed Drosophila melanogaster embryos. Our methods have the advantages of being rapid, allowing deep optical sections, and not requiring expensive, specialized equipment.
Collapse
Affiliation(s)
- Sophia N Carrell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | | |
Collapse
|
7
|
Rembold M, Ciglar L, Yáñez-Cuna JO, Zinzen RP, Girardot C, Jain A, Welte MA, Stark A, Leptin M, Furlong EEM. A conserved role for Snail as a potentiator of active transcription. Genes Dev 2014; 28:167-81. [PMID: 24402316 PMCID: PMC3909790 DOI: 10.1101/gad.230953.113] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The transcription factors of the Snail family are key regulators of epithelial-mesenchymal transitions, cell morphogenesis, and tumor metastasis. Since its discovery in Drosophila ∼25 years ago, Snail has been extensively studied for its role as a transcriptional repressor. Here we demonstrate that Drosophila Snail can positively modulate transcriptional activation. By combining information on in vivo occupancy with expression profiling of hand-selected, staged snail mutant embryos, we identified 106 genes that are potentially directly regulated by Snail during mesoderm development. In addition to the expected Snail-repressed genes, almost 50% of Snail targets showed an unanticipated activation. The majority of "Snail-activated" genes have enhancer elements cobound by Twist and are expressed in the mesoderm at the stages of Snail occupancy. Snail can potentiate Twist-mediated enhancer activation in vitro and is essential for enhancer activity in vivo. Using a machine learning approach, we show that differentially enriched motifs are sufficient to predict Snail's regulatory response. In silico mutagenesis revealed a likely causative motif, which we demonstrate is essential for enhancer activation. Taken together, these data indicate that Snail can potentiate enhancer activation by collaborating with different activators, providing a new mechanism by which Snail regulates development.
Collapse
Affiliation(s)
- Martina Rembold
- Institute of Genetics, University of Cologne, 50674 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Multiple regulatory safeguards confine the expression of the GATA factor Serpent to the hemocyte primordium within the Drosophila mesoderm. Dev Biol 2013; 386:272-9. [PMID: 24360907 DOI: 10.1016/j.ydbio.2013.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 11/23/2022]
Abstract
serpent (srp) encodes a GATA-factor that controls various aspects of embryogenesis in Drosophila, such as fatbody development, gut differentiation and hematopoiesis. During hematopoiesis, srp expression is required in the embryonic head mesoderm and the larval lymph gland, the two known hematopoietic tissues of Drosophila, to obtain mature hemocytes. srp expression in the hemocyte primordium is known to depend on snail and buttonhead, but the regulatory complexity that defines the primordium has not been addressed yet. Here, we find that srp is sufficient to transform trunk mesoderm into hemocytes. We identify two disjoint cis-regulatory modules that direct the early expression in the hemocyte primordium and the late expression in mature hemocytes and lymph gland, respectively. During embryonic hematopoiesis, a combination of snail, buttonhead, empty spiracles and even-skipped confines the mesodermal srp expression to the head region. This restriction to the head mesoderm is crucial as ectopic srp in mesodermal precursors interferes with the development of mesodermal derivates and promotes hemocytes and fatbody development. Thus, several genes work in a combined fashion to restrain early srp expression to the head mesoderm in order to prevent expansion of the hemocyte primordium.
Collapse
|
9
|
Lagha M, Bothma JP, Esposito E, Ng S, Stefanik L, Tsui C, Johnston J, Chen K, Gilmour DS, Zeitlinger J, Levine MS. Paused Pol II coordinates tissue morphogenesis in the Drosophila embryo. Cell 2013; 153:976-87. [PMID: 23706736 DOI: 10.1016/j.cell.2013.04.045] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/23/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022]
Abstract
Paused RNA polymerase (Pol II) is a pervasive feature of Drosophila embryos and mammalian stem cells, but its role in development is uncertain. Here, we demonstrate that a spectrum of paused Pol II determines the "time to synchrony"-the time required to achieve coordinated gene expression across the cells of a tissue. To determine whether synchronous patterns of gene activation are significant in development, we manipulated the timing of snail expression, which controls the coordinated invagination of ∼1,000 mesoderm cells during gastrulation. Replacement of the strongly paused snail promoter with moderately paused or nonpaused promoters causes stochastic activation of snail expression and increased variability of mesoderm invagination. Computational modeling of the dorsal-ventral patterning network recapitulates these variable and bistable gastrulation profiles and emphasizes the importance of timing of gene activation in development. We conclude that paused Pol II and transcriptional synchrony are essential for coordinating cell behavior during morphogenesis.
Collapse
Affiliation(s)
- Mounia Lagha
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ochoa SD, Salvador S, LaBonne C. The LIM adaptor protein LMO4 is an essential regulator of neural crest development. Dev Biol 2011; 361:313-25. [PMID: 22119055 DOI: 10.1016/j.ydbio.2011.10.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/18/2011] [Accepted: 10/21/2011] [Indexed: 12/20/2022]
Abstract
The neural crest (NC) is a population of multipotent stem cell-like progenitors that arise at the neural plate border in vertebrates and migrate extensively before giving rise to diverse derivatives. A number of components of the neural crest gene regulatory network (NC-GRN) are used reiteratively to control multiple steps in the development of these cells. It is therefore important to understand the mechanisms that control the distinct function of reiteratively used factors in different cellular contexts, and an important strategy for doing so is to identify and characterize the regulatory factors they interact with. Here we report that the LIM adaptor protein, LMO4, is a Slug/Snail interacting protein that is essential for NC development. LMO4 is expressed in NC forming regions of the embryo, as well as in the central nervous system and the cranial placodes. LMO4 is necessary for normal NC development as morpholino-mediated knockdown of this factor leads to loss of NC precursor formation at the neural plate border. Misexpression of LMO4 leads to ectopic expression of some neural crest markers, but a reduction in the expression of others. LMO4 binds directly to Slug and Snail, but not to other components of the NC-GRN and can modulate Slug-mediated neural crest induction, suggesting a mechanistic link between these factors. Together these findings implicate LMO4 as a critical component of the NC-GRN and shed new light on the control of Snail family repressors.
Collapse
Affiliation(s)
- Stacy D Ochoa
- Dept. of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
11
|
Ismat A, Schaub C, Reim I, Kirchner K, Schultheis D, Frasch M. HLH54F is required for the specification and migration of longitudinal gut muscle founders from the caudal mesoderm of Drosophila. Development 2010; 137:3107-17. [PMID: 20736287 DOI: 10.1242/dev.046573] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HLH54F, the Drosophila ortholog of the vertebrate basic helix-loop-helix domain-encoding genes capsulin and musculin, is expressed in the founder cells and developing muscle fibers of the longitudinal midgut muscles. These cells descend from the posterior-most portion of the mesoderm, termed the caudal visceral mesoderm (CVM), and migrate onto the trunk visceral mesoderm prior to undergoing myoblast fusion and muscle fiber formation. We show that HLH54F expression in the CVM is regulated by a combination of terminal patterning genes and snail. We generated HLH54F mutations and show that this gene is crucial for the specification, migration and survival of the CVM cells and the longitudinal midgut muscle founders. HLH54F mutant embryos, larvae, and adults lack all longitudinal midgut muscles, which causes defects in gut morphology and integrity. The function of HLH54F as a direct activator of gene expression is exemplified by our analysis of a CVM-specific enhancer from the Dorsocross locus, which requires combined inputs from HLH54F and Biniou in a feed-forward fashion. We conclude that HLH54F is the earliest specific regulator of CVM development and that it plays a pivotal role in all major aspects of development and differentiation of this largely twist-independent population of mesodermal cells.
Collapse
Affiliation(s)
- Afshan Ismat
- Mount Sinai School of Medicine, Department of Molecular, Cell and Developmental Biology (currently Developmental and Regenerative Biology), Box 1020, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
12
|
Kerner P, Hung J, Béhague J, Le Gouar M, Balavoine G, Vervoort M. Insights into the evolution of the snail superfamily from metazoan wide molecular phylogenies and expression data in annelids. BMC Evol Biol 2009; 9:94. [PMID: 19426549 PMCID: PMC2688512 DOI: 10.1186/1471-2148-9-94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 05/09/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An important issue concerning the evolution of duplicated genes is to understand why paralogous genes are retained in a genome even though the most likely fate for a redundant duplicated gene is nonfunctionalization and thereby its elimination. Here we study a complex superfamily generated by gene duplications, the snail related genes that play key roles during animal development. We investigate the evolutionary history of these genes by genomic, phylogenetic, and expression data studies. RESULTS We systematically retrieved the full complement of snail related genes in several sequenced genomes. Through phylogenetic analysis, we found that the snail superfamily is composed of three ancestral families, snail, scratchA and scratchB. Analyses of the organization of the encoded proteins point out specific molecular signatures, indicative of functional specificities for Snail, ScratchA and ScratchB proteins. We also report the presence of two snail genes in the annelid Platynereis dumerilii, which have distinct expression patterns in the developing mesoderm, nervous system, and foregut. The combined expression of these two genes is identical to that of two independently duplicated snail genes in another annelid, Capitella spI, but different aspects of the expression patterns are differentially shared among paralogs of Platynereis and Capitella. CONCLUSION Our study indicates that the snail and scratchB families have expanded through multiple independent gene duplications in the different bilaterian lineages, and highlights potential functional diversifications of Snail and ScratchB proteins following duplications, as, in several instances, paralogous proteins in a given species show different domain organizations. Comparisons of the expression pattern domains of the two Platynereis and Capitella snail paralogs provide evidence for independent subfunctionalization events which have occurred in these two species. We propose that the snail related genes may be especially prone to subfunctionalization, and this would explain why the snail superfamily underwent so many independent duplications leading to maintenance of functional paralogs.
Collapse
Affiliation(s)
- Pierre Kerner
- Programme Development and Neurobiology, Institut Jacques Monod, UMR 7592 CNRS/Université Paris Diderot – Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
- UFR des Sciences du Vivant, Université Paris Diderot – Paris 7, 5, rue Marie-Andrée Lagroua Weill-Hallé, 75205 Paris Cedex 13, France
| | - Johanne Hung
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
| | - Julien Béhague
- Programme Development and Neurobiology, Institut Jacques Monod, UMR 7592 CNRS/Université Paris Diderot – Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
| | - Martine Le Gouar
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
| | - Guillaume Balavoine
- Programme Development and Neurobiology, Institut Jacques Monod, UMR 7592 CNRS/Université Paris Diderot – Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
| | - Michel Vervoort
- Programme Development and Neurobiology, Institut Jacques Monod, UMR 7592 CNRS/Université Paris Diderot – Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
- UFR des Sciences du Vivant, Université Paris Diderot – Paris 7, 5, rue Marie-Andrée Lagroua Weill-Hallé, 75205 Paris Cedex 13, France
| |
Collapse
|
13
|
Drosophila Ebi mediates Snail-dependent transcriptional repression through HDAC3-induced histone deacetylation. EMBO J 2008; 27:898-909. [PMID: 18309295 DOI: 10.1038/emboj.2008.26] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 02/07/2008] [Indexed: 01/14/2023] Open
Abstract
The Drosophila Snail protein is a transcriptional repressor that is necessary for mesoderm formation. Here, we identify the Ebi protein as an essential Snail co-repressor. In ebi mutant embryos, Snail target genes are derepressed in the presumptive mesoderm. Ebi and Snail interact both genetically and physically. We identify a Snail domain that is sufficient for Ebi binding, and which functions independently of another Snail co-repressor, Drosophila CtBP. This Ebi interaction domain is conserved among all insect Snail-related proteins, is a potent repression domain and is required for Snail function in transgenic embryos. In mammalian cells, the Ebi homologue TBL1 is part of the NCoR/SMRT-HDAC3 (histone deacetylase 3) co-repressor complex. We found that Ebi interacts with Drosophila HDAC3, and that HDAC3 knockdown or addition of a HDAC inhibitor impairs Snail-mediated repression in cells. In the early embryo, Ebi is recruited to a Snail target gene in a Snail-dependent manner, which coincides with histone hypoacetylation. Our results demonstrate that Snail requires the combined activities of Ebi and CtBP, and indicate that histone deacetylation is a repression mechanism in early Drosophila development.
Collapse
|
14
|
Aracena J, González M, Zuñiga A, Mendez MA, Cambiazo V. Regulatory network for cell shape changes during Drosophila ventral furrow formation. J Theor Biol 2006; 239:49-62. [PMID: 16139845 DOI: 10.1016/j.jtbi.2005.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 07/15/2005] [Accepted: 07/18/2005] [Indexed: 01/04/2023]
Abstract
Rapid and sequential cell shape changes take place during the formation of the ventral furrow (VF) at the beginning of Drosophila gastrulation. At the cellular level, this morphogenetic event demands close coordination of the proteins involved in actin cytoskeletal reorganization. In order to construct a regulatory network that describes these cell shape changes, we have used published genetic and molecular data for 18 genes encoding transcriptional regulators and signaling pathway components. Based on the dynamic behavior of this network we explored the hypothesis that the combination of three recognizable phenotypes describing wild type or mutant cell types, during VF invagination, correspond to different activation states of a specific set of these gene products, which are point attractors of the regulatory network. From our results, we recognize missing components in the regulatory network and suggest alternative pathways in the regulation of cell shape changes during VF formation.
Collapse
Affiliation(s)
- Julio Aracena
- Centro de Modelamiento Matemático, UMR-CNRS 2071, Universidad de Chile, Casilla 170-3, Santiago, Chile
| | | | | | | | | |
Collapse
|
15
|
Ashraf SI, Ganguly A, Roote J, Ip YT. Worniu, a Snail family zinc-finger protein, is required for brain development in Drosophila. Dev Dyn 2005; 231:379-86. [PMID: 15366015 DOI: 10.1002/dvdy.20130] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The Snail family of zinc-finger transcriptional repressors is essential for morphogenetic cell movements, mesoderm formation, and neurogenesis during embryonic development. These proteins also control cell cycle, cell death, and cancer progression. In Drosophila, three members of this protein family, Snail, Escargot, and Worniu, have essential but redundant functions in asymmetric cell division of neuroblasts. In addition, Snail is critical for early mesoderm formation and Escargot is required for maintaining diploidy in wing imaginal disc cells. In this report, we demonstrate that Worniu plays a role in brain development. We show that alleles of the l(2)35Da complementation group are mutants of worniu. The developing larvae of these mutant alleles fail to shorten their brainstems. The brain phenotype, as well as the lethality, of these mutants can be rescued by worniu transgenes. Moreover, RNAi experiments targeting the worniu transcript show the same nonshortening phenotype in larval brains. worniu is expressed in the neuroblasts of brain hemispheres and ventral ganglions. The results suggest that the loss of Worniu function within the neuroblasts ultimately causes the larval brainstem to fail to go through shortening during development.
Collapse
Affiliation(s)
- Shovon I Ashraf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
16
|
De Craene B, van Roy F, Berx G. Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 2005; 17:535-47. [PMID: 15683729 DOI: 10.1016/j.cellsig.2004.10.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 10/08/2004] [Indexed: 10/26/2022]
Abstract
During development and carcinogenesis, the gradient of different molecular factors, the availability of corresponding receptors and the interplay between different signalling cascades combine to orchestrate the different stages. A good understanding of both developmental processes and oncogenesis leads to new insights into normal and aberrant regulation, processes that share some mutual key players. In this review, we will focus on the Snail family of transcription factors. These proteins, which share an evolutionarily conserved role in invertebrates and vertebrates, are implicated in several developmental processes, but are involved in carcinogenesis as well. We will highlight the different signalling cascades leading to the expression of Snail and Slug and how these factors are regulated on the transcriptional level. Then we will focus on how these factors execute their functions by repression of the numerous target genes that have been described to date.
Collapse
Affiliation(s)
- Bram De Craene
- Unit of Molecular and Cellular Oncology, Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
| | | | | |
Collapse
|
17
|
Handel K, Basal A, Fan X, Roth S. Tribolium castaneum twist: gastrulation and mesoderm formation in a short-germ beetle. Dev Genes Evol 2005; 215:13-31. [PMID: 15645317 DOI: 10.1007/s00427-004-0446-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 10/15/2004] [Indexed: 10/26/2022]
Abstract
Mesoderm formation has been extensively analyzed in the long-germ insect Drosophila melanogaster. In Drosophila, both the invagination and specification of the mesoderm is controlled by twist. Here we present a detailed description of mesoderm formation and twist regulation for the short-germ beetle Tribolium castaneum. In contrast to Drosophila, (1) the presumptive mesodermal cells of Tribolium are part of a mitotic domain and divide prior to ventral furrow formation, (2) ventral furrow formation progresses from posterior to anterior, (3) the number of cell layers within the furrow changes from multilayered in caudal to single layered in cephalic regions, and (4) there is a continuous production of mesodermal cells after gastrulation as new segments arise from the posterior growth zone. Tribolium twist (Tc-twist) is initially expressed in all presumptive mesodermal cells; however, after invagination, expression is maintained only in particular locations, which include the anterior compartments of the cephalic segments and a patch of cells at the posterior rim of the growth zone. The growth zone is multilayered with its inner cell layer being continuous with the mesoderm of the newly forming segments where twist expression is re-initiated anterior to the emerging engrailed stripes. A genomic region of Tc-twist was identified which drives ventral expression of a reporter construct in Drosophila. The expression of this Tc-twist construct in the background of Drosophila maternal mutations suggests that the dorsoventral system regulates Tc-twist, but that differences exist in regulation of the Dm-twist and Tc-twist genes by the terminal system.
Collapse
Affiliation(s)
- Klaus Handel
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | | | | | | |
Collapse
|
18
|
Hemavathy K, Hu X, Ashraf SI, Small SJ, Ip YT. The repressor function of snail is required for Drosophila gastrulation and is not replaceable by Escargot or Worniu. Dev Biol 2004; 269:411-20. [PMID: 15110709 DOI: 10.1016/j.ydbio.2004.01.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 01/18/2004] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
Mesoderm formation in the Drosophila embryo depends on the maternal Toll signaling pathway. The Toll pathway establishes the Dorsal nuclear gradient, which regulates many zygotic genes to establish the mesodermal fate and promote the invagination of ventral cells. An important target gene of Dorsal is snail, which is required for proper mesoderm invagination. The Snail protein contains five zinc fingers and is a transcriptional repressor. However, it is not clear whether repressing target genes is a requirement for Snail to control ventral invagination. To examine such requirement, we conducted a series of genetic rescue experiments in snail mutant embryos. Snail, Worniu, and Escargot are closely related zinc-finger proteins and have equal functions during neuroblast development. However, among these three proteins, only Snail can rescue the mesoderm invagination phenotype. Moreover, the ability of various Snail mutant constructs to repress gene expression correlates with their ability to control invagination. This unique property of Snail in mesoderm formation can be attributed mostly to the CtBP co-repressor interaction motifs in the N-terminus, not to the C-terminal DNA-binding zinc fingers. Ectopic expression of Snail outside the ventral domain is not sufficient to induce cell movement even though repression of target genes still occurs. Together, the results show that the repressor function of Snail is essential for gastrulation. The repression of target genes by Snail may permit other factors in the ventral cells to positively promote mesoderm invagination.
Collapse
Affiliation(s)
- Kirugaval Hemavathy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
The morphogenetic process of gastrulation requires multiple inputs and intricate coordination. Genetic analyses demonstrate critical roles of vertebrate and invertebrate Snail proteins in this process. Together with other regulatory molecules including Wnt and BMP, the Snail pathways specify cell fate and reorganize cellular machineries to coordinate morphological changes and cell movements during gastrulation.
Collapse
Affiliation(s)
- Y Tony Ip
- Program in Molecular Medicine and Department of Cell Biology University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | |
Collapse
|
20
|
Guru SC, Prasad NB, Shin EJ, Hemavathy K, Lu J, Ip YT, Agarwal SK, Marx SJ, Spiegel AM, Collins FS, Oliver B, Chandrasekharappa SC. Characterization of a MEN1 ortholog from Drosophila melanogaster. Gene 2001; 263:31-8. [PMID: 11223240 DOI: 10.1016/s0378-1119(00)00562-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a familial cancer syndrome characterized by tumors of the parathyroid, entero-pancreatic neuroendocrine and pituitary tissues and caused by inactivating mutations in the MEN1 gene. Menin, the 610-amino acid nuclear protein encoded by MEN1, binds to the transcription factor JunD and can repress JunD-induced transcription. We report here the identification of a MEN1 ortholog in Drosophila melanogaster, Menin1, that encodes a 763 amino acid protein sharing 46% identity with human menin. Additionally, 69% of the missense mutations and in-frame deletions reported in MEN1 patients appear in amino acid residues that are identical in the Drosophila and human protein, suggesting the importance of the conserved regions. Drosophila Menin1 gene transcripts use alternative polyadenylation sites resulting in 4.3 and 5-kb messages. The 4.3-kb transcript appears to be largely maternal, while the 5-kb transcript appears mainly zygotic. The binding of Drosophila menin to human JunD or Drosophila Jun could not be demonstrated by the yeast two-hybrid analysis. The identification of the MEN1 ortholog from Drosophila melanogaster will provide an opportunity to utilize Drosophila genetics to enhance our understanding of the function of human menin.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Embryo, Nonmammalian/metabolism
- Embryonic Development
- Exons
- Female
- Gene Expression Regulation, Developmental
- Genes, Insect/genetics
- Glutathione Transferase/genetics
- Glutathione Transferase/metabolism
- Humans
- In Situ Hybridization
- Introns
- Male
- Mice
- Molecular Sequence Data
- Neoplasm Proteins/genetics
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-jun/genetics
- Proto-Oncogene Proteins c-jun/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology
- Transcription, Genetic
- Two-Hybrid System Techniques
- Zebrafish
Collapse
Affiliation(s)
- S C Guru
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, 49 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wakabayashi-Ito N, Belvin MP, Bluestein DA, Anderson KV. fusilli, an essential gene with a maternal role in Drosophila embryonic dorsal-ventral patterning. Dev Biol 2001; 229:44-54. [PMID: 11133153 DOI: 10.1006/dbio.2000.9954] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Drosophila fusilli (fus) gene was identified in a genetic screen for dominant maternal enhancers of an unusual dorsalizing mutation in the cactus gene, cact(E10). While females that are heterozygous for the cact(E10) allele produce embryos with wild-type dorsal-ventral patterning, more than 90% of the embryos produced by females that are heterozygous for both cact(E10) and the fus(1) mutation are weakly dorsalized. Loss of fusilli activity causes lethality during embryogenesis but not dorsal-ventral patterning defects, indicating that fusilli is important in more than one developmental process. The fusilli gene encodes a protein with RNA binding motifs related to those in mammalian hnRNP F and H, which play roles in regulated RNA splicing. The fusilli RNA is not present in the oocyte or early embryo, and germ-line clones of fusilli mutations have no maternal effect on dorsal-ventral patterning, indicating that the fusilli maternal effect does not depend on germ-line expression of the gene. Because the fusilli RNA is present in ovarian follicle cells, we propose that fusilli acts downstream of the Drosophila EGF receptor to control the biogenesis of follicle cell transcripts that control the initial dorsal-ventral asymmetry of the embryo.
Collapse
Affiliation(s)
- N Wakabayashi-Ito
- Division of Genetics, University of California, Berkeley, California 94720-3200, USA
| | | | | | | |
Collapse
|
22
|
Hemavathy K, Ashraf SI, Ip YT. Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Gene 2000; 257:1-12. [PMID: 11054563 DOI: 10.1016/s0378-1119(00)00371-1] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The existence of homologous genes in diverse species is intriguing. A detailed comparison of the structure and function of gene families may provide important insights into gene regulation and evolution. An unproven assumption is that homologous genes have a common ancestor. During evolution, the original function of the ancestral gene might be retained in the different species which evolved along separate courses. In addition, new functions could have developed as the sequence began to diverge. This may also explain partly the presence of multipurpose genes, which have multiple functions at different stages of development and in different tissues. The Drosophila gene snail is a multipurpose gene; it has been demonstrated that snail is critical for mesoderm formation, for CNS development, and for wing cell fate determination. The related vertebrate Snail and Slug genes have also been proposed to participate in mesoderm formation, neural crest cell migration, carcinogenesis, and apoptosis. In this review, we will discuss the Snail/Slug family of regulators in species ranging from insect to human. We will present the protein structures, expression patterns, and functions based on molecular genetic analyses. We will also include the studies that helped to elucidate the molecular mechanisms of repression and the relationship between the conserved and divergent functions of these genes. Moreover, the studies may enable us to trace the evolution of this gene family.
Collapse
Affiliation(s)
- K Hemavathy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
23
|
Araujo H, Bier E. sog and dpp exert opposing maternal functions to modify toll signaling and pattern the dorsoventral axis of the Drosophila embryo. Development 2000; 127:3631-44. [PMID: 10903186 DOI: 10.1242/dev.127.16.3631] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The short gastrulation (sog) and decapentaplegic (dpp) genes function antagonistically in the early Drosophila zygote to pattern the dorsoventral (DV) axis of the embryo. This interplay between sog and dpp determines the extent of the neuroectoderm and subdivides the dorsal ectoderm into two territories. Here, we present evidence that sog and dpp also play opposing roles during oogenesis in patterning the DV axis of the embryo. We show that maternally produced Dpp increases levels of the I(kappa)B-related protein Cactus and reduces the magnitude of the nuclear concentration gradient of the NF(kappa)B-related Dorsal protein, and that Sog limits this effect. We present evidence suggesting that Dpp signaling increases Cactus levels by reducing a signal-independent component of Cactus degradation. Epistasis experiments reveal that sog and dpp act downstream of, or in parallel to, the Toll receptor to reduce translocation of Dorsal protein into the nucleus. These results broaden the role previously defined for sog and dpp in establishing the embryonic DV axis and reveal a novel form of crossregulation between the NF(kappa)B and TGF(beta) signaling pathways in pattern formation.
Collapse
Affiliation(s)
- H Araujo
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | | |
Collapse
|
24
|
Hemavathy K, Guru SC, Harris J, Chen JD, Ip YT. Human Slug is a repressor that localizes to sites of active transcription. Mol Cell Biol 2000; 20:5087-95. [PMID: 10866665 PMCID: PMC85958 DOI: 10.1128/mcb.20.14.5087-5095.2000] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Snail/Slug family proteins have been identified in diverse species of both vertebrates and invertebrates. The proteins contain four to six zinc fingers and function as DNA-binding transcriptional regulators. Various members of the family have been demonstrated to regulate cell movement, neural cell fate, left-right asymmetry, cell cycle, and apoptosis. However, the molecular mechanisms of how these regulators function and the target genes involved are largely unknown. In this report, we demonstrate that human Slug (hSlug) is a repressor and modulates both activator-dependent and basal transcription. The repression depends on the C-terminal DNA-binding zinc fingers and on a separable repression domain located in the N terminus. This domain may recruit histone deacetylases to modify the chromatin and effect repression. Protein localization study demonstrates that hSlug is present in discrete foci in the nucleus. This subnuclear pattern does not colocalize with the PML foci or the coiled bodies. Instead, the hSlug foci overlap extensively with areas of the SC-35 staining, some of which have been suggested to be sites of active splicing or transcription. These results lead us to postulate that hSlug localizes to target promoters, where activation occurs, to repress basal and activator-mediated transcription.
Collapse
Affiliation(s)
- K Hemavathy
- Program in Molecular Medicine, Department of Cell Biology and University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
25
|
Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2:76-83. [PMID: 10655586 DOI: 10.1038/35000025] [Citation(s) in RCA: 2777] [Impact Index Per Article: 111.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Snail family of transcription factors has previously been implicated in the differentiation of epithelial cells into mesenchymal cells (epithelial-mesenchymal transitions) during embryonic development. Epithelial-mesenchymal transitions are also determinants of the progression of carcinomas, occurring concomitantly with the cellular acquisition of migratory properties following downregulation of expression of the adhesion protein E-cadherin. Here we show that mouse Snail is a strong repressor of transcription of the E-cadherin gene. Epithelial cells that ectopically express Snail adopt a fibroblastoid phenotype and acquire tumorigenic and invasive properties. Endogenous Snail protein is present in invasive mouse and human carcinoma cell lines and tumours in which E-cadherin expression has been lost. Therefore, the same molecules are used to trigger epithelial-mesenchymal transitions during embryonic development and in tumour progression. Snail may thus be considered as a marker for malignancy, opening up new avenues for the design of specific anti-invasive drugs.
Collapse
Affiliation(s)
- A Cano
- Instituto de Investigaciones Biomédicas, Arturo Duperier 4, 28029 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Postigo AA, Ward E, Skeath JB, Dean DC. zfh-1, the Drosophila homologue of ZEB, is a transcriptional repressor that regulates somatic myogenesis. Mol Cell Biol 1999; 19:7255-63. [PMID: 10490660 PMCID: PMC84718 DOI: 10.1128/mcb.19.10.7255] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
zfh-1 is a member of the zfh family of proteins, which all contain zinc finger and homeodomains. The roles and mechanisms of action of most family members are still unclear. However, we have shown previously that another member of the family, the vertebrate ZEB protein, is a transcriptional repressor that binds E box sequences and inhibits myotube formation in cell culture assays. zfh-1 is downregulated in Drosophila embryos prior to myogenesis. Embryos with zfh-1 loss-of-function mutation show alterations in the number and position of embryonic somatic muscles, suggesting that zfh-1 could have a regulatory role in myogenesis. However, nothing is known about the nature or mechanism of action of zfh-1. Here, we demonstrate that zfh-1 is a transcription factor that binds E box sequences and acts as an active transcriptional repressor. When zfh-1 expression was maintained in the embryo beyond its normal temporal pattern of downregulation, the differentiation of somatic but not visceral muscle was blocked. One potential target of zfh-1 in somatic myogenesis could be the myogenic factor mef2. mef2 is known to be regulated by the transcription factor twist, and we show here that zfh-1 binds to sites in the mef2 upstream regulatory region and inhibits twist transcriptional activation. Even though there is little sequence similarity in the repressor domains of ZEB and zfh-1, we present evidence that zfh-1 is the functional homologue of ZEB and that the role of these proteins in myogenesis is conserved from Drosophila to mammals.
Collapse
Affiliation(s)
- A A Postigo
- Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
27
|
Kusch T, Reuter R. Functions for Drosophila brachyenteron and forkhead in mesoderm specification and cell signalling. Development 1999; 126:3991-4003. [PMID: 10457009 DOI: 10.1242/dev.126.18.3991] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The visceral musculature of the larval midgut of Drosophila has a lattice-type structure and consists of an inner stratum of circular fibers and an outer stratum of longitudinal fibers. The longitudinal fibers originate from the posterior tip of the mesoderm anlage, which has been termed the caudal visceral mesoderm (CVM). In this study, we investigate the specification of the CVM and particularly the role of the Drosophila Brachyury-homologue brachyenteron. Supported by fork head, brachyenteron mediates the early specification of the CVM along with zinc-finger homeodomain protein-1. This is the first function described for brachyenteron or fork head in the mesoderm of Drosophila. The mode of cooperation resembles the interaction of the Xenopus homologues Xbra and Pintallavis. Another function of brachyenteron is to establish the surface properties of the CVM cells, which are essential for their orderly migration along the trunk-derived visceral mesoderm. During this movement, the CVM cells, under the control of brachyenteron, induce the formation of one muscle/pericardial precursor cell in each parasegment. We propose that the functions of brachyenteron in mesodermal development of Drosophila are comparable to the roles of the vertebrate Brachyury genes during gastrulation.
Collapse
Affiliation(s)
- T Kusch
- Institut für Genetik, Universität zu Köln, Weyertal 121, D-50931 Köln, Germany
| | | |
Collapse
|
28
|
Thaler J, Harrison K, Sharma K, Lettieri K, Kehrl J, Pfaff SL. Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 1999; 23:675-87. [PMID: 10482235 DOI: 10.1016/s0896-6273(01)80027-1] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sonic hedgehog (Shh) specifies the identity of both motor neurons (MNs) and interneurons with morphogen-like activity. Here, we present evidence that the homeodomain factor HB9 is critical for distinguishing MN and interneuron identity in the mouse. Presumptive MN progenitors and postmitotic MNs express HB9, whereas interneurons never express this factor. This pattern resembles a composite of the avian homologs MNR2 and HB9. In mice lacking Hb9, the genetic profile of MNs is significantly altered, particularly by upregulation of Chx10, a gene normally restricted to a class of ventral interneurons. This aberrant gene expression is accompanied by topological disorganization of motor columns, loss of the phrenic and abducens nerves, and intercostal nerve pathfinding defects. Thus, MNs actively suppress interneuron genetic programs to establish their identity.
Collapse
Affiliation(s)
- J Thaler
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
29
|
Stein D, Goltz JS, Jurcsak J, Stevens L. The Dorsal-related immunity factor (Dif) can define the dorsal-ventral axis of polarity in the Drosophila embryo. Development 1998; 125:2159-69. [PMID: 9570779 DOI: 10.1242/dev.125.11.2159] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila embryos, dorsal-ventral polarity is defined by a signal transduction pathway that regulates nuclear import of the Dorsal protein. Dorsal protein's ability to act as a transcriptional activator of some zygotic genes and a repressor of others defines structure along the dorsal-ventral axis. Dorsal is a member of a group of proteins, the Rel-homologous proteins, whose activity is regulated at the level of nuclear localization. Dif, a more recently identified Drosophila Rel-homologue, has been proposed to act as a mediator of the immune response in Drosophila. In an effort to understand the function and regulation of Rel-homologous proteins in Drosophila, we have expressed Dif protein in Drosophila embryos derived from dorsal mutant mothers. We found that the Dif protein was capable of restoring embryonic dorsal-ventral pattern elements and was able to define polarity correctly with respect to the orientation of the egg shell. This, together with the observation that the ability of Dif to restore a dorsal-ventral axis depended on the signal transduction pathway that normally regulates Dorsal, suggests that Dif protein formed a nuclear concentration gradient similar to that seen for Dorsal. By studying the expression of Dorsal target genes we found that Dif could activate the zygotic genes that Dorsal activates and repress the genes repressed by Dorsal. Differences in the expression of these target genes, as well as the results from interaction studies carried out in yeast, suggest that Dif is not capable of synergizing with the basic helix-loop-helix transcription factors with which Dorsal normally interacts, and thereby lacks an important component of Dorsal-mediated pattern formation.
Collapse
Affiliation(s)
- D Stein
- Department of Molecular Genetics and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|