1
|
Manning E, Placzek M. Organizing activities of axial mesoderm. Curr Top Dev Biol 2024; 157:83-123. [PMID: 38556460 DOI: 10.1016/bs.ctdb.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
For almost a century, developmental biologists have appreciated that the ability of the embryonic organizer to induce and pattern the body plan is intertwined with its differentiation into axial mesoderm. Despite this, we still have a relatively poor understanding of the contribution of axial mesoderm to induction and patterning of different body regions, and the manner in which axial mesoderm-derived information is interpreted in tissues of changing competence. Here, with a particular focus on the nervous system, we review the evidence that axial mesoderm notochord and prechordal mesoderm/mesendoderm act as organizers, discuss how their influence extends through the different axes of the developing organism, and describe how the ability of axial mesoderm to direct morphogenesis impacts on its role as a local organizer.
Collapse
Affiliation(s)
- Elizabeth Manning
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom; Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom; Bateson Centre, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
2
|
Casey MA, Lusk S, Kwan KM. Eye Morphogenesis in Vertebrates. Annu Rev Vis Sci 2023; 9:221-243. [PMID: 37040791 DOI: 10.1146/annurev-vision-100720-111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Proper eye structure is essential for visual function: Multiple essential eye tissues must take shape and assemble into a precise three-dimensional configuration. Accordingly, alterations to eye structure can lead to pathological conditions of visual impairment. Changes in eye shape can also be adaptive over evolutionary time. Eye structure is first established during development with the formation of the optic cup, which contains the neural retina, retinal pigment epithelium, and lens. This crucial yet deceptively simple hemispherical structure lays the foundation for all later elaborations of the eye. Building on descriptions of the embryonic eye that started with hand drawings and micrographs, the field is beginning to identify mechanisms driving dynamic changes in three-dimensional cell and tissue shape. A combination of molecular genetics, imaging, and pharmacological approaches is defining connections among transcription factors, signaling pathways, and the intracellular machinery governing the emergence of this crucial structure.
Collapse
Affiliation(s)
- Macaulie A Casey
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| | - Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| |
Collapse
|
3
|
Bulk J, Kyrychenko V, Rensinghoff PM, Ghaderi Ardekani Z, Heermann S. Holoprosencephaly with a Special Form of Anophthalmia Result from Experimental Induction of bmp4, Oversaturating BMP Antagonists in Zebrafish. Int J Mol Sci 2023; 24:ijms24098052. [PMID: 37175759 PMCID: PMC10178349 DOI: 10.3390/ijms24098052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Vision is likely our most prominent sense and a correct development of the eye is at its basis. Early eye development is tightly connected to the development of the forebrain. A single eye field and the prospective telencephalon are situated within the anterior neural plate (ANP). During normal development, both domains are split and consecutively, two optic vesicles and two telencephalic lobes emerge. If this process is hampered, the domains remain condensed at the midline. The resulting developmental disorder is termed holoprosencephaly (HPE). The typical ocular finding associated with intense forms of HPE is cyclopia. However, also anophthalmia and coloboma can be associated with HPE. Here, we report that a correct balance of Bone morphogenetic proteins (BMPs) and their antagonists are important for forebrain and eye field cleavage. Experimental induction of a BMP ligand results in a severe form of HPE showing anophthalmia. We identified a dysmorphic forebrain containing retinal progenitors, which we termed crypt-oculoid. Optic vesicle evagination is impaired due to a loss of rx3 and, consecutively, of cxcr4a. Our data further suggest that the subduction of prospective hypothalamic cells during neurulation and neural keel formation is affected by the induction of a BMP ligand.
Collapse
Affiliation(s)
- Johannes Bulk
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany
| | - Valentyn Kyrychenko
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany
| | - Philipp M Rensinghoff
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany
| | - Zahra Ghaderi Ardekani
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany
| | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Sato Y, Narasaki I, Kunimoto T, Moriyama Y, Hashimoto C. The complete dorsal structure is formed from only the blastocoel roof of Xenopus blastula: insight into the gastrulation movement evolutionarily conserved among chordates. Dev Genes Evol 2023:10.1007/s00427-023-00701-1. [PMID: 36933042 DOI: 10.1007/s00427-023-00701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Gastrulation is a critical event whose molecular mechanisms are thought to be conserved among vertebrates. However, the morphological movement during gastrulation appears to be divergent across species, making it difficult to discuss the evolution of the process. Previously, we proposed a novel amphibian gastrulation model, the "subduction and zippering (S&Z) model". In this model, the organizer and the prospective neuroectoderm are originally localized in the blastula's blastocoel roof, and these embryonic regions move downward to make physical contact of their inner surfaces with each other at the dorsal marginal zone. The developmental stage when contact between the head organizer and the anterior-most neuroectoderm is established is called "anterior contact establishment (ACE)." After ACE, the A-P body axis elongates posteriorly. According to this model, the body axis is derived from limited regions of the dorsal marginal zone at ACE. To investigate this possibility, we conducted stepwise tissue deletions using Xenopus laevis embryos and revealed that the dorsal one-third of the marginal zone had the ability to form the complete dorsal structure by itself. Furthermore, a blastocoel roof explant of the blastula, which should contain the organizer and the prospective neuroectoderm in the S&Z model, autonomously underwent gastrulation and formed the complete dorsal structure. Collectively, these results are consistent with the S&Z gastrulation model and identify the embryonic region sufficient for construction of the complete dorsal structure. Finally, by comparing amphibian gastrulation to gastrulation of protochordates and amniotes, we discuss the gastrulation movement evolutionarily conserved among chordates.
Collapse
Affiliation(s)
- Yuki Sato
- JT Biohistory Research Hall, 1-1 Murasaki-Cho, Takatsuki Osaka, 569-1125, Japan
| | - Izumi Narasaki
- JT Biohistory Research Hall, 1-1 Murasaki-Cho, Takatsuki Osaka, 569-1125, Japan.,Department of Biology, Graduate School of Science, Osaka University, Suita, Japan
| | - Takuya Kunimoto
- JT Biohistory Research Hall, 1-1 Murasaki-Cho, Takatsuki Osaka, 569-1125, Japan.,Department of Biology, Graduate School of Science, Osaka University, Suita, Japan
| | - Yuki Moriyama
- Faculty of Science and Engineering, Chuo University, Hachioji, Japan
| | - Chikara Hashimoto
- JT Biohistory Research Hall, 1-1 Murasaki-Cho, Takatsuki Osaka, 569-1125, Japan. .,Department of Biology, Graduate School of Science, Osaka University, Suita, Japan.
| |
Collapse
|
5
|
Arthur P, Muok L, Nathani A, Zeng EZ, Sun L, Li Y, Singh M. Bioengineering Human Pluripotent Stem Cell-Derived Retinal Organoids and Optic Vesicle-Containing Brain Organoids for Ocular Diseases. Cells 2022; 11:3429. [PMID: 36359825 PMCID: PMC9653705 DOI: 10.3390/cells11213429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 08/24/2023] Open
Abstract
Retinal organoids are three-dimensional (3D) structures derived from human pluripotent stem cells (hPSCs) that mimic the retina's spatial and temporal differentiation, making them useful as in vitro retinal development models. Retinal organoids can be assembled with brain organoids, the 3D self-assembled aggregates derived from hPSCs containing different cell types and cytoarchitectures that resemble the human embryonic brain. Recent studies have shown the development of optic cups in brain organoids. The cellular components of a developing optic vesicle-containing organoids include primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. The importance of retinal organoids in ocular diseases such as age-related macular degeneration, Stargardt disease, retinitis pigmentosa, and diabetic retinopathy are described in this review. This review highlights current developments in retinal organoid techniques, and their applications in ocular conditions such as disease modeling, gene therapy, drug screening and development. In addition, recent advancements in utilizing extracellular vesicles secreted by retinal organoids for ocular disease treatments are summarized.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Eric Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
6
|
Krueger LA, Morris AC. Eyes on CHARGE syndrome: Roles of CHD7 in ocular development. Front Cell Dev Biol 2022; 10:994412. [PMID: 36172288 PMCID: PMC9512043 DOI: 10.3389/fcell.2022.994412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The development of the vertebrate visual system involves complex morphogenetic interactions of cells derived from multiple embryonic lineages. Disruptions in this process are associated with structural birth defects such as microphthalmia, anophthalmia, and coloboma (collectively referred to as MAC), and inherited retinal degenerative diseases such as retinitis pigmentosa and allied dystrophies. MAC and retinal degeneration are also observed in systemic congenital malformation syndromes. One important example is CHARGE syndrome, a genetic disorder characterized by coloboma, heart defects, choanal atresia, growth retardation, genital abnormalities, and ear abnormalities. Mutations in the gene encoding Chromodomain helicase DNA binding protein 7 (CHD7) cause the majority of CHARGE syndrome cases. However, the pathogenetic mechanisms that connect loss of CHD7 to the ocular complications observed in CHARGE syndrome have not been identified. In this review, we provide a general overview of ocular development and congenital disorders affecting the eye. This is followed by a comprehensive description of CHARGE syndrome, including discussion of the spectrum of ocular defects that have been described in this disorder. In addition, we discuss the current knowledge of CHD7 function and focus on its contributions to the development of ocular structures. Finally, we discuss outstanding gaps in our knowledge of the role of CHD7 in eye formation, and propose avenues of investigation to further our understanding of how CHD7 activity regulates ocular and retinal development.
Collapse
Affiliation(s)
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
7
|
Gur M, Bendelac-Kapon L, Shabtai Y, Pillemer G, Fainsod A. Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. Front Cell Dev Biol 2022; 10:844619. [PMID: 35372345 PMCID: PMC8967241 DOI: 10.3389/fcell.2022.844619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/24/2022] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA) is a central signaling molecule regulating multiple developmental decisions during embryogenesis. Excess RA induces head malformations, primarily by expansion of posterior brain structures at the expense of anterior head regions, i.e., hindbrain expansion. Despite this extensively studied RA teratogenic effect, a number of syndromes exhibiting microcephaly, such as DiGeorge, Vitamin A Deficiency, Fetal Alcohol Syndrome, and others, have been attributed to reduced RA signaling. This causative link suggests a requirement for RA signaling during normal head development in all these syndromes. To characterize this novel RA function, we studied the involvement of RA in the early events leading to head formation in Xenopus embryos. This effect was mapped to the earliest RA biosynthesis in the embryo within the gastrula Spemann-Mangold organizer. Head malformations were observed when reduced RA signaling was induced in the endogenous Spemann-Mangold organizer and in the ectopic organizer of twinned embryos. Two embryonic retinaldehyde dehydrogenases, ALDH1A2 (RALDH2) and ALDH1A3 (RALDH3) are initially expressed in the organizer and subsequently mark the trunk and the migrating leading edge mesendoderm, respectively. Gene-specific knockdowns and CRISPR/Cas9 targeting show that RALDH3 is a key enzyme involved in RA production required for head formation. These observations indicate that in addition to the teratogenic effect of excess RA on head development, RA signaling also has a positive and required regulatory role in the early formation of the head during gastrula stages. These results identify a novel RA activity that concurs with its proposed reduction in syndromes exhibiting microcephaly.
Collapse
|
8
|
Zilova L, Weinhardt V, Tavhelidse T, Schlagheck C, Thumberger T, Wittbrodt J. Fish primary embryonic pluripotent cells assemble into retinal tissue mirroring in vivo early eye development. eLife 2021; 10:e66998. [PMID: 34252023 PMCID: PMC8275126 DOI: 10.7554/elife.66998] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Organoids derived from pluripotent stem cells promise the solution to current challenges in basic and biomedical research. Mammalian organoids are however limited by long developmental time, variable success, and lack of direct comparison to an in vivo reference. To overcome these limitations and address species-specific cellular organization, we derived organoids from rapidly developing teleosts. We demonstrate how primary embryonic pluripotent cells from medaka and zebrafish efficiently assemble into anterior neural structures, particularly retina. Within 4 days, blastula-stage cell aggregates reproducibly execute key steps of eye development: retinal specification, morphogenesis, and differentiation. The number of aggregated cells and genetic factors crucially impacted upon the concomitant morphological changes that were intriguingly reflecting the in vivo situation. High efficiency and rapid development of fish-derived organoids in combination with advanced genome editing techniques immediately allow addressing aspects of development and disease, and systematic probing of impact of the physical environment on morphogenesis and differentiation.
Collapse
Affiliation(s)
- Lucie Zilova
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Venera Weinhardt
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Tinatini Tavhelidse
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Christina Schlagheck
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
- Heidelberg International Biosciences Graduate School HBIGS and HeiKa Graduate School on “Functional Materials”HeidelbergGermany
| | - Thomas Thumberger
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Joachim Wittbrodt
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
9
|
Loosemore RG, Matthaei SD, Stanger TC. An enigmatic translocation of the vertebrate primordial eye field. BMC Evol Biol 2020; 20:129. [PMID: 33008334 PMCID: PMC7531155 DOI: 10.1186/s12862-020-01693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/17/2020] [Indexed: 11/10/2022] Open
Abstract
The primordial eye field of the vertebrate embryo is a single entity of retinal progenitor cells spanning the anterior neural plate before bifurcating to form bilateral optic vesicles. Here we review fate mapping data from zebrafish suggesting that prior to evagination of the optic vesicles the eye field may undergo a Maypole-plait migration of progenitor cells through the midline influenced by the anteriorly subducting diencephalon. Such an enigmatic translocation of scaffolding progenitors could have evolutionary significance if pointing, by way of homology, to an ancient mechanism for transition of the single eye field in chordates to contralateral eye fields in vertebrates.
Collapse
Affiliation(s)
- R G Loosemore
- Maclean District Hospital, Union St, Maclean, NSW, 2463, Australia.
| | | | - T C Stanger
- Maclean District Hospital, Maclean, Australia
| |
Collapse
|
10
|
Sun J, Yoon J, Lee M, Hwang YS, Daar IO. Sprouty2 regulates positioning of retinal progenitors through suppressing the Ras/Raf/MAPK pathway. Sci Rep 2020; 10:13752. [PMID: 32792568 PMCID: PMC7426826 DOI: 10.1038/s41598-020-70670-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022] Open
Abstract
Sproutys are negative regulators of the Ras/Raf/MAPK signaling pathway and involved in regulation of organogenesis, differentiation, cell migration and proliferation. Although the function of Sproutys have been extensively studied during embryonic development, their role and mode of action during eye formation in vertebrate embryonic development is still unknown. Here we show that Xenopus sprouty2 is expressed in the optic vesicle at late neurula stage and knockdown of Sprouty2 prevents retinal progenitors from populating the retina, which in turn gives rise to small eyes. In the absence of Sprouty2, progenitor cell population of the retina can be restored by blocking the MAPK signaling pathway through overexpression of DN-Ras or DN-Raf. In contrast, activation of the MAPK pathway through overexpression of a constitutively active form of c-Raf (ca-Raf) inhibits progenitor population of the retina, similar to the Sprouty2 loss-of-function phenotype. Moreover, we present evidence that the retinal defect observed in Sprouty2 morphants is attributed to the failure of proper movement of retinal progenitors into the optic vesicle, rather than an effect on progenitor cell survival. These results suggest that Sprouty2 is required for the positioning of retinal progenitors within the optic vesicle through suppressing Ras/Raf/MAPK signaling pathway.
Collapse
Affiliation(s)
- Jian Sun
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jaeho Yoon
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Moonsup Lee
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Yoo-Seok Hwang
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ira O Daar
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
11
|
Sagai T, Amano T, Maeno A, Ajima R, Shiroishi T. SHH signaling mediated by a prechordal and brain enhancer controls forebrain organization. Proc Natl Acad Sci U S A 2019; 116:23636-23642. [PMID: 31685615 PMCID: PMC6876251 DOI: 10.1073/pnas.1901732116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sonic hedgehog (SHH) signaling plays a pivotal role in 2 different phases during brain development. Early SHH signaling derived from the prechordal plate (PrCP) triggers secondary Shh induction in the forebrain, which overlies the PrCP, and the induced SHH signaling, in turn, directs late neuronal differentiation of the forebrain. Consequently, Shh regulation in the PrCP is crucial for initiation of forebrain development. However, no enhancer that regulates prechordal Shh expression has yet been found. Here, we identified a prechordal enhancer, named SBE7, in the vicinity of a cluster of known forebrain enhancers for Shh This enhancer also directs Shh expression in the ventral midline of the forebrain, which receives the prechordal SHH signal. Thus, the identified enhancer acts not only for the initiation of Shh regulation in the PrCP but also for subsequent Shh induction in the forebrain. Indeed, removal of the enhancer from the mouse genome markedly down-regulated the expression of Shh in the rostral domains of the axial mesoderm and in the ventral midline of the forebrain and hypothalamus in the mouse embryo, and caused a craniofacial abnormality similar to human holoprosencephaly (HPE). These findings demonstrate that SHH signaling mediated by the newly identified enhancer is essential for development and growth of the ventral midline of the forebrain and hypothalamus. Understanding of the Shh regulation governed by this prechordal and brain enhancer provides an insight into the mechanism underlying craniofacial morphogenesis and the etiology of HPE.
Collapse
Affiliation(s)
- Tomoko Sagai
- Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
- Information Resource Research Center, Association for Propagation of the Knowledge of Genetics, Mishima 411-8540, Japan
| | - Takanori Amano
- Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
- Next Generation Human Disease Model Team, RIKEN BioResource Research Center, Tsukuba 305-0074, Japan
- Department of Genetics, SOKENDAI, Mishima 411-8540, Japan
| | - Akiteru Maeno
- Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
- Plant Cytogenetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Rieko Ajima
- Department of Genetics, SOKENDAI, Mishima 411-8540, Japan
- Mammalian Development Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
- Mouse Research Supporting Unit, National Institute of Genetics, Mishima 411-8540, Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan;
- Department of Genetics, SOKENDAI, Mishima 411-8540, Japan
- RIKEN BioResource Research Center, Tsukuba 305-0074, Japan
| |
Collapse
|
12
|
Kha CX, Guerin DJ, Tseng KAS. Using the Xenopus Developmental Eye Regrowth System to Distinguish the Role of Developmental Versus Regenerative Mechanisms. Front Physiol 2019; 10:502. [PMID: 31139088 PMCID: PMC6518849 DOI: 10.3389/fphys.2019.00502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
A longstanding challenge in regeneration biology is to understand the role of developmental mechanisms in restoring lost or damaged tissues and organs. As these body structures were built during embryogenesis, it is not surprising that a number of developmental mechanisms are also active during regeneration. However, it remains unclear whether developmental mechanisms act similarly or differently during regeneration as compared to development. Since regeneration is studied in the context of mature, differentiated tissues, it is difficult to evaluate comparative studies with developmental processes due to the latter's highly proliferative environment. We have taken a more direct approach to study regeneration in a developmental context (regrowth). Xenopus laevis, the African clawed frog, is a well-established model for both embryology and regeneration studies, especially for the eye. Xenopus eye development is well-defined. Xenopus is also an established model for retinal and lens regeneration studies. Previously, we demonstrated that Xenopus tailbud embryo can successfully regrow a functional eye that is morphologically indistinguishable from an age-matched control eye. In this study, we assessed the temporal regulation of retinal differentiation and patterning restoration during eye regrowth. Our findings showed that during regrowth, cellular patterning and retinal layer formation was delayed by approximately 1 day but was restored by 3 days when compared to eye development. An assessment of the differentiation of ganglion cells, photoreceptor cells, and Müller glia indicated that the retinal birth order generated during regrowth was consistent with that observed for eye development. Thus, retina differentiation and patterning during regrowth is similar to endogenous eye development. We used this eye regrowth model to assess the role of known mechanisms in development versus regrowth. Loss-of-function studies showed that Pax6 was required for both eye development and regrowth whereas apoptosis was only required for regrowth. Together, these results revealed that the mechanisms required for both development and regrowth can be distinguished from regrowth-specific ones. Our study highlights this developmental model of eye regrowth as a robust platform to systematically and efficiently define the molecular mechanisms that are required for regeneration versus development.
Collapse
Affiliation(s)
- Cindy X Kha
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Dylan J Guerin
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Kelly Ai-Sun Tseng
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
13
|
Ohuchi H, Sato K, Habuta M, Fujita H, Bando T. Congenital eye anomalies: More mosaic than thought? Congenit Anom (Kyoto) 2019; 59:56-73. [PMID: 30039880 DOI: 10.1111/cga.12304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
The eye is a sensory organ that primarily captures light and provides the sense of sight, as well as delivering non-visual light information involving biological rhythms and neurophysiological activities to the brain. Since the early 1990s, rapid advances in molecular biology have enabled the identification of developmental genes, genes responsible for human congenital diseases, and relevant genes of mutant animals with various anomalies. In this review, we first look at the development of the eye, and we highlight seminal reports regarding archetypal gene defects underlying three developmental ocular disorders in humans: (1) holoprosencephaly (HPE), with cyclopia being exhibited in the most severe cases; (2) microphthalmia, anophthalmia, and coloboma (MAC) phenotypes; and (3) anterior segment dysgenesis (ASDG), known as Peters anomaly and its related disorders. The recently developed methods, such as next-generation sequencing and genome editing techniques, have aided the discovery of gene mutations in congenital eye diseases and gene functions in normal eye development. Finally, we discuss Pax6-genome edited mosaic eyes and propose that somatic mosaicism in developmental gene mutations should be considered a causal factor for variable phenotypes, sporadic cases, and de novo mutations in human developmental disorders.
Collapse
Affiliation(s)
- Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keita Sato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Munenori Habuta
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuya Bando
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
14
|
Stem cell-based retina models. Adv Drug Deliv Rev 2019; 140:33-50. [PMID: 29777757 DOI: 10.1016/j.addr.2018.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/16/2018] [Accepted: 05/12/2018] [Indexed: 12/23/2022]
Abstract
From the early days of cell biological research, the eye-especially the retina-has evoked broad interest among scientists. The retina has since been thoroughly investigated and numerous models have been exploited to shed light on its development, morphology, and function. Apart from various animal models and human clinical and anatomical research, stem cell-based models of animal and human cells of origin have entered the field, especially during the last decade. Despite the observation that the retina of different species comprises endogenous stem cells, most stem cell-related research in the human retina is now based on pluripotent stem cell models. Herein, systems of two-dimensional (2D) cultures and co-cultures of distinctly differentiated retinal subtypes revealed a variety of cellular aspects but have in many aspects been replaced by three-dimensional (3D) structures-the so-called retinal organoids. These organoids not only contain all major retinal cell subtypes compared to the physiological situation, but also show a distinct layering in close proximity to the in vivo morphology. Nevertheless, all these models have inherent advantages and disadvantages, which are expounded and summarized in this review. Finally, we discuss current application aspects of stem cell-based retina models and the specific promises they hold for the future.
Collapse
|
15
|
Katada T, Sakurai H. Xenopus slc7a5 is essential for notochord function and eye development. Mech Dev 2019; 155:48-59. [DOI: 10.1016/j.mod.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
|
16
|
Miltner AM, Torre AL. Retinal Ganglion Cell Replacement: Current Status and Challenges Ahead. Dev Dyn 2019; 248:118-128. [PMID: 30242792 PMCID: PMC7141838 DOI: 10.1002/dvdy.24672] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
The neurons of the retina can be affected by a wide variety of inherited or environmental degenerations that can lead to vision loss and even blindness. Retinal ganglion cell (RGC) degeneration is the hallmark of glaucoma and other optic neuropathies that affect millions of people worldwide. Numerous strategies are being trialed to replace lost neurons in different degeneration models, and in recent years, stem cell technologies have opened promising avenues to obtain donor cells for retinal repair. Stem cell-based transplantation has been most frequently used for the replacement of rod photoreceptors, but the same tools could potentially be used for other retinal cell types, including RGCs. However, RGCs are not abundant in stem cell-derived cultures, and in contrast to the short-distance wiring of photoreceptors, RGC axons take a long and intricate journey to connect with numerous brain nuclei. Hence, a number of challenges still remain, such as the ability to scale up the production of RGCs and a reliable and functional integration into the adult diseased retina upon transplantation. In this review, we discuss the recent advancements in the development of replacement therapies for RGC degenerations and the challenges that we need to overcome before these technologies can be applied to the clinic. Developmental Dynamics 248:118-128, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adam M. Miltner
- Department of Cell Biology and Human Anatomy, University of California Davis, U.S
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, U.S
| |
Collapse
|
17
|
Martín-Del-Campo R, Bárcenas-Ibarra A, Sifuentes-Romero I, Llera-Herrera R, García-Gasca A. Methylation status of the putative Pax6 promoter in olive ridley sea turtle embryos with eye defects: An initial approach. Mech Dev 2018; 154:287-295. [PMID: 30110613 DOI: 10.1016/j.mod.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 08/10/2018] [Indexed: 12/26/2022]
Abstract
Normal development involves the interplay of genetic and epigenetic regulatory mechanisms. Pax6 is an eye-selector factor responsible for initiating the regulatory cascade for the development of the eyes. For the olive ridley sea turtle (Lepidochelys olivacea), a threatened species, eye malformations have been reported. In order to study the DNA methylation status of the putative promoter of the Pax6 gene in embryos with ocular malformations, an exploratory study was carried out in which DNA was isolated from embryos with anophthalmia, microphthalmia, and cyclopia, as well as from their normal counterparts. The 5'-flanking region from the Pax6 gene was isolated, showing two CpG islands (CGIs). The methylation status of CGIs in malformed embryos was compared with that of normal embryos by bisulfite sequencing. Putative transcription factor binding sites and regulatory features were identified. Methylation patterns were observed in both CpG and non-CpG contexts, and were unique for each malformed embryo; in the CpG context, an embryo with cyclopia showed a methylated cytosine upstream the CGI-1 not present in other embryos, an embryo with left anophthalmia presented two methylated cytosines in the CGI-1, whereas an embryo with left anophthalmia and right microphthalmia showed two methylated cytosines in the CGI-2. Normal embryos did not show methylated cytosines in the CGI-1, but one of them showed one methylcytosine in the CGI-2. Methylated transcription factor-binding sites may affect Pax6 expression associated to the cellular response to environmental compounds and hypoxia, signal transduction, cell cycle, lens physiology and development, as well as the transcription rate. Although preliminary, these results suggest that embryos with ocular malformations present unique DNA methylation patterns in the putative promoter of the Pax6 gene in L. olivacea, and probably those subtle, random changes in the methylation status can cause (at least in part) the aberrant phenotypes observed in these embryos.
Collapse
Affiliation(s)
- Rodolfo Martín-Del-Campo
- Laboratory of Molecular Biology, Centro de Investigación en Alimentación y Desarrollo (CIAD), Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa 82110, Mexico.
| | - Annelisse Bárcenas-Ibarra
- Laboratory of Molecular Biology, Centro de Investigación en Alimentación y Desarrollo (CIAD), Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa 82110, Mexico
| | - Itzel Sifuentes-Romero
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| | - Raúl Llera-Herrera
- Laboratory of Molecular Biology, Centro de Investigación en Alimentación y Desarrollo (CIAD), Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa 82110, Mexico; Instituto de Ciencias del Mar y Limnología (Unidad Académica Mazatlán), Universidad Nacional Autónoma de México, Avenida Joel Montes Camarena s/n, PO Box 811, Mazatlán, Sinaloa 82040, Mexico
| | - Alejandra García-Gasca
- Laboratory of Molecular Biology, Centro de Investigación en Alimentación y Desarrollo (CIAD), Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa 82110, Mexico.
| |
Collapse
|
18
|
Fallet‐Bianco C. Neuropathology of holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:214-228. [DOI: 10.1002/ajmg.c.31623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Catherine Fallet‐Bianco
- Department of Pathology, CHU Sainte‐Justine‐Chemin de la Côte Sainte‐CatherineUniversité de Montreal, MontrealQuébec Canada
| |
Collapse
|
19
|
Roessler E, Hu P, Muenke M. Holoprosencephaly in the genomics era. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:165-174. [PMID: 29770992 DOI: 10.1002/ajmg.c.31615] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 01/08/2023]
Abstract
Holoprosencephaly (HPE) is the direct consequence of specific genetic and/or environmental insults interrupting the midline specification of the nascent forebrain. Such disturbances can lead to a broad range of phenotypic consequences for the brain and face in humans. This malformation sequence is remarkably common in utero (1 in 250 human fetuses), but 97% typically do not survive to birth. The precise molecular pathogenesis of HPE in these early human embryos remains largely unknown. Here, we outline our current understanding of the principal driving factors leading to HPE pathologies and elaborate our multifactorial integrated genomics approach. Overall, our understanding of the pathogenesis continues to become simpler, rather than more complicated. Genomic technologies now provide unprecedented insight into disease-associated variation, including the overall extent of genetic interactions (coding and noncoding) predicted to explain divergent phenotypes.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human, Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ping Hu
- Medical Genetics Branch, National Human, Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Maximilian Muenke
- Medical Genetics Branch, National Human, Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Ferran JL, Puelles L. Lessons from Amphioxus Bauplan About Origin of Cranial Nerves of Vertebrates That Innervates Extrinsic Eye Muscles. Anat Rec (Hoboken) 2018; 302:452-462. [PMID: 29659196 DOI: 10.1002/ar.23824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 12/23/2022]
Abstract
Amphioxus is the living chordate closest to the ancestral form of vertebrates, and in a key position to reveal essential aspects of the evolution of the brain Bauplan of vertebrates. The dorsal neural cord of this species at the larval stage is characterized by a small cerebral vesicle at its anterior end and a large posterior region. The latter is comparable in some aspects to the hindbrain and spinal cord regions of vertebrates. The rostral end of the cerebral vesicle contains a median pigment spot and associated rows of photoreceptor and other nerve cells; this complex is known as "the frontal eye." However, this is not a complete eye in the sense that it has neither eye muscles nor lens (only a primitive retina-like tissue). Cranial nerves III, IV, and VI take part in the motor control of eye muscles in all vertebrates. Using a recent model that postulates distinct molecularly characterized hypothalamo-prethalamic and mesodiencephalic domains in the early cerebral vesicle of amphioxus, we analyze here possible scenarios for the origin from the common ancestor of cephalochordates and vertebrates of the cranial nerves related with extrinsic eye muscle innervations. Anat Rec, 302:452-462, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- José Luis Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia - IMIB, Group of Brain Regionalization and genes of development; Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia - IMIB, Group of Brain Regionalization and genes of development; Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| |
Collapse
|
21
|
Abstract
As the embryonic ectoderm is induced to form the neural plate, cells inside this epithelium acquire restricted identities that will dictate their behavior and progressive differentiation. The first behavior adopted by most neural plate cells is called neurulation, a morphogenetic movement shaping the neuroepithelium into a tube. One cell population is not adopting this movement: the eye field. Giving eye identity to a defined population inside the neural plate is therefore a key neural fate decision. While all other neural population undergo neurulation similarly, converging toward the midline, the eye field moves outwards, away from the rest of the forming neural tube, to form vesicles. Thus, while delay in acquisition of most other fates would not have significant morphogenetic consequences, defect in the establishment of the eye field would dramatically impact the formation of the eye. Yet, very little is understood of the molecular and cellular mechanisms driving them. Here, we summarize what is known across vertebrate species and propose a model highlighting what is required to form the essential vesicles that initiate the vertebrate eyes.
Collapse
Affiliation(s)
- Florence A Giger
- Department of Developmental Neurobiology, Centre for Developmental Neurobiology and MRC Centre for Developmental Disorders, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Corinne Houart
- Department of Developmental Neurobiology, Centre for Developmental Neurobiology and MRC Centre for Developmental Disorders, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom
| |
Collapse
|
22
|
Gestri G, Bazin-Lopez N, Scholes C, Wilson SW. Cell Behaviors during Closure of the Choroid Fissure in the Developing Eye. Front Cell Neurosci 2018. [PMID: 29515375 PMCID: PMC5826230 DOI: 10.3389/fncel.2018.00042] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coloboma is a defect in the morphogenesis of the eye that is a consequence of failure of choroid fissure fusion. It is among the most common congenital defects in humans and can significantly impact vision. However, very little is known about the cellular mechanisms that regulate choroid fissure closure. Using high-resolution confocal imaging of the zebrafish optic cup, we find that apico-basal polarity is re-modeled in cells lining the fissure in proximal to distal and inner to outer gradients during fusion. This process is accompanied by cell proliferation, displacement of vasculature, and contact between cells lining the choroid fissure and periocular mesenchyme (POM). To investigate the role of POM cells in closure of the fissure, we transplanted optic vesicles onto the yolk, allowing them to develop in a situation where they are depleted of POM. The choroid fissure forms normally in ectopic eyes but fusion fails in this condition, despite timely apposition of the nasal and temporal lips of the retina. This study resolves some of the cell behaviors underlying choroid fissure fusion and supports a role for POM in choroid fissure fusion.
Collapse
Affiliation(s)
- Gaia Gestri
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Naiara Bazin-Lopez
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Clarissa Scholes
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Stephen W Wilson
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
23
|
Link between the causative genes of holoprosencephaly: Zic2 directly regulates Tgif1 expression. Sci Rep 2018; 8:2140. [PMID: 29391420 PMCID: PMC5794963 DOI: 10.1038/s41598-018-20242-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
One of the causal genes for holoprosencephaly (HPE) is ZIC2 (HPE5). It belongs to the zinc finger protein of the cerebellum (Zic) family of genes that share a C2H2-type zinc finger domain, similar to the GLI family of genes. In order to clarify the role of Zic2 in gene regulation, we searched for its direct target genes using chromatin immunoprecipitation (ChIP). We identified TGIF1 (HPE4), another holoprosencephaly-causative gene in humans. We identified Zic2-binding sites (ZBS) on the 5′ flanking region of Tgif1 by in vitro DNA binding assays. ZBS were essential for Zic2-dependent transcriptional activation in reporter gene assays. Zic2 showed a higher affinity to ZBS than GLI-binding sequences. Zic2-binding to the cis-regulatory element near the Tgif1 promoter may be involved in the mechanism underlying forebrain development and incidences of HPE.
Collapse
|
24
|
Janesick A, Tang W, Nguyen TTL, Blumberg B. RARβ2 is required for vertebrate somitogenesis. Development 2017; 144:1997-2008. [PMID: 28432217 DOI: 10.1242/dev.144345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/07/2017] [Indexed: 01/02/2023]
Abstract
During vertebrate somitogenesis, retinoic acid is known to establish the position of the determination wavefront, controlling where new somites are permitted to form along the anteroposterior body axis. Less is understood about how RAR regulates somite patterning, rostral-caudal boundary setting, specialization of myotome subdivisions or the specific RAR subtype that is required for somite patterning. Characterizing the function of RARβ has been challenging due to the absence of embryonic phenotypes in murine loss-of-function studies. Using the Xenopus system, we show that RARβ2 plays a specific role in somite number and size, restriction of the presomitic mesoderm anterior border, somite chevron morphology and hypaxial myoblast migration. Rarβ2 is the RAR subtype whose expression is most upregulated in response to ligand and its localization in the trunk somites positions it at the right time and place to respond to embryonic retinoid levels during somitogenesis. RARβ2 positively regulates Tbx3 a marker of hypaxial muscle, and negatively regulates Tbx6 via Ripply2 to restrict the anterior boundaries of the presomitic mesoderm and caudal progenitor pool. These results demonstrate for the first time an early and essential role for RARβ2 in vertebrate somitogenesis.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Weiyi Tang
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Tuyen T L Nguyen
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
25
|
Lateral thinking - Interocular symmetry and asymmetry in neurovascular patterning, in health and disease. Prog Retin Eye Res 2017; 59:131-157. [PMID: 28457789 DOI: 10.1016/j.preteyeres.2017.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/24/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023]
Abstract
No biological system or structure is likely to be perfectly symmetrical, or have identical right and left forms. This review explores the evidence for eye and visual pathway asymmetry, in health and in disease, and attempts to provide guidance for those studying the structure and function of the visual system, where recognition of symmetry or asymmetry may be essential. The principal question with regards to asymmetry is not 'are the eyes the same?', for some degree of asymmetry is pervasive, but 'when are they importantly different?'. Knowing if right and left eyes are 'importantly different' could have significant consequences for deciding whether right or left eyes are included in an analysis or for examining the association between a phenotype and ocular parameter. The presence of significant asymmetry would also have important implications for the design of normative databases of retinal and optic nerve metrics. In this review, we highlight not only the universal presence of asymmetry, but provide evidence that some elements of the visual system are inherently more asymmetric than others, pointing to the need for improved normative data to explain sources of asymmetry and their impact on determining associations with genetic, environmental or health-related factors and ultimately in clinical practice.
Collapse
|
26
|
Seigfried FA, Cizelsky W, Pfister AS, Dietmann P, Walther P, Kühl M, Kühl SJ. Frizzled 3 acts upstream of Alcam during embryonic eye development. Dev Biol 2017; 426:69-83. [PMID: 28427856 DOI: 10.1016/j.ydbio.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/09/2017] [Accepted: 04/14/2017] [Indexed: 12/18/2022]
Abstract
Formation of a functional eye during vertebrate embryogenesis requires different processes such as cell differentiation, cell migration, cell-cell interactions as well as intracellular signalling processes. It was previously shown that the non-canonical Wnt receptor Frizzled 3 (Fzd3) is required for proper eye formation, however, the underlying mechanism is poorly understood. Here we demonstrate that loss of Fzd3 induces severe malformations of the developing eye and that this defect is phenocopied by loss of the activated leukocyte cell adhesion molecule (Alcam). Promoter analysis revealed the presence of a Fzd3 responsive element within the alcam promoter, which is responsible for alcam expression during anterior neural development. In-depth analysis identified the jun N-terminal protein kinase 1 (JNK1) and the transcription factor paired box 2 (Pax2) to be important for the activation of alcam expression. Altogether our study reveals that alcam is activated through non-canonical Wnt signalling during embryonic eye development in Xenopus laevis and shows that this pathway plays a similar role in different tissues.
Collapse
Affiliation(s)
- Franziska A Seigfried
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, 89081 Ulm, Germany; Tissue Homeostasis Joint-PhD-Programme in Cooperation with the University of Oulu, Finland
| | - Wiebke Cizelsky
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, 89081 Ulm, Germany
| | - Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
27
|
Zhao C, Wang Q, Temple S. Stem cell therapies for retinal diseases: recapitulating development to replace degenerated cells. Development 2017; 144:1368-1381. [PMID: 28400433 PMCID: PMC5399657 DOI: 10.1242/dev.133108] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retinal degenerative diseases are the leading causes of blindness worldwide. Replacing lost retinal cells via stem cell-based therapies is an exciting, rapidly advancing area of translational research that has already entered the clinic. Here, we review the status of these clinical efforts for several significant retinal diseases, describe the challenges involved and discuss how basic developmental studies have contributed to and are needed to advance clinical goals.
Collapse
Affiliation(s)
- Cuiping Zhao
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Qingjie Wang
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Sally Temple
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| |
Collapse
|
28
|
Motahari Z, Martinez-De Luna RI, Viczian AS, Zuber ME. Tbx3 represses bmp4 expression and, with Pax6, is required and sufficient for retina formation. Development 2016; 143:3560-3572. [PMID: 27578778 DOI: 10.1242/dev.130955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 08/05/2016] [Indexed: 12/30/2022]
Abstract
Vertebrate eye formation begins in the anterior neural plate in the eye field. Seven eye field transcription factors (EFTFs) are expressed in eye field cells and when expressed together are sufficient to generate retina from pluripotent cells. The EFTF Tbx3 can regulate the expression of some EFTFs; however, its role in retina formation is unknown. Here, we show that Tbx3 represses bmp4 transcription and is required in the eye field for both neural induction and normal eye formation in Xenopus laevis Although sufficient for neural induction, Tbx3-expressing pluripotent cells only form retina in the context of the eye field. Unlike Tbx3, the neural inducer Noggin can generate retina both within and outside the eye field. We found that the neural and retina-inducing activity of Noggin requires Tbx3. Noggin, but not Tbx3, induces Pax6 and coexpression of Tbx3 and Pax6 is sufficient to determine pluripotent cells to a retinal lineage. Our results suggest that Tbx3 represses bmp4 expression and maintains eye field neural progenitors in a multipotent state; then, in combination with Pax6, Tbx3 causes eye field cells to form retina.
Collapse
Affiliation(s)
- Zahra Motahari
- The Center for Vision Research, Department of Ophthalmology, Upstate Medical University, Syracuse, NY 13210, USA Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Reyna I Martinez-De Luna
- The Center for Vision Research, Department of Ophthalmology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Andrea S Viczian
- The Center for Vision Research, Department of Ophthalmology, Upstate Medical University, Syracuse, NY 13210, USA Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY 13210, USA Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA Department of Cell and Developmental Biology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael E Zuber
- The Center for Vision Research, Department of Ophthalmology, Upstate Medical University, Syracuse, NY 13210, USA Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY 13210, USA Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
29
|
Grieco TM, Hlusko LJ. Insight from Frogs: Sonic Hedgehog Gene Expression and a Re-evaluation of the Vertebrate Odontogenic Band. Anat Rec (Hoboken) 2016; 299:1099-109. [DOI: 10.1002/ar.23378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/26/2016] [Accepted: 03/30/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Theresa M. Grieco
- Department of Oral Health Sciences; Life Sciences Institute, University of British Columbia; Vancouver British Columbia Canada
| | - Leslea J. Hlusko
- Department of Integrative Biology; University of California Berkeley; Berkeley California
| |
Collapse
|
30
|
Specification of embryonic stem cell-derived tissues into eye fields by Wnt signaling using rostral diencephalic tissue-inducing culture. Mech Dev 2016; 141:90-99. [PMID: 27151576 DOI: 10.1016/j.mod.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/26/2016] [Accepted: 05/01/2016] [Indexed: 01/13/2023]
Abstract
The eyes are subdivided from the rostral diencephalon in early development. How the neuroectoderm regulates this subdivision, however, is largely unknown. Taking advantage of embryonic stem cell (ESC) culture using a Rax reporter line to monitor rostral diencephalon formation, we found that ESC-derived tissues at day 7 grown in Glasgow Minimum Expression Media (GMEM) containing knockout serum replacement (KSR) exhibited higher levels of expression of axin2, a Wnt target gene, than those grown in chemically defined medium (CDM). Surprisingly, Wnt agonist facilitated eye field-like tissue specification in CDM. In contrast, the addition of Wnt antagonist diminished eye field tissue formation in GMEM+KSR. Furthermore, the morphological formation of the eye tissue anlage, including the optic vesicle, was accompanied by Wnt signaling activation. Additionally, using CDM culture, we developed an efficient method for generating Rax+/Chx10+ retinal progenitors, which could become fully stratified retina. Here we provide a new avenue for exploring the mechanisms of eye field specification in vitro.
Collapse
|
31
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Ellis PS, Burbridge S, Soubes S, Ohyama K, Ben-Haim N, Chen C, Dale K, Shen MM, Constam D, Placzek M. ProNodal acts via FGFR3 to govern duration of Shh expression in the prechordal mesoderm. Development 2015; 142:3821-32. [PMID: 26417042 PMCID: PMC4712875 DOI: 10.1242/dev.119628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 09/15/2015] [Indexed: 11/20/2022]
Abstract
The secreted glycoprotein sonic hedgehog (Shh) is expressed in the prechordal mesoderm, where it plays a crucial role in induction and patterning of the ventral forebrain. Currently little is known about how Shh is regulated in prechordal tissue. Here we show that in the embryonic chick, Shh is expressed transiently in prechordal mesoderm, and is governed by unprocessed Nodal. Exposure of prechordal mesoderm microcultures to Nodal-conditioned medium, the Nodal inhibitor CerS, or to an ALK4/5/7 inhibitor reveals that Nodal is required to maintain both Shh and Gsc expression, but whereas Gsc is largely maintained through canonical signalling, Nodal signals through a non-canonical route to maintain Shh. Further, Shh expression can be maintained by a recombinant Nodal cleavage mutant, proNodal, but not by purified mature Nodal. A number of lines of evidence suggest that proNodal acts via FGFR3. ProNodal and FGFR3 co-immunoprecipitate and proNodal increases FGFR3 tyrosine phosphorylation. In microcultures, soluble FGFR3 abolishes Shh without affecting Gsc expression. Further, prechordal mesoderm cells in which Fgfr3 expression is reduced by Fgfr3 siRNA fail to bind to proNodal. Finally, targeted electroporation of Fgfr3 siRNA to prechordal mesoderm in vivo results in premature Shh downregulation without affecting Gsc. We report an inverse correlation between proNodal-FGFR3 signalling and pSmad1/5/8, and show that proNodal-FGFR3 signalling antagonises BMP-mediated pSmad1/5/8 signalling, which is poised to downregulate Shh. Our studies suggest that proNodal/FGFR3 signalling governs Shh duration by repressing canonical BMP signalling, and that local BMPs rapidly silence Shh once endogenous Nodal-FGFR3 signalling is downregulated. Highlighted article: In the chick prechordal mesoderm, the Nodal precursor proNodal acts via a non-canonical route to inhibit BMP signalling and thus maintain Shh expression
Collapse
Affiliation(s)
- Pamela S Ellis
- The Bateson Centre and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Sarah Burbridge
- The Bateson Centre and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Sandrine Soubes
- The Bateson Centre and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Kyoji Ohyama
- The Bateson Centre and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Nadav Ben-Haim
- ISREC, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Epalinges CH 1066, Switzerland
| | - Canhe Chen
- Departments of Medicine and Genetics & Development, Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Kim Dale
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Michael M Shen
- Departments of Medicine and Genetics & Development, Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Daniel Constam
- ISREC, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Epalinges CH 1066, Switzerland
| | - Marysia Placzek
- The Bateson Centre and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
33
|
Hartenstein V, Reh TA. Homologies between vertebrate and invertebrate eyes. Results Probl Cell Differ 2015; 37:219-55. [PMID: 25707078 DOI: 10.1007/978-3-540-45398-7_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Volker Hartenstein
- Department of Biology, University of California, Los Angeles, California, USA
| | | |
Collapse
|
34
|
Pillai-Kastoori L, Wen W, Morris AC. Keeping an eye on SOXC proteins. Dev Dyn 2015; 244:367-376. [PMID: 25476579 PMCID: PMC4344926 DOI: 10.1002/dvdy.24235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/10/2014] [Accepted: 11/28/2014] [Indexed: 12/17/2022] Open
Abstract
The formation of a mature, functional eye requires a complex series of cell proliferation, migration, induction among different germinal layers, and cell differentiation. These processes are regulated by extracellular cues such as the Wnt/BMP/Hh/Fgf signaling pathways, as well as cell intrinsic transcription factors that specify cell fate. In this review article, we provide an overview of stages of embryonic eye morphogenesis, extrinsic and intrinsic factors that are required for each stage, and pediatric ocular diseases that are associated with defective eye development. In addition, we focus on recent findings about the roles of the SOXC proteins in regulating vertebrate ocular development and implicating SOXC mutations in human ocular malformations.
Collapse
Affiliation(s)
| | - Wen Wen
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
35
|
Generation of eye field/optic vesicle-like structures from human embryonic stem cells under two-dimensional and chemically defined conditions. In Vitro Cell Dev Biol Anim 2014; 51:310-8. [DOI: 10.1007/s11626-014-9835-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
36
|
Choi JJY, Ting CT, Trogrlic L, Milevski SV, Familari M, Martinez G, de Iongh RU. A role for smoothened during murine lens and cornea development. PLoS One 2014; 9:e108037. [PMID: 25268479 PMCID: PMC4182430 DOI: 10.1371/journal.pone.0108037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 08/25/2014] [Indexed: 01/07/2023] Open
Abstract
Various studies suggest that Hedgehog (Hh) signalling plays roles in human and zebrafish ocular development. Recent studies (Kerr et al., Invest Ophthalmol Vis Sci. 2012; 53, 3316–30) showed that conditionally activating Hh signals promotes murine lens epithelial cell proliferation and disrupts fibre differentiation. In this study we examined the expression of the Hh pathway and the requirement for the Smoothened gene in murine lens development. Expression of Hh pathway components in developing lens was examined by RT-PCR, immunofluorescence and in situ hybridisation. The requirement of Smo in lens development was determined by conditional loss-of-function mutations, using LeCre and MLR10 Cre transgenic mice. The phenotype of mutant mice was examined by immunofluorescence for various markers of cell cycle, lens and cornea differentiation. Hh pathway components (Ptch1, Smo, Gli2, Gli3) were detected in lens epithelium from E12.5. Gli2 was particularly localised to mitotic nuclei and, at E13.5, Gli3 exhibited a shift from cytosol to nucleus, suggesting distinct roles for these transcription factors. Conditional deletion of Smo, from ∼E12.5 (MLR10 Cre) did not affect ocular development, whereas deletion from ∼E9.5 (LeCre) resulted in lens and corneal defects from E14.5. Mutant lenses were smaller and showed normal expression of p57Kip2, c-Maf, E-cadherin and Pax6, reduced expression of FoxE3 and Ptch1 and decreased nuclear Hes1. There was normal G1-S phase but decreased G2-M phase transition at E16.5 and epithelial cell death from E14.5-E16.5. Mutant corneas were thicker due to aberrant migration of Nrp2+ cells from the extraocular mesenchyme, resulting in delayed corneal endothelial but normal epithelial differentiation. These results indicate the Hh pathway is required during a discrete period (E9.5–E12.5) in lens development to regulate lens epithelial cell proliferation, survival and FoxE3 expression. Defective corneal development occurs secondary to defects in lens and appears to be due to defective migration of peri-ocular Nrp2+ neural crest/mesenchymal cells.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Cycle
- Cell Movement
- Cornea/growth & development
- Cornea/metabolism
- Cornea/pathology
- Embryo, Mammalian
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation, Developmental
- Integrases/genetics
- Integrases/metabolism
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Lens, Crystalline/growth & development
- Lens, Crystalline/metabolism
- Lens, Crystalline/pathology
- Membrane Proteins
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Mice
- Mice, Transgenic
- Morphogenesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuropilin-2/genetics
- Neuropilin-2/metabolism
- Patched Receptors
- Patched-1 Receptor
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Smoothened Receptor
- Zebrafish Proteins
- Zinc Finger Protein Gli2
- Zinc Finger Protein Gli3
Collapse
Affiliation(s)
- Janet J. Y. Choi
- Ocular Development Laboratory, Anatomy & Neuroscience, University of Melbourne, Parkville, Australia
| | - Chao-Tung Ting
- Ocular Development Laboratory, Anatomy & Neuroscience, University of Melbourne, Parkville, Australia
| | - Lidia Trogrlic
- Ocular Development Laboratory, Anatomy & Neuroscience, University of Melbourne, Parkville, Australia
| | - Stefan V. Milevski
- Ocular Development Laboratory, Anatomy & Neuroscience, University of Melbourne, Parkville, Australia
| | - Mary Familari
- Department of Zoology, University of Melbourne, Parkville, Australia
| | - Gemma Martinez
- Ocular Development Laboratory, Anatomy & Neuroscience, University of Melbourne, Parkville, Australia
| | - Robb U de Iongh
- Ocular Development Laboratory, Anatomy & Neuroscience, University of Melbourne, Parkville, Australia
- * E-mail:
| |
Collapse
|
37
|
Gill KP, Hewitt AW, Davidson KC, Pébay A, Wong RCB. Methods of Retinal Ganglion Cell Differentiation From Pluripotent Stem Cells. Transl Vis Sci Technol 2014. [DOI: 10.1167/tvst.3.4.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Gill KP, Hewitt AW, Davidson KC, Pébay A, Wong RCB. Methods of Retinal Ganglion Cell Differentiation From Pluripotent Stem Cells. Transl Vis Sci Technol 2014; 3:7. [PMID: 25774327 DOI: 10.1167/tvst.3.3.7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/26/2014] [Indexed: 12/22/2022] Open
Abstract
Glaucoma, the worldwide leading cause of irreversible blindness, is characterized by progressive degeneration of the optic nerve and loss of retinal ganglion cells. Research into glaucoma pathogenesis has been hampered by difficulties in isolating and culturing retinal ganglion cells in vitro. However, recent improvements in laboratory techniques have enabled the generation of a variety of mature cell types from pluripotent stem cells, including retinal ganglion cells. Indeed, stem cell-based approaches have the potential to revolutionize the field by providing an unlimited source of cells for replacement therapies and by enabling development of in vitro disease models for drug screening and research. Consequently, research aimed at directing pluripotent stem cells to differentiate into retinal ganglion cells has expanded dramatically during the past decade, resulting in significant advances in technique and efficiency. In this paper, we review the methodology for retinal ganglion cell differentiation from pluripotent stem cells of both mouse and human origin and summarize how these techniques have opened up new avenues for modelling glaucoma. Generation of stem cell-derived retinal ganglion cells will have significant translational values, providing an in vitro platform to study the mechanisms responsible for pathogenesis and for drug screening to improve treatment options, as well as for the development of cell therapies for optic neuropathies such as glaucoma.
Collapse
Affiliation(s)
- Katherine P Gill
- Department of Ophthalmology, University of Melbourne, Melbourne East, VIC, Australia
| | - Alex W Hewitt
- Department of Ophthalmology, University of Melbourne, Melbourne East, VIC, Australia
| | - Kathryn C Davidson
- Department of Ophthalmology, University of Melbourne, Melbourne East, VIC, Australia ; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital Melbourne East, VIC, Australia
| | - Alice Pébay
- Department of Ophthalmology, University of Melbourne, Melbourne East, VIC, Australia ; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital Melbourne East, VIC, Australia
| | - Raymond C B Wong
- Department of Ophthalmology, University of Melbourne, Melbourne East, VIC, Australia ; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital Melbourne East, VIC, Australia
| |
Collapse
|
39
|
Tang K, Tsai SY, Tsai MJ. COUP-TFs and eye development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:201-9. [PMID: 24878540 DOI: 10.1016/j.bbagrm.2014.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022]
Abstract
Recent studies reveal that COUP-TF genes are essential for neural development, cardiovascular development, energy metabolism and adipogenesis, as well as for organogenesis of multiple systems. In this review, we mainly describe the COUP-TF genes, molecular mechanisms of COUP-TF action, and their crucial functions in the morphogenesis of the murine eye. Mutations of COUP-TF genes lead to the congenital coloboma and/or optic atrophy in both mouse and human, indicating that the study on COUP-TFs and the eye will benefit our understanding of the etiology of human ocular diseases. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Ke Tang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Immunohistochemical analysis of Pax6 and Pax7 expression in the CNS of adult Xenopus laevis. J Chem Neuroanat 2014; 57-58:24-41. [DOI: 10.1016/j.jchemneu.2014.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/22/2022]
|
41
|
Gorovoy IR, Layer N, de Alba Campomanes AG. Retinal dysplasia of holoprosencephaly. J Pediatr Ophthalmol Strabismus 2014; 51 Online:e16-8. [PMID: 25314309 DOI: 10.3928/01913913-20140225-03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/16/2014] [Indexed: 11/20/2022]
Abstract
Retinal dysplasia occurs in the setting of sporadic and syndromic holoprosencephaly, which often has associated ocular malformations. The pathology of this dysplasia, which includes rosettes, has been previously described. However, its funduscopic findings have not been well documented. The authors present the fundus images of a patient with severe holoprosencephaly with retinal dysplasia and bilateral optic nerve colobomas that resulted in death 2 weeks after birth.
Collapse
|
42
|
Som PM, Streit A, Naidich TP. Illustrated review of the embryology and development of the facial region, part 3: an overview of the molecular interactions responsible for facial development. AJNR Am J Neuroradiol 2014; 35:223-9. [PMID: 23557958 DOI: 10.3174/ajnr.a3453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
SUMMARY Parts 1 and 2 of this review discussed the complex morphogenesis of the face. However, the molecular processes that drive the morphology of the face were not addressed. Part 3 of this review will present an overview of the genes and their products that have been implicated in the developing face.
Collapse
Affiliation(s)
- P M Som
- From the Department of Radiology (P.M.S., T.P.N.), Mount Sinai School of Medicine, New York University, New York, New York
| | | | | |
Collapse
|
43
|
Atkinson-Leadbeater K, Hehr CL, Mcfarlane S. Fgfr signaling is required as the early eye field forms to promote later patterning and morphogenesis of the eye. Dev Dyn 2014; 243:663-75. [PMID: 24478172 DOI: 10.1002/dvdy.24113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/08/2014] [Accepted: 01/21/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND A major step in eye morphogenesis is the transition from optic vesicle to optic cup, which occurs as a ventral groove forms along the base of the optic vesicle. A ventral gap in the eye, or coloboma, results when this groove fails to close. Extrinsic signals, such as fibroblast growth factors (Fgfs), play a critical role in the development and morphogenesis of the vertebrate eye. Whether these extrinsic signals are required throughout eye development, or within a defined critical period remains an unanswered question. RESULTS Here we show that an early Fgf signal, required as the eye field is first emerging, drives eye morphogenesis. In addition to triggering coloboma, inhibition of this early Fgf signal results in defects in dorsal-ventral patterning of the neural retina, particularly in the nasal retina, and development of the periocular mesenchyme (POM). These processes are unaffected by inhibition of Fgfr signaling at later time points. CONCLUSIONS We propose that Fgfs act within an early critical period as the eye field forms to promote development of the neural retina and POM, which subsequently drive eye morphogenesis.
Collapse
|
44
|
Yip HK. Retinal stem cells and regeneration of vision system. Anat Rec (Hoboken) 2013; 297:137-60. [PMID: 24293400 DOI: 10.1002/ar.22800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Abstract
The vertebrate retina is a well-characterized model for studying neurogenesis. Retinal neurons and glia are generated in a conserved order from a pool of mutlipotent progenitor cells. During retinal development, retinal stem/progenitor cells (RPC) change their competency over time under the influence of intrinsic (such as transcriptional factors) and extrinsic factors (such as growth factors). In this review, we summarize the roles of these factors, together with the understanding of the signaling pathways that regulate eye development. The information about the interactions between intrinsic and extrinsic factors for retinal cell fate specification is useful to regenerate specific retinal neurons from RPCs. Recent studies have identified RPCs in the retina, which may have important implications in health and disease. Despite the recent advances in stem cell biology, our understanding of many aspects of RPCs in the eye remains limited. PRCs are present in the developing eye of all vertebrates and remain active in lower vertebrates throughout life. In mammals, however, PRCs are quiescent and exhibit very little activity and thus have low capacity for retinal regeneration. A number of different cellular sources of RPCs have been identified in the vertebrate retina. These include PRCs at the retinal margin, pigmented cells in the ciliary body, iris, and retinal pigment epithelium, and Müller cells within the retina. Because PRCs can be isolated and expanded from immature and mature eyes, it is possible now to study these cells in culture and after transplantation in the degenerated retinal tissue. We also examine current knowledge of intrinsic RPCs, and human embryonic stems and induced pluripotent stem cells as potential sources for cell transplant therapy to regenerate the diseased retina.
Collapse
Affiliation(s)
- Henry K Yip
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China; Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China
| |
Collapse
|
45
|
Fuhrmann S, Zou C, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res 2013; 123:141-50. [PMID: 24060344 DOI: 10.1016/j.exer.2013.09.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium (RPE) is a simple epithelium interposed between the neural retina and the choroid. Although only 1 cell-layer in thickness, the RPE is a virtual workhorse, acting in several capacities that are essential for visual function and preserving the structural and physiological integrities of neighboring tissues. Defects in RPE function, whether through chronic dysfunction or age-related decline, are associated with retinal degenerative diseases including age-related macular degeneration. As such, investigations are focused on developing techniques to replace RPE through stem cell-based methods, motivated primarily because of the seemingly limited regeneration or self-repair properties of mature RPE. Despite this, RPE cells have an unusual capacity to transdifferentiate into various cell types, with the particular fate choices being highly context-dependent. In this review, we describe recent findings elucidating the mechanisms and steps of RPE development and propose a developmental framework for understanding the apparent contradiction in the capacity for low self-repair versus high transdifferentiation.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - ChangJiang Zou
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Edward M Levine
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
46
|
|
47
|
Singh A, Winterbottom EF, Ji YJ, Hwang YS, Daar IO. Abelson interactor 1 (ABI1) and its interaction with Wiskott-Aldrich syndrome protein (wasp) are critical for proper eye formation in Xenopus embryos. J Biol Chem 2013; 288:14135-14146. [PMID: 23558677 DOI: 10.1074/jbc.m112.445643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abl interactor 1 (Abi1) is a scaffold protein that plays a central role in the regulation of actin cytoskeleton dynamics as a constituent of several key protein complexes, and homozygous loss of this protein leads to embryonic lethality in mice. Because this scaffold protein has been shown in cultured cells to be a critical component of pathways controlling cell migration and actin regulation at cell-cell contacts, we were interested to investigate the in vivo role of Abi1 in morphogenesis during the development of Xenopus embryos. Using morpholino-mediated translation inhibition, we demonstrate that knockdown of Abi1 in the whole embryo, or specifically in eye field progenitor cells, leads to disruption of eye morphogenesis. Moreover, signaling through the Src homology 3 domain of Abi1 is critical for proper movement of retinal progenitor cells into the eye field and their appropriate differentiation, and this process is dependent upon an interaction with the nucleation-promoting factor Wasp (Wiskott-Aldrich syndrome protein). Collectively, our data demonstrate that the Abi1 scaffold protein is an essential regulator of cell movement processes required for normal eye development in Xenopus embryos and specifically requires an Src homology 3 domain-dependent interaction with Wasp to regulate this complex morphogenetic process.
Collapse
Affiliation(s)
- Arvinder Singh
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Emily F Winterbottom
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Yon Ju Ji
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Yoo-Seok Hwang
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Ira O Daar
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702.
| |
Collapse
|
48
|
Sousounis K, Tsonis PA. Patterns of gene expression in microarrays and expressed sequence tags from normal and cataractous lenses. Hum Genomics 2012; 6:14. [PMID: 23244575 PMCID: PMC3563465 DOI: 10.1186/1479-7364-6-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 11/30/2022] Open
Abstract
In this contribution, we have examined the patterns of gene expression in normal and cataractous lenses as presented in five different papers using microarrays and expressed sequence tags. The purpose was to evaluate unique and common patterns of gene expression during development, aging and cataracts.
Collapse
Affiliation(s)
- Konstantinos Sousounis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, OH 45469-2320, USA
| | | |
Collapse
|
49
|
Zhao L, Zevallos SE, Rizzoti K, Jeong Y, Lovell-Badge R, Epstein DJ. Disruption of SoxB1-dependent Sonic hedgehog expression in the hypothalamus causes septo-optic dysplasia. Dev Cell 2012; 22:585-96. [PMID: 22421044 DOI: 10.1016/j.devcel.2011.12.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/26/2011] [Accepted: 12/28/2011] [Indexed: 11/29/2022]
Abstract
Septo-optic dysplasia (SOD) is a congenital brain anomaly that results in pituitary, optic nerve, and midline forebrain defects. The etiology of SOD is poorly understood, with the majority of cases being sporadic. In rare instances, SOD is caused by mutations in Sox2, Sox3, or Hesx1, but how this manifests in disease is not entirely certain. We demonstrate here that mouse embryos lacking Sonic hedgehog (Shh) in the prospective hypothalamus exhibit key features of SOD, including pituitary hypoplasia and absence of the optic disc. The hypothalamic source of Shh is required to maintain gene expression boundaries along the anteroposterior and mediolateral neural axes that are important for proper pituitary and eye development, respectively. We further reveal that Sox2 and Sox3 are dose-dependent regulators of Shh transcription that directly bind and activate a long-range Shh forebrain enhancer. These data indicate that reduced levels of Shh expression in the hypothalamus cause SOD.
Collapse
Affiliation(s)
- Li Zhao
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
50
|
Shaham O, Menuchin Y, Farhy C, Ashery-Padan R. Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res 2012; 31:351-76. [PMID: 22561546 DOI: 10.1016/j.preteyeres.2012.04.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 02/08/2023]
Abstract
Eye development has been a paradigm for the study of organogenesis, from the demonstration of lens induction through epithelial tissue morphogenesis, to neuronal specification and differentiation. The transcription factor Pax6 has been shown to play a key role in each of these processes. Pax6 is required for initiation of developmental pathways, patterning of epithelial tissues, activation of tissue-specific genes and interaction with other regulatory pathways. Herein we examine the data accumulated over the last few decades from extensive analyses of biochemical modules and genetic manipulation of the Pax6 gene. Specifically, we describe the regulation of Pax6's expression pattern, the protein's DNA-binding properties, and its specific roles and mechanisms of action at all stages of lens and retinal development. Pax6 functions at multiple levels to integrate extracellular information and execute cell-intrinsic differentiation programs that culminate in the specification and differentiation of a distinct ocular lineage.
Collapse
Affiliation(s)
- Ohad Shaham
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|