1
|
Wei Z, Babkirk K, Chen S, Pei M. Epithelial-to-mesenchymal transition transcription factors: New strategies for mesenchymal tissue regeneration. Cytokine Growth Factor Rev 2025; 83:99-124. [PMID: 40011185 DOI: 10.1016/j.cytogfr.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
The epithelial-mesenchymal transition transcription factors (EMT-TFs)-ZEB, SNAI, and TWIST families-have been extensively studied in embryonic development and tumor metastasis, providing valuable insight into their roles in cell behavior and transformation. These EMT-TFs have garnered increasing attention in the context of mesenchymal tissue regeneration, potentially contributing an approach for cell therapy. Given that dysregulated EMT-TF expression can impair cell survival and lineage differentiation, controlled regulation of their expression could offer significant advantages for tissue regeneration. However, there is a lack of comprehensive reviews to summarize the influence of the EMT-TFs on mesenchymal tissue regeneration and potential molecular mechanisms. This review explores the regulatory roles of ZEB, SNAI, and TWIST in the regeneration of bone, adipose, cartilage, muscle, and other mesenchymal tissues, with a focus on the underlying molecular signaling mechanisms. Gaining a deeper understanding of how EMT-TFs regulate cell proliferation, apoptosis, migration, and differentiation may offer new insights into the management of mesenchymal tissue repair and open novel avenues for enhancing tissue regeneration.
Collapse
Affiliation(s)
- Zhixin Wei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Kiya Babkirk
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Song Chen
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China; Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China.
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
2
|
Chen Y, Pan Y, Liu L, Guo Y, Jin L, Ren A, Wang L. The mediating role of abnormal ZEB1 methylation in the association between nickel exposure and non-syndromic orofacial cleft. Reprod Toxicol 2024; 130:108728. [PMID: 39326548 DOI: 10.1016/j.reprotox.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/31/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Our previous study found a positive relationship between fetal nickel exposure and the risk of OFCs. The teratogenic mechanism of nickel is not clear. In this study, we aim to examine the mediating effect of DNA methylation on the association of nickel(Ni) exposure with NSOFC in fetuses. 10 cases and 10 controls was used for screening target gene by Illumina Infinium Methylation EPIC(850k) BeadChip. 36 cases and 78 controls was conducted to determine DNA methylation level of selected gene in umbilical cord blood by Mass spectrometry assay. Mediation analysis was used to evaluate the potential mediating effect of selected gene methylation on the relation between concentrations of Ni and the risk for NSOFC. In the discovery stage, ZEB1 gene was identified to be hypermethylated in both nickel exposure and NSOFC group for validation. In the verification stage, the overall average methylation level of ZEB1 was significant higher in NSOFC cases(median = 8.70, interquartile range(IQR): 5.75-11.53) as compared to controls (median = 5.35, IQR: 4.30-7.78). The risk for NSOFC was increased by 1.43-fold with hypermethylation of ZEB1. Significant correlation was observed between concentrations of Ni in umbilical cord and methylation level of ZEB1. The hypermethylation of ZEB1 had a mediating effect by 20.47 % of total effect of Ni on NSOFC risk. Hypermethylation of ZEB1 is associated with the risk for NSOFC and may partially explain the association between Ni exposure and NSOFC risk. Our findings provide new insights into the epigenetic mechanisms underlying NSOFC and suggesting potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Yongyan Chen
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yaquan Pan
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Lijun Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yingnan Guo
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China.
| |
Collapse
|
3
|
Jia P, Che J, Xie X, Han Q, Ma Y, Guo Y, Zheng Y. The role of ZEB1 in mediating the protective effects of metformin on skeletal muscle atrophy. J Pharmacol Sci 2024; 156:57-68. [PMID: 39179335 DOI: 10.1016/j.jphs.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/26/2024] Open
Abstract
Metformin is an important antidiabetic drug that has the potential to reduce skeletal muscle atrophy and promote the differentiation of muscle cells. However, the exact molecular mechanism underlying these functions remains unclear. Previous studies revealed that the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1), which participates in tumor progression, inhibits muscle atrophy. Therefore, we hypothesized that the protective effect of metformin might be related to ZEB1. We investigated the positive effect of metformin on IL-1β-induced skeletal muscle atrophy by regulating ZEB1 in vitro and in vivo. Compared with the normal cell differentiation group, the metformin-treated group presented increased myotube diameters and reduced expression levels of atrophy-marker proteins. Moreover, muscle cell differentiation was hindered, when we artificially interfered with ZEB1 expression in mouse skeletal myoblast (C2C12) cells via ZEB1-specific small interfering RNA (si-ZEB1). In response to inflammatory stimulation, metformin treatment increased the expression levels of ZEB1 and three differentiation proteins, MHC, MyoD, and myogenin, whereas si-ZEB1 partially counteracted these effects. Moreover, marked atrophy was induced in a mouse model via the administration of lipopolysaccharide (LPS) to the skeletal muscles of the lower limbs. Over a 4-week period of intragastric administration, metformin treatment ameliorated muscle atrophy and increased the expression levels of ZEB1. Metformin treatment partially alleviated muscle atrophy and stimulated differentiation. Overall, our findings may provide a better understanding of the mechanism underlying the effects of metformin treatment on skeletal muscle atrophy and suggest the potential of metformin as a therapeutic drug.
Collapse
Affiliation(s)
- Peiyu Jia
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China
| | - Ji Che
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China
| | - Xiaoting Xie
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Qi Han
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China
| | - Yantao Ma
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China
| | - Yong Guo
- Department of Anesthesiology and Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Yongjun Zheng
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
4
|
Li SY, Xue ST, Li ZR. Osteoporosis: Emerging targets on the classical signaling pathways of bone formation. Eur J Pharmacol 2024; 973:176574. [PMID: 38642670 DOI: 10.1016/j.ejphar.2024.176574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
Osteoporosis is a multifaceted skeletal disorder characterized by reduced bone mass and structural deterioration, posing a significant public health challenge, particularly in the elderly population. Treatment strategies for osteoporosis primarily focus on inhibiting bone resorption and promoting bone formation. However, the effectiveness and limitations of current therapeutic approaches underscore the need for innovative methods. This review explores emerging molecular targets within crucial signaling pathways, including wingless/integrated (WNT), bone morphogenetic protein (BMP), hedgehog (HH), and Notch signaling pathway, to understand their roles in osteogenesis regulation. The identification of crosstalk targets between these pathways further enhances our comprehension of the intricate bone metabolism cycle. In summary, unraveling the molecular complexity of osteoporosis provides insights into potential therapeutic targets beyond conventional methods, offering a promising avenue for the development of new anabolic drugs.
Collapse
Affiliation(s)
- Si-Yan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Si-Tu Xue
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Zhuo-Rong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
5
|
Almotiri A, Abdelfattah A, Storch E, Stemmler MP, Brabletz S, Brabletz T, Rodrigues NP. Zeb1 maintains long-term adult hematopoietic stem cell function and extramedullary hematopoiesis. Exp Hematol 2024; 134:104177. [PMID: 38336135 DOI: 10.1016/j.exphem.2024.104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Emerging evidence implicates the epithelial-mesenchymal transition transcription factor Zeb1 as a critical regulator of hematopoietic stem cell (HSC) differentiation. Whether Zeb1 regulates long-term maintenance of HSC function remains an open question. Using an inducible Mx-1-Cre mouse model that deletes conditional Zeb1 alleles in the adult hematopoietic system, we found that mice engineered to be deficient in Zeb1 for 32 weeks displayed expanded immunophenotypically defined adult HSCs and multipotent progenitors associated with increased abundance of lineage-biased/balanced HSC subsets and augmented cell survival characteristics. During hematopoietic differentiation, persistent Zeb1 loss increased B cells in the bone marrow and spleen and decreased monocyte generation in the peripheral blood. In competitive transplantation experiments, we found that HSCs from adult mice with long-term Zeb1 deletion displayed a cell autonomous defect in multilineage differentiation capacity. Long-term Zeb1 loss perturbed extramedullary hematopoiesis characterized by increased splenic weight and a paradoxical reduction in splenic cellularity that was accompanied by HSC exhaustion, lineage-specific defects, and an accumulation of aberrant, preleukemic like c-kit+CD16/32+ progenitors. Loss of Zeb1 for up to 42 weeks can lead to progressive splenomegaly and an accumulation of Gr-1+Mac-1+ cells, further supporting the notion that long-term expression of Zeb1 suppresses preleukemic activity. Thus, sustained Zeb1 deletion disrupts HSC functionality in vivo and impairs regulation of extramedullary hematopoiesis with potential implications for tumor suppressor functions of Zeb1 in myeloid neoplasms.
Collapse
Affiliation(s)
- Alhomidi Almotiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Shaqra University, Dawadmi, Saudi Arabia; European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, UK
| | - Ali Abdelfattah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, UK; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Elis Storch
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, UK
| | - Marc P Stemmler
- Department of Experimental Medicine, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, UK.
| |
Collapse
|
6
|
Jin L, Zhang L, Yan C, Liu M, Dean DC, Liu Y. Corneal injury repair and the potential involvement of ZEB1. EYE AND VISION (LONDON, ENGLAND) 2024; 11:20. [PMID: 38822380 PMCID: PMC11143703 DOI: 10.1186/s40662-024-00387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The cornea, consisting of three cellular and two non-cellular layers, is the outermost part of the eyeball and frequently injured by external physical, chemical, and microbial insults. The epithelial-to-mesenchymal transition (EMT) plays a crucial role in the repair of corneal injuries. Zinc finger E-box binding homeobox 1 (ZEB1), an important transcription factor involved in EMT, is expressed in the corneal tissues. It regulates cell activities like migration, transformation, and proliferation, and thereby affects tissue inflammation, fibrosis, tumor metastasis, and necrosis by mediating various major signaling pathways, including transforming growth factor (TGF)-β. Dysfunction of ZEB1 would impair corneal tissue repair leading to epithelial healing delay, interstitial fibrosis, neovascularization, and squamous cell metaplasia. Understanding the mechanism underlying ZEB1 regulation of corneal injury repair will help us to formulate a therapeutic approach to enhance corneal injury repair.
Collapse
Affiliation(s)
- Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Chunxiao Yan
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Mengxin Liu
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Douglas C Dean
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yongqing Liu
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
7
|
Do KK, Wang F, Sun X, Zhang Y, Liang W, Liu JY, Jiang DY, Lu X, Wang W, Zhang L, Dean DC, Liu Y. Conditional deletion of Zeb1 in Csf1r + cells reduces inflammatory response of the cornea to alkali burn. iScience 2024; 27:109694. [PMID: 38660397 PMCID: PMC11039400 DOI: 10.1016/j.isci.2024.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
ZEB1 is an essential factor in embryonic development. In adults, it is often highly expressed in malignant tumors with low expression in normal tissues. The major biological function of ZEB1 in developing embryos and progressing cancers is to transdifferentiate cells from an epithelial to mesenchymal phenotype; but what roles ZEB1 plays in normal adult tissues are largely unknown. We previously reported that the reduction of Zeb1 in monoallelic global knockout (Zeb1+/-) mice reduced corneal inflammation-associated neovascularization following alkali burn. To uncover the cellular mechanism underlying the Zeb1 regulation of corneal inflammation, we functionally deleted Zeb1 alleles in Csf1r+ myeloid cells using a conditional knockout (cKO) strategy and found that Zeb1 cKO reduced leukocytes in the cornea after alkali burn. The reduction of immune cells was due to their increased apoptotic rate and linked to a Zeb1-downregulated apoptotic pathway. We conclude that Zeb1 facilitates corneal inflammatory response by maintaining Csf1r+ cell viability.
Collapse
Affiliation(s)
- Khoi K. Do
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Fuhua Wang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, Jinan 250021, China
| | - Xiaolei Sun
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, Jinan 250021, China
| | - Yingnan Zhang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- The Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX 78229, USA
| | - Wei Liang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology, Third People’s Hospital of Dalian, Dalian Medical University, Dalian 116033, China
| | - John Y. Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Daniel Y. Jiang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Xiaoqin Lu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Lijun Zhang
- Department of Ophthalmology, Third People’s Hospital of Dalian, Dalian Medical University, Dalian 116033, China
| | - Douglas C. Dean
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Yongqing Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Martinez-Campanario MC, Cortés M, Moreno-Lanceta A, Han L, Ninfali C, Domínguez V, Andrés-Manzano MJ, Farràs M, Esteve-Codina A, Enrich C, Díaz-Crespo FJ, Pintado B, Escolà-Gil JC, García de Frutos P, Andrés V, Melgar-Lesmes P, Postigo A. Atherosclerotic plaque development in mice is enhanced by myeloid ZEB1 downregulation. Nat Commun 2023; 14:8316. [PMID: 38097578 PMCID: PMC10721632 DOI: 10.1038/s41467-023-43896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Accumulation of lipid-laden macrophages within the arterial neointima is a critical step in atherosclerotic plaque formation. Here, we show that reduced levels of the cellular plasticity factor ZEB1 in macrophages increase atherosclerotic plaque formation and the chance of cardiovascular events. Compared to control counterparts (Zeb1WT/ApoeKO), male mice with Zeb1 ablation in their myeloid cells (Zeb1∆M/ApoeKO) have larger atherosclerotic plaques and higher lipid accumulation in their macrophages due to delayed lipid traffic and deficient cholesterol efflux. Zeb1∆M/ApoeKO mice display more pronounced systemic metabolic alterations than Zeb1WT/ApoeKO mice, with higher serum levels of low-density lipoproteins and inflammatory cytokines and larger ectopic fat deposits. Higher lipid accumulation in Zeb1∆M macrophages is reverted by the exogenous expression of Zeb1 through macrophage-targeted nanoparticles. In vivo administration of these nanoparticles reduces atherosclerotic plaque formation in Zeb1∆M/ApoeKO mice. Finally, low ZEB1 expression in human endarterectomies is associated with plaque rupture and cardiovascular events. These results set ZEB1 in macrophages as a potential target in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- M C Martinez-Campanario
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Marlies Cortés
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Alazne Moreno-Lanceta
- Department of Biomedicine, University of Barcelona School of Medicine, 08036, Barcelona, Spain
| | - Lu Han
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Chiara Ninfali
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Verónica Domínguez
- Transgenesis Facility, National Center of Biotechnology (CNB) and Center for Molecular Biology Severo Ochoa (UAM-CBMSO), Spanish National Research Council (CSIC) and Autonomous University of Madrid (UAM), Cantoblanco, 28049, Madrid, Spain
| | - María J Andrés-Manzano
- Group of Molecular and Genetic Cardiovascular Pathophysiology, Spanish National Center for Cardiovascular Research (CNIC), 28029, Madrid, Spain
- Center for Biomedical, Research Network in Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, 28029, Madrid, Spain
| | - Marta Farràs
- Department of Biochemistry and Molecular Biology, Institute of Biomedical Research Sant Pau, University Autonomous of Barcelona, 08041, Barcelona, Spain
- Center for Biomedical Research Network in Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute, 28029, Madrid, Spain
| | | | - Carlos Enrich
- Department of Biomedicine, University of Barcelona School of Medicine, 08036, Barcelona, Spain
- Group of signal transduction, intracellular compartments and cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Francisco J Díaz-Crespo
- Department of Pathology, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
| | - Belén Pintado
- Transgenesis Facility, National Center of Biotechnology (CNB) and Center for Molecular Biology Severo Ochoa (UAM-CBMSO), Spanish National Research Council (CSIC) and Autonomous University of Madrid (UAM), Cantoblanco, 28049, Madrid, Spain
| | - Joan C Escolà-Gil
- Department of Biochemistry and Molecular Biology, Institute of Biomedical Research Sant Pau, University Autonomous of Barcelona, 08041, Barcelona, Spain
- Center for Biomedical Research Network in Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute, 28029, Madrid, Spain
| | - Pablo García de Frutos
- Center for Biomedical, Research Network in Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, 28029, Madrid, Spain
- Department Of Cell Death and Proliferation, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain
- Group of Hemotherapy and Hemostasis, IDIBAPS, 08036, Barcelona, Spain
| | - Vicente Andrés
- Group of Molecular and Genetic Cardiovascular Pathophysiology, Spanish National Center for Cardiovascular Research (CNIC), 28029, Madrid, Spain
- Center for Biomedical, Research Network in Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, 28029, Madrid, Spain
| | - Pedro Melgar-Lesmes
- Department of Biomedicine, University of Barcelona School of Medicine, 08036, Barcelona, Spain
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, 08036, Barcelona, Spain
- Center for Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III Health Institute, 28029, Madrid, Spain
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain.
- Center for Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III Health Institute, 28029, Madrid, Spain.
- Molecular Targets Program, Division of Oncology, Department of Medicine, J.G. Brown Cancer Center, Louisville, KY, 40202, USA.
- ICREA, 08010, Barcelona, Spain.
| |
Collapse
|
9
|
Saitoh M. Transcriptional regulation of EMT transcription factors in cancer. Semin Cancer Biol 2023; 97:21-29. [PMID: 37802266 DOI: 10.1016/j.semcancer.2023.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/01/2022] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is one of the processes by which epithelial cells transdifferentiate into mesenchymal cells in the developmental stage, known as "complete EMT." In epithelial cancer, EMT, also termed "partial EMT," is associated with invasion, metastasis, and resistance to therapy, and is elicited by several transcription factors, frequently referred to as EMT transcription factors. Among these transcription factors that regulate EMT, ZEB1/2 (ZEB1 and ZEB2), SNAIL, and TWIST play a prominent role in driving the EMT process (hereafter referred to as "EMT-TFs"). Among these, ZEB1/2 show positive correlation with both expression of mesenchymal marker proteins and the aggressiveness of various carcinomas. On the other hand, TWIST and SNAIL are also correlated with the aggressiveness of carcinomas, but are not highly correlated with mesenchymal marker protein expression. Interestingly, these EMT-TFs are not detected simultaneously in any studied cases of aggressive cancers, except for sarcoma. Thus, only one or some of the EMT-TFs are expressed at high levels in cells of aggressive carcinomas. Expression of EMT-TFs is regulated by transforming growth factor-β (TGF-β), a well-established inducer of EMT, in cooperation with other signaling molecules, such as active RAS signals. The focus of this review is the molecular mechanisms by which EMT-TFs are transcriptionally sustained at sufficiently high levels in cells of aggressive carcinomas and upregulated by TGF-β during cancer progression.
Collapse
Affiliation(s)
- Masao Saitoh
- Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, Chuo-city, Yamanashi, Japan.
| |
Collapse
|
10
|
Ninfali C, Siles L, Esteve-Codina A, Postigo A. The mesodermal and myogenic specification of hESCs depend on ZEB1 and are inhibited by ZEB2. Cell Rep 2023; 42:113222. [PMID: 37819755 DOI: 10.1016/j.celrep.2023.113222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
Human embryonic stem cells (hESCs) can differentiate into any cell lineage. Here, we report that ZEB1 and ZEB2 promote and inhibit mesodermal-to-myogenic specification of hESCs, respectively. Knockdown and/or overexpression experiments of ZEB1, ZEB2, or PAX7 in hESCs indicate that ZEB1 is required for hESC Nodal/Activin-mediated mesodermal specification and PAX7+ human myogenic progenitor (hMuP) generation, while ZEB2 inhibits these processes. ZEB1 downregulation induces neural markers, while ZEB2 downregulation induces mesodermal/myogenic markers. Mechanistically, ZEB1 binds to and transcriptionally activates the PAX7 promoter, while ZEB2 binds to and activates the promoter of the neural OTX2 marker. Transplanting ZEB1 or ZEB2 knocked down hMuPs into the muscles of a muscular dystrophy mouse model, showing that hMuP engraftment and generation of dystrophin-positive myofibers depend on ZEB1 and are inhibited by ZEB2. The mouse model results suggest that ZEB1 expression and/or downregulating ZEB2 in hESCs may also enhance hESC regenerative capacity for human muscular dystrophy therapy.
Collapse
Affiliation(s)
- Chiara Ninfali
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036 Barcelona, Spain
| | - Laura Siles
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036 Barcelona, Spain
| | | | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036 Barcelona, Spain; Molecular Targets Program, J.G. Brown Center, Louisville University Healthcare Campus, Louisville, KY 40202, USA; ICREA, 08010 Barcelona, Spain.
| |
Collapse
|
11
|
Sánchez-Tilló E, Pedrosa L, Vila I, Chen Y, Győrffy B, Sánchez-Moral L, Siles L, Lozano JJ, Esteve-Codina A, Darling DS, Cuatrecasas M, Castells A, Maurel J, Postigo A. The EMT factor ZEB1 paradoxically inhibits EMT in BRAF-mutant carcinomas. JCI Insight 2023; 8:e164629. [PMID: 37870961 PMCID: PMC10619495 DOI: 10.1172/jci.insight.164629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/05/2023] [Indexed: 10/25/2023] Open
Abstract
Despite being in the same pathway, mutations of KRAS and BRAF in colorectal carcinomas (CRCs) determine distinct progression courses. ZEB1 induces an epithelial-to-mesenchymal transition (EMT) and is associated with worse progression in most carcinomas. Using samples from patients with CRC, mouse models of KrasG12D and BrafV600E CRC, and a Zeb1-deficient mouse, we show that ZEB1 had opposite functions in KRAS- and BRAF-mutant CRCs. In KrasG12D CRCs, ZEB1 was correlated with a worse prognosis and a higher number of larger and undifferentiated (mesenchymal or EMT-like) tumors. Surprisingly, in BrafV600E CRC, ZEB1 was associated with better prognosis; fewer, smaller, and more differentiated (reduced EMT) primary tumors; and fewer metastases. ZEB1 was positively correlated in KRAS-mutant CRC cells and negatively in BRAF-mutant CRC cells with gene signatures for EMT, cell proliferation and survival, and ERK signaling. On a mechanistic level, ZEB1 knockdown in KRAS-mutant CRC cells increased apoptosis and reduced clonogenicity and anchorage-independent growth; the reverse occurred in BRAFV600E CRC cells. ZEB1 is associated with better prognosis and reduced EMT signature in patients harboring BRAF CRCs. These data suggest that ZEB1 can function as a tumor suppressor in BRAF-mutant CRCs, highlighting the importance of considering the KRAS/BRAF mutational background of CRCs in therapeutic strategies targeting ZEB1/EMT.
Collapse
Affiliation(s)
- Ester Sánchez-Tilló
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Group of Gastrointestinal and Pancreatic Oncology, Department of Liver, Digestive System and Metabolism, IDIBAPS, Barcelona, Spain
- Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III National Health Institute (ISCIII), Barcelona, Spain
| | - Leire Pedrosa
- Group of Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, and Department of Medical Oncology, Hospital Clinic, Barcelona, Spain
| | - Ingrid Vila
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Yongxu Chen
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Balázs Győrffy
- Cancer Biomarker Research Group, Research Centre for Natural Sciences (TKK), and Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Lidia Sánchez-Moral
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Siles
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan J. Lozano
- Bioinformatics Platform, CIBEREHD, ISCIII, Barcelona, Spain
| | - Anna Esteve-Codina
- National Centre for Genomic Analysis (CNAG) Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Medicine and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Douglas S. Darling
- Department of Oral Immunology, and Center for Genetics and Molecular Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Miriam Cuatrecasas
- Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III National Health Institute (ISCIII), Barcelona, Spain
- Group of Molecular Pathology of Inflammatory Conditions and Solid Tumours, Department of Oncology and Hematology, IDIBAPS, Barcelona, Spain
- Department of Pathology, Hospital Clínic and University of Barcelona School of Medicine, Barcelona, Spain
| | - Antoni Castells
- Group of Gastrointestinal and Pancreatic Oncology, Department of Liver, Digestive System and Metabolism, IDIBAPS, Barcelona, Spain
- Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III National Health Institute (ISCIII), Barcelona, Spain
- Department of Gastroenterology, Hospital Clinic and University of Barcelona School of Medicine, Barcelona, Spain
| | - Joan Maurel
- Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III National Health Institute (ISCIII), Barcelona, Spain
- Group of Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, and Department of Medical Oncology, Hospital Clinic, Barcelona, Spain
| | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III National Health Institute (ISCIII), Barcelona, Spain
- Molecular Targets Program, Department of Medicine, J.G. Brown Cancer Center, Louisville, Kentucky, USA
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
12
|
Radhakrishnan K, Truong L, Carmichael CL. An "unexpected" role for EMT transcription factors in hematological development and malignancy. Front Immunol 2023; 14:1207360. [PMID: 37600794 PMCID: PMC10435889 DOI: 10.3389/fimmu.2023.1207360] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a fundamental developmental process essential for normal embryonic development. It is also important during various pathogenic processes including fibrosis, wound healing and epithelial cancer cell metastasis and invasion. EMT is regulated by a variety of cell signalling pathways, cell-cell interactions and microenvironmental cues, however the key drivers of EMT are transcription factors of the ZEB, TWIST and SNAIL families. Recently, novel and unexpected roles for these EMT transcription factors (EMT-TFs) during normal blood cell development have emerged, which appear to be largely independent of classical EMT processes. Furthermore, EMT-TFs have also begun to be implicated in the development and pathogenesis of malignant hematological diseases such as leukemia and lymphoma, and now present themselves or the pathways they regulate as possible new therapeutic targets within these malignancies. In this review, we discuss the ZEB, TWIST and SNAIL families of EMT-TFs, focusing on what is known about their normal roles during hematopoiesis as well as the emerging and "unexpected" contribution they play during development and progression of blood cancers.
Collapse
Affiliation(s)
- Karthika Radhakrishnan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lynda Truong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Catherine L. Carmichael
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Monash University, Faculty of Medicine, Nursing and Health Sciences, Clayton, VIC, Australia
| |
Collapse
|
13
|
Zhao Q, Shao T, Zhu Y, Zong G, Zhang J, Tang S, Lin Y, Ma H, Jiang Z, Xu Y, Wu X, Zhang T. An MRTF-A-ZEB1-IRF9 axis contributes to fibroblast-myofibroblast transition and renal fibrosis. Exp Mol Med 2023:10.1038/s12276-023-00990-6. [PMID: 37121967 DOI: 10.1038/s12276-023-00990-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/23/2023] [Accepted: 02/14/2023] [Indexed: 05/02/2023] Open
Abstract
Myofibroblasts, characterized by the expression of the matricellular protein periostin (Postn), mediate the profibrogenic response during tissue repair and remodeling. Previous studies have demonstrated that systemic deficiency in myocardin-related transcription factor A (MRTF-A) attenuates renal fibrosis in mice. In the present study, we investigated the myofibroblast-specific role of MRTF-A in renal fibrosis and the underlying mechanism. We report that myofibroblast-specific deletion of MRTF-A, achieved through crossbreeding Mrtfa-flox mice with Postn-CreERT2 mice, led to amelioration of renal fibrosis. RNA-seq identified zinc finger E-Box binding homeobox 1 (Zeb1) as a downstream target of MRTF-A in renal fibroblasts. MRTF-A interacts with TEA domain transcription factor 1 (TEAD1) to bind to the Zeb1 promoter and activate Zeb1 transcription. Zeb1 knockdown retarded the fibroblast-myofibroblast transition (FMyT) in vitro and dampened renal fibrosis in mice. Transcriptomic assays showed that Zeb1 might contribute to FMyT by repressing the transcription of interferon regulatory factor 9 (IRF9). IRF9 knockdown overcame the effect of Zeb1 depletion and promoted FMyT, whereas IRF9 overexpression antagonized TGF-β-induced FMyT. In conclusion, our data unveil a novel MRTF-A-Zeb1-IRF9 axis that can potentially contribute to fibroblast-myofibroblast transition and renal fibrosis. Screening for small-molecule compounds that target this axis may yield therapeutic options for the mollification of renal fibrosis.
Collapse
Affiliation(s)
- Qianwen Zhao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Gengjie Zong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Junjie Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Shifan Tang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yanshan Lin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hongzhen Ma
- Department of Geriatric Nephrology, First Affiliated Hospital to Nanjing Medical University, Nanjing, China
| | - Zhifan Jiang
- Department of Geriatric Nephrology, First Affiliated Hospital to Nanjing Medical University, Nanjing, China
| | - Yong Xu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiaoyan Wu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
| | - Tao Zhang
- Department of Geriatric Nephrology, First Affiliated Hospital to Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Zhang Y, Do KK, Wang F, Lu X, Liu JY, Li C, Ceresa BP, Zhang L, Dean DC, Liu Y. Zeb1 facilitates corneal epithelial wound healing by maintaining corneal epithelial cell viability and mobility. Commun Biol 2023; 6:434. [PMID: 37081200 PMCID: PMC10119281 DOI: 10.1038/s42003-023-04831-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
The cornea is the outmost ocular tissue and plays an important role in protecting the eye from environmental insults. Corneal epithelial wounding provokes pain and fear and contributes to the most ocular trauma emergency assessments worldwide. ZEB1 is an essential transcription factor in development; but its roles in adult tissues are not clear. We identify Zeb1 is an intrinsic factor that facilitates corneal epithelial wound healing. In this study, we demonstrate that monoallelic deletion of Zeb1 significantly expedites corneal cell death and inhibits corneal epithelial EMT-related cell migration upon an epithelial debridement. We provide evidence that Zeb1-regulation of corneal epithelial wound healing is through the repression of genes required for Tnfa-induced epithelial cell death and the induction of genes beneficial for epithelial cell migration. We suggest utilizing TNF-α antagonists would reduce TNF/TNFR1-induced cell death in the corneal epithelium and inflammation in the corneal stroma to help corneal wound healing.
Collapse
Affiliation(s)
- Yingnan Zhang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- The Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX, 78229, USA
| | - Khoi K Do
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Fuhua Wang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, 250021, Jinan, China
| | - Xiaoqin Lu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - John Y Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Chi Li
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Brian P Ceresa
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lijun Zhang
- Department of Ophthalmology, Third People's Hospital of Dalian, Dalian Medical University, 116033, Dalian, China
| | - Douglas C Dean
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yongqing Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
15
|
Gómez R, Barter MJ, Alonso-Pérez A, Skelton AJ, Proctor C, Herrero-Beaumont G, Young DA. DNA methylation analysis identifies key transcription factors involved in mesenchymal stem cell osteogenic differentiation. Biol Res 2023; 56:9. [PMID: 36890579 PMCID: PMC9996951 DOI: 10.1186/s40659-023-00417-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/23/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Knowledge about regulating transcription factors (TFs) for osteoblastogenesis from mesenchymal stem cells (MSCs) is limited. Therefore, we investigated the relationship between genomic regions subject to DNA-methylation changes during osteoblastogenesis and the TFs known to directly interact with these regulatory regions. RESULTS The genome-wide DNA-methylation signature of MSCs differentiated to osteoblasts and adipocytes was determined using the Illumina HumanMethylation450 BeadChip array. During adipogenesis no CpGs passed our test for significant methylation changes. Oppositely, during osteoblastogenesis we identified 2462 differently significantly methylated CpGs (adj. p < 0.05). These resided outside of CpGs islands and were significantly enriched in enhancer regions. We confirmed the correlation between DNA-methylation and gene expression. Accordingly, we developed a bioinformatic tool to analyse differentially methylated regions and the TFs interacting with them. By overlaying our osteoblastogenesis differentially methylated regions with ENCODE TF ChIP-seq data we obtained a set of candidate TFs associated to DNA-methylation changes. Among them, ZEB1 TF was highly related with DNA-methylation. Using RNA interference, we confirmed that ZEB1, and ZEB2, played a key role in adipogenesis and osteoblastogenesis processes. For clinical relevance, ZEB1 mRNA expression in human bone samples was evaluated. This expression positively correlated with weight, body mass index, and PPARγ expression. CONCLUSIONS In this work we describe an osteoblastogenesis-associated DNA-methylation profile and, using these data, validate a novel computational tool to identify key TFs associated to age-related disease processes. By means of this tool we identified and confirmed ZEB TFs as mediators involved in the MSCs differentiation to osteoblasts and adipocytes, and obesity-related bone adiposity.
Collapse
Affiliation(s)
- Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Laboratorio 18, Edificio B, Planta -2, 15706, Santiago de Compostela, Spain.
| | - Matt J Barter
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Laboratorio 18, Edificio B, Planta -2, 15706, Santiago de Compostela, Spain
| | - Andrew J Skelton
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Carole Proctor
- Campus for Ageing and Vitality, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz, UAM, 28040, Madrid, Avda Reyes Católicos, Spain
| | - David A Young
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| |
Collapse
|
16
|
Bak ST, Harvald EB, Ellman DG, Mathiesen SB, Chen T, Fang S, Andersen KS, Fenger CD, Burton M, Thomassen M, Andersen DC. Ploidy-stratified single cardiomyocyte transcriptomics map Zinc Finger E-Box Binding Homeobox 1 to underly cardiomyocyte proliferation before birth. Basic Res Cardiol 2023; 118:8. [PMID: 36862248 PMCID: PMC9981540 DOI: 10.1007/s00395-023-00979-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/31/2022] [Accepted: 01/21/2023] [Indexed: 03/03/2023]
Abstract
Whereas cardiomyocytes (CMs) in the fetal heart divide, postnatal CMs fail to undergo karyokinesis and/or cytokinesis and therefore become polyploid or binucleated, a key process in terminal CM differentiation. This switch from a diploid proliferative CM to a terminally differentiated polyploid CM remains an enigma and seems an obstacle for heart regeneration. Here, we set out to identify the transcriptional landscape of CMs around birth using single cell RNA sequencing (scRNA-seq) to predict transcription factors (TFs) involved in CM proliferation and terminal differentiation. To this end, we established an approach combining fluorescence activated cell sorting (FACS) with scRNA-seq of fixed CMs from developing (E16.5, P1, and P5) mouse hearts, and generated high-resolution single-cell transcriptomic maps of in vivo diploid and tetraploid CMs, increasing the CM resolution. We identified TF-networks regulating the G2/M phases of developing CMs around birth. ZEB1 (Zinc Finger E-Box Binding Homeobox 1), a hereto unknown TF in CM cell cycling, was found to regulate the highest number of cell cycle genes in cycling CMs at E16.5 but was downregulated around birth. CM ZEB1-knockdown reduced proliferation of E16.5 CMs, while ZEB1 overexpression at P0 after birth resulted in CM endoreplication. These data thus provide a ploidy stratified transcriptomic map of developing CMs and bring new insight to CM proliferation and endoreplication identifying ZEB1 as a key player in these processes.
Collapse
Affiliation(s)
- Sara Thornby Bak
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Eva Bang Harvald
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Ditte Gry Ellman
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Sabrina Bech Mathiesen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Ting Chen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Shu Fang
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Kristian Skriver Andersen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | | | - Mark Burton
- Clinical Institute, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Clinical Institute, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Ditte Caroline Andersen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark.
- Clinical Institute, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
17
|
Zhu L, Tang Y, Li XY, Kerk SA, Lyssiotis CA, Feng W, Sun X, Hespe GE, Wang Z, Stemmler MP, Brabletz S, Brabletz T, Keller ET, Ma J, Cho JS, Yang J, Weiss SJ. A Zeb1/MtCK1 metabolic axis controls osteoclast activation and skeletal remodeling. EMBO J 2023; 42:e111148. [PMID: 36843552 PMCID: PMC10068323 DOI: 10.15252/embj.2022111148] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/28/2023] Open
Abstract
Osteoclasts are bone-resorbing polykaryons responsible for skeletal remodeling during health and disease. Coincident with their differentiation from myeloid precursors, osteoclasts undergo extensive transcriptional and metabolic reprogramming in order to acquire the cellular machinery necessary to demineralize bone and digest its interwoven extracellular matrix. While attempting to identify new regulatory molecules critical to bone resorption, we discovered that murine and human osteoclast differentiation is accompanied by the expression of Zeb1, a zinc-finger transcriptional repressor whose role in normal development is most frequently linked to the control of epithelial-mesenchymal programs. However, following targeting, we find that Zeb1 serves as an unexpected regulator of osteoclast energy metabolism. In vivo, Zeb1-null osteoclasts assume a hyperactivated state, markedly decreasing bone density due to excessive resorptive activity. Mechanistically, Zeb1 acts in a rheostat-like fashion to modulate murine and human osteoclast activity by transcriptionally repressing an ATP-buffering enzyme, mitochondrial creatine kinase 1 (MtCK1), thereby controlling the phosphocreatine energy shuttle and mitochondrial respiration. Together, these studies identify a novel Zeb1/MtCK1 axis that exerts metabolic control over bone resorption in vitro and in vivo.
Collapse
Affiliation(s)
- Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yi Tang
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiao-Yan Li
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Samuel A Kerk
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Wenqing Feng
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoyue Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Geoffrey E Hespe
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Zijun Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Evan T Keller
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Urology and the Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA
| | - Jun Ma
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jung-Sun Cho
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jingwen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Stephen J Weiss
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
VARISLI LOKMAN, TOLAN VEYSEL, CEN JIYANH, VLAHOPOULOS SPIROS, CEN OSMAN. Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncol Res 2023; 30:137-155. [PMID: 37305018 PMCID: PMC10208071 DOI: 10.32604/or.2022.026074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer is one of the most often diagnosed malignancies in males and its prevalence is rising in both developed and developing countries. Androgen deprivation therapy has been used as a standard treatment approach for advanced prostate cancer for more than 80 years. The primary aim of androgen deprivation therapy is to decrease circulatory androgen and block androgen signaling. Although a partly remediation is accomplished at the beginning of treatment, some cell populations become refractory to androgen deprivation therapy and continue to metastasize. Recent evidences suggest that androgen deprivation therapy may cause cadherin switching, from E-cadherin to N-cadherin, which is the hallmark of epithelial-mesenchymal transition. Diverse direct and indirect mechanisms are involved in this switching and consequently, the cadherin pool changes from E-cadherin to N-cadherin in the epithelial cells. Since E-cadherin represses invasive and migrative behaviors of the tumor cells, the loss of E-cadherin disrupts epithelial tissue structure leading to the release of tumor cells into surrounding tissues and circulation. In this study, we review the androgen deprivation therapy-dependent cadherin switching in advanced prostate cancer with emphasis on its molecular basis especially the transcriptional factors regulated through TFG-β pathway.
Collapse
Affiliation(s)
- LOKMAN VARISLI
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
- Cancer Research Center, Dicle University, Diyarbakir, 21280, Turkey
| | - VEYSEL TOLAN
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
| | - JIYAN H. CEN
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - SPIROS VLAHOPOULOS
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - OSMAN CEN
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, 62305, USA
| |
Collapse
|
19
|
Heur M, Lee J. Spatiotemporal gene targeting in the mouse corneal endothelium. Taiwan J Ophthalmol 2023; 13:28-33. [DOI: 10.4103/tjo.tjo-d-22-00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/27/2022] [Indexed: 01/13/2023] Open
|
20
|
Identification of Transcription Factor Networks during Mouse Hindlimb Development. Cells 2022; 12:cells12010028. [PMID: 36611822 PMCID: PMC9818828 DOI: 10.3390/cells12010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Mammalian hindlimb development involves a variety of cells and the regulation of spatiotemporal molecular events, but regulatory networks of transcription factors contributing to hindlimb morphogenesis are not well understood. Here, we identified transcription factor networks during mouse hindlimb morphology establishment through transcriptome analysis. We used four stages of embryonic hindlimb transcription profiles acquired from the Gene Expression Omnibus database (GSE30138), including E10.5, E11.5, E12.5 and E13.5, to construct a gene network using Weighted Gene Co-expression Network Analysis (WGCNA), and defined seven stage-associated modules. After filtering 7625 hub genes, we further prioritized 555 transcription factors with AnimalTFDB3.0. Gene ontology enrichment showed that transcription factors of different modules were enriched in muscle tissue development, connective tissue development, embryonic organ development, skeletal system morphogenesis, pattern specification process and urogenital system development separately. Six regulatory networks were constructed with key transcription factors, which contribute to the development of different tissues. Knockdown of four transcription factors from regulatory networks, including Sox9, Twist1, Snai2 and Klf4, showed that the expression of limb-development-related genes was also inhibited, which indicated the crucial role of transcription factor networks in hindlimb development.
Collapse
|
21
|
Post-Translational Modification of ZEB Family Members in Cancer Progression. Int J Mol Sci 2022; 23:ijms232315127. [PMID: 36499447 PMCID: PMC9737314 DOI: 10.3390/ijms232315127] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Post-translational modification (PTM), the essential regulatory mechanisms of proteins, play essential roles in physiological and pathological processes. In addition, PTM functions in tumour development and progression. Zinc finger E-box binding homeobox (ZEB) family homeodomain transcription factors, such as ZEB1 and ZEB2, play a pivotal role in tumour progression and metastasis by induction epithelial-mesenchymal transition (EMT), with activation of stem cell traits, immune evasion and epigenetic reprogramming. However, the relationship between ZEB family members' post-translational modification (PTM) and tumourigenesis remains largely unknown. Therefore, we focussed on the PTM of ZEBs and potential therapeutic approaches in cancer progression. This review provides an overview of the diverse functions of ZEBs in cancer and the mechanisms and therapeutic implications that target ZEB family members' PTMs.
Collapse
|
22
|
Funato N, Yanagisawa H. TBX1 targets the miR-200-ZEB2 axis to induce epithelial differentiation and inhibit stem cell properties. Sci Rep 2022; 12:20188. [PMID: 36418889 PMCID: PMC9684448 DOI: 10.1038/s41598-022-24604-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
TBX1, which encodes a T-box transcription factor, is considered a candidate gene for DiGeorge syndrome, velocardiofacial syndrome, and conotruncal anomaly face syndrome. Transduction of TBX1 decreases cell proliferation in epithelial cancer cells and Tbx1 ablation induces epithelial proliferation during palatal development. Here, we report that TBX1 regulates stem cell properties and epithelial differentiation through the transcriptional activation of microRNAs. Stable expression of TBX1 induces microRNA-200 (miR-200), whose members repress the epithelial-to-mesenchymal transition and induce epithelial differentiation. TBX1 rescues ZEB2-dependent transcriptional inhibition of the miR-200b/200a/429 cluster, whose promoter region contains conserved overlapping cis-regulatory motifs of the ZEB-binding E-box and TBX-binding element. Consequently, TBX1 activates the expression of both miR-200 and stemness-inhibitor miR-203 to inhibit their common targets, BMI1 and ZEB2. Moreover, Tbx1 ablation affects the differentiation of the palatal epithelium and perturbs the expression of miR-200, miR-203, and their target genes. We propose that TBX1 links stem cell properties and epithelial differentiation by inducing miR-200 and miR-203. Thus, targeting of the ZEB2-miR-200 axis by TBX1 may have potential therapeutic implications in miR-200-associated tumors and cleft palate.
Collapse
Affiliation(s)
- Noriko Funato
- grid.265073.50000 0001 1014 9130Department of Signal Gene Regulation, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510 Japan ,grid.265073.50000 0001 1014 9130Research Core, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510 Japan
| | - Hiromi Yanagisawa
- grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, 305-8577 Japan
| |
Collapse
|
23
|
Yu QC, Geng A, Preusch CB, Chen Y, Peng G, Xu Y, Jia Y, Miao Y, Xue H, Gao D, Bao L, Pan W, Chen J, Garcia KC, Cheung TH, Zeng YA. Activation of Wnt/β-catenin signaling by Zeb1 in endothelial progenitors induces vascular quiescence entry. Cell Rep 2022; 41:111694. [DOI: 10.1016/j.celrep.2022.111694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
|
24
|
ZEB1: Catalyst of immune escape during tumor metastasis. Biomed Pharmacother 2022; 153:113490. [DOI: 10.1016/j.biopha.2022.113490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
|
25
|
Weng X, Liu H, Ruan J, Du M, Wang L, Mao J, Cai Y, Lu X, Chen W, Huang Y, Zhi X, Shan J. HOTAIR/miR-1277-5p/ZEB1 axis mediates hypoxia-induced oxaliplatin resistance via regulating epithelial-mesenchymal transition in colorectal cancer. Cell Death Discov 2022; 8:310. [PMID: 35798695 PMCID: PMC9263107 DOI: 10.1038/s41420-022-01096-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 01/19/2023] Open
Abstract
The hypoxic microenvironment contributes to the chemoresistance of many malignant tumors including colorectal cancer (CRC). Accumulating studies have indicated that long non-coding RNAs (lncRNAs) play important roles in chemotherapy resistance. In this study, we aimed to determine the effect of lncRNAs in hypoxia-mediated resistance in CRC and its potential mechanism. Here, we discovered that hypoxia-induced oxaliplatin resistance and HOX transcript antisense RNA (HOTAIR) expression was increased in hypoxia-treated CRC cell lines and CRC tumors. Knockdown of HOTAIR by siRNA reduced the viability and proliferation of CRC cells treated with oxaliplatin and reversed hypoxia-induced resistance. Mechanically, we found that HOTAIR modulates zinc finger E-box binding homeobox 1 (ZEB1) expression by negative regulations of miR-1277-5p. When miR-1277-5p was silenced, knockdown of HOTAIR was unable to reduce the oxaliplatin resistance in CRC cells. In mouse models of CRC, HOTAIR knockdown markedly inhibited the tumor growth when treated with oxaliplatin. Thus, HOTAIR/miR-1277-5p/ZEB1 axis appears a promising therapeutic target for improving the oxaliplatin efficacy in CRC.
Collapse
Affiliation(s)
- Xingyue Weng
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hao Liu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Miaoyan Du
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lingjie Wang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiayan Mao
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Ying Cai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Xuemei Lu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Yaqing Huang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Zhejiang Provincial Peoples Hospital, Affiliated Peoples Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Jianzhen Shan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
26
|
Kannabiran C, Chaurasia S, Ramappa M, Mootha VV. Update on the genetics of corneal endothelial dystrophies. Indian J Ophthalmol 2022; 70:2239-2248. [PMID: 35791103 PMCID: PMC9426112 DOI: 10.4103/ijo.ijo_992_22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Corneal endothelial dystrophies are a heterogeneous group of diseases with different modes of inheritance and genetic basis for each dystrophy. The genes associated with these diseases encode transcription factors, structural components of the stroma and Descemet membrane, cell transport proteins, and others. Congenital hereditary endothelial dystrophy (CHED) is associated with mutations in two genes, OVOL2 and SLC4A11, for dominant and recessive forms of CHED, respectively. Mutations in three genes are known to cause posterior polymorphous corneal dystrophy (PPCD). They are OVOL2 (PPCD1), ZEB1 (PPCD3), and GRHL1 (PPCD4). The PPCD2 locus involving the collagen gene COL8A2 on chromosome 1 is disputed due to insufficient evidence. Mutations in the COL8A2 gene are associated with early-onset Fuchs’ endothelial corneal dystrophy (FECD). Several genes have been associated with the more common, late-onset FECD. Alterations in each of these genes occur in a fraction of patients, and the most prevalent genetic alteration in FECD patients across the world is a triplet repeat expansion in the TCF4 gene. Knowledge of the genetics of corneal endothelial dystrophies has considerably advanced within the last decade and has contributed to better diagnosis of these dystrophies as well as opened up the possibility of novel therapeutic approaches based on the molecular mechanisms involved. The functions of genes identified to date provide insights into the pathogenic mechanisms involved in each disorder.
Collapse
Affiliation(s)
- Chitra Kannabiran
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof Brien Holden Eye Research Centre, L.V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sunita Chaurasia
- Centre for Rare Eye Diseases and Ocular Genetics; The Cornea Institute; Jasti V Ramanamma Children's Eye Care Center, L.V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India
| | - Muralidhar Ramappa
- Centre for Rare Eye Diseases and Ocular Genetics; The Cornea Institute; Jasti V Ramanamma Children's Eye Care Center, L.V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India
| | | |
Collapse
|
27
|
Yoshioka H, Suzuki A, Iwaya C, Iwata J. Suppression of microRNA 124-3p and microRNA 340-5p ameliorates retinoic acid-induced cleft palate in mice. Development 2022; 149:275062. [PMID: 35420127 PMCID: PMC9148563 DOI: 10.1242/dev.200476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The etiology of cleft lip with or without cleft palate (CL/P), a common congenital birth defect, is complex, with genetic and epigenetic, as well as environmental, contributing factors. Recent studies suggest that fetal development is affected by maternal conditions through microRNAs (miRNAs), a group of short noncoding RNAs. Here, we show that miR-129-5p and miR-340-5p suppress cell proliferation in both primary mouse embryonic palatal mesenchymal cells and O9-1 cells, a neural crest cell line, through the regulation of Sox5 and Trp53 by miR-129-5p, and the regulation of Chd7, Fign and Tgfbr1 by miR-340-5p. Notably, miR-340-5p, but not miR-129-5p, was upregulated following all-trans retinoic acid (atRA; tretinoin) administration, and a miR-340-5p inhibitor rescued the cleft palate (CP) phenotype in 47% of atRA-induced CP mice. We have previously reported that a miR-124-3p inhibitor can also partially rescue the CP phenotype in atRA-induced CP mouse model. In this study, we found that a cocktail of miR-124-3p and miR-340-5p inhibitors rescued atRA-induced CP with almost complete penetrance. Taken together, our results suggest that normalization of pathological miRNA expression can be a preventive intervention for CP.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
28
|
Jiang H, Wei H, Wang H, Wang Z, Li J, Ou Y, Xiao X, Wang W, Chang A, Sun W, Zhao L, Yang S. Zeb1-induced metabolic reprogramming of glycolysis is essential for macrophage polarization in breast cancer. Cell Death Dis 2022; 13:206. [PMID: 35246504 PMCID: PMC8897397 DOI: 10.1038/s41419-022-04632-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 12/22/2022]
Abstract
Aerobic glycolysis (the Warburg effect) has been demonstrated to facilitate tumor progression by producing lactate, which has important roles as a proinflammatory and immunosuppressive mediator. However, how aerobic glycolysis is directly regulated is largely unknown. Here, we show that ectopic Zeb1 directly increases the transcriptional expression of HK2, PFKP, and PKM2, which are glycolytic rate-determining enzymes, thus promoting the Warburg effect and breast cancer proliferation, migration, and chemoresistance in vitro and in vivo. In addition, Zeb1 exerts its biological effects to induce glycolytic activity in response to hypoxia via the PI3K/Akt/HIF-1α signaling axis, which contributes to fostering an immunosuppressive tumor microenvironment (TME). Mechanistically, breast cancer cells with ectopic Zeb1 expression produce lactate in the acidic tumor milieu to induce the alternatively activated (M2) macrophage phenotype through stimulation of the PKA/CREB signaling pathway. Clinically, the expression of Zeb1 is positively correlated with dysregulation of aerobic glycolysis, accumulation of M2-like tumor-associated macrophages (TAMs) and a poor prognosis in breast cancer patients. In conclusion, these findings identify a Zeb1-dependent mechanism as a driver of breast cancer progression that acts by stimulating tumor–macrophage interplay, which could be a viable therapeutic target for the treatment of advanced human cancers.
Collapse
Affiliation(s)
- Huimin Jiang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China.,Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Huimin Wei
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Hang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China
| | - Zhaoyang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China
| | - Jianjun Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China
| | - Yang Ou
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China
| | - Xuechun Xiao
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China
| | - Wenhao Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China
| | - Antao Chang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China
| | - Wei Sun
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China
| | - Li Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin, 300071, China.
| |
Collapse
|
29
|
Zeb1 Regulation of Wound Healing-Induced Inflammation in Alkali-Damaged Corneas. iScience 2022; 25:104038. [PMID: 35340433 PMCID: PMC8941209 DOI: 10.1016/j.isci.2022.104038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/24/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
The cornea is an avascular tissue for vision clarity. Alkali burn could cause severe traumatic damage on the cornea with inflammation and neovascularization (NV), leading to vision reduction and blindness. Mechanisms underlying corneal inflammation and NV are not as clear. We previously reported that Zeb1 is an important factor in corneal NV, and we sought to clarify whether it is also involved in regulation of corneal inflammation. We analyzed the alkali burn-induced corneal inflammation and wound healing in both Zeb1+/+ and Zeb1−/+ littermates through a multidisciplinary approach. We provide evidence that Zeb1 forms a positive regulatory loop with Tgfb to regulate early corneal inflammation by maintenance of immune cell viability and mobility and later wound healing by activation of both Nf-κb and Tgfb-related Stat3 signaling pathways. We believe that ZEB1 is a potential therapeutic target, and inactivation of ZEB1 could be a strategy to treat severe corneal inflammation condition. Traumatic wound induces inflammation in the cornea, resulting in vision reduction Zeb1 is a key factor to retain immune cell viability, mobility, and cytokine expression Zeb1 regulates cytokine gene expression through both Nf-κb and Stat3 pathways Inactivation of ZEB1 could be a strategy to treat severe corneal inflammation condition
Collapse
|
30
|
Marqués M, Sorolla MA, Urdanibia I, Parisi E, Hidalgo I, Morales S, Salud A, Sorolla A. Are Transcription Factors Plausible Oncotargets for Triple Negative Breast Cancers? Cancers (Basel) 2022; 14:cancers14051101. [PMID: 35267409 PMCID: PMC8909618 DOI: 10.3390/cancers14051101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Triple negative breast cancer is a type of breast cancer that does not have a selective and effective therapy. It is known that this cancer possesses high abundance of certain proteins called transcription factors, which are essential for their growth. However, inhibiting transcription factors is very difficult with common therapeutics due to their inaccessibility inside the cell and their molecular structure. In this work, we identified the most important transcription factors for the growth of triple negative breast cancers, and that can predict worse clinical outcome. Moreover, we described different strategies that have been utilised to inhibit them. A successful inhibition of these transcription factors could reduce the mortality and convalescence associated with triple negative breast cancers. Abstract Breast cancer (BC) is the most diagnosed cancer worldwide and one of the main causes of cancer deaths. BC is a heterogeneous disease composed of different BC intrinsic subtypes such as triple-negative BC (TNBC), which is one of the most aggressive subtypes and which lacks a targeted therapy. Recent comprehensive analyses across cell types and cancer types have outlined a vast network of protein–protein associations between transcription factors (TFs). Not surprisingly, protein–protein networks central to oncogenesis and disease progression are highly altered during TNBC pathogenesis and are responsible for the activation of oncogenic programs, such as uncontrollable proliferation, epithelial-to-mesenchymal transition (EMT) and stemness. From the therapeutic viewpoint, inhibiting the interactions between TFs represents a very significant challenge, as the contact surfaces of TFs are relatively large and featureless. However, promising tools have emerged to offer a solution to the targeting problem. At the clinical level, some TF possess diagnostic and prognostic value in TNBC. In this review, we outline the recent advances in TFs relevant to TNBC growth and progression. Moreover, we highlight different targeting approaches to inhibit these TFs. Furthermore, the validity of such TFs as clinical biomarkers has been explored. Finally, we discuss how research is likely to evolve in the field.
Collapse
Affiliation(s)
- Marta Marqués
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Izaskun Urdanibia
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Iván Hidalgo
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Serafín Morales
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Correspondence:
| |
Collapse
|
31
|
Han X, Long Y, Duan X, Liu Z, Hu X, Zhou J, Li N, Wang Y, Qin J. ZEB1 induces ROS generation through directly promoting MCT4 transcription to facilitate breast cancer. Exp Cell Res 2022; 412:113044. [DOI: 10.1016/j.yexcr.2022.113044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/31/2021] [Accepted: 01/22/2022] [Indexed: 12/17/2022]
|
32
|
Title AC, Silva PN, Godbersen S, Hasenöhrl L, Stoffel M. The miR-200-Zeb1 axis regulates key aspects of β-cell function and survival in vivo. Mol Metab 2021; 53:101267. [PMID: 34116231 PMCID: PMC8258987 DOI: 10.1016/j.molmet.2021.101267] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The miR-200-Zeb1 axis regulates the epithelial-to-mesenchymal transition (EMT), differentiation, and resistance to apoptosis. A better understanding of these processes in diabetes is highly relevant, as β-cell dedifferentiation and apoptosis contribute to the loss of functional β-cell mass and diabetes progression. Furthermore, EMT promotes the loss of β-cell identity in the in vitro expansion of human islets. Though the miR-200 family has previously been identified as a regulator of β-cell apoptosis in vivo, studies focusing on Zeb1 are lacking. The aim of this study was thus to investigate the role of Zeb1 in β-cell function and survival in vivo. METHODS miR-200 and Zeb1 are involved in a double-negative feedback loop. We characterized a mouse model in which miR-200 binding sites in the Zeb1 3'UTR are mutated (Zeb1200), leading to a physiologically relevant upregulation of Zeb1 mRNA expression. The role of Zeb1 was investigated in this model via metabolic tests and analysis of isolated islets. Further insights into the distinct contributions of the miR-200 and Zeb1 branches of the feedback loop were obtained by crossing the Zeb1200 allele into a background of miR-141-200c overexpression. RESULTS Mild Zeb1 derepression in vivo led to broad transcriptional changes in islets affecting β-cell identity, EMT, insulin secretion, cell-cell junctions, the unfolded protein response (UPR), and the response to ER stress. The aggregation and insulin secretion of dissociated islets of mice homozygous for the Zeb1200 mutation (Zeb1200M) were impaired, and Zeb1200M islets were resistant to thapsigargin-induced ER stress ex vivo. Zeb1200M mice had increased circulating proinsulin levels but no overt metabolic phenotype, reflecting the strong compensatory ability of islets to maintain glucose homeostasis. CONCLUSIONS This study signifies the importance of the miR-200-Zeb1 axis in regulating key aspects of β-cell function and survival. A better understanding of this axis is highly relevant in developing therapeutic strategies for inducing β-cell redifferentiation and maintaining β-cell identity in in vitro islet expansion.
Collapse
Affiliation(s)
- Alexandra C Title
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland; Competence Center Personalized Medicine, ETH Zürich, Voltastrasse 24, 8044, Zürich, Switzerland
| | - Pamuditha N Silva
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Lynn Hasenöhrl
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland; Competence Center Personalized Medicine, ETH Zürich, Voltastrasse 24, 8044, Zürich, Switzerland; Medical Faculty, University of Zürich, 8091, Zürich, Switzerland.
| |
Collapse
|
33
|
Epithelial Mesenchymal Transition and its transcription factors. Biosci Rep 2021; 42:230017. [PMID: 34708244 PMCID: PMC8703024 DOI: 10.1042/bsr20211754] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial–mesenchymal transition or EMT is an extremely dynamic process involved in conversion of epithelial cells into mesenchymal cells, stimulated by an ensemble of signaling pathways, leading to change in cellular morphology, suppression of epithelial characters and acquisition of properties such as enhanced cell motility and invasiveness, reduced cell death by apoptosis, resistance to chemotherapeutic drugs etc. Significantly, EMT has been found to play a crucial role during embryonic development, tissue fibrosis and would healing, as well as during cancer metastasis. Over the years, work from various laboratories have identified a rather large number of transcription factors (TFs) including the master regulators of EMT, with the ability to regulate the EMT process directly. In this review, we put together these EMT TFs and discussed their role in the process. We have also tried to focus on their mechanism of action, their interdependency, and the large regulatory network they form. Subsequently, it has become clear that the composition and structure of the transcriptional regulatory network behind EMT probably varies based upon various physiological and pathological contexts, or even in a cell/tissue type-dependent manner.
Collapse
|
34
|
Wang J, Farkas C, Benyoucef A, Carmichael C, Haigh K, Wong N, Huylebroeck D, Stemmler MP, Brabletz S, Brabletz T, Nefzger CM, Goossens S, Berx G, Polo JM, Haigh JJ. Interplay between the EMT transcription factors ZEB1 and ZEB2 regulates hematopoietic stem and progenitor cell differentiation and hematopoietic lineage fidelity. PLoS Biol 2021; 19:e3001394. [PMID: 34550965 PMCID: PMC8489726 DOI: 10.1371/journal.pbio.3001394] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 10/04/2021] [Accepted: 08/20/2021] [Indexed: 01/03/2023] Open
Abstract
The ZEB2 transcription factor has been demonstrated to play important roles in hematopoiesis and leukemic transformation. ZEB1 is a close family member of ZEB2 but has remained more enigmatic concerning its roles in hematopoiesis. Here, we show using conditional loss-of-function approaches and bone marrow (BM) reconstitution experiments that ZEB1 plays a cell-autonomous role in hematopoietic lineage differentiation, particularly as a positive regulator of monocyte development in addition to its previously reported important role in T-cell differentiation. Analysis of existing single-cell (sc) RNA sequencing (RNA-seq) data of early hematopoiesis has revealed distinctive expression differences between Zeb1 and Zeb2 in hematopoietic stem and progenitor cell (HSPC) differentiation, with Zeb2 being more highly and broadly expressed than Zeb1 except at a key transition point (short-term HSC [ST-HSC]➔MPP1), whereby Zeb1 appears to be the dominantly expressed family member. Inducible genetic inactivation of both Zeb1 and Zeb2 using a tamoxifen-inducible Cre-mediated approach leads to acute BM failure at this transition point with increased long-term and short-term hematopoietic stem cell numbers and an accompanying decrease in all hematopoietic lineage differentiation. Bioinformatics analysis of RNA-seq data has revealed that ZEB2 acts predominantly as a transcriptional repressor involved in restraining mature hematopoietic lineage gene expression programs from being expressed too early in HSPCs. ZEB1 appears to fine-tune this repressive role during hematopoiesis to ensure hematopoietic lineage fidelity. Analysis of Rosa26 locus–based transgenic models has revealed that Zeb1 as well as Zeb2 cDNA-based overexpression within the hematopoietic system can drive extramedullary hematopoiesis/splenomegaly and enhance monocyte development. Finally, inactivation of Zeb2 alone or Zeb1/2 together was found to enhance survival in secondary MLL-AF9 acute myeloid leukemia (AML) models attesting to the oncogenic role of ZEB1/2 in AML. This study shows that the closely related transcription factors ZEB1 and ZEB2 cooperate to restrain myeloid and lymphoid differentiation programs in hematopoietic stem and progenitor cells, ensuring fidelity of differentiation in multiple lineages.
Collapse
Affiliation(s)
- Jueqiong Wang
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Carlos Farkas
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | - Aissa Benyoucef
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | | | - Katharina Haigh
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | - Nick Wong
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Marc P. Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Centre for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Centre for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Centre for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian M. Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Steven Goossens
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University and University Hospital, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Jose M. Polo
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Centre for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Australia
| | - Jody J. Haigh
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
35
|
Gupta B, Errington AC, Jimenez-Pascual A, Eftychidis V, Brabletz S, Stemmler MP, Brabletz T, Petrik D, Siebzehnrubl FA. The transcription factor ZEB1 regulates stem cell self-renewal and cell fate in the adult hippocampus. Cell Rep 2021; 36:109588. [PMID: 34433050 PMCID: PMC8411115 DOI: 10.1016/j.celrep.2021.109588] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/27/2021] [Accepted: 07/30/2021] [Indexed: 12/25/2022] Open
Abstract
Radial glia-like (RGL) stem cells persist in the adult mammalian hippocampus, where they generate new neurons and astrocytes throughout life. The process of adult neurogenesis is well documented, but cell-autonomous factors regulating neuronal and astroglial differentiation are incompletely understood. Here, we evaluate the functions of the transcription factor zinc-finger E-box binding homeobox 1 (ZEB1) in adult hippocampal RGL cells using a conditional-inducible mouse model. We find that ZEB1 is necessary for self-renewal of active RGL cells. Genetic deletion of Zeb1 causes a shift toward symmetric cell division that consumes the RGL cell and generates pro-neuronal progenies, resulting in an increase of newborn neurons and a decrease of newly generated astrocytes. We identify ZEB1 as positive regulator of the ets-domain transcription factor ETV5 that is critical for asymmetric division.
Collapse
Affiliation(s)
- Bhavana Gupta
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff CF24 4HQ, UK
| | - Adam C Errington
- Neuroscience and Mental Health Research Institute, Cardiff University School of Biosciences, Cardiff CF24 4HQ, UK
| | - Ana Jimenez-Pascual
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff CF24 4HQ, UK
| | - Vasileios Eftychidis
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff CF24 4HQ, UK
| | - Simone Brabletz
- Department of Experimental Medicine I, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine I, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine I, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - David Petrik
- Cardiff University School of Biosciences, Cardiff CF10 3AX, UK
| | - Florian A Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff CF24 4HQ, UK.
| |
Collapse
|
36
|
Fratini L, Jaeger M, de Farias CB, Brunetto AT, Brunetto AL, Shaw L, Roesler R. Oncogenic functions of ZEB1 in pediatric solid cancers: interplays with microRNAs and long noncoding RNAs. Mol Cell Biochem 2021; 476:4107-4116. [PMID: 34292482 DOI: 10.1007/s11010-021-04226-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
The transcription factor Zinc finger E-box binding 1 (ZEB1) displays a range of regulatory activities in cell function and embryonic development, including driving epithelial-mesenchymal transition. Several aspects of ZEB1 function can be regulated by its functional interactions with noncoding RNA types, namely microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). Increasing evidence indicates that ZEB1 importantly influences cancer initiation, tumor progression, metastasis, and resistance to treatment. Cancer is the main disease-related cause of death in children and adolescents. Although the role of ZEB1 in pediatric cancer is still poorly understood, emerging findings have shown that it is expressed and regulates childhood solid tumors including osteosarcoma, retinoblastoma, neuroblastoma, and central nervous system tumors. Here, we review the evidence supporting a role for ZEB1, and its interplays with miRNAs and lncRNAs, in pediatric cancers.
Collapse
Affiliation(s)
- Lívia Fratini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil. .,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - André T Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Algemir L Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Lisa Shaw
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil. .,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
37
|
Birkhoff JC, Huylebroeck D, Conidi A. ZEB2, the Mowat-Wilson Syndrome Transcription Factor: Confirmations, Novel Functions, and Continuing Surprises. Genes (Basel) 2021; 12:1037. [PMID: 34356053 PMCID: PMC8304685 DOI: 10.3390/genes12071037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
After its publication in 1999 as a DNA-binding and SMAD-binding transcription factor (TF) that co-determines cell fate in amphibian embryos, ZEB2 was from 2003 studied by embryologists mainly by documenting the consequences of conditional, cell-type specific Zeb2 knockout (cKO) in mice. In between, it was further identified as causal gene causing Mowat-Wilson Syndrome (MOWS) and novel regulator of epithelial-mesenchymal transition (EMT). ZEB2's functions and action mechanisms in mouse embryos were first addressed in its main sites of expression, with focus on those that helped to explain neurodevelopmental and neural crest defects seen in MOWS patients. By doing so, ZEB2 was identified in the forebrain as the first TF that determined timing of neuro-/gliogenesis, and thereby also the extent of different layers of the cortex, in a cell non-autonomous fashion, i.e., by its cell-intrinsic control within neurons of neuron-to-progenitor paracrine signaling. Transcriptomics-based phenotyping of Zeb2 mutant mouse cells have identified large sets of intact-ZEB2 dependent genes, and the cKO approaches also moved to post-natal brain development and diverse other systems in adult mice, including hematopoiesis and various cell types of the immune system. These new studies start to highlight the important adult roles of ZEB2 in cell-cell communication, including after challenge, e.g., in the infarcted heart and fibrotic liver. Such studies may further evolve towards those documenting the roles of ZEB2 in cell-based repair of injured tissue and organs, downstream of actions of diverse growth factors, which recapitulate developmental signaling principles in the injured sites. Evident questions are about ZEB2's direct target genes, its various partners, and ZEB2 as a candidate modifier gene, e.g., in other (neuro)developmental disorders, but also the accurate transcriptional and epigenetic regulation of its mRNA expression sites and levels. Other questions start to address ZEB2's function as a niche-controlling regulatory TF of also other cell types, in part by its modulation of growth factor responses (e.g., TGFβ/BMP, Wnt, Notch). Furthermore, growing numbers of mapped missense as well as protein non-coding mutations in MOWS patients are becoming available and inspire the design of new animal model and pluripotent stem cell-based systems. This review attempts to summarize in detail, albeit without discussing ZEB2's role in cancer, hematopoiesis, and its emerging roles in the immune system, how intense ZEB2 research has arrived at this exciting intersection.
Collapse
Affiliation(s)
- Judith C. Birkhoff
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
- Department of Development and Regeneration, Unit Stem Cell and Developmental Biology, Biomedical Sciences Group, KU Leuven, 3000 Leuven, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
| |
Collapse
|
38
|
Scheibner K, Schirge S, Burtscher I, Büttner M, Sterr M, Yang D, Böttcher A, Ansarullah, Irmler M, Beckers J, Cernilogar FM, Schotta G, Theis FJ, Lickert H. Epithelial cell plasticity drives endoderm formation during gastrulation. Nat Cell Biol 2021; 23:692-703. [PMID: 34168324 PMCID: PMC8277579 DOI: 10.1038/s41556-021-00694-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023]
Abstract
It is generally accepted that epiblast cells ingress into the primitive streak by epithelial-to-mesenchymal transition (EMT) to give rise to the mesoderm; however, it is less clear how the endoderm acquires an epithelial fate. Here, we used embryonic stem cell and mouse embryo knock-in reporter systems to combine time-resolved lineage labelling with high-resolution single-cell transcriptomics. This allowed us to resolve the morphogenetic programs that segregate the mesoderm from the endoderm germ layer. Strikingly, while the mesoderm is formed by classical EMT, the endoderm is formed independent of the key EMT transcription factor Snail1 by mechanisms of epithelial cell plasticity. Importantly, forkhead box transcription factor A2 (Foxa2) acts as an epithelial gatekeeper and EMT suppressor to shield the endoderm from undergoing a mesenchymal transition. Altogether, these results not only establish the morphogenetic details of germ layer formation, but also have broader implications for stem cell differentiation and cancer metastasis.
Collapse
Affiliation(s)
- Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Silvia Schirge
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Ansarullah
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Munich, Germany
- School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- Department of Mathematics, Technische Universität München, Munich, Germany
- School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
- School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
39
|
Pancreas morphogenesis and homeostasis depends on tightly regulated Zeb1 levels in epithelial cells. Cell Death Discov 2021; 7:138. [PMID: 34112759 PMCID: PMC8192546 DOI: 10.1038/s41420-021-00522-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023] Open
Abstract
The pancreas is comprised of exocrine and endocrine compartments releasing digestive enzymes into the duodenum and regulating blood glucose levels by insulin and glucagon release. Tissue homeostasis is depending on transcription factor networks, involving Ptf1α, Ngn3, Nkx6.1, and Sox9, which are already activated during organogenesis. However, proper organ function is challenged by diets of high sugar and fat content, increasing the risk of type 2 diabetes and other disorders. A detailed understanding of processes that are important for homeostasis and are impaired during type 2 diabetes is lacking. Here, we show that Zeb1—a transcription factor known for its pivotal role in epithelial-mesenchymal transition, cell plasticity, and metastasis in cancer—is expressed at low levels in epithelial cells of the pancreas and is crucial for organogenesis and pancreas function. Loss of Zeb1 in these cells result in an increase of islet mass, impaired glucose tolerance, and sensitizes to develop liver and pancreas steatosis during diabetes and obesity. Interestingly, moderate overexpression of Zeb1 results in severe pancreas agenesis and lethality after birth, due to islet insufficiency and lack of acinar structures. We show that Zeb1 induction interferes with proper differentiation, cell survival, and proliferation during pancreas formation, due to deregulated expression of endocrine-specific transcription factors. In summary, our analysis suggests a novel role of Zeb1 for homeostasis in epithelial cells that is indispensable for pancreas morphogenesis and proper organ function involving a tight regulation of Zeb1 expression.
Collapse
|
40
|
Xu C, Shi H, Jiang X, Fan Y, Huang D, Qi X, Cheng Q. ZEB1 Mediates Bone Marrow Mesenchymal Stem Cell Osteogenic Differentiation Partly via Wnt/β-Catenin Signaling. Front Mol Biosci 2021; 8:682728. [PMID: 34109218 PMCID: PMC8183571 DOI: 10.3389/fmolb.2021.682728] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/14/2021] [Indexed: 01/28/2023] Open
Abstract
Zinc finger E-box-binding homebox 1 (ZEB1) is a zinc-finger transcription factor best known for its role in promoting the epithelial-mesenchymal transition, which is also related to osteogenesis. Here, ZEB1 was investigated for its role in the commitment of bone marrow mesenchymal stem cells (BMSCs) to osteoblasts. In vitro, ZEB1 expression decreased following osteogenic differentiation. Furthermore, silencing of ZEB1 in BMSCs promoted osteogenic activity and mineralization. The increase in osteogenic differentiation induced by si-ZEB1 could be partly rescued by the inhibition of Wnt/β-catenin (si-β-catenin). In vivo, knockdown of ZEB1 in BMSCs inhibited the rapid bone loss of ovariectomized (OVX) mice. ZEB1 expression has also been negatively associated with bone mass and bone formation in postmenopausal women. In conclusion, ZEB1 is an essential transcription factor in BMSC differentiation and may serve as a potential anabolic strategy for treating and preventing postmenopausal osteoporosis (PMOP).
Collapse
Affiliation(s)
- Cuidi Xu
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Hongli Shi
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Xin Jiang
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Yongqian Fan
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Donghui Huang
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qun Cheng
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| |
Collapse
|
41
|
Ruh M, Stemmler MP, Frisch I, Fuchs K, van Roey R, Kleemann J, Roas M, Schuhwerk H, Eccles RL, Agaimy A, Baumhoer D, Berx G, Müller F, Brabletz T, Brabletz S. The EMT transcription factor ZEB1 blocks osteoblastic differentiation in bone development and osteosarcoma. J Pathol 2021; 254:199-211. [PMID: 33675037 DOI: 10.1002/path.5659] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/30/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022]
Abstract
Osteosarcoma is an often-fatal mesenchyme-derived malignancy in children and young adults. Overexpression of EMT-transcription factors (EMT-TFs) has been associated with poor clinical outcome. Here, we demonstrated that the EMT-TF ZEB1 is able to block osteoblastic differentiation in normal bone development as well as in osteosarcoma cells. Consequently, overexpression of ZEB1 in osteosarcoma characterizes poorly differentiated, highly metastatic subgroups and its depletion induces differentiation of osteosarcoma cells. Overexpression of ZEB1 in osteosarcoma is frequently associated with silencing of the imprinted DLK-DIO3 locus, which encodes for microRNAs targeting ZEB1. Epigenetic reactivation of this locus in osteosarcoma cells reduces ZEB1 expression, induces differentiation, and sensitizes to standard treatment, thus indicating therapeutic options for ZEB1-driven osteosarcomas. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Manuel Ruh
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Frisch
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Fuchs
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Kleemann
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Maike Roas
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Rebecca L Eccles
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Baumhoer
- Bone Tumor Reference Centre, Institute of Pathology, University Hospital and University of Basel, Basel, Switzerland
| | - Geert Berx
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Fabian Müller
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
42
|
Zeb2 Is a Regulator of Astrogliosis and Functional Recovery after CNS Injury. Cell Rep 2021; 31:107834. [PMID: 32610135 DOI: 10.1016/j.celrep.2020.107834] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023] Open
Abstract
The astrocytic response to injury is characterized on the cellular level, but our understanding of the molecular mechanisms controlling the cellular processes is incomplete. The astrocytic response to injury is similar to wound-healing responses in non-neural tissues that involve epithelial-to-mesenchymal transitions (EMTs) and upregulation in ZEB transcription factors. Here we show that injury-induced astrogliosis increases EMT-related genes expression, including Zeb2, and long non-coding RNAs, including Zeb2os, which facilitates ZEB2 protein translation. In mouse models of either contusive spinal cord injury or transient ischemic stroke, the conditional knockout of Zeb2 in astrocytes attenuates astrogliosis, generates larger lesions, and delays the recovery of motor function. These findings reveal ZEB2 as an important regulator of the astrocytic response to injury and suggest that astrogliosis is an EMT-like process, which provides a conceptual connection for the molecular and cellular similarities between astrogliosis and wound-healing responses in non-neural tissue.
Collapse
|
43
|
Expression and Function of ZEB1 in the Cornea. Cells 2021; 10:cells10040925. [PMID: 33923743 PMCID: PMC8074155 DOI: 10.3390/cells10040925] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
ZEB1 is an important transcription factor for epithelial to mesenchymal transition (EMT) and in the regulation of cell differentiation and transformation. In the cornea, ZEB1 presents in all three layers: the epithelium, the stroma and the endothelium. Mutations of ZEB1 have been linked to multiple corneal genetic defects, particularly to the corneal dystrophies including keratoconus (KD), Fuchs endothelial corneal dystrophy (FECD), and posterior polymorphous corneal dystrophy (PPCD). Accumulating evidence indicates that dysfunction of ZEB1 may affect corneal stem cell homeostasis, and cause corneal cell apoptosis, stromal fibrosis, angiogenesis, squamous metaplasia. Understanding how ZEB1 regulates the initiation and progression of these disorders will help us in targeting ZEB1 for potential avenues to generate therapeutics to treat various ZEB1-related disorders.
Collapse
|
44
|
Xiao Y, Lin YX, Cui Y, Zhang Q, Pei F, Zuo HY, Liu H, Chen Z. Zeb1 Promotes Odontoblast Differentiation in a Stage-Dependent Manner. J Dent Res 2021; 100:648-657. [PMID: 33419386 DOI: 10.1177/0022034520982249] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A comprehensive study of odontoblastic differentiation is essential to understand the process of tooth development and to achieve the ability of tooth regeneration in the future. Zinc finger E-box-binding homeobox 1 (Zeb1) is a transcription factor expressed in various neural crest-derived tissues, including the mesenchyme of the tooth germ. However, its role in odontoblastic differentiation remains unknown. In this study, we found the expression of Zeb1 gradually increased during odontoblast differentiation in vivo, as well as during induced differentiation of cultured primary murine dental papilla cells (mDPCs) in vitro. In addition, the differentiation of mDPCs was repressed in Zeb1-silenced cells. We used RNA sequencing (RNA-seq) to identify the transcriptome-wide targets of Zeb1 and used assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to explore the direct targets of Zeb1 in both the early stage (embryonic day 16.5; E16.5) and the late stage (postnatal day 0; PN0) of tooth development. We identified the motifs of transcription factors enriched in Zeb1-dependent accessible chromatin regions and observed that only in the early stage of mDPCs could Zeb1 significantly change the accessibility of chromatin regions. In vivo and in vitro experiments confirmed that silencing of Zeb1 at E16.5 inhibited dentinogenesis. Analysis of RNA-seq and ATAC-seq resulted in the identification of Runx2, a gene directly regulated by Zeb1 during early odontoblast differentiation. Zeb1 enhances the expression of Runx2 by binding to its cis-elements, and ZEB1 interacts with RUNX2. In the late stage of tooth development, we found that ZEB1 could directly bind to and increase the enhancer activity of an element upstream of Dspp and promote dentinogenesis. In this study, for the first time, we revealed that ZEB1 promoted odontoblast differentiation in the early stage by altering chromatin accessibility of cis-elements near genes such as Runx2, while in the late stage, it directly enhanced Dspp transcription, thereby performing a dual role.
Collapse
Affiliation(s)
- Y Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y X Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y Cui
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Q Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - F Pei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H Y Zuo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School of Stomatology, Wuhan University, China
| | - Z Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Jiang H, Zhou C, Zhang Z, Wang Q, Wei H, Shi W, Li J, Wang Z, Ou Y, Wang W, Wang H, Zhang Q, Sun W, Sun P, Yang S. Jagged1-Notch1-deployed tumor perivascular niche promotes breast cancer stem cell phenotype through Zeb1. Nat Commun 2020; 11:5129. [PMID: 33046710 PMCID: PMC7552407 DOI: 10.1038/s41467-020-18860-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Zinc finger E-box binding homeobox 1 (Zeb1) has been demonstrated to participate in the acquisition of the properties of cancer stem cells (CSCs). However, it is largely unknown how signals from the tumor microenvironment (TME) contribute to aberrant Zeb1 expression. Here, we show that Zeb1 depletion suppresses stemness, colonization and the phenotypic plasticity of breast cancer. Moreover, we demonstrate that, with direct cell-cell contact, TME-derived endothelial cells provide the Notch ligand Jagged1 (Jag1) to neighboring breast CSCs, leading to Notch1-dependent upregulation of Zeb1. In turn, ectopic Zeb1 in tumor cells increases VEGFA production and reciprocally induces endothelial Jag1 in a paracrine manner. Depletion of Zeb1 disrupts this positive feedback loop in the tumor perivascular niche, which eventually lessens tumor initiation and progression in vivo and in vitro. In this work, we highlight that targeting the angiocrine Jag1-Notch1-Zeb1-VEGFA loop decreases breast cancer aggressiveness and thus enhances the efficacy of antiangiogenic therapy.
Collapse
Affiliation(s)
- Huimin Jiang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Chen Zhou
- Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Zhen Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Qiong Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Huimin Wei
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Wen Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Jianjun Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Zhaoyang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Yang Ou
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Wenhao Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Hang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Quansheng Zhang
- Tianjin Key Laboratory of Organ Transplantation, Tianjin First Center Hospital, 300192, Tianjin, China
| | - Wei Sun
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China.
| |
Collapse
|
46
|
ZEB1 Represses Neural Differentiation and Cooperates with CTBP2 to Dynamically Regulate Cell Migration during Neocortex Development. Cell Rep 2020; 27:2335-2353.e6. [PMID: 31116980 DOI: 10.1016/j.celrep.2019.04.081] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 02/28/2019] [Accepted: 04/16/2019] [Indexed: 01/08/2023] Open
Abstract
Zinc-finger E-box binding homeobox 1 (Zeb1) is a key regulator of epithelial-mesenchymal transition and cancer metastasis. Mutation of ZEB1 is associated with human diseases and defective brain development. Here we show that downregulation of Zeb1 expression in embryonic cortical neural progenitor cells (NPCs) is necessary for proper neuronal differentiation and migration. Overexpression of Zeb1 during neuronal differentiation, when its expression normally declines, blocks NPC lineage progression and disrupts multipolar-to-bipolar transition of differentiating neurons, leading to severe migration defects and subcortical heterotopia bands at postnatal stages. ZEB1 regulates a cohort of genes involved in cell differentiation and migration, including Neurod1 and Pard6b. The interaction between ZEB1 and CTBP2 in the embryonic cerebral cortex is required for ZEB1 to elicit its effect on the multipolar-to-bipolar transition, but not its suppression of Neurod1. These findings provide insights into understanding the complexity of transcriptional regulation during neuronal differentiation.
Collapse
|
47
|
Jin L, Zhang Y, Liang W, Lu X, Piri N, Wang W, Kaplan HJ, Dean DC, Zhang L, Liu Y. Zeb1 promotes corneal neovascularization by regulation of vascular endothelial cell proliferation. Commun Biol 2020; 3:349. [PMID: 32620870 PMCID: PMC7335040 DOI: 10.1038/s42003-020-1069-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is required for tissue repair; but abnormal angiogenesis or neovascularization (NV) causes diseases in the eye. The avascular status in the cornea is a prerequisite for corneal clarity and thought to be maintained by the equilibrium between proangiogenic and antiangiogenic factors that controls proliferation and migration of vascular endothelial cells (ECs) sprouting from the pericorneal plexus. VEGF is the most important intrinsic factor for angiogenesis; anti-VEGF therapies are available for treating ocular NV. However, the effectiveness of the therapies is limited because of VEGF-independent mechanism(s). We show that Zeb1 is an important factor promoting vascular EC proliferation and corneal NV; and a couple of small molecule inhibitors can evict Ctbp from the Zeb1-Ctbp complex, thereby reducing EC Zeb1 expression, proliferation, and corneal NV. We conclude that Zeb1-regulation of angiogenesis is independent of Vegf and that the ZEB1-CtBP inhibitors can be of potential therapeutic significance in treating corneal NV.
Collapse
Affiliation(s)
- Lei Jin
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Yingnan Zhang
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing, 100730, China
| | - Wei Liang
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Niloofar Piri
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Birth Defects Center, University of Louisville School of Dentistry, Louisville, KY, 40202, USA.
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Lijun Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China.
| | - Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Birth Defects Center, University of Louisville School of Dentistry, Louisville, KY, 40202, USA.
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
48
|
Carpinelli MR, de Vries ME, Auden A, Butt T, Deng Z, Partridge DD, Miles LB, Georgy SR, Haigh JJ, Darido C, Brabletz S, Brabletz T, Stemmler MP, Dworkin S, Jane SM. Inactivation of Zeb1 in GRHL2-deficient mouse embryos rescues mid-gestation viability and secondary palate closure. Dis Model Mech 2020; 13:dmm.042218. [PMID: 32005677 PMCID: PMC7104862 DOI: 10.1242/dmm.042218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
Cleft lip and palate are common birth defects resulting from failure of the facial processes to fuse during development. The mammalian grainyhead-like (Grhl1-3) genes play key roles in a number of tissue fusion processes including neurulation, epidermal wound healing and eyelid fusion. One family member, Grhl2, is expressed in the epithelial lining of the first pharyngeal arch in mice at embryonic day (E)10.5, prompting analysis of the role of this factor in palatogenesis. Grhl2-null mice die at E11.5 with neural tube defects and a cleft face phenotype, precluding analysis of palatal fusion at a later stage of development. However, in the first pharyngeal arch of Grhl2-null embryos, dysregulation of transcription factors that drive epithelial-mesenchymal transition (EMT) occurs. The aberrant expression of these genes is associated with a shift in RNA-splicing patterns that favours the generation of mesenchymal isoforms of numerous regulators. Driving the EMT perturbation is loss of expression of the EMT-suppressing transcription factors Ovol1 and Ovol2, which are direct GRHL2 targets. The expression of the miR-200 family of microRNAs, also GRHL2 targets, is similarly reduced, resulting in a 56-fold upregulation of Zeb1 expression, a major driver of mesenchymal cellular identity. The critical role of GRHL2 in mediating cleft palate in Zeb1−/− mice is evident, with rescue of both palatal and facial fusion seen in Grhl2−/−;Zeb1−/− embryos. These findings highlight the delicate balance between GRHL2/ZEB1 and epithelial/mesenchymal cellular identity that is essential for normal closure of the palate and face. Perturbation of this pathway may underlie cleft palate in some patients. Summary: Epithelial transcription factor GRHL2 is required for face closure while mesenchymal transcription factor ZEB1 is required for palate closure. Surprisingly, animals lacking both factors close their face and secondary palate.
Collapse
Affiliation(s)
- Marina R Carpinelli
- Department of Medicine, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Michael E de Vries
- Department of Medicine, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Alana Auden
- Department of Medicine, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Tariq Butt
- Department of Medicine, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Zihao Deng
- Department of Medicine, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Darren D Partridge
- Department of Medicine, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Lee B Miles
- Department of Medicine, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Smitha R Georgy
- Department of Medicine, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Jody J Haigh
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Charbel Darido
- Department of Medicine, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Simone Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Sebastian Dworkin
- Department of Medicine, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Stephen M Jane
- Department of Medicine, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
49
|
de Barrios O, Sanchez-Moral L, Cortés M, Ninfali C, Profitós-Pelejà N, Martínez-Campanario MC, Siles L, Del Campo R, Fernández-Aceñero MJ, Darling DS, Castells A, Maurel J, Salas A, Dean DC, Postigo A. ZEB1 promotes inflammation and progression towards inflammation-driven carcinoma through repression of the DNA repair glycosylase MPG in epithelial cells. Gut 2019; 68:2129-2141. [PMID: 31366457 DOI: 10.1136/gutjnl-2018-317294] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Chronic inflammation is a risk factor in colorectal cancer (CRC) and reactive oxygen species (ROS) released by the inflamed stroma elicit DNA damage in epithelial cells. We sought to identify new drivers of ulcerative colitis (UC) and inflammatory CRC. DESIGN The study uses samples from patients with UC, mouse models of colitis and CRC and mice deficient for the epithelial-to-mesenchymal transition factor ZEB1 and the DNA repair glycosylase N-methyl-purine glycosylase (MPG). Samples were analysed by immunostaining, qRT-PCR, chromatin immunoprecipitation assays, microbiota next-generation sequencing and ROS determination. RESULTS ZEB1 was induced in the colonic epithelium of UC and of mouse models of colitis. Compared with wild-type counterparts, Zeb1-deficient mice were partially protected from experimental colitis and, in a model of inflammatory CRC, they developed fewer tumours and exhibited lower levels of DNA damage (8-oxo-dG) and higher expression of MPG. Knockdown of ZEB1 in CRC cells inhibited 8-oxo-dG induction by oxidative stress (H2O2) and inflammatory cytokines (interleukin (IL)1β). ZEB1 bound directly to the MPG promoter whose expression inhibited. This molecular mechanism was validated at the genetic level and the crossing of Zeb1-deficient and Mpg-deficient mice reverted the reduced inflammation and tumourigenesis in the former. ZEB1 expression in CRC cells induced ROS and IL1β production by macrophages that, in turn, lowered MPG in CRC cells thus amplifying a positive loop between both cells to promote DNA damage and inhibit DNA repair. CONCLUSIONS ZEB1 promotes colitis and inflammatory CRC through the inhibition of MPG in epithelial cells, thus offering new therapeutic strategies to modulate inflammation and inflammatory cancer.
Collapse
Affiliation(s)
- Oriol de Barrios
- Group of Transcriptional Regulation of Gene Expression, Dept of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Lidia Sanchez-Moral
- Group of Transcriptional Regulation of Gene Expression, Dept of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Marlies Cortés
- Group of Transcriptional Regulation of Gene Expression, Dept of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Chiara Ninfali
- Group of Transcriptional Regulation of Gene Expression, Dept of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Nuria Profitós-Pelejà
- Group of Transcriptional Regulation of Gene Expression, Dept of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - M C Martínez-Campanario
- Group of Transcriptional Regulation of Gene Expression, Dept of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Laura Siles
- Group of Transcriptional Regulation of Gene Expression, Dept of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Rosa Del Campo
- Dept of Microbiology, Hospital Ramon y Cajal Health Research Institute (IRYCIS), Spanish Network of Infectious Diseases (REIPI), National Health Institute Carlos III (ISCIII), Madrid, Spain
| | | | - Douglas S Darling
- Dept of Oral Immunology and Infectious Diseases and Center for Genetics and Molecular Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Antoni Castells
- Dept of Gastroenterology, Hospital Clínic and IDIBAPS, Barcelona, Spain
- Gastrointestinal and Pancreatic Oncology Team, CIBERehd, Barcelona, Spain
| | - Joan Maurel
- Group of Translational Genomics and Targeted Therapeutics in Solid Tumours, Dept of Medical Oncology, Hospital Clínic and IDIBAPS, Barcelona, Spain
| | - Azucena Salas
- Dept of Gastroenterology, Hospital Clínic and IDIBAPS, Barcelona, Spain
| | - Douglas C Dean
- Dept of Ophthalmology and Visual Sciences and Birth Defects Center, University of Louisville, Louisville, Kentucky, USA
- Molecular Targets Program, James G. Brown Cancer Center, Louisville, Kentucky, USA
| | - Antonio Postigo
- Group of Transcriptional Regulation of Gene Expression, Dept of Oncology and Hematology, IDIBAPS, Barcelona, Spain
- Molecular Targets Program, James G. Brown Cancer Center, Louisville, Kentucky, USA
- ICREA, Barcelona, Spain
| |
Collapse
|
50
|
Francou A, Anderson KV. The Epithelial-to-Mesenchymal Transition (EMT) in Development and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019; 4:197-220. [PMID: 34113749 DOI: 10.1146/annurev-cancerbio-030518-055425] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epithelial-to-mesenchymal transitions (EMTs) are complex cellular processes where cells undergo dramatic changes in signaling, transcriptional programming, and cell shape, while directing the exit of cells from the epithelium and promoting migratory properties of the resulting mesenchyme. EMTs are essential for morphogenesis during development and are also a critical step in cancer progression and metastasis formation. Here we provide an overview of the molecular regulation of the EMT process during embryo development, focusing on chick and mouse gastrulation and neural crest development. We go on to describe how EMT regulators participate in the progression of pancreatic and breast cancer in mouse models, and discuss the parallels with developmental EMTs and how these help to understand cancer EMTs. We also highlight the differences between EMTs in tumor and in development to arrive at a broader view of cancer EMT. We conclude by discussing how further advances in the field will rely on in vivo dynamic imaging of the cellular events of EMT.
Collapse
Affiliation(s)
- Alexandre Francou
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY 10065 USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY 10065 USA
| |
Collapse
|