1
|
Chen R, Grill S, Lin B, Saiduddin M, Lehmann R. Origin and establishment of the germline in Drosophila melanogaster. Genetics 2025; 229:iyae217. [PMID: 40180587 PMCID: PMC12005264 DOI: 10.1093/genetics/iyae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/09/2024] [Indexed: 04/05/2025] Open
Abstract
The continuity of a species depends on germ cells. Germ cells are different from all the other cell types of the body (somatic cells) as they are solely destined to develop into gametes (sperm or egg) to create the next generation. In this review, we will touch on 4 areas of embryonic germ cell development in Drosophila melanogaster: the assembly and function of germplasm, which houses the determinants for germ cell specification and fate and the mitochondria of the next generation; the process of pole cell formation, which will give rise to primordial germ cells (PGCs); the specification of pole cells toward the PGC fate; and finally, the migration of PGCs to the somatic gonadal precursors, where they, together with somatic gonadal precursors, form the embryonic testis and ovary.
Collapse
Affiliation(s)
- Ruoyu Chen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Vilcek Institute of Graduate Studies, Department of Cell Biology, NYU School of Medicine, New York University, New York, NY 10016, USA
| | - Sherilyn Grill
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Benjamin Lin
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mariyah Saiduddin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Vilcek Institute of Graduate Studies, Department of Cell Biology, NYU School of Medicine, New York University, New York, NY 10016, USA
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Deshpande G, Ng C, Jourjine N, Chiew JW, Dasilva J, Schedl P. Hedgehog signaling guides migration of primordial germ cells to the Drosophila somatic gonad. Genetics 2023; 225:iyad165. [PMID: 37708366 PMCID: PMC10627259 DOI: 10.1093/genetics/iyad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
In addition to inducing nonautonomous specification of cell fate in both Drosophila and vertebrates, the Hedgehog pathway guides cell migration in a variety of different tissues. Although its role in axon guidance in the vertebrate nervous system is widely recognized, its role in guiding the migratory path of primordial germ cells (PGCs) from the outside surface of the Drosophila embryo through the midgut and mesoderm to the SGPs (somatic gonadal precursors) has been controversial. Here we present new experiments demonstrating (1) that Hh produced by mesodermal cells guides PGC migration, (2) that HMG CoenzymeA reductase (Hmgcr) potentiates guidance signals emanating from the SGPs, functioning upstream of hh and of 2 Hh pathway genes important for Hh-containing cytonemes, and (3) that factors required in Hh receiving cells in other contexts function in PGCs to help direct migration toward the SGPs. We also compare the data reported by 4 different laboratories that have studied the role of the Hh pathway in guiding PGC migration.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Chris Ng
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Nicholas Jourjine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Joy Wan Chiew
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Juliana Dasilva
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Ji X, Gao J, Wei T, Jin L, Xiao G. Fear-of-intimacy-mediated zinc transport is required for Drosophila fat body endoreplication. BMC Biol 2023; 21:88. [PMID: 37069617 PMCID: PMC10111752 DOI: 10.1186/s12915-023-01588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Endoreplication is involved in the development and function of many organs, the pathologic process of several diseases. However, the metabolic underpinnings and regulation of endoreplication have yet to be well clarified. RESULTS Here, we showed that a zinc transporter fear-of-intimacy (foi) is necessary for Drosophila fat body endoreplication. foi knockdown in the fat body led to fat body cell nuclei failure to attain standard size, decreased fat body size and pupal lethality. These phenotypes could be modulated by either altered expression of genes involved in zinc metabolism or intervention of dietary zinc levels. Further studies indicated that the intracellular depletion of zinc caused by foi knockdown results in oxidative stress, which activates the ROS-JNK signaling pathway, and then inhibits the expression of Myc, which is required for tissue endoreplication and larval growth in Drosophila. CONCLUSIONS Our results indicated that FOI is critical in coordinating fat body endoreplication and larval growth in Drosophila. Our study provides a novel insight into the relationship between zinc and endoreplication in insects and may provide a reference for relevant mammalian studies.
Collapse
Affiliation(s)
- Xiaowen Ji
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jiajia Gao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tian Wei
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Li Jin
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China.
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
4
|
Lei Y, Huang Y, Yang K, Cao X, Song Y, Martín-Blanco E, Pastor-Pareja JC. FGF signaling promotes spreading of fat body precursors necessary for adult adipogenesis in Drosophila. PLoS Biol 2023; 21:e3002050. [PMID: 36947563 PMCID: PMC10069774 DOI: 10.1371/journal.pbio.3002050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/03/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Knowledge of adipogenetic mechanisms is essential to understand and treat conditions affecting organismal metabolism and adipose tissue health. In Drosophila, mature adipose tissue (fat body) exists in larvae and adults. In contrast to the well-known development of the larval fat body from the embryonic mesoderm, adult adipogenesis has remained mysterious. Furthermore, conclusive proof of its physiological significance is lacking. Here, we show that the adult fat body originates from a pool of undifferentiated mesodermal precursors that migrate from the thorax into the abdomen during metamorphosis. Through in vivo imaging, we found that these precursors spread from the ventral midline and cover the inner surface of the abdomen in a process strikingly reminiscent of embryonic mesoderm migration, requiring fibroblast growth factor (FGF) signaling as well. FGF signaling guides migration dorsally and regulates adhesion to the substrate. After spreading is complete, precursor differentiation involves fat accumulation and cell fusion that produces mature binucleate and tetranucleate adipocytes. Finally, we show that flies where adult adipogenesis is impaired by knock down of FGF receptor Heartless or transcription factor Serpent display ectopic fat accumulation in oenocytes and decreased resistance to starvation. Our results reveal that adult adipogenesis occurs de novo during metamorphosis and demonstrate its crucial physiological role.
Collapse
Affiliation(s)
- Yuting Lei
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuwei Huang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ke Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xueya Cao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuzhao Song
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Barcelona, Spain
| | - José Carlos Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Institute of Neurosciences, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, San Juan de Alicante, Spain
| |
Collapse
|
5
|
Parra-Peralbo E, Talamillo A, Barrio R. Origin and Development of the Adipose Tissue, a Key Organ in Physiology and Disease. Front Cell Dev Biol 2022; 9:786129. [PMID: 34993199 PMCID: PMC8724577 DOI: 10.3389/fcell.2021.786129] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue is a dynamic organ, well known for its function in energy storage and mobilization according to nutrient availability and body needs, in charge of keeping the energetic balance of the organism. During the last decades, adipose tissue has emerged as the largest endocrine organ in the human body, being able to secrete hormones as well as inflammatory molecules and having an important impact in multiple processes such as adipogenesis, metabolism and chronic inflammation. However, the cellular progenitors, development, homeostasis and metabolism of the different types of adipose tissue are not fully known. During the last decade, Drosophila melanogaster has demonstrated to be an excellent model to tackle some of the open questions in the field of metabolism and development of endocrine/metabolic organs. Discoveries ranged from new hormones regulating obesity to subcellular mechanisms that regulate lipogenesis and lipolysis. Here, we review the available evidences on the development, types and functions of adipose tissue in Drosophila and identify some gaps for future research. This may help to understand the cellular and molecular mechanism underlying the pathophysiology of this fascinating key tissue, contributing to establish this organ as a therapeutic target.
Collapse
Affiliation(s)
| | - Ana Talamillo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
6
|
Slaidina M, Banisch TU, Gupta S, Lehmann R. A single-cell atlas of the developing Drosophila ovary identifies follicle stem cell progenitors. Genes Dev 2020; 34:239-249. [PMID: 31919193 PMCID: PMC7000915 DOI: 10.1101/gad.330464.119] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022]
Abstract
Addressing the complexity of organogenesis at a system-wide level requires a complete understanding of adult cell types, their origin, and precursor relationships. The Drosophila ovary has been a model to study how coordinated stem cell units, germline, and somatic follicle stem cells maintain and renew an organ. However, lack of cell type-specific tools have limited our ability to study the origin of individual cell types and stem cell units. Here, we used a single-cell RNA sequencing approach to uncover all known cell types of the developing ovary, reveal transcriptional signatures, and identify cell type-specific markers for lineage tracing. Our study identifies a novel cell type corresponding to the elusive follicle stem cell precursors and predicts subtypes of known cell types. Altogether, we reveal a previously unanticipated complexity of the developing ovary and provide a comprehensive resource for the systematic analysis of ovary morphogenesis.
Collapse
Affiliation(s)
- Maija Slaidina
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York 10016, USA
| | - Torsten U Banisch
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York 10016, USA
| | - Selena Gupta
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York 10016, USA
| | - Ruth Lehmann
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York 10016, USA
| |
Collapse
|
7
|
Steinmetz PRH. A non-bilaterian perspective on the development and evolution of animal digestive systems. Cell Tissue Res 2019; 377:321-339. [PMID: 31388768 PMCID: PMC6733828 DOI: 10.1007/s00441-019-03075-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
Abstract
Digestive systems and extracellular digestion are key animal features, but their emergence during early animal evolution is currently poorly understood. As the last common ancestor of non-bilaterian animal groups (sponges, ctenophores, placozoans and cnidarians) dates back to the beginning of animal life, their study and comparison provides important insights into the early evolution of digestive systems and functions. Here, I have compiled an overview of the development and cell biology of digestive tissues in non-bilaterian animals. I will highlight the fundamental differences between extracellular and intracellular digestive processes, and how these are distributed among animals. Cnidarians (e.g. sea anemones, corals, jellyfish), the phylogenetic outgroup of bilaterians (e.g. vertebrates, flies, annelids), occupy a key position to reconstruct the evolution of bilaterian gut evolution. A major focus will therefore lie on the development and cell biology of digestive tissues in cnidarians, especially sea anemones, and how they compare to bilaterian gut tissues. In that context, I will also review how a recent study on the gastrula fate map of the sea anemone Nematostella vectensis challenges our long-standing conceptions on the evolution of cnidarian and bilaterian germ layers and guts.
Collapse
Affiliation(s)
- Patrick R H Steinmetz
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5006, Bergen, Norway.
| |
Collapse
|
8
|
Wu W, Kuo T, Kao C, Girardot C, Hung S, Liu T, Furlong EEM, Liu Y. Expanding the mesodermal transcriptional network by genome‐wide identification of Zinc finger homeodomain 1 (Zfh1) targets. FEBS Lett 2019; 593:1698-1710. [DOI: 10.1002/1873-3468.13443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Wei‐Hang Wu
- Department of Life Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| | - Tai‐Hong Kuo
- Department of Life Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| | - Chia‐Wei Kao
- Department of Life Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| | - Charles Girardot
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg Germany
| | - Sheng‐Jou Hung
- Department of Biotechnology and Bioindustry Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| | - Eileen E. M. Furlong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg Germany
| | - Ya‐Hsin Liu
- Department of Life Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| |
Collapse
|
9
|
Bischof J, Duffraisse M, Furger E, Ajuria L, Giraud G, Vanderperre S, Paul R, Björklund M, Ahr D, Ahmed AW, Spinelli L, Brun C, Basler K, Merabet S. Generation of a versatile BiFC ORFeome library for analyzing protein-protein interactions in live Drosophila. eLife 2018; 7:38853. [PMID: 30247122 PMCID: PMC6177257 DOI: 10.7554/elife.38853] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/18/2018] [Indexed: 11/24/2022] Open
Abstract
Transcription factors achieve specificity by establishing intricate interaction networks that will change depending on the cell context. Capturing these interactions in live condition is however a challenging issue that requires sensitive and non-invasive methods. We present a set of fly lines, called ‘multicolor BiFC library’, which covers most of the Drosophila transcription factors for performing Bimolecular Fluorescence Complementation (BiFC). The multicolor BiFC library can be used to probe two different binary interactions simultaneously and is compatible for large-scale interaction screens. The library can also be coupled with established Drosophila genetic resources to analyze interactions in the developmentally relevant expression domain of each protein partner. We provide proof of principle experiments of these various applications, using Hox proteins in the live Drosophila embryo as a case study. Overall this novel collection of ready-to-use fly lines constitutes an unprecedented genetic toolbox for the identification and analysis of protein-protein interactions in vivo.
Collapse
Affiliation(s)
- Johannes Bischof
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Edy Furger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | | | | | - Mikael Björklund
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | | | | | | | - Christine Brun
- INSERM, Aix-Marseille Université, Marseille, France.,TAGC, Centre National de la Recherche Scientifique, Marseille, France
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
10
|
Slaidina M, Lehmann R. Quantitative Differences in a Single Maternal Factor Determine Survival Probabilities among Drosophila Germ Cells. Curr Biol 2017; 27:291-297. [PMID: 28065608 DOI: 10.1016/j.cub.2016.11.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/24/2016] [Accepted: 11/23/2016] [Indexed: 11/26/2022]
Abstract
Germ cell death occurs in many species [1-3] and has been proposed as a mechanism by which the fittest, strongest, or least damaged germ cells are selected for transmission to the next generation. However, little is known about how the choice is made between germ cell survival and death. Here, we focus on the mechanisms that regulate germ cell survival during embryonic development in Drosophila. We find that the decision to die is a germ cell-intrinsic process linked to quantitative differences in germ plasm inheritance, such that higher germ plasm inheritance correlates with higher primordial germ cell (PGC) survival probability. We demonstrate that the maternal factor lipid phosphate phosphatase Wunen-2 (Wun2) regulates PGC survival in a dose-dependent manner. Since wun2 mRNA levels correlate with the levels of other maternal determinants at the single-cell level, we propose that Wun2 is used as a readout of the overall germ plasm quantity, such that only PGCs with the highest germ plasm quantity survive. Furthermore, we demonstrate that Wun2 and p53, another regulator of PGC survival, have opposite yet independent effects on PGC survival. Since p53 regulates cell death upon DNA damage and various cellular stresses, we hypothesize that together they ensure selection of the PGCs with highest germ plasm quantity and least cellular damage.
Collapse
Affiliation(s)
- Maija Slaidina
- Department of Cell Biology, Howard Hughes Medical Institute, and Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Ruth Lehmann
- Department of Cell Biology, Howard Hughes Medical Institute, and Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
11
|
Abstract
The embryonic gonad of Drosophila melanogaster begins to display sexually dimorphic traits soon after its formation. Here we demonstrate the involvement of a wnt family ligand, wnt-2, in the induction of these sex-specific differences. We show that wnt-2 contributes to the survival of a male-specific population of somatic gonadal precursor cells (SGPs), the male-specific SGPs that are located at the posterior of the male gonad. We also show that the Wnt-2 ligand synergizes with the JAK-STAT ligand Upd, which is produced by SGPs at the anterior of the gonad to activate the STAT pathway in male germ cells. We suggest that the use of two spatially separated signaling systems to initiate the JAK-STAT stem cell maintenance pathway in germ cells provides a mechanism for increasing the pool of potential progenitors of the germline stem cells in the adult testes. Finally, we present evidence indicating that, like the JAK-STAT pathway, wnt-2 stimulates germ cells in male embryos to re-enter the cell cycle.
Collapse
|
12
|
The Nutrient-Responsive Hormone CCHamide-2 Controls Growth by Regulating Insulin-like Peptides in the Brain of Drosophila melanogaster. PLoS Genet 2015; 11:e1005209. [PMID: 26020940 PMCID: PMC4447355 DOI: 10.1371/journal.pgen.1005209] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/13/2015] [Indexed: 12/27/2022] Open
Abstract
The coordination of growth with nutritional status is essential for proper development and physiology. Nutritional information is mostly perceived by peripheral organs before being relayed to the brain, which modulates physiological responses. Hormonal signaling ensures this organ-to-organ communication, and the failure of endocrine regulation in humans can cause diseases including obesity and diabetes. In Drosophila melanogaster, the fat body (adipose tissue) has been suggested to play an important role in coupling growth with nutritional status. Here, we show that the peripheral tissue-derived peptide hormone CCHamide-2 (CCHa2) acts as a nutrient-dependent regulator of Drosophila insulin-like peptides (Dilps). A BAC-based transgenic reporter revealed strong expression of CCHa2 receptor (CCHa2-R) in insulin-producing cells (IPCs) in the brain. Calcium imaging of brain explants and IPC-specific CCHa2-R knockdown demonstrated that peripheral-tissue derived CCHa2 directly activates IPCs. Interestingly, genetic disruption of either CCHa2 or CCHa2-R caused almost identical defects in larval growth and developmental timing. Consistent with these phenotypes, the expression of dilp5, and the release of both Dilp2 and Dilp5, were severely reduced. Furthermore, transcription of CCHa2 is altered in response to nutritional levels, particularly of glucose. These findings demonstrate that CCHa2 and CCHa2-R form a direct link between peripheral tissues and the brain, and that this pathway is essential for the coordination of systemic growth with nutritional availability. A mammalian homologue of CCHa2-R, Bombesin receptor subtype-3 (Brs3), is an orphan receptor that is expressed in the islet β-cells; however, the role of Brs3 in insulin regulation remains elusive. Our genetic approach in Drosophila melanogaster provides the first evidence, to our knowledge, that bombesin receptor signaling with its endogenous ligand promotes insulin production. Animals need to couple growth with nutritional availability for proper development and physiology, which leads to better survival. Nutritional information is mostly perceived by peripheral organs, particularly metabolic organs such as adipose tissue and gut, before being relayed to the brain, which modulates physiological responses. Hormonal signaling ensures this organ-to-organ communication, and defects in this endocrine regulation in humans often cause diseases including obesity and diabetes. In the fruit fly Drosophila melanogaster, adipose tissue (the “fat body”) has been suggested to play an important role in coordinating growth with metabolism. Here, we show that the Drosophila CCHamide-2 (CCHa2) gene, expressed in the fat body and gut, encodes a nutrient-sensitive peptide hormone. The CCHa2 peptide signals to neuroendocrine cells in the brain that produce Drosophila insulin-like peptides (Dilps) through its receptor (CCHa2-R) and promotes the production of Dilps. Mutants of both CCHa2 and CCHa2-R display severe growth retardation during larval stages. These results suggest that CCHa2 and CCHa2-R functionally connect peripheral tissues with the brain, and that CCHa2/CCHa2-R signaling coordinates the animal’s growth with its nutritional conditions by regulating its production of insulin-like peptides.
Collapse
|
13
|
Papagiannouli F, Lohmann I. Stage-specific control of stem cell niche architecture in the Drosophila testis by the posterior Hox gene Abd-B. Comput Struct Biotechnol J 2015; 13:122-30. [PMID: 25750700 PMCID: PMC4348433 DOI: 10.1016/j.csbj.2015.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 11/30/2022] Open
Abstract
A fundamental question in biology is how complex structures are maintained after their initial specification. We address this question by reviewing the role of the Hox gene Abd-B in Drosophila testis organogenesis, which proceeds through embryonic, larval and pupal stages to reach maturation in adult stages. The data presented in this review highlight a cell- and stage-specific function of Abd-B, since the mechanisms regulating stem cell niche positioning and architecture at different stages seem to be different despite the employment of similar factors. In addition to its described role in the male embryonic gonads, sustained activity of Abd-B in the pre-meiotic germline spermatocytes during larval stages is required to maintain the architecture of the stem cell niche by regulating βPS-integrin localization in the neighboring somatic cyst cells. Loss of Abd-B is associated with cell non-autonomous effects within the niche, leading to a dramatic reduction of pre-meiotic cell populations in adult testes. Identification of Abd-B target genes revealed that Abd-B mediates its effects by controlling the activity of the sevenless ligand Boss via its direct targets Src42A and Sec63. During adult stages, when testis morphogenesis is completed with the addition of the acto-myosin sheath originating from the genital disc, stem cell niche positioning and integrity are regulated by Abd-B activity in the acto-myosin sheath whereas integrin acts in an Abd-B independent way. It seems that the occurrence of new cell types and cell interactions in the course of testis organogenesis made it necessary to adapt the system to the new cellular conditions by reusing the same players for testis stem cell niche positioning in an alternative manner.
Collapse
Affiliation(s)
- Fani Papagiannouli
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany
| | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany
| |
Collapse
|
14
|
Whitworth C, Jimenez E, Van Doren M. Development of sexual dimorphism in the Drosophila testis. SPERMATOGENESIS 2014; 2:129-136. [PMID: 23087832 PMCID: PMC3469436 DOI: 10.4161/spmg.21780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The creation of sexual dimorphism in the gonads is essential for producing the male and female gametes required for sexual reproduction. Sexual development of the gonads involves both somatic cells and germ cells, which often undergo sex determination by different mechanisms. While many sex-specific characteristics evolve rapidly and are very different between animal species, gonad function and the formation of sperm and eggs appear more similar and may be more conserved. Consistent with this, the doublesex/mab3 Related Transcription factors (DMRTs) are important for gonad sexual dimorphism in a wide range of animals, including flies, worms and mammals. Here we explore how sexual dimorphism is regulated in the Drosophila gonad, focusing on recent discoveries relating to testis development. We will discuss how sex determination in both the germline and the soma are utilized to create a testis, including the role of the key somatic sex determination factor doublesex.
Collapse
Affiliation(s)
- Cale Whitworth
- Department of Biology; The Johns Hopkins University; Baltimore, MD USA
| | | | | |
Collapse
|
15
|
Stansbury MS, Moczek AP. The function of Hox and appendage-patterning genes in the development of an evolutionary novelty, the Photuris firefly lantern. Proc Biol Sci 2014; 281:20133333. [PMID: 24648226 PMCID: PMC3973271 DOI: 10.1098/rspb.2013.3333] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/20/2014] [Indexed: 02/04/2023] Open
Abstract
Uncovering the mechanisms underlying the evolution of novel traits is a central challenge in biology. The lanterns of fireflies are complex traits that lack even remote homology to structures outside luminescent beetle families. Representing unambiguous novelties by the strictest definition, their developmental underpinnings may provide clues to their origin and offer insights into the mechanisms of innovation in developmental evolution. Lanterns develop within the context of abdominal Hox expression domains, and we hypothesized that lantern formation may be instructed in part by these highly conserved transcription factors. We show that transcript depletion of Abdominal-B in Photuris fireflies results in extensive disruption of the adult lantern, suggesting that the evolution of adult lanterns involved the acquisition of a novel regulatory role for this Hox gene. Using the same approach, we show that the Hox gene abdominal-A may control important secondary aspects of lantern development. Lastly, we hypothesized that lantern evolution may have involved the recruitment of dormant abdominal appendage-patterning domains; however, transcript depletion of two genes, Distal-less and dachshund, suggests that they do not contribute to lantern development. Our results suggest that complex novelties can arise within the confines of ancestral regulatory landscapes through acquisition of novel targets without compromising ancestral functions.
Collapse
Affiliation(s)
- Matthew S. Stansbury
- Center for Insect Science, University of Arizona, 1007 East Lowell Street, PO Box 210106, Tucson, AZ 85721-0106, USA
- Department of Biology, Indiana University, 1001 East 3rd St., Jordan Hall 142, Bloomington, IN 47405-7005, USA
| | - Armin P. Moczek
- Department of Biology, Indiana University, 1001 East 3rd St., Jordan Hall 142, Bloomington, IN 47405-7005, USA
| |
Collapse
|
16
|
Sano H, Kunwar PS, Renault AD, Barbosa V, Clark IBN, Ishihara S, Sugimura K, Lehmann R. The Drosophila actin regulator ENABLED regulates cell shape and orientation during gonad morphogenesis. PLoS One 2012; 7:e52649. [PMID: 23300733 PMCID: PMC3530444 DOI: 10.1371/journal.pone.0052649] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/16/2012] [Indexed: 12/27/2022] Open
Abstract
Organs develop distinctive morphologies to fulfill their unique functions. We used Drosophila embryonic gonads as a model to study how two different cell lineages, primordial germ cells (PGCs) and somatic gonadal precursors (SGPs), combine to form one organ. We developed a membrane GFP marker to image SGP behaviors live. These studies show that a combination of SGP cell shape changes and inward movement of anterior and posterior SGPs leads to the compaction of the spherical gonad. This process is disrupted in mutants of the actin regulator, enabled (ena). We show that Ena coordinates these cell shape changes and the inward movement of the SGPs, and Ena affects the intracellular localization of DE-cadherin (DE-cad). Mathematical simulation based on these observations suggests that changes in DE-cad localization can generate the forces needed to compact an elongated structure into a sphere. We propose that Ena regulates force balance in the SGPs by sequestering DE-cad, leading to the morphogenetic movement required for gonad compaction.
Collapse
Affiliation(s)
- Hiroko Sano
- HHMI and Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University Medical Center, New York, New York, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Papagiannouli F, Lohmann I. Shaping the niche: lessons from the Drosophila testis and other model systems. Biotechnol J 2012; 7:723-36. [PMID: 22488937 DOI: 10.1002/biot.201100352] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/31/2012] [Accepted: 02/27/2012] [Indexed: 11/12/2022]
Abstract
Stem cells are fascinating, as they supply the cells that construct our adult bodies and replenish, as we age, worn out, damaged, and diseased tissues. Stem cell regulation relies on intrinsic signals but also on inputs emanating from the neighbouring niche. The Drosophila testis provides an excellent system for studying such processes. Although recent advances have uncovered several signalling, cytoskeletal and other factors affecting niche homeostasis and testis differentiation, many aspects of niche regulation and maintenance remain unsolved. In this review, we discuss aspects of niche establishment and integrity not yet fully understood and we compare it to the current knowledge in other model systems such as vertebrates and plants. We also address specific questions on stem cell maintenance and niche regulation in the Drosophila testis under the control of Hox genes. Finally, we provide insights on the striking functional conservation of homologous genes in plants and animals and their respective stem cell niches. Elucidating conserved mechanisms of stem cell control in both lineages could reveal the importance underlying this conservation and justify the evolutionary pressure to adapt homologous molecules for performing the same task.
Collapse
Affiliation(s)
- Fani Papagiannouli
- Centre for Organismal Studies (COS) Heidelberg and CellNetworks - Cluster of Excellence, Heidelberg, Germany.
| | | |
Collapse
|
18
|
Abstract
Cell-cell signaling and adhesion are critical for establishing tissue architecture during development and for maintaining tissue architecture and function in the adult. Defects in adhesion and signaling can result in mislocalization of cells, uncontrolled proliferation and improper differentiation, leading to tissue overgrowth, tumor formation, and cancer metastasis. An important example is found in the germline. Germ cells that are not incorporated into the gonad exhibit a greater propensity for forming germ cell tumors, and defects in germline development can reduce fertility. While much attention is given to germ cells, their development into functional gametes depends upon somatic gonadal cells. The study of model organisms has provided great insights into how somatic gonadal cells are specified, the molecular mechanisms that regulate gonad morphogenesis, and the role of germline-soma communication in the establishment and maintenance of the germline stem cell niche. This work will be discussed in the context of Drosophila melanogaster.
Collapse
Affiliation(s)
- Jennifer C Jemc
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
19
|
Weyers JJ, Milutinovich AB, Takeda Y, Jemc JC, Van Doren M. A genetic screen for mutations affecting gonad formation in Drosophila reveals a role for the slit/robo pathway. Dev Biol 2011; 353:217-28. [PMID: 21377458 PMCID: PMC3635084 DOI: 10.1016/j.ydbio.2011.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 12/19/2022]
Abstract
Organogenesis is a complex process requiring multiple cell types to associate with one another through correct cell contacts and in the correct location to achieve proper organ morphology and function. To better understand the mechanisms underlying gonad formation, we performed a mutagenesis screen in Drosophila and identified twenty-four genes required for gonadogenesis. These genes affect all different aspects of gonad formation and provide a framework for understanding the molecular mechanisms that control these processes. We find that gonad formation is regulated by multiple, independent pathways; some of these regulate the key cell adhesion molecule DE-cadherin, while others act through distinct mechanisms. In addition, we discover that the Slit/Roundabout pathway, best known for its role in regulating axonal guidance, is essential for proper gonad formation. Our findings shed light on the complexities of gonadogenesis and the genetic regulation required for proper organ formation.
Collapse
Affiliation(s)
- Jill J Weyers
- Department of Biology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
20
|
Saini N, Schaffner W. Zinc supplement greatly improves the condition of parkin mutant Drosophila. Biol Chem 2010; 391:513-8. [PMID: 20302514 DOI: 10.1515/bc.2010.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder in which oxidative stress is implicated as a major causative factor. Mutations in the gene encoding Parkin, a ubiquitin ligase, are responsible for a familial form of PD. In a Drosophila disease model lacking Parkin (park(25) null mutant), we tested the effect of zinc supplementation. Zinc is an essential trace metal and a component of many enzymes and transcriptional regulators. Unlike copper and iron, zinc is not redox-active and under most conditions serves as an antioxidant. We find that the condition of parkin mutants raised on zinc-supplemented food is greatly improved. At zinc concentrations where controls begin to show adverse effects as a result of the metal supplement, parkin mutants perform best, as manifested in a higher frequency of reaching adulthood, extended lifespan and improved motoric abilities.
Collapse
Affiliation(s)
- Nidhi Saini
- Institute of Molecular Life Sciences, University of Zürich, Switzerland
| | | |
Collapse
|
21
|
Ohayon D, Pattyn A, Venteo S, Valmier J, Carroll P, Garces A. Zfh1 promotes survival of a peripheral glia subtype by antagonizing a Jun N-terminal kinase-dependent apoptotic pathway. EMBO J 2009; 28:3228-43. [PMID: 19745814 DOI: 10.1038/emboj.2009.247] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 07/27/2009] [Indexed: 12/19/2022] Open
Abstract
In Drosophila subperineurial glia (SPG) ensheath and insulate the nerve. SPG is under strict cell cycle and survival control because cell division or death of such a cell type would compromise the integrity of the blood-nerve barrier. The mechanisms underlying the survival of SPG remain unknown. Here, we show that the embryonic peripheral glia expresses the Zfh1 transcription factor, and in zfh1 mutants a particular SPG subtype, ePG10, undergoes apoptosis. Our findings show that in ePG10, Zfh1 represses the pro-apoptotic RHG-motif gene reaper in a cell-autonomous manner. Zfh1 also blocks the activation of the Jun N-terminal kinase (JNK) pathway, and reducing or enhancing JNK signalling in zfh1 mutants prevents or promotes ePG10 apoptosis. Our study shows a novel function for Zfh1 as an anti-apoptotic molecule and uncovers a cryptic JNK-dependent apoptotic programme in ePG10, which is normally blocked by Zfh1. We propose that, in cells such as SPG that do not undergo self-renewal and survive long periods, transcriptional control of RHG-motif gene expression together with fine tuning of JNK signalling is crucial for cell survival.
Collapse
Affiliation(s)
- David Ohayon
- INSERM U583, INM-Hopital St Eloi, 80 rue Augustin Fliche, Montpellier Cedex, France
| | | | | | | | | | | |
Collapse
|
22
|
Renault AD, Ricardo S, Kunwar PS, Santos A, Starz-Gaiano M, Stein J, Lehmann R. Hedgehog does not guide migrating Drosophila germ cells. Dev Biol 2009; 328:355-62. [PMID: 19389345 PMCID: PMC2693393 DOI: 10.1016/j.ydbio.2009.01.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/28/2009] [Accepted: 01/28/2009] [Indexed: 11/25/2022]
Abstract
In many species, the germ cells, precursors of sperm and egg, migrate during embryogenesis. The signals that regulate this migration are thus essential for fertility. In flies, lipid signals have been shown to affect germ cell guidance. In particular, the synthesis of geranylgeranyl pyrophosphate through the 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (Hmgcr) pathway is critical for attracting germ cells to their target tissue. In a genetic analysis of signaling pathways known to affect cell migration of other migratory cells, we failed to find a role for the Hedgehog (Hh) pathway in germ cell migration. However, previous reports had implicated Hh as a germ cell attractant in flies and suggested that Hh signaling is enhanced through the action of the Hmgcr pathway. We therefore repeated several critical experiments and carried out further experiments to test specifically whether Hh is a germ cell attractant in flies. In contrast to previously reported findings and consistent with findings in zebrafish our data do not support the notion that Hh has a direct role in the guidance of migrating germ cells in flies.
Collapse
Affiliation(s)
- Andrew D. Renault
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Sara Ricardo
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Prabhat S. Kunwar
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Ana Santos
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Michelle Starz-Gaiano
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Jennifer Stein
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Ruth Lehmann
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| |
Collapse
|
23
|
DeFalco T, Camara N, Le Bras S, Van Doren M. Nonautonomous sex determination controls sexually dimorphic development of the Drosophila gonad. Dev Cell 2008; 14:275-86. [PMID: 18267095 PMCID: PMC2292836 DOI: 10.1016/j.devcel.2007.12.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 10/18/2007] [Accepted: 12/11/2007] [Indexed: 11/30/2022]
Abstract
Sex determination in Drosophila is commonly thought to be a cell-autonomous process, where each cell decides its own sexual fate based on its sex chromosome constitution (XX versus XY). This is in contrast to sex determination in mammals, which largely acts nonautonomously through cell-cell signaling. Here we examine how sexual dimorphism is created in the Drosophila gonad by investigating the formation of the pigment cell precursors, a male-specific cell type in the embryonic gonad. Surprisingly, we find that sex determination in the pigment cell precursors, as well as the male-specific somatic gonadal precursors, is non-cell autonomous. Male-specific expression of Wnt2 within the somatic gonad triggers pigment cell precursor formation from surrounding cells. Our results indicate that nonautonomous sex determination is important for creating sexual dimorphism in the Drosophila gonad, similar to the manner in which sex-specific gonad formation is controlled in mammals.
Collapse
Affiliation(s)
- Tony DeFalco
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
24
|
Lee HK, Lundell MJ. Differentiation of the Drosophila serotonergic lineage depends on the regulation of Zfh-1 by Notch and Eagle. Mol Cell Neurosci 2007; 36:47-58. [PMID: 17702602 PMCID: PMC2716093 DOI: 10.1016/j.mcn.2007.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 05/28/2007] [Accepted: 05/31/2007] [Indexed: 11/18/2022] Open
Abstract
Elucidating mechanisms that differentiate motor neurons from interneurons are fundamental to understanding CNS development. Here we demonstrate that within the Drosophila NB 7-3/serotonergic lineage, different levels of Zfh-1 are required to specify unique properties of both motor neurons and interneurons. We present evidence that Zfh-1 is induced by Notch signaling and suppressed by the transcription factor Eagle. The antagonistic regulation of zfh-1 by Notch and Eagle results in Zfh-1 being expressed at low levels in the NB 7-3 interneurons and at higher levels in the NB 7-3 motor neurons. Furthermore, we present evidence that the induction of Zfh-1 by Notch occurs independently from canonical Notch signaling. We present a model where the differentiation of cell fates within the NB 7-3 lineage requires both canonical and non-canonical Notch signaling. Our observations on the regulation of Zfh-1 provide a new approach for examining the function of Zfh-1 in motor neurons and larval locomotion.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Genetically Modified
- Axons/physiology
- Behavior, Animal
- Cell Differentiation/physiology
- Cell Lineage/physiology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drosophila
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Embryo, Nonmammalian
- Gene Expression Regulation, Developmental/physiology
- Genes, Insect/physiology
- Models, Biological
- Motor Activity/physiology
- Motor Neurons/cytology
- Motor Neurons/physiology
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Serotonin/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Hyung-Kook Lee
- Department of Biology, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, 626-395-8353 phone,
| | - Martha J. Lundell
- Department of Biology, University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, TX 78249, 210-458-5769 phone, 210-458-5658 fax,
| |
Collapse
|
25
|
Le Bras S, Van Doren M. Development of the male germline stem cell niche in Drosophila. Dev Biol 2006; 294:92-103. [PMID: 16566915 DOI: 10.1016/j.ydbio.2006.02.030] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 02/15/2006] [Accepted: 02/17/2006] [Indexed: 01/05/2023]
Abstract
Stem cells are found in specialized microenvironments, or "niches", which regulate stem cell identity and behavior. The adult testis and ovary in Drosophila contain germline stem cells (GSCs) with well-defined niches, and are excellent models for studying niche development. Here, we investigate the formation of the testis GSC niche, or "hub", during the late stages of embryogenesis. By morphological and molecular criteria, we identify and follow the development of an embryonic hub that forms from a subset of anterior somatic gonadal precursors (SGPs) in the male gonad. Embryonic hub cells form a discrete cluster apart from other SGPs, express several molecular markers in common with the adult hub and organize anterior-most germ cells in a rosette pattern characteristic of GSCs in the adult. The sex determination genes transformer and doublesex ensure that hub formation occurs only in males. Interestingly, hub formation occurs in both XX and XY gonads mutant for doublesex, indicating that doublesex is required to repress hub formation in females. This work establishes the Drosophila male GSC niche as a model for understanding the mechanisms controlling niche formation and initial stem cell recruitment, as well as the development of sexual dimorphism in the gonad.
Collapse
Affiliation(s)
- Stéphanie Le Bras
- Department of Biology, Mudd Hall 305, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|
26
|
Clark IBN, Boyd J, Hamilton G, Finnegan DJ, Jarman AP. D-six4 plays a key role in patterning cell identities deriving from the Drosophila mesoderm. Dev Biol 2006; 294:220-31. [PMID: 16595131 DOI: 10.1016/j.ydbio.2006.02.044] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 02/24/2006] [Accepted: 02/27/2006] [Indexed: 11/21/2022]
Abstract
Patterning of the Drosophila embryonic mesoderm requires the regulation of cell type-specific factors in response to dorsoventral and anteroposterior axis information. For the dorsoventral axis, the homeodomain gene, tinman, is a key patterning mediator for dorsal mesodermal fates like the heart. However, equivalent mediators for more ventral fates are unknown. We show that D-six4, which encodes a Six family transcription factor, is required for the appropriate development of most cell types deriving from the non-dorsal mesoderm - the fat body, somatic cells of the gonad, and a specific subset of somatic muscles. Misexpression analysis suggests that D-Six4 and its likely cofactor, Eyes absent, are sufficient to impose these fates on other mesodermal cells. At stage 10, the mesodermal expression patterns of D-six4 and tin are complementary, being restricted to the dorsal and non-dorsal regions respectively. Our data suggest that D-six4 is a key mesodermal patterning mediator at this stage that regulates a variety of cell-type-specific factors and hence plays an equivalent role to tin. At stage 9, however, D-six4 and tin are both expressed pan-mesodermally. At this stage, tin function is required for full D-six4 expression. This may explain the known requirement for tin in some non-dorsal cell types.
Collapse
Affiliation(s)
- Ivan B N Clark
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | | | | | | | | |
Collapse
|
27
|
Brown S, Zeidler MP, Hombría JECG. JAK/STAT signalling in Drosophila controls cell motility during germ cell migration. Dev Dyn 2006; 235:958-66. [PMID: 16477645 DOI: 10.1002/dvdy.20709] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The gonad is formed from two populations of cells originating at different locations: the primordial germ cells (PGCs), giving rise to either sperm or oocytes, and the somatic gonadal mesoderm precursors (SGPs), which support development of the gametes. Following the PGCs' migration during gastrulation, these two populations meet, forming the immature gonad. We present evidence that during embryonic development, the PGCs require the canonical JAK/STAT signalling cascade to migrate efficiently towards the SGPs. Loss of function for any element of the JAK/STAT pathway causes frequent germ cell mislocalisation. We have found that wild-type germ cells produce filopodia while they migrate through the mesoderm towards the gonad. Our observations suggest that PGCs use filopodia to migrate and to keep contact with each other. Interestingly, activation of the JAK/STAT pathway is required for these filopodia to form, and ectopic JAK/STAT activation enhances their formation.
Collapse
Affiliation(s)
- Stephen Brown
- Faculty of Life Sciences, University of Manchester, C.1247 Michael Smith Building, Oxford Road, Manchester M13 9PT, U.K.
| | | | | |
Collapse
|
28
|
Deshpande G, Schedl P. HMGCoA reductase potentiates hedgehog signaling in Drosophila melanogaster. Dev Cell 2006; 9:629-38. [PMID: 16256738 DOI: 10.1016/j.devcel.2005.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 06/10/2005] [Accepted: 09/09/2005] [Indexed: 11/20/2022]
Abstract
Drosophila HMGCoA reductase (hmgcr) catalyzes the biosynthesis of a mevalonate precursor for isoprenoids and has been implicated in the production of a signal by the somatic gonadal precursor cells (SGPs) that attracts migrating germ cells. Here, we show that hmgcr functions in the hedgehog (hh) signaling pathway. When hmgcr activity is reduced, high levels of Hh accumulate in hh-expressing cells in each parasegment, while the adjacent "Hh-receiving" cells cannot sustain wg expression and fail to relocalize the Smoothened (Smo) receptor. Conversely, ectopic Hmgcr upregulates Hh signaling when it is produced in hh-expressing cells, but has no effect when produced in the receiving cells. These findings suggest that Hmgcr might orchestrate germ cell migration by promoting the release and/or transport of Hh from the SGPs. Consistent with this model, there are substantial germ cell migration defects in trans combinations between hmgcr and mutations in different components of the hh pathway.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA.
| | | |
Collapse
|
29
|
Sano H, Renault AD, Lehmann R. Control of lateral migration and germ cell elimination by the Drosophila melanogaster lipid phosphate phosphatases Wunen and Wunen 2. ACTA ACUST UNITED AC 2006; 171:675-83. [PMID: 16301333 PMCID: PMC2171572 DOI: 10.1083/jcb.200506038] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In most organisms, primordial germ cells (PGCs) arise far from the region where somatic gonadal precursors (SGPs) are specified. Although PGCs in general originate as a single cluster of cells, the somatic parts of the gonad form on each site of the embryo. Thus, to reach the gonad, PGCs not only migrate from their site of origin but also split into two groups. Taking advantage of high-resolution real-time imaging, we show that in Drosophila melanogaster PGCs are polarized and migrate directionally toward the SGPs, avoiding the midline. Unexpectedly, neither PGC attractants synthesized in the SGPs nor known midline repellents for axon guidance were required to sort PGCs bilaterally. Repellent activity provided by wunen (wun) and wunen-2 (wun-2) expressed in the central nervous system, however, is essential in this migration process and controls PGC survival. Our results suggest that expression of wun/wun-2 repellents along the migratory paths provides faithful control over the sorting of PGCs into two gonads and eliminates PGCs left in the middle of the embryo.
Collapse
Affiliation(s)
- Hiroko Sano
- Department of Cell Biology, Developmental Genetics Program, Skirball Institute of Biomolecular Medicine and Howard Hughes Medical Institute, New York University Medical Center, New York, NY 10016
| | | | | |
Collapse
|
30
|
Murakami R, Okumura T, Uchiyama H. GATA factors as key regulatory molecules in the development of Drosophila endoderm. Dev Growth Differ 2005; 47:581-9. [PMID: 16316403 DOI: 10.1111/j.1440-169x.2005.00836.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Essential roles for GATA factors in the development of endoderm have been reported in various animals. A Drosophila GATA factor gene, serpent (srp, dGATAb, ABF), is expressed in the prospective endoderm, and loss of srp activity causes transformation of the prospective endoderm into ectodermal foregut and hindgut, indicating that srp acts as a selector gene to specify the developmental fate of the endoderm. While srp is expressed in the endoderm only during early stages, it activates a subsequent GATA factor gene, dGATAe, and the latter continues to be expressed specifically in the endoderm throughout life. dGATAe activates various functional genes in the differentiated endodermal midgut. An analogous mode of regulation has been reported in Caenorhabditis elegans, in which a pair of GATA genes, end-1/3, specifies endodermal fate, and a downstream pair of GATA genes, elt-2/7, activates genes in the differentiated endoderm. Functional homology of GATA genes in nature is apparently extendable to vertebrates, because endodermal GATA genes of C. elegans and Drosophila induce endoderm development in Xenopus ectoderm. These findings strongly imply evolutionary conservation of the roles of GATA factors in the endoderm across the protostomes and the deuterostomes.
Collapse
Affiliation(s)
- Ryutaro Murakami
- Department of Physics, Biology, and Informatics, Yamaguchi University, Yamaguchi 753-8512, Japan.
| | | | | |
Collapse
|
31
|
Vining MS, Bradley PL, Comeaux CA, Andrew DJ. Organ positioning in Drosophila requires complex tissue-tissue interactions. Dev Biol 2005; 287:19-34. [PMID: 16171793 DOI: 10.1016/j.ydbio.2005.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 08/05/2005] [Accepted: 08/09/2005] [Indexed: 12/25/2022]
Abstract
Positioning an organ with respect to other tissues is a complex process necessary for proper anatomical development and organ function. The local environment surrounding an organ can serve both as a substrate for migration and as a source of guidance cues that direct migration. Little is known about the factors guiding Drosophila salivary gland movement or about the contacts the glands establish along their migratory path. Here, we provide a detailed description of the spatial and temporal interactions between the salivary glands and surrounding tissues during embryogenesis. The glands directly contact five other tissues: the visceral mesoderm, gastric caecae, somatic mesoderm, fat body, and central nervous system. Mutational analysis reveals that all of the tissues tested in this study are important for normal salivary gland positioning; proper differentiation of the visceral and somatic mesoderm is necessary for the glands to attain their final correct position. We also provide evidence that the segment-polarity gene, gooseberry (gsb), controls expression of signals from the developing fat body that direct posterior migration of the glands. These data further the understanding of how organ morphology and position are determined by three-dimensional constraints and guidance cues provided by neighboring tissues.
Collapse
Affiliation(s)
- Melissa S Vining
- The Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
32
|
DeFalco T, Le Bras S, Van Doren M. Abdominal-B is essential for proper sexually dimorphic development of the Drosophila gonad. Mech Dev 2005; 121:1323-33. [PMID: 15454263 DOI: 10.1016/j.mod.2004.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 06/30/2004] [Accepted: 07/01/2004] [Indexed: 11/19/2022]
Abstract
Sexual dimorphism requires the integration of positional information in the embryo with the sex determination pathway. Homeotic genes are a major source of positional information responsible for patterning along the anterior-posterior axis in embryonic development, and are likely to play a critical role in sexual dimorphism. Here, we investigate the role of homeotic genes in the sexually dimorphic development of the gonad in Drosophila. We have found that Abdominal-B (ABD-B) is expressed in a sexually dimorphic manner in the embryonic gonad. Furthermore, Abd-B is necessary and sufficient for specification of a sexually dimorphic cell type, the male-specific somatic gonadal precursors (msSGPs). In Abd-B mutants, the msSGPs are not specified and male gonads now resemble female gonads with respect to these cells. Ectopic expression of Abd-B is sufficient to induce formation of extra msSGPs in additional segments of the embryo. Abd-B works together with abdominal-A to pattern the non-sexually dimorphic somatic gonad in both sexes, while Abd-B alone specifies the msSGPs. Our results indicate that Abd-B acts at multiple levels to regulate gonad development and that Abd-B class homeotic genes are conserved factors in establishing gonad sexual dimorphism in diverse species.
Collapse
Affiliation(s)
- Tony DeFalco
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 305 Mudd Hall, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
33
|
Abstract
The passage of an individual's genome to future generations is essential for the maintenance of species and is mediated by highly specialized cells, the germ cells. Genetic studies in a number of model organisms have provided insight into the molecular mechanisms that control specification, migration and survival of early germ cells. Focusing on Drosophila, we will discuss the mechanisms by which germ cells initially form and remain transcriptionally silent while somatic cells are transcriptionally active. We will further discuss three separate attractive and repellent guidance pathways, mediated by a G-protein coupled receptor, two lipid phosphate phosphohydrolases, and isoprenylation. We will compare and contrast these findings with those obtained in other organisms, in particular zebrafish and mice. While aspects of germ cell specification are strikingly different between these species, germ cell specific gene functions have been conserved. In particular, mechanisms that sense directional cues during germ cell migration seem to be shared between invertebrates and vertebrates.
Collapse
Affiliation(s)
- Ana C Santos
- Howard Hughes Medical Institute, Developmental Genetics Program, Skirball Institute and Department of Cell Biology at NYU School of Medicine, 540 First Avenue, New York, New York 10016, USA
| | | |
Collapse
|
34
|
Kunwar PS, Starz-Gaiano M, Bainton RJ, Heberlein U, Lehmann R. Tre1, a G protein-coupled receptor, directs transepithelial migration of Drosophila germ cells. PLoS Biol 2003; 1:E80. [PMID: 14691551 PMCID: PMC300690 DOI: 10.1371/journal.pbio.0000080] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2003] [Accepted: 10/14/2003] [Indexed: 02/01/2023] Open
Abstract
In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG) is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR), Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target. A novel G protein-coupled receptor (GPCR) is shown to be essential for transepithelial migration of Drosophila germ cells. Leukocyte transepithelial migration also requires GPCR signaling, suggesting a conserved mechanism.
Collapse
Affiliation(s)
- Prabhat S Kunwar
- 1Howard Hughes Medical Institute, Developmental Genetics ProgramSkirball Institute of Biomolecular Medicine, Sackler Institute of Graduate Biomedical Sciences, and New York University School of Medicine, New York, New YorkUnited States of America
| | - Michelle Starz-Gaiano
- 1Howard Hughes Medical Institute, Developmental Genetics ProgramSkirball Institute of Biomolecular Medicine, Sackler Institute of Graduate Biomedical Sciences, and New York University School of Medicine, New York, New YorkUnited States of America
| | - Roland J Bainton
- 2Department of Anatomy, University of California, San FranciscoSan Francisco, CaliforniaUnited States of America
| | - Ulrike Heberlein
- 2Department of Anatomy, University of California, San FranciscoSan Francisco, CaliforniaUnited States of America
- 3Department of Anesthesia, University of California, San FranciscoSan Francisco, CaliforniaUnited States of America
| | - Ruth Lehmann
- 1Howard Hughes Medical Institute, Developmental Genetics ProgramSkirball Institute of Biomolecular Medicine, Sackler Institute of Graduate Biomedical Sciences, and New York University School of Medicine, New York, New YorkUnited States of America
| |
Collapse
|
35
|
Jenkins AB, McCaffery JM, Van Doren M. Drosophila E-cadherin is essential for proper germ cell-soma interaction during gonad morphogenesis. Development 2003; 130:4417-26. [PMID: 12900457 DOI: 10.1242/dev.00639] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In most animal species, germ cells require intimate contact with specialized somatic cells in the gonad for their proper development. We have analyzed the establishment of germ cell-soma interaction during embryonic gonad formation in Drosophila melanogaster, and find that somatic cells undergo dramatic changes in cell shape and individually ensheath germ cells as the gonad coalesces. Germ cell ensheathment is independent of other aspects of gonad formation, indicating that separate morphogenic processes are at work during gonadogenesis. The cell-cell adhesion molecule Drosophila E-cadherin is essential both for germ cell ensheathment and gonad compaction, and is upregulated in the somatic gonad at the time of gonad formation. Our data indicate that differential cell adhesion contributes to cell sorting and the formation of proper gonad architecture. In addition, we find that Fear of Intimacy, a novel transmembrane protein, is also required for both germ cell ensheathment and gonad compaction. E-cadherin expression in the gonad is dramatically decreased in fear of intimacy mutants, indicating that Fear of Intimacy may be a regulator of E-cadherin expression or function.
Collapse
Affiliation(s)
- Allison B Jenkins
- Department of Biology, Mudd Hall, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
36
|
DeFalco TJ, Verney G, Jenkins AB, McCaffery JM, Russell S, Van Doren M. Sex-specific apoptosis regulates sexual dimorphism in the Drosophila embryonic gonad. Dev Cell 2003; 5:205-16. [PMID: 12919673 DOI: 10.1016/s1534-5807(03)00204-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sexually dimorphic development of the gonad is essential for germ cell development and sexual reproduction. We have found that the Drosophila embryonic gonad is already sexually dimorphic at the time of initial gonad formation. Male-specific somatic gonadal precursors (msSGPs) contribute only to the testis and express a Drosophila homolog of Sox9 (Sox100B), a gene essential for testis formation in humans. The msSGPs are specified in both males and females, but are only recruited into the developing testis. In females, these cells are eliminated via programmed cell death dependent on the sex determination regulatory gene doublesex. Our work furthers the hypotheses that a conserved pathway controls gonad sexual dimorphism in diverse species and that sex-specific cell recruitment and programmed cell death are common mechanisms for creating sexual dimorphism.
Collapse
Affiliation(s)
- Tony J DeFalco
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Cell migration and programmed cell death are essential components of animal development and homeostasis, and the germ cells of Drosophila provide a simple genetic system to study the molecular mechanisms that govern these important cellular processes. Detailed descriptions of germ cell migration in Drosophila were accomplished long ago, but most genetic and molecular analyses of the process have occurred within the past 10 years. A few of the genes required for germ cell migration have been identified, and a very interesting picture is emerging. However, a process as complex as cell migration must involve the functions of many more molecules. In addition, cell migration and cell death mechanisms are often linked, as it is important to eliminate cells that are misplaced and could present a danger to the organism. In Drosophila, genes involved in germ cell migration can also affect programmed cell death. Currently, very little is known about how germ cells ectopic to the gonads are eliminated. To date, only four genes have been reported with roles in germ cell death, and three of these have additional functions in germ cell pathfinding. The nature of the cell death program has not been elucidated. Here, I provide a brief review of Drosophila germ cell migration and programmed cell death at both the descriptive and molecular levels. Many questions remain to be answered, but advances made in recent years are providing useful insights into these critical biological phenomena.
Collapse
Affiliation(s)
- Clark R Coffman
- Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
38
|
Miller JM, Oligino T, Pazdera M, López AJ, Hoshizaki DK. Identification of fat-cell enhancer regions in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2002; 11:67-77. [PMID: 11841504 DOI: 10.1046/j.0962-1075.2001.00310.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The insect fat body is a dynamic tissue involved in maintaining homeostasis. It functions not only in energy storage and intermediary metabolism but also in detoxification, communication and the immune response. Some of these functions are confined to distinct groups of fat body cells. In Drosophila melanogaster, discrete precursor-cell clusters populate the fat body [Hoshizaki, D.K., Blackburn, T., Price, C., Ghosh, M., Miles, K., Ragucci, M. and Sweis, R. (1994) Embryonic fat-cell lineage in Drosophila melanogaster. Development 120: 2489-2499; Hoshizaki, D.K., Lunz, R., Ghosh, M. and Johnson, W. (1995) Identification of fat-cell enhancer activity in Drosophila melanogaster using P-element enhancer traps. Genome 38: 497-506; Riechmann, V., Rehorn, K.P., Reuter, R. and Leptin, M. (1998) The genetic control of the distinction between fat body and gonadal mesoderm in Drosophila. Development 125: 713-723]. Whether these clusters populate defined morphological regions or whether they represent the precursors to functionally similar groups of fat-body cells has not been formally demonstrated. We have identified a 2.1 kb enhancer region from serpent (srp), a GATA transcription factor gene that is sufficient to induce fat-cell formation. This enhancer region drives expression in specific groups of precursor-cell clusters, which we show give rise to defined regions of the mature embryonic fat body. We present evidence that srp expression in different precursor fat cells is controlled by independent cis-acting regulatory regions, and we have tested the role of trans-acting factors in the specification of some of these cells. We suggest that the different positional cues regulating srp expression, and therefore general fat-cell specification, might also be involved in the functional specialization of fat cells. This may be a common mechanism in insects to explain the origin of biochemically distinct regions of the larval/adult fat body.
Collapse
Affiliation(s)
- J M Miller
- Department of Biological Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Box 454004, Las Vegas, Nevada 89154-4004, USA
| | | | | | | | | |
Collapse
|
39
|
Ozon S, Guichet A, Gavet O, Roth S, Sobel A. Drosophila stathmin: a microtubule-destabilizing factor involved in nervous system formation. Mol Biol Cell 2002; 13:698-710. [PMID: 11854423 PMCID: PMC65660 DOI: 10.1091/mbc.01-07-0362] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Stathmin is a ubiquitous regulatory phosphoprotein, the generic element of a family of neural phosphoproteins in vertebrates that possess the capacity to bind tubulin and interfere with microtubule dynamics. Although stathmin and the other proteins of the family have been associated with numerous cell regulations, their biological roles remain elusive, as in particular inactivation of the stathmin gene in the mouse resulted in no clear deleterious phenotype. We identified stathmin phosphoproteins in Drosophila, encoded by a unique gene sharing the intron/exon structure of the vertebrate stathmin and stathmin family genes. They interfere with microtubule assembly in vitro, and in vivo when expressed in HeLa cells. Drosophila stathmin expression is regulated during embryogenesis: it is high in the migrating germ cells and in the central and peripheral nervous systems, a pattern resembling that of mammalian stathmin. Furthermore, RNA interference inactivation of Drosophila stathmin expression resulted in germ cell migration arrest at stage 14. It also induced important anomalies in nervous system development, such as loss of commissures and longitudinal connectives in the ventral cord, or abnormal chordotonal neuron organization. In conclusion, a single Drosophila gene encodes phosphoproteins homologous to the entire vertebrate stathmin family. We demonstrate for the first time their direct involvement in major biological processes such as development of the reproductive and nervous systems.
Collapse
Affiliation(s)
- Sylvie Ozon
- Institut National de la Santé et de la Recherche Médicale U440-Université Pierre et Marie Curie, Institut du Fer à Moulin, 75005 Paris, France
| | | | | | | | | |
Collapse
|
40
|
Abstract
The primitive gonad of the Drosophila embryo is formed from two cell types, the somatic gonad precursor cells (SGPs) and the germ cells, which originate at distant sites. To reach the SGPs the germ cells must undergo a complex series of cell movements. While there is evidence that attractive and repulsive signals guide germ cell migration through the embryo, the molecular identity of these instructive molecules has remained elusive. Here, we present evidence suggesting that hedgehog (hh) may serve as such an attractive guidance cue. Misexpression of hh in the soma induces germ cells to migrate to inappropriate locations. Conversely, cell-autonomous components of the hh pathway appear to be required in the germline for proper germ cell migration.
Collapse
Affiliation(s)
- G Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
In most organisms, primordial germ cells are set aside from the cells of the body early in development. To form an embryonic gonad, germ cells often have to migrate along complex routes through and along diverse tissues until they reach the somatic part of the gonad. Recent advances have been made in the genetic analysis of these early stages of germ line development. Here we review findings from Drosophila, zebrafish, and mouse; each organism provides unique insight into the mechanisms that determine germ cell fate and the cues that may guide their migration.
Collapse
Affiliation(s)
- M Starz-Gaiano
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Howard Hughes Medical Institute and New York University School of Medicine, 540 First Avenue, 10016, New York, NY, USA
| | | |
Collapse
|
42
|
Hayes SA, Miller JM, Hoshizaki DK. serpent, a GATA-like transcription factor gene, induces fat-cell development in Drosophila melanogaster. Development 2001; 128:1193-200. [PMID: 11245585 DOI: 10.1242/dev.128.7.1193] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The GATA-like transcription factor gene serpent is necessary for embryonic fat-cell differentiation in Drosophila (Sam, S., Leise, W. and Hoshizaki, D. K. (1996) Mech. Dev. 60, 197–205) and has been proposed to function in a cell-fate choice between fat cell and somatic gonadal precursors (Moore, L. A., Broihier, H. T., Van Doren, M. and Lehmann, R. (1998) Development 125, 837–44; Riechmann, V., Irion, U., Wilson, R., Grosskortenhaus, R. and Leptin, M. (1997) Development 124, 2915–22). Here, we report that deregulated expression of serpent in the mesoderm induces the formation of ectopic fat cells and prevents the migration and coalescence of the somatic gonadal precursors. The ectopic fat cells do not arise from hyperproliferation of the primary fat-cell clusters but they do associate with the endogenous fat cells to form a fat body that is expanded in both the dorsal/ventral and anterior/posterior axes. Misexpression of serpent also affects the differentiation of muscle cells. Few body-wall muscle precursors are specified and there is a loss of most body-wall muscle fibers. The precursors of the visceral mesoderm are also absent and concomitantly the visceral muscle is absent. We suggest that the ectopic fat cells might originate from cells that have the potential, but do not normally, differentiate into fat cells or from cells that have acquired a fat-cell fate. In light of our results, we discuss the role of serpent in fat-cell specification and in cell fate choices.
Collapse
Affiliation(s)
- S A Hayes
- Department of Biological Sciences, University of Nevada, Las Vegas, Box 454004, Las Vegas, Nevada 89154-4004, USA
| | | | | |
Collapse
|
43
|
Franch-Marro X, Casanova J. The alternative migratory pathways of the Drosophila tracheal cells are associated with distinct subsets of mesodermal cells. Dev Biol 2000; 227:80-90. [PMID: 11076678 DOI: 10.1006/dbio.2000.9890] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Drosophila tracheal system is a model for the study of the mechanisms that guide cell migration. The general conclusion from many studies is that migration of tracheal cells relies on directional cues provided by nearby cells. However, very little is known about which paths are followed by the migrating tracheal cells and what kind of interactions they establish to move in the appropriate direction. Here we analyze how tracheal cells migrate relative to their surroundings and which tissues participate in tracheal cell migration. We find that cells in different branches exploit different strategies for their migration; while some migrate through preexisting grooves, others make their way through homogeneous cell populations. We also find that alternative migratory pathways of tracheal cells are associated with distinct subsets of mesodermal cells and propose a model for the allocation of groups of tracheal cells to different branches. These results show how adjacent tissues influence morphogenesis of the tracheal system and offer a model for understanding how organ formation is determined by its genetic program and by the surrounding topological constraints.
Collapse
Affiliation(s)
- X Franch-Marro
- Institut de Biologia Molecular de Barcelona, C/ Jordi Girona 18-26, Barcelona, 08034, Spain
| | | |
Collapse
|
44
|
Boube M, Llimargas M, Casanova J. Cross-regulatory interactions among tracheal genes support a co-operative model for the induction of tracheal fates in the Drosophila embryo. Mech Dev 2000; 91:271-8. [PMID: 10704851 DOI: 10.1016/s0925-4773(99)00315-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The Drosophila tracheal system arises from clusters of ectodermal cells that invaginate and migrate to originate a network of epithelial tubes. Genetic analyses have identified several genes that are specifically expressed in the tracheal cells and are required for tracheal development. Among them, trachealess (trh) is able to induce ectopic tracheal pits and therefore it has been suggested that it would act as an inducer of tracheal cell fates; however, this capacity appears to be spatially restricted. Here we analyze the expression of the tracheal specific genes in the early steps of tracheal development and their cross-interactions. We find that there is a set of primary genes including trh and ventral veinless (vvl) whose expression does not depend on any other tracheal gene and a set of downstream genes whose expression requires different combinations of the primary genes. We also find that the combined expression of primary genes is sufficient to induce some downstream genes but not others. These results indicate that there is not a single master gene responsible for the appropriate expression of the tracheal genes and support a model where tracheal cell fates are induced by the co-operation of several factors rather than by the activity of a single tracheal inducer.
Collapse
Affiliation(s)
- M Boube
- Institut de Biologia Molecular de Barcelona (CSIC), C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | | | | |
Collapse
|
45
|
Postigo AA, Ward E, Skeath JB, Dean DC. zfh-1, the Drosophila homologue of ZEB, is a transcriptional repressor that regulates somatic myogenesis. Mol Cell Biol 1999; 19:7255-63. [PMID: 10490660 PMCID: PMC84718 DOI: 10.1128/mcb.19.10.7255] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
zfh-1 is a member of the zfh family of proteins, which all contain zinc finger and homeodomains. The roles and mechanisms of action of most family members are still unclear. However, we have shown previously that another member of the family, the vertebrate ZEB protein, is a transcriptional repressor that binds E box sequences and inhibits myotube formation in cell culture assays. zfh-1 is downregulated in Drosophila embryos prior to myogenesis. Embryos with zfh-1 loss-of-function mutation show alterations in the number and position of embryonic somatic muscles, suggesting that zfh-1 could have a regulatory role in myogenesis. However, nothing is known about the nature or mechanism of action of zfh-1. Here, we demonstrate that zfh-1 is a transcription factor that binds E box sequences and acts as an active transcriptional repressor. When zfh-1 expression was maintained in the embryo beyond its normal temporal pattern of downregulation, the differentiation of somatic but not visceral muscle was blocked. One potential target of zfh-1 in somatic myogenesis could be the myogenic factor mef2. mef2 is known to be regulated by the transcription factor twist, and we show here that zfh-1 binds to sites in the mef2 upstream regulatory region and inhibits twist transcriptional activation. Even though there is little sequence similarity in the repressor domains of ZEB and zfh-1, we present evidence that zfh-1 is the functional homologue of ZEB and that the role of these proteins in myogenesis is conserved from Drosophila to mammals.
Collapse
Affiliation(s)
- A A Postigo
- Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Recent genetic studies in Drosophila have identified signals that direct cell movement, mechanisms that transduce such signals within migrating cells and some of the molecular machinery underlying cell motility. Activation of the fibroblast growth factor receptor signaling pathway is required for migration of the cells of the developing respiratory system and mesoderm. A signal dependent on 3-hydroxy-3-methylglutanyl Coenzyme A reductase attracts migrating primordial germ cells to the somatic gonad, whereas the phosphohydrolase, phosphatidic acid phosphatase type 2, repels germ cells. In the female germline, the migratory path of border cells is directed by the homophilic adhesion molecule E cadherin.
Collapse
Affiliation(s)
- A Forbes
- Developmental Genetics Program, Skirball Institute and Howard Hughes Medical Institute, Department of Cell Biology, New York University Medical School, 540 First Ave, New York, New York 10016, USA.
| | | |
Collapse
|
47
|
Brodu V, Mugat B, Roignant JY, Lepesant JA, Antoniewski C. Dual requirement for the EcR/USP nuclear receptor and the dGATAb factor in an ecdysone response in Drosophila melanogaster. Mol Cell Biol 1999; 19:5732-42. [PMID: 10409761 PMCID: PMC84424 DOI: 10.1128/mcb.19.8.5732] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The EcR/USP nuclear receptor controls Drosophila metamorphosis by activating complex cascades of gene transcription in response to pulses of the steroid hormone ecdysone at the end of larval development. Ecdysone release provides a ubiquitous signal for the activation of the receptor, but a number of its target genes are induced in a tissue- and stage-specific manner. Little is known about the molecular mechanisms involved in this developmental modulation of the EcR/USP-mediated pathway. Fbp1 is a good model of primary ecdysone response gene expressed in the fat body for addressing this question. We show here that the dGATAb factor binds to three target sites flanking an EcR/USP binding site in a 70-bp enhancer that controls the tissue and stage specificity of Fbp1 transcription. We demonstrate that one of these sites and proper expression of dGATAb are required for specific activation of the enhancer in the fat body. In addition, we provide further evidence that EcR/USP plays an essential role as a hormonal timer. Our study provides a striking example of the integration of molecular pathways at the level of a tissue-specific hormone response unit.
Collapse
Affiliation(s)
- V Brodu
- Institut Jacques Monod, Laboratoire de Biologie du Développement, CNRS UMR 7592, Université Paris 7 Denis-Diderot, Université Paris 6 P. et M. Curie, 75251 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
48
|
Mukai M, Kashikawa M, Kobayashi S. Induction of indora expression in pole cells by the mesoderm is required for female germ-line development in Drosophila melanogaster. Development 1999; 126:1023-9. [PMID: 9927602 DOI: 10.1242/dev.126.5.1023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In many animal groups, the interaction between germ and somatic line is required for germ-line development. In Drosophila, the germ-line precursors (pole cells) formed at the posterior tip of the embryos migrate toward the mesodermal layer where they adhere to the dorsolateral mesoderm, which ensheaths the pole cells to form the embryonic gonads. These mesodermal cells may control the expression of genes that function in pole cells for their development into germ cells. However, such downstream genes have not been isolated. In this study, we identify a novel transcript, indora (idr), which is expressed only in pole cells within the gonads. Reduction of idr transcripts by an antisense idr expression caused the failure of pole cells to produce functional germ cells in females. Furthermore, we demonstrate that idr expression depends on the presence of the dorsolateral mesoderm, but it does not necessarily require its specification as the gonadal mesoderm. Our findings suggest that the induction of idr in pole cells by the mesodermal cells is required for germ-line development.
Collapse
Affiliation(s)
- M Mukai
- Institute of Biological Sciences, Gene Experiment Center and Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
| | | | | |
Collapse
|
49
|
Abstract
In many animals, germ cells migrate to the gonad to assemble into a functional organ. Recent work in Drosophila has built a picture of the gene activities that specify the gonad and allow it to attract germ cells, and has led to the identification of a gene, columbus, that may encode the attractive factor.
Collapse
Affiliation(s)
- K Howard
- MRC Laboratory for Molecular Cell Biology, University College London, UK.
| |
Collapse
|