1
|
Wonkam A, Esoh K, Levine RM, Ngo Bitoungui VJ, Mnika K, Nimmagadda N, Dempsey EAD, Nkya S, Sangeda RZ, Nembaware V, Morrice J, Osman F, Beer MA, Makani J, Mulder N, Lettre G, Steinberg MH, Latanich R, Casella JF, Drehmer D, Arking DE, Chimusa ER, Yen JS, Newby GA, Antonarakis SE. FLT1 and other candidate fetal haemoglobin modifying loci in sickle cell disease in African ancestries. Nat Commun 2025; 16:2092. [PMID: 40025045 PMCID: PMC11873275 DOI: 10.1038/s41467-025-57413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
Known fetal haemoglobin (HbF)-modulating loci explain 10-24% variation of HbF level in Africans with Sickle Cell Disease (SCD), compared to 50% among Europeans. Here, we report fourteen candidate loci from a genome-wide association study (GWAS) of HbF level in patients with SCD from Cameroon, Tanzania, and the United States of America. We present results of cell-based experiments for FLT1 candidate, demonstrating expression in early haematopoiesis and a possible involvement in hypoxia associated HbF induction. Our study employed genotyping arrays that capture a broad range of African and non-African genetic variation and replicated known loci (BCL11A and HBS1L-MYB). We estimated the heritability of HbF level in SCD at 94%, higher than estimated in unselected Europeans, and suggesting a robust capture of HbF-associated loci by these arrays. Our approach, which involved genotype imputation against six reference haplotype panels and association analysis with each of the panels, proved superior over selecting a best-performing panel, evidenced by a substantial proportion of panel-specific (up to 18%) and a low proportion of shared (28%) imputed variants across the panels.
Collapse
Affiliation(s)
- Ambroise Wonkam
- McKusick-Nathans Institute and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Kevin Esoh
- McKusick-Nathans Institute and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rachel M Levine
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Khuthala Mnika
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nikitha Nimmagadda
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Erin A D Dempsey
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Siana Nkya
- Department of Biochemistry and Molecular Biology, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Raphael Z Sangeda
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Victoria Nembaware
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jack Morrice
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Fujr Osman
- McKusick-Nathans Institute and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael A Beer
- McKusick-Nathans Institute and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julie Makani
- Sickle Cell Programme, Department of Haematology and Blood Transfusion, Muhimbili University of Health & Allied Sciences (MUHAS), Dar Es Salaam, Tanzania
- SickleInAfrica Clinical Coordinating Center, Muhimbili University of Health & Allied Sciences (MUHAS), Dar Es Salaam, Tanzania
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, CIDRI-Africa Wellcome Trust Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Guillaume Lettre
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Martin H Steinberg
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Rachel Latanich
- McKusick-Nathans Institute and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James F Casella
- Department of Pediatrics, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daiana Drehmer
- Armstrong Oxygen Biology Research Center, Institute for Cell Engineering, and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan E Arking
- McKusick-Nathans Institute and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emile R Chimusa
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear, UK
| | - Jonathan S Yen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gregory A Newby
- McKusick-Nathans Institute and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Stylianos E Antonarakis
- Department of Genetic Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Hoshino R, Nakamura N, Yamauchi T, Aoki Y, Miyabe M, Sasajima S, Ozaki R, Sekiya T, Sato T, Tabuchi M, Miyazawa K, Naruse K. Mechanical loading-induced alveolar bone remodeling is suppressed in the diabetic state via the impairment of the specificity protein 1/vascular endothelial growth factor (SP1/VEGF) axis. J Diabetes Investig 2025; 16:72-82. [PMID: 39460577 DOI: 10.1111/jdi.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
AIMS/INTRODUCTION Orthodontic treatment involves alveolar bone remodeling in response to mechanical loading, resulting in tooth movement through traction-side bone formation and compression-side bone resorption. However, there are conflicting reports regarding alveolar bone resorption during the orthodontic treatment of patients with diabetes. MATERIALS AND METHODS Diabetes was induced in 8-week-old C56BL/6J mice using streptozotocin (STZ). Four weeks after the injection of STZ, a mechanical load was applied between the first and second molars on the right side of the upper jaw using the Waldo method with orthodontic elastics in diabetic (DM) and normal (N) mice tooth movement, gene expression, osteoclast counts, alveolar bone residual volume, and bone beam structure were evaluated. RESULTS The duration until spontaneous elastic loss was significantly longer in the DM group, suggesting that tooth movement may be inhibited in the diabetic state. The number of osteoclasts at 7 days after mechanical loading and the alveolar bone resorption were both significantly lower in the DM group. The gene expression levels of vascular endothelial growth factor (VEGF), a protein related to alveolar bone remodeling, and specificity protein 1 (SP1), a transcription factor of the VEGF gene, were significantly lower in the DM group than in the N group on the compression side of mechanical loading. CONCLUSIONS Mechanical loading-induced alveolar bone remodeling is suppressed in the diabetic state. Our results suggest that VEGF is a key molecule involved in impaired bone remodeling under mechanical loading in the diabetic state.
Collapse
Affiliation(s)
- Rina Hoshino
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Nobuhisa Nakamura
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Taisuke Yamauchi
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Yuki Aoki
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Megumi Miyabe
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Sachiko Sasajima
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Reina Ozaki
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Takeo Sekiya
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Takuma Sato
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Masako Tabuchi
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Failla CM, Carbone ML, Ramondino C, Bruni E, Orecchia A. Vascular Endothelial Growth Factor (VEGF) Family and the Immune System: Activators or Inhibitors? Biomedicines 2024; 13:6. [PMID: 39857591 PMCID: PMC11763294 DOI: 10.3390/biomedicines13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The vascular endothelial growth factor (VEGF) family includes key mediators of vasculogenesis and angiogenesis. VEGFs are secreted by various cells of epithelial and mesenchymal origin and by some immune cells in response to physiological and pathological stimuli. In addition, immune cells express VEGF receptors and/or co-receptors and can respond to VEGFs in an autocrine or paracrine manner. This immunological role of VEGFs has opened the possibility of using the VEGF inhibitors already developed to inhibit tumor angiogenesis also in combination approaches with different immunotherapies to enhance the action of effector T lymphocytes against tumor cells. This review pursues to examine the current understanding of the interplay between VEGFs and the immune system, while identifying key areas that require further evaluation.
Collapse
Affiliation(s)
- Cristina Maria Failla
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy; (C.M.F.); (C.R.)
| | - Maria Luigia Carbone
- Clinical Trial Center, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy;
| | - Carmela Ramondino
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy; (C.M.F.); (C.R.)
| | - Emanuele Bruni
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | | |
Collapse
|
4
|
Lim RMH, Lee JY, Kannan B, Ko TK, Chan JY. Molecular and immune pathobiology of human angiosarcoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189159. [PMID: 39032539 DOI: 10.1016/j.bbcan.2024.189159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Angiosarcoma is a rare endothelial-derived malignancy that is extremely diverse in anatomy, aetiology, molecular and immune characteristics. While novel therapeutic approaches incorporating targeted agents and immunotherapy have yielded significant improvements in patient outcomes across several cancers, their impact on angiosarcoma remains modest. Contributed by its heterogeneous nature, there is currently a lack of novel drug targets in this disease entity and no reliable biomarkers that predict response to conventional treatment. This review aims to examine the molecular and immune landscape of angiosarcoma in association with its aetiology, anatomical sites, prognosis and therapeutic options. We summarise current efforts to characterise angiosarcoma subtypes based on molecular and immune profiling. Finally, we highlight promising technologies such as single-cell spatial "omics" that may further our understanding of angiosarcoma and propose strategies that can be similarly applied for the study of other rare cancers.
Collapse
Affiliation(s)
| | - Jing Yi Lee
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore
| | - Bavani Kannan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Tun Kiat Ko
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore.
| |
Collapse
|
5
|
Tai Y, Chow A, Han S, Coker C, Ma W, Gu Y, Estrada Navarro V, Kandpal M, Hibshoosh H, Kalinsky K, Manova-Todorova K, Safonov A, Walsh EM, Robson M, Norton L, Baer R, Merghoub T, Biswas AK, Acharyya S. FLT1 activation in cancer cells promotes PARP-inhibitor resistance in breast cancer. EMBO Mol Med 2024; 16:1957-1980. [PMID: 38956205 PMCID: PMC11319505 DOI: 10.1038/s44321-024-00094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Acquired resistance to PARP inhibitors (PARPi) remains a treatment challenge for BRCA1/2-mutant breast cancer that drastically shortens patient survival. Although several resistance mechanisms have been identified, none have been successfully targeted in the clinic. Using new PARPi-resistance models of Brca1- and Bard1-mutant breast cancer generated in-vivo, we identified FLT1 (VEGFR1) as a driver of resistance. Unlike the known role of VEGF signaling in angiogenesis, we demonstrate a novel, non-canonical role for FLT1 signaling that protects cancer cells from PARPi in-vivo through a combination of cell-intrinsic and cell-extrinsic pathways. We demonstrate that FLT1 blockade suppresses AKT activation, increases tumor infiltration of CD8+ T cells, and causes dramatic regression of PARPi-resistant breast tumors in a T-cell-dependent manner. Moreover, PARPi-resistant tumor cells can be readily re-sensitized to PARPi by targeting Flt1 either genetically (Flt1-suppression) or pharmacologically (axitinib). Importantly, a retrospective series of breast cancer patients treated with PARPi demonstrated shorter progression-free survival in cases with FLT1 activation at pre-treatment. Our study therefore identifies FLT1 as a potential therapeutic target in PARPi-resistant, BRCA1/2-mutant breast cancer.
Collapse
Affiliation(s)
- Yifan Tai
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Biology, McGill University, Montreal, Quebec, QC, H3G0B1, Canada
| | - Angela Chow
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Seoyoung Han
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Jacobs School of Medicine, University of Buffalo, New York, NY, USA
| | - Courtney Coker
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Wanchao Ma
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Yifan Gu
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Valeria Estrada Navarro
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Manoj Kandpal
- Centre for Clinical and Translational Science, Rockefeller University Hospital, 1230 York Ave, New York, NY, 10065, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, 630 W 168th St, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Kevin Kalinsky
- Winship Cancer Institute of Emory University, Emory University School of Medicine, 1365 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Katia Manova-Todorova
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Anton Safonov
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Elaine M Walsh
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Medicine, Georgetown Lombardi Comprehensive Cancer Center, 3800 Reservoir Rd, NW, Washington DC, 20007, USA
| | - Mark Robson
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Larry Norton
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Richard Baer
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, 630 W 168th St, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Taha Merghoub
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Anup K Biswas
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, 630 W 168th St, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Swarnali Acharyya
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, 630 W 168th St, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Ave, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
6
|
Yadunandanan Nair N, Samuel V, Ramesh L, Marib A, David DT, Sundararaman A. Actin cytoskeleton in angiogenesis. Biol Open 2022; 11:bio058899. [PMID: 36444960 PMCID: PMC9729668 DOI: 10.1242/bio.058899] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Actin, one of the most abundant intracellular proteins in mammalian cells, is a critical regulator of cell shape and polarity, migration, cell division, and transcriptional response. Angiogenesis, or the formation of new blood vessels in the body is a well-coordinated multi-step process. Endothelial cells lining the blood vessels acquire several new properties such as front-rear polarity, invasiveness, rapid proliferation and motility during angiogenesis. This is achieved by changes in the regulation of the actin cytoskeleton. Actin remodelling underlies the switch between the quiescent and angiogenic state of the endothelium. Actin forms endothelium-specific structures that support uniquely endothelial functions. Actin regulators at endothelial cell-cell junctions maintain the integrity of the blood-tissue barrier while permitting trans-endothelial leukocyte migration. This review focuses on endothelial actin structures and less-recognised actin-mediated endothelial functions. Readers are referred to other recent reviews for the well-recognised roles of actin in endothelial motility, barrier functions and leukocyte transmigration. Actin generates forces that are transmitted to the extracellular matrix resulting in vascular matrix remodelling. In this review, we attempt to synthesize our current understanding of the roles of actin in vascular morphogenesis. We speculate on the vascular bed specific differences in endothelial actin regulation and its role in the vast heterogeneity in endothelial morphology and function across the various tissues of our body.
Collapse
Affiliation(s)
- Nidhi Yadunandanan Nair
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Victor Samuel
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Lariza Ramesh
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Areeba Marib
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Deena T. David
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Ananthalakshmy Sundararaman
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| |
Collapse
|
7
|
Kappen C, Kruger C, Jones S, Salbaum JM. Nutrient Transporter Gene Expression in the Early Conceptus-Implications From Two Mouse Models of Diabetic Pregnancy. Front Cell Dev Biol 2022; 10:777844. [PMID: 35478964 PMCID: PMC9035823 DOI: 10.3389/fcell.2022.777844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Maternal diabetes in early pregnancy increases the risk for birth defects in the offspring, particularly heart, and neural tube defects. While elevated glucose levels are characteristic for diabetic pregnancies, these are also accompanied by hyperlipidemia, indicating altered nutrient availability. We therefore investigated whether changes in the expression of nutrient transporters at the conception site or in the early post-implantation embryo could account for increased birth defect incidence at later developmental stages. Focusing on glucose and fatty acid transporters, we measured their expression by RT-PCR in the spontaneously diabetic non-obese mouse strain NOD, and in pregnant FVB/N mouse strain dams with Streptozotocin-induced diabetes. Sites of expression in the deciduum, extra-embryonic, and embryonic tissues were determined by RNAscope in situ hybridization. While maternal diabetes had no apparent effects on levels or cellular profiles of expression, we detected striking cell-type specificity of particular nutrient transporters. For examples, Slc2a2/Glut2 expression was restricted to the endodermal cells of the visceral yolk sac, while Slc2a1/Glut1 expression was limited to the mesodermal compartment; Slc27a4/Fatp4 and Slc27a3/Fatp3 also exhibited reciprocally exclusive expression in the endodermal and mesodermal compartments of the yolk sac, respectively. These findings not only highlight the significance of nutrient transporters in the intrauterine environment, but also raise important implications for the etiology of birth defects in diabetic pregnancies, and for strategies aimed at reducing birth defects risk by nutrient supplementation.
Collapse
Affiliation(s)
- Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Claudia Kruger
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Sydney Jones
- Regulation of Gene Expression, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - J. Michael Salbaum
- Regulation of Gene Expression, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| |
Collapse
|
8
|
Bonet F, Inácio JM, Bover O, Añez SB, Belo JA. CCBE1 in Cardiac Development and Disease. Front Genet 2022; 13:836694. [PMID: 35222551 PMCID: PMC8864227 DOI: 10.3389/fgene.2022.836694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
The collagen- and calcium-binding EGF-like domains 1 (CCBE1) is a secreted protein extensively described as indispensable for lymphangiogenesis during development enhancing VEGF-C signaling. In human patients, mutations in CCBE1 have been found to cause Hennekam syndrome, an inherited disease characterized by malformation of the lymphatic system that presents a wide variety of symptoms such as primary lymphedema, lymphangiectasia, and heart defects. Importantly, over the last decade, an essential role for CCBE1 during heart development is being uncovered. In mice, Ccbe1 expression was initially detected in distinct cardiac progenitors such as first and second heart field, and the proepicardium. More recently, Ccbe1 expression was identified in the epicardium and sinus venosus (SV) myocardium at E11.5–E13.5, the stage when SV endocardium–derived (VEGF-C dependent) coronary vessels start to form. Concordantly, CCBE1 is required for the correct formation of the coronary vessels and the coronary artery stem in the mouse. Additionally, Ccbe1 was found to be enriched in mouse embryonic stem cells (ESC) and revealed as a new essential gene for the differentiation of ESC-derived early cardiac precursor cell lineages. Here, we bring an up-to-date review on the role of CCBE1 in cardiac development, function, and human disease implications. Finally, we envisage the potential of this molecule’s functions from a regenerative medicine perspective, particularly novel therapeutic strategies for heart disease.
Collapse
Affiliation(s)
- Fernando Bonet
- Stem Cells and Development Laboratory, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
- Medicine Department, School of Medicine, University of Cádiz (UCA), Cádiz, Spain
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, Cádiz, Spain
| | - José M. Inácio
- Stem Cells and Development Laboratory, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Oriol Bover
- Stem Cells and Development Laboratory, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Sabrina B. Añez
- Stem Cells and Development Laboratory, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | - José A. Belo
- Stem Cells and Development Laboratory, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
- *Correspondence: José A. Belo,
| |
Collapse
|
9
|
Mezu-Ndubuisi OJ, Song YS, Macke E, Johnson H, Nwaba G, Ikeda A, Sheibani N. Retinopathy of prematurity shows alterations in Vegfa 164 isoform expression. Pediatr Res 2022; 91:1677-1685. [PMID: 34285351 PMCID: PMC8770670 DOI: 10.1038/s41390-021-01646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Pathologic ocular neovascularization in retinopathy of prematurity (ROP) and other proliferative retinopathies are characterized by dysregulation of vascular endothelial growth factor-A (VEGF-A). A study of Vegfa isoform expression during oxygen-induced ischemic retinopathy (OIR) may enhance our understanding of Vegf dysregulation. METHODS Following induction of OIR, immunohistochemistry and polymerase chain reaction (PCR) was performed on room air (RA) and OIR mice. RESULTS Total Vegfa messenger RNA (mRNA) expression was stable in RA mice, but increased in OIR mice with a peak at postnatal day 17 (P17), before returning to RA levels. Vegfa164a expression was similar in both OIR and RA mice at P10 (Phase 1 OIR), but 2.4-fold higher in OIR mice compared to RA mice at P16 (Phase 2 OIR). At P10, Vegfa164b mRNA was similar in OIR vs RA mice, but was expressed 2.5-fold higher in OIR mice compared to RA mice at P16. At P10 and P16, Vegfr2/Vegfr1 expression was increased in OIR mice compared to RA mice. Increased activation of microglia was seen in OIR mice. CONCLUSIONS Vegfa164a, Vegfa164b, and Vegfr1 were overexpressed in OIR mice, leading to abnormal signaling and angiogenesis. Further studies of mechanisms of Vegf dysregulation may lead to novel therapies for ROP and other proliferative retinopathies. IMPACT Vegfa164 has two major isoforms, a proangiogenic, Vegfa164a, and an antiangiogenic, Vegfa164b, with opposing receptors, inhibitory Vegfr1, and stimulatory Vegfr2, but their role in OIR is unclear. In Phase 1 OIR, both isoforms and receptors are expressed similarly. In Phase 2 OIR, both isoforms are overexpressed, with an increased ratio of inhibitory Vegfr1. Modulation of angiogenesis by Vegf regulation enables pruning of excess angiogenesis during physiology, but results in ineffective angiogenesis during OIR. Knowledge of VEGF dysregulation may have novel therapeutic implications in the management of ROP and retinal proliferative diseases.
Collapse
Affiliation(s)
- Olachi J. Mezu-Ndubuisi
- grid.14003.360000 0001 2167 3675Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI USA ,grid.14003.360000 0001 2167 3675Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Yong-Seok Song
- grid.14003.360000 0001 2167 3675Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Erica Macke
- grid.14003.360000 0001 2167 3675Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI USA
| | - Hailey Johnson
- grid.14003.360000 0001 2167 3675Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Ginika Nwaba
- grid.152326.10000 0001 2264 7217Vanderbilt University, Nashville, TN USA
| | - Akihiro Ikeda
- grid.14003.360000 0001 2167 3675Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI USA
| | - Nader Sheibani
- grid.14003.360000 0001 2167 3675Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI USA ,grid.14003.360000 0001 2167 3675Departments of Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| |
Collapse
|
10
|
Frontiers in Anti-Cancer Drug Discovery: Challenges and Perspectives of Metformin as Anti-Angiogenic Add-On Therapy in Glioblastoma. Cancers (Basel) 2021; 14:cancers14010112. [PMID: 35008275 PMCID: PMC8749852 DOI: 10.3390/cancers14010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Glioblastoma is the most aggressive primary brain tumor, with the highest incidence and the worst prognosis. Life expectancy from diagnosis remains dismal, at around 15 months, despite surgical resection and treatment with radiotherapy and chemotherapy. Given the aggressiveness of the tumor and the inefficiency of the treatments adopted to date, the scientific research investigates innovative therapeutic approaches. Importantly, angiogenesis represents one of the main features of glioblastoma, becoming in the last few years a major candidate for target therapy. Metformin, a well-established therapy for type 2 diabetes, offered excellent results in preventing and fighting tumor progression, particularly against angiogenic mechanisms. Therefore, the purpose of this review is to summarize and discuss experimental evidence of metformin anti-cancer efficacy, with the aim of proposing this totally safe and tolerable drug as add-on therapy against glioblastoma. Abstract Glioblastoma is the most common primitive tumor in adult central nervous system (CNS), classified as grade IV according to WHO 2016 classification. Glioblastoma shows a poor prognosis with an average survival of approximately 15 months, representing an extreme therapeutic challenge. One of its distinctive and aggressive features is aberrant angiogenesis, which drives tumor neovascularization, representing a promising candidate for molecular target therapy. Although several pre-clinical studies and clinical trials have shown promising results, anti-angiogenic drugs have not led to a significant improvement in overall survival (OS), suggesting the necessity of identifying novel therapeutic strategies. Metformin, an anti-hyperglycemic drug of the Biguanides family, used as first line treatment in Type 2 Diabetes Mellitus (T2DM), has demonstrated in vitro and in vivo antitumoral efficacy in many different tumors, including glioblastoma. From this evidence, a process of repurposing of the drug has begun, leading to the demonstration of inhibition of various oncopromoter mechanisms and, consequently, to the identification of the molecular pathways involved. Here, we review and discuss metformin’s potential antitumoral effects on glioblastoma, inspecting if it could properly act as an anti-angiogenic compound to be considered as a safely add-on therapy in the treatment and management of glioblastoma patients.
Collapse
|
11
|
Korpela H, Hätinen OP, Nieminen T, Mallick R, Toivanen P, Airaksinen J, Valli K, Hakulinen M, Poutiainen P, Nurro J, Ylä-Herttuala S. Adenoviral VEGF-B186R127S gene transfer induces angiogenesis and improves perfusion in ischemic heart. iScience 2021; 24:103533. [PMID: 34917905 PMCID: PMC8666349 DOI: 10.1016/j.isci.2021.103533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor B (VEGF-B) is an interesting therapeutic candidate for coronary artery disease. However, it can also cause ventricular arrhythmias, potentially preventing its use in clinics. We cloned VEGF-B isoforms with different receptor binding profiles to clarify the roles of VEGFR-1 and Nrp-1 in angiogenesis and to see if angiogenic properties can be maintained while avoiding side effects. VEGF-B constructs were studied in vivo using adenovirus (Ad)-mediated intramyocardial gene transfers into the normoxic and ischemic porcine heart (n = 51). It was found that the unprocessed isoform VEGF-B186R127S is as efficient angiogenic growth factor as the native VEGF-B186 in normoxic and ischemic heart. In addition, AdVEGF-B186R127S increased myocardial perfusion reserve by 22% in ischemic heart without any side effects. AdVEGF-B127 (VEGFR-1 and Nrp-1 ligand) and AdVEGF-B109 (VEGFR-1 ligand) did not induce angiogenesis. Thus, VEGF-B186 is angiogenic only before its proteolytic processing to VEGF-B127. Only the VEGF-B186 C-terminal fragment was associated with arrhythmias. AdVEGF-B186R127S induces angiogenesis and improves perfusion in the ischemic heart No significant side effects were observed after AdVEGF-B186R127S therapy VEGF-B186 is angiogenic only prior to its proteolytic processing C-terminal fragment of VEGF-B186 is associated with ventricular arrhythmias
Collapse
Affiliation(s)
- Henna Korpela
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli-Pekka Hätinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiina Nieminen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Rahul Mallick
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pyry Toivanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna Airaksinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kaisa Valli
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | - Jussi Nurro
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
12
|
Hussen BM, Abdullah ST, Rasul MF, Salihi A, Ghafouri-Fard S, Hidayat HJ, Taheri M. MicroRNAs: Important Players in Breast Cancer Angiogenesis and Therapeutic Targets. Front Mol Biosci 2021; 8:764025. [PMID: 34778378 PMCID: PMC8582349 DOI: 10.3389/fmolb.2021.764025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
The high incidence of breast cancer (BC) is linked to metastasis, facilitated by tumor angiogenesis. MicroRNAs (miRNAs or miRs) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to the tumor development and angiogenesis process in different types of cancer, including BC. There's increasing evidence showed that various miRNAs play a significant role in disease processes; specifically, they are observed and over-expressed in a wide range of diseases linked to the angiogenesis process. However, more studies are required to reach the best findings and identify the link among miRNA expression, angiogenic pathways, and immune response-related genes to find new therapeutic targets. Here, we summarized the recent updates on miRNA signatures and their cellular targets in the development of breast tumor angiogenetic and discussed the strategies associated with miRNA-based therapeutic targets as anti-angiogenic response.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Erbil, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
13
|
Soheilifar MH, Masoudi-Khoram N, Madadi S, Nobari S, Maadi H, Keshmiri Neghab H, Amini R, Pishnamazi M. Angioregulatory microRNAs in breast cancer: Molecular mechanistic basis and implications for therapeutic strategies. J Adv Res 2021; 37:235-253. [PMID: 35499045 PMCID: PMC9039675 DOI: 10.1016/j.jare.2021.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of breast cancer cells to endothelial cells in a process termed vasculogenic mimicry. Successful targeting of tumor angiogenesis is still a missing link in the treatment of Breast cancer (BC) due to the low effectiveness of anti-angiogenic therapies in this cancer. Response to anti-angiogenic therapeutics are controlled by a miRNAs, so the identification of interaction networks of miRNAs–targets can be applicable in determining anti-angiogeneic therapy and new biomarkers in BC. Angioregulatory miRNAs in breast cancer cells and their microenvironment have therapeutic potential in cancer treatment.
Background Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. A variety of signaling regulators and pathways contribute to establish neovascularization, among them as small endogenous non-coding RNAs, microRNAs (miRNAs) play prominent dual regulatory function in breast cancer (BC) angiogenesis. Aim of Review This review aims at describing the current state-of-the-art in BC angiogenesis-mediated by angioregulatory miRNAs, and an overview of miRNAs dysregulation association with the anti-angiogenic response in addition to potential clinical application of miRNAs-based therapeutics. Key Scientific Concepts of Review Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of BC cells to endothelial cells (ECs) in a process termed vasculogenic mimicry. Using canonical and non-canonical angiogenesis pathways, the tumor cell employs the oncogenic characteristics such as miRNAs dysregulation to increase survival, proliferation, oxygen and nutrient supply, and treatment resistance. Angioregulatory miRNAs in BC cells and their microenvironment have therapeutic potential in cancer treatment. Although, miRNAs dysregulation can serve as tumor biomarker nevertheless, due to the association of miRNAs dysregulation with anti-angiogenic resistant phenotype, clinical benefits of anti-angiogenic therapy might be challenging in BC. Hence, unveiling the molecular mechanism underlying angioregulatory miRNAs sparked a booming interest in finding new treatment strategies such as miRNA-based therapies in BC.
Collapse
Affiliation(s)
- Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Maadi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahboubeh Pishnamazi
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| |
Collapse
|
14
|
Guo Z, Mo Z. Regulation of endothelial cell differentiation in embryonic vascular development and its therapeutic potential in cardiovascular diseases. Life Sci 2021; 276:119406. [PMID: 33785330 DOI: 10.1016/j.lfs.2021.119406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
During vertebrate development, the cardiovascular system begins operating earlier than any other organ in the embryo. Endothelial cell (EC) forms the inner lining of blood vessels, and its extensive proliferation and migration are requisite for vasculogenesis and angiogenesis. Many aspects of cellular biology are involved in vasculogenesis and angiogenesis, including the tip versus stalk cell specification. Recently, epigenetics has attracted growing attention in regulating embryonic vascular development and controlling EC differentiation. Some proteins that regulate chromatin structure have been shown to be directly implicated in human cardiovascular diseases. Additionally, the roles of important EC signaling such as vascular endothelial growth factor and its receptors, angiopoietin-1 and tyrosine kinase containing immunoglobulin and epidermal growth factor homology domain-2, and transforming growth factor-β in EC differentiation during embryonic vasculature development are briefly discussed in this review. Recently, the transplantation of human induced pluripotent stem cell (iPSC)-ECs are promising approaches for the treatment of ischemic cardiovascular disease including myocardial infarction. Patient-specific iPSC-derived EC is a potential new target to study differences in gene expression or response to drugs. However, clinical application of the iPSC-ECs in regenerative medicine is often limited by the challenges of maintaining cell viability and function. Therefore, novel insights into the molecular mechanisms underlying EC differentiation might provide a better understanding of embryonic vascular development and bring out more effective EC-based therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Zi Guo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaohui Mo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
15
|
Abstract
Microvasculature functions at the tissue and cell level, regulating local mass exchange of oxygen and nutrient-rich blood. While there has been considerable success in the biofabrication of large- and small-vessel replacements, functional microvasculature has been particularly challenging to engineer due to its size and complexity. Recently, three-dimensional bioprinting has expanded the possibilities of fabricating sophisticated microvascular systems by enabling precise spatiotemporal placement of cells and biomaterials based on computer-aided design. However, there are still significant challenges facing the development of printable biomaterials that promote robust formation and controlled 3D organization of microvascular networks. This review provides a thorough examination and critical evaluation of contemporary biomaterials and their specific roles in bioprinting microvasculature. We first provide an overview of bioprinting methods and techniques that enable the fabrication of microvessels. We then offer an in-depth critical analysis on the use of hydrogel bioinks for printing microvascularized constructs within the framework of current bioprinting modalities. We end with a review of recent applications of bioprinted microvasculature for disease modeling, drug testing, and tissue engineering, and conclude with an outlook on the challenges facing the evolution of biomaterials design for bioprinting microvasculature with physiological complexity.
Collapse
Affiliation(s)
- Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
16
|
Allogeneic Adipose-Derived Mesenchymal Stem Cell Transplantation Enhances the Expression of Angiogenic Factors in a Mouse Acute Hindlimb Ischemic Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1083:1-17. [PMID: 28687961 DOI: 10.1007/5584_2017_63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell migration and molecular mechanisms during healing of damaged vascular or muscle tissues are emerging fields of interest worldwide. The study herein focuses on evaluating the role of allogenic adipose-derived mesenchymal stem cells (ADMSCs) in restoring damaged tissues. Using a hindlimb ischemic mouse model, ADMSC-mediated induction of cell migration and gene expression related to myocyte regeneration and angiogenesis were evaluated. ADMSCs were labeled with GFP (ADMSC-GFP). The proximal end of the femoral blood vessel of mice (over 6 months of age) are ligated at two positions then cut between the two ties. Hindlimb ischemic mice were randomly divided into two groups: Group I (n = 30) which was injected with PBS (100 μL) and Group II (n = 30) which was transplanted with ADMSC-GFP (106 cells/100 μL PBS) at the rectus femoris muscle. The migration of ADMSC-GFP in hindlimb was analyzed by UV-Vis system. The expression of genes related to angiogenesis and muscle tissue repair was quantified by real-time RT-PCR. The results showed that ADMSCs existed in the grafted hindlimb for 7 days. Grafted cells migrated to other damaged areas such as thigh and heel. In both groups the ischemic hindlimb showed an increased expression of several angiogenic genes, including Flt-1, Flk-1, and Ang-2. In particular, the expression of Ang-2 and myogenic-related gene MyoD was significantly increased in the ADMSC-treated group compared to the PBS-treated (control) group; the expression increased at day 28 compared to day 3. The other factors, such as VE-Cadherin, HGF, CD31, Myf5, and TGF-β, were also more highly expressed in the ADMSC-treated group than in the control group. Thus, grafted ADMSCs were able to migrate to other areas in the injured hindlimb, persist for approximately 7 days, and have a significantly positive impact on stimulating expression of myogenic- and angiogenesis-related genes.
Collapse
|
17
|
Modulation of Receptor Tyrosine Kinase Activity through Alternative Splicing of Ligands and Receptors in the VEGF-A/VEGFR Axis. Cells 2019; 8:cells8040288. [PMID: 30925751 PMCID: PMC6523102 DOI: 10.3390/cells8040288] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) signaling is essential for physiological and pathological angiogenesis. Alternative splicing of the VEGF-A pre-mRNA gives rise to a pro-angiogenic family of isoforms with a differing number of amino acids (VEGF-Axxxa), as well as a family of isoforms with anti-angiogenic properties (VEGF-Axxxb). The biological functions of VEGF-A proteins are mediated by a family of cognate protein tyrosine kinase receptors, known as the VEGF receptors (VEGFRs). VEGF-A binds to both VEGFR-1, largely suggested to function as a decoy receptor, and VEGFR-2, the predominant signaling receptor. Both VEGFR-1 and VEGFR-2 can also be alternatively spliced to generate soluble isoforms (sVEGFR-1/sVEGFR-2). The disruption of the splicing of just one of these genes can result in changes to the entire VEGF-A/VEGFR signaling axis, such as the increase in VEGF-A165a relative to VEGF-A165b resulting in increased VEGFR-2 signaling and aberrant angiogenesis in cancer. Research into this signaling axis has recently focused on manipulating the splicing of these genes as a potential therapeutic avenue in disease. Therefore, further research into understanding the mechanisms by which the splicing of VEGF-A/VEGFR-1/VEGFR-2 is regulated will help in the development of drugs aimed at manipulating splicing or inhibiting specific splice isoforms in a therapeutic manner.
Collapse
|
18
|
Eddy AC, Bidwell GL, George EM. Pro-angiogenic therapeutics for preeclampsia. Biol Sex Differ 2018; 9:36. [PMID: 30144822 PMCID: PMC6109337 DOI: 10.1186/s13293-018-0195-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/30/2018] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia is a pregnancy-induced hypertensive disorder resulting from abnormal placentation, which causes factors such as sFlt-1 to be released into the maternal circulation. Though anti-hypertensive drugs and magnesium sulfate can be given in an effort to moderate symptoms, the syndrome is not well controlled. A hallmark characteristic of preeclampsia, especially early-onset preeclampsia, is angiogenic imbalance resulting from an inappropriately upregulated sFlt-1 acting as a decoy receptor binding vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), reducing their bioavailability. Administration of sFlt-1 leads to a preeclamptic phenotype, and several models of preeclampsia also have elevated levels of plasma sFlt-1, demonstrating its role in driving the progression of this disease. Treatment with either VEGF or PlGF has been effective in attenuating hypertension and proteinuria in multiple models of preeclampsia. VEGF, however, may have overdose toxicity risks that have not been observed in PlGF treatment, suggesting that PlGF is a potentially safer therapeutic option. This review discusses angiogenic balance as it relates to preeclampsia and the studies which have been performed in order to alleviate the imbalance driving the maternal syndrome.
Collapse
Affiliation(s)
- Adrian C Eddy
- Department of Physiology and Biophysics, 2500 N State St, Jackson, MS, 39216, USA
| | - Gene L Bidwell
- Department of Cell and Molecular Biology, 2500 N State St, Jackson, MS, 39216, USA.,Department of Neurology, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Eric M George
- Department of Physiology and Biophysics, 2500 N State St, Jackson, MS, 39216, USA. .,Department of Cell and Molecular Biology, 2500 N State St, Jackson, MS, 39216, USA.
| |
Collapse
|
19
|
Counterbalance: modulation of VEGF/VEGFR activities by TNFSF15. Signal Transduct Target Ther 2018; 3:21. [PMID: 30101034 PMCID: PMC6085396 DOI: 10.1038/s41392-018-0023-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 05/31/2018] [Indexed: 01/11/2023] Open
Abstract
Vascular hyperpermeability occurs in angiogenesis and several pathobiological conditions, producing elevated interstitial fluid pressure and lymphangiogenesis. How these closely related events are modulated is a fundamentally important question regarding the maintenance of vascular homeostasis and treatment of disease conditions such as cancer, stroke, and myocardial infarction. Signals mediated by vascular endothelial growth factor receptors, noticeably VEGFR-1, −2, and −3, are centrally involved in the promotion of both blood vessel and lymphatic vessel growth. These signaling pathways are counterbalanced or, in the case of VEGFR3, augmented by signals induced by tumor necrosis factor superfamily-15 (TNFSF15). TNFSF15 can simultaneously downregulate membrane-bound VEGFR1 and upregulate soluble VEGFR1, thus changing VEGF/VEGFR1 signals from pro-angiogenic to anti-angiogenic. In addition, TNFSF15 inhibits VEGF-induced VEGFR2 phosphorylation, thereby curbing VEGFR2-mediated enhancement of vascular permeability. Third, and perhaps more interestingly, TNFSF15 is capable of stimulating VEGFR3 gene expression in lymphatic endothelial cells, thus augmenting VEGF-C/D-VEGFR3-facilitated lymphangiogenesis. We discuss the intertwining relationship between the actions of TNFSF15 and VEGF in this review. The ability of tumor necrosis factor superfamily-15 (TNFSF15) protein to balance the actions of vascular endothelial growth factors (VEGFs) highlights new therapeutic strategies for the treatment of diseases that disrupt the circulatory system. Gui-Li Yang at the Tianjin Neurological Institute and Lu-Yuan Li at Nankai University describe the mechanisms through which TNFSF15 inhibits blood vessel growth mediated by VEGF receptor-1 (VEGFR1) and counterbalances the increase in vascular permeability mediated by VEGFR2. Interestingly, TNFSF15 enhances the effects of VEGFR3 on the formation of lymphatic vessels by promoting VEGFR3 gene expression in lymphatic endothelial cells. Further research will determine whether TNFSF15′s unique capacity to regulate the properties of both blood and lymph vessels can be harnessed to improve the treatment of conditions such as cancer, stroke, myocardial infarction and lymphoedema.
Collapse
|
20
|
Failla CM, Carbo M, Morea V. Positive and Negative Regulation of Angiogenesis by Soluble Vascular Endothelial Growth Factor Receptor-1. Int J Mol Sci 2018; 19:ijms19051306. [PMID: 29702562 PMCID: PMC5983705 DOI: 10.3390/ijms19051306] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Vascular endothelial growth factor receptor (VEGFR)-1 exists in different forms, derived from alternative splicing of the same gene. In addition to the transmembrane form, endothelial cells produce a soluble VEGFR-1 (sVEGFR-1) isoform, whereas non-endothelial cells produce both sVEGFR-1 and a different soluble molecule, known as soluble fms-like tyrosine kinase (sFlt)1-14. By binding members of the vascular endothelial growth factor (VEGF) family, the soluble forms reduce the amounts of VEGFs available for the interaction with their transmembrane receptors, thereby negatively regulating VEGFR-mediated signaling. In agreement with this activity, high levels of circulating sVEGFR-1 or sFlt1-14 are associated with different pathological conditions involving vascular dysfunction. Moreover, sVEGFR-1 and sFlt1-14 have an additional role in angiogenesis: they are deposited in the endothelial cell and pericyte extracellular matrix, and interact with cell membrane components. Interaction of sVEGFR-1 with α5β1 integrin on endothelial cell membranes regulates vessel growth, triggering a dynamic, pro-angiogenic phenotype. Interaction of sVEGFR-1/sFlt1-14 with cell membrane glycosphingolipids in lipid rafts controls kidney cell morphology and glomerular barrier functions. These cell⁻matrix contacts represent attractive novel targets for pharmacological intervention in addition to those addressing interactions between VEGFs and their receptors.
Collapse
Affiliation(s)
| | - Miriam Carbo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, 00185 Rome, Italy.
| | - Veronica Morea
- National Research Council of Italy (CNR), Department of Biochemical Sciences "A. Rossi Fanelli", Institute of Molecular Biology and Pathology c/o, Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
21
|
Frump AL, Bonnet S, de Jesus Perez VA, Lahm T. Emerging role of angiogenesis in adaptive and maladaptive right ventricular remodeling in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2017; 314:L443-L460. [PMID: 29097426 DOI: 10.1152/ajplung.00374.2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Right ventricular (RV) function is the primary prognostic factor for both morbidity and mortality in pulmonary hypertension (PH). RV hypertrophy is initially an adaptive physiological response to increased overload; however, with persistent and/or progressive afterload increase, this response frequently transitions to more pathological maladaptive remodeling. The mechanisms and disease processes underlying this transition are mostly unknown. Angiogenesis has recently emerged as a major modifier of RV adaptation in the setting of pressure overload. A novel paradigm has emerged that suggests that angiogenesis and angiogenic signaling are required for RV adaptation to afterload increases and that impaired and/or insufficient angiogenesis is a major driver of RV decompensation. Here, we summarize our current understanding of the concepts of maladaptive and adaptive RV remodeling, discuss the current literature on angiogenesis in the adapted and failing RV, and identify potential therapeutic approaches targeting angiogenesis in RV failure.
Collapse
Affiliation(s)
- Andrea L Frump
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University , Quebec City, Quebec , Canada
| | - Vinicio A de Jesus Perez
- Division of Pulmonary/Critical Care, Stanford University School of Medicine , Stanford, California.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine , Stanford, California
| | - Tim Lahm
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,Richard L. Roudebush Veterans Affairs Medical Center , Indianapolis, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
22
|
Platelets prime hematopoietic and vascular niche to drive angiocrine-mediated liver regeneration. Signal Transduct Target Ther 2017; 2. [PMID: 29201496 PMCID: PMC5661617 DOI: 10.1038/sigtrans.2016.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In mammals, the livers regenerate after chemical injury or resection of hepatic lobe by hepatectomy. How liver regeneration is initiated after mass loss remains to be defined. Here, we report that following liver injury, activated platelets deploy SDF-1 and VEGF-A to stimulate CXCR7+ liver sinusoidal endothelial cell (LSEC) and VEGFR1+ myeloid cell, orchestrating hepatic regeneration. After carbon tetrachloride (CCl4) injection or hepatectomy, platelets and CD11b+VEGFR1+ myeloid cells were recruited LSEC, and liver regeneration in both models was impaired in thrombopoietin-deficient (Thpo-/-) mice lacking circulating platelets. This impeded regeneration phenotype was recapitulated in mice with either conditional ablation of Cxcr7 in LSEC (Cxcr7iΔ/iΔ) or Vegfr1 in myeloid cell (Vegfr1lysM/lysM). Both Vegfr1lysM/lysM and Cxcr7iΔ/iΔ mice exhibited suppressed expression of hepatocyte growth factor and Wnt2, two crucial trophogenic angiocrine factors instigating hepatocyte propagation. Of note, administration of recombinant thrombopoietin restored the prohibited liver regeneration in the tested genetic models. As such, our data suggest that platelets and myeloid cells jointly activate the vascular niche to produce pro-regenerative endothelial paracrine/angiocrine factors. Modulating this "hematopoietic-vascular niche" might help to develop regenerative therapy strategy for hepatic disorders.
Collapse
|
23
|
|
24
|
Ganta VC, Choi M, Kutateladze A, Annex BH. VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease. Circ Res 2016; 120:282-295. [PMID: 27974423 DOI: 10.1161/circresaha.116.309516] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/22/2016] [Accepted: 12/14/2016] [Indexed: 01/25/2023]
Abstract
RATIONALE Atherosclerotic-arterial occlusions decrease tissue perfusion causing ischemia to lower limbs in patients with peripheral arterial disease (PAD). Ischemia in muscle induces an angiogenic response, but the magnitude of this response is frequently inadequate to meet tissue perfusion requirements. Alternate splicing in the exon-8 of vascular endothelial growth factor (VEGF)-A results in production of proangiogenic VEGFxxxa isoforms (VEGF165a, 165 for the 165 amino acid product) and antiangiogenic VEGFxxxb (VEGF165b) isoforms. OBJECTIVE The antiangiogenic VEGFxxxb isoforms are thought to antagonize VEGFxxxa isoforms and decrease activation of VEGF receptor-2 (VEGFR2), hereunto considered the dominant receptor in postnatal angiogenesis in PAD. Our data will show that VEGF165b inhibits VEGFR1 signal transducer and activator of transcription (STAT)-3 signaling to decrease angiogenesis in human and experimental PAD. METHODS AND RESULTS In human PAD versus control muscle biopsies, VEGF165b: (1) is elevated, (2) is bound higher (versus VEGF165a) to VEGFR1 not VEGFR2, and (3) levels correlated with decreased VEGFR1, not VEGFR2, activation. In experimental PAD, delivery of an isoform-specific monoclonal antibody to VEGF165b versus control antibody enhanced perfusion in animal model of severe PAD (Balb/c strain) without activating VEGFR2 signaling but with increased VEGFR1 activation. Receptor pull-down experiments demonstrate that VEGF165b inhibition versus control increased VEGFR1-STAT3 binding and STAT3 activation, independent of Janus-activated kinase-1)/Janus-activated kinase-2. Using VEGFR1+/- mice that could not increase VEGFR1 after ischemia, we confirm that VEGF165b decreases VEGFR1-STAT3 signaling to decrease perfusion. CONCLUSIONS Our results indicate that VEGF165b prevents activation of VEGFR1-STAT3 signaling by VEGF165a and hence inhibits angiogenesis and perfusion recovery in PAD muscle.
Collapse
Affiliation(s)
- Vijay Chaitanya Ganta
- From the Cardiovascular Research Center (V.C.G., M.C., B.H.A.), Department of Biology (A.K.), and Department of Cardiovascular Medicine, University of Virginia, Charlottesville (B.H.A.)
| | - Min Choi
- From the Cardiovascular Research Center (V.C.G., M.C., B.H.A.), Department of Biology (A.K.), and Department of Cardiovascular Medicine, University of Virginia, Charlottesville (B.H.A.)
| | - Anna Kutateladze
- From the Cardiovascular Research Center (V.C.G., M.C., B.H.A.), Department of Biology (A.K.), and Department of Cardiovascular Medicine, University of Virginia, Charlottesville (B.H.A.)
| | - Brian H Annex
- From the Cardiovascular Research Center (V.C.G., M.C., B.H.A.), Department of Biology (A.K.), and Department of Cardiovascular Medicine, University of Virginia, Charlottesville (B.H.A.).
| |
Collapse
|
25
|
Abstract
The glomerulus is a highly specialized microvascular bed that filters blood to form primary urinary filtrate. It contains four cell types: fenestrated endothelial cells, specialized vascular support cells termed podocytes, perivascular mesangial cells, and parietal epithelial cells. Glomerular cell-cell communication is critical for the development and maintenance of the glomerular filtration barrier. VEGF, ANGPT, EGF, SEMA3A, TGF-β, and CXCL12 signal in paracrine fashions between the podocytes, endothelium, and mesangium associated with the glomerular capillary bed to maintain filtration barrier function. In this review, we summarize the current understanding of these signaling pathways in the development and maintenance of the glomerulus and the progression of disease.
Collapse
Affiliation(s)
- Christina S Bartlett
- Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois 60611; ,
| | - Marie Jeansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden;
| | - Susan E Quaggin
- Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois 60611; ,
| |
Collapse
|
26
|
Mowa CN, Jesmin S, Sakuma I, Usip S, Togashi H, Yoshioka M, Hattori Y, Papka R. Characterization of Vascular Endothelial Growth Factor (VEGF) in the Uterine Cervix over Pregnancy: Effects of Denervation and Implications for Cervical Ripening. J Histochem Cytochem 2016; 52:1665-74. [PMID: 15557221 DOI: 10.1369/jhc.4a6455.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bilateral neurectomy of the pelvic nerve (BLPN) that carries uterine cervix-related sensory nerves induces dystocia, and administration of its vasoactive neuropeptides induces changes in the cervical microvasculature, resembling those that occur in the ripening cervix. This study was designed to test the hypothesis that (a) the cervix of pregnant rats expresses vascular endothelial growth factor (VEGF) and components of the angiogenic signaling pathway [VEGF receptors (Flt-1, KDR), activity of protein kinase B, Akt (phosphorylated Akt), and endothelial nitric oxide synthase (eNOS)] and von Willebrand Factor (vWF) and that these molecules undergo changes with pregnancy, and (b) bilateral pelvic neurectomy (BLPN) alters levels of VEGF concentration in the cervix. Using RT-PCR and sequencing, two VEGF isoforms, 120 and 164, were identified in the rat cervix. VEGF, VEGF receptor-1 (Flt-1), eNOS, and vWF immunoreactivities (ir) were localized in the microvasculature of cervical stroma. Their protein levels increased during pregnancy but decreased to control levels by 2 days postpartum. VEGF receptor-2 (KDR)-ir was confined to the epithelium of the endocervix. BLPN downregulated levels of VEGF by a third. Therefore, the components of the angiogenic signaling pathway are expressed in the cervix and change over pregnancy. Furthermore, angiogenic and sensory neuronal factors may be important in regulating the dynamic microvasculature in the ripening cervix and may subsequently play a role in cervical ripening and the birth process.
Collapse
Affiliation(s)
- C N Mowa
- Dept. of Neurobiology, Northeastern Ohio Universities College of Medicine, 4209 State Rt. 44, Rootstown, OH 44272, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ye L, Haider HK, Jiang SJ, Sim EKW. Therapeutic Angiogenesis Using Vascular Endothelial Growth Factor. Asian Cardiovasc Thorac Ann 2016; 12:173-81. [PMID: 15213090 DOI: 10.1177/021849230401200221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Therapeutic angiogenesis using vascular endothelial growth factor can reduce tissue ischemia by simulating the natural process of angiogenesis. Vascular endothelial growth factor not only stimulates endothelial cells to proliferate and migrate, but also mobilizes endothelial progenitor cells and achieves vascular protection. Besides direct administration of angiogenic proteins, plasmids and viral vectors carrying angiogenic genes have been used. Animal experiments have shown promise with evidence of neovascularization and improved perfusion in the target myocardium. Initial phase I and II clinical trials results are encouraging and reflect the potential success of therapeutic angiogenesis as a clinical modality for the treatment of ischemic heart disease. This review discusses the role of vascular endothelial growth factor in therapeutic angiogenesis, along with the problems and considerations of this approach as a treatment strategy.
Collapse
Affiliation(s)
- Lei Ye
- Department of Cardiothoracic and Vascular Surgery, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
28
|
Romereim SM, Cupp AS. Mesonephric Cell Migration into the Gonads and Vascularization Are Processes Crucial for Testis Development. Results Probl Cell Differ 2016; 58:67-100. [PMID: 27300176 DOI: 10.1007/978-3-319-31973-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Testis morphogenesis requires the integration and reorganization of multiple cell types from several sources, one of the more notable being the mesonephric-derived cell population. One of the earliest sex-specific morphogenetic events in the gonad is a wave of endothelial cell migration from the mesonephros that is crucial for (1) partitioning the gonad into domains for testis cords, (2) providing the vasculature of the testis, and (3) signaling to cells both within the gonad and beyond it to coordinately regulate testis development. In addition to endothelial cell migration, there is evidence that precursors of peritubular myoid cells migrate from the mesonephros, an event which is also important for testis cord architecture. Investigation of the mesonephric cell migration event has utilized histology, lineage tracing with mouse genetic markers, and many studies of the signaling molecules/pathways involved. Some of the more well-studied signaling molecules involved include vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and neurotrophins. In this chapter, the morphogenetic events, relevant signaling pathways, mechanisms underlying the migration, and the role of the migratory cells within the testis will be discussed. Overall, the migration of mesonephric cells into the early testis is indispensable for its development and future functionality.
Collapse
|
29
|
Abstract
A close relationship between proliferation and cell fate specification has been well documented in many developmental systems. In addition to the gradual cell fate changes accompanying normal development and tissue homeostasis, it is now commonly appreciated that cell fate could also undergo drastic changes, as illustrated by the induction of pluripotency from many differentiated somatic cell types during the process of Yamanaka reprogramming. Strikingly, the drastic cell fate change induced by Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc) is preceded by extensive cell cycle acceleration. Prompted by our recent discovery that progression toward pluripotency from rare somatic cells could bypass the stochastic phase of reprogramming and that a key feature of these somatic cells is an ultrafast cell cycle (~8 h/cycle), we assess whether cell cycle dynamics could provide a general framework for controlling cell fate. Several potential mechanisms on how cell cycle dynamics may impact cell fate determination by regulating chromatin, key transcription factor concentration, or their interactions are discussed. Specific challenges and implications for studying and manipulating cell fate are considered.
Collapse
|
30
|
Blockade of vascular endothelial growth factor receptor 1 prevents inflammation and vascular leakage in diabetic retinopathy. J Ophthalmol 2015; 2015:605946. [PMID: 25821590 PMCID: PMC4363713 DOI: 10.1155/2015/605946] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/13/2014] [Accepted: 10/23/2014] [Indexed: 01/28/2023] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. The objective of this study is to investigate the effects of vascular endothelial growth factor receptor 1 (VEGFR1) blockade on the complications of DR. Experimental models of diabetes were induced with streptozotocin (STZ) treatment or Insulin2 gene mutation (Akita) in mice. Protein expression and localization were examined by western blots (WB) and immunofluorescence (IF). mRNA expression was quantified by PCR array and real-time PCR. The activity of VEGFR1 signaling was blocked by a neutralizing antibody called MF1. Vascular leakage was evaluated by measuring the leakage of [3H]-mannitol tracer into the retina and the IF staining of albumin. VEGFR1 blockade significantly inhibited diabetes-related vascular leakage, leukocytes-endothelial cell (EC) adhesion (or retinal leukostasis), expression of intercellular adhesion molecule- (ICAM-) 1 protein, abnormal localization and degeneration of the tight junction protein zonula occludens- (ZO-) 1, and the cell adhesion protein vascular endothelial (VE) cadherin. In addition, VEGFR1 blockade interfered with the gene expression of 10 new cytokines and chemokines: cxcl10, il10, ccl8, il1f6, cxcl15, ccl4, il13, ccl6, casp1, and ccr5. These results suggest that VEGFR1 mediates complications of DR and targeting this signaling pathway represents a potential therapeutic strategy for the prevention and treatment of DR.
Collapse
|
31
|
Rätsep MT, Felker AM, Kay VR, Tolusso L, Hofmann AP, Croy BA. Uterine natural killer cells: supervisors of vasculature construction in early decidua basalis. Reproduction 2015; 149:R91-102. [DOI: 10.1530/rep-14-0271] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mammalian pregnancy involves tremendousde novomaternal vascular construction to adequately support conceptus development. In early mouse decidua basalis (DB), maternal uterine natural killer (uNK) cells oversee this process directing various aspects during the formation of supportive vascular networks. The uNK cells recruited to early implantation site DB secrete numerous factors that act in the construction of early decidual vessels (neoangiogenesis) as well as in the alteration of the structural components of newly developing and existing vessels (pruning and remodeling). Although decidual and placental development sufficient to support live births occur in the absence of normally functioning uNK cells, development and structure of implantation site are optimized through the presence of normally activated uNK cells. Human NK cells are also recruited to early decidua. Gestational complications including recurrent spontaneous abortion, fetal growth restriction, preeclampsia, and preterm labor are linked with the absence of human NK cell activation via paternally inherited conceptus transplantation antigens. This review summarizes the roles that mouse uNK cells normally play in decidual neoangiogenesis and spiral artery remodeling in mouse pregnancy and briefly discusses changes in early developmental angiogenesis due to placental growth factor deficiency.
Collapse
|
32
|
Abstract
Vascular endothelial growth factor receptor-1 (VEGFR-1)/Flt-1 is a transmembrane tyrosine kinase receptor for VEGF-A, VEGF-B, and placental growth factor (PlGF). VEGFR-1 is an enigmatic molecule whose precise role in postnatal angiogenesis remains controversial. Although many postnatal and adult studies have been performed by manipulating VEGFR-1 ligands, including competitive binding by truncated VEGFR-1 protein, neutralization by antibodies, or specific ligand overexpression or knockout, much less is known at the level of the receptor per se, especially in vivo. Perplexingly, while VEGFR-1 negatively regulates endothelial cell differentiation during development, it has been implied in promoting angiogenesis under certain conditions in adult tissues, especially in tumors and ischemic tissues. Additionally, it is unclear how VEGFR-1 is involved in vascular maturation and maintenance of vascular quiescence in adult tissues. To facilitate further investigation, we generated a conditional knockout mouse line for VEGFR-1 and characterized angiogenesis in postnatal and adult mice, including angiogenesis in ischemic myocardium. These methods are briefly outlined in this chapter. We also discuss these findings in the context of the interplay between VEGF family members and their receptors, and summarize various mouse models in the VEGF pathway.
Collapse
|
33
|
Zheng L, Han P, Liu J, Li R, Yin W, Wang T, Zhang W, Kang YJ. Role of copper in regression of cardiac hypertrophy. Pharmacol Ther 2014; 148:66-84. [PMID: 25476109 DOI: 10.1016/j.pharmthera.2014.11.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023]
Abstract
Pressure overload causes an accumulation of homocysteine in the heart, which is accompanied by copper depletion through the formation of copper-homocysteine complexes and the excretion of the complexes. Copper supplementation recovers cytochrome c oxidase (CCO) activity and promotes myocardial angiogenesis, along with the regression of cardiac hypertrophy and the recovery of cardiac contractile function. Increased copper availability is responsible for the recovery of CCO activity. Copper promoted expression of angiogenesis factors including vascular endothelial growth factor (VEGF) in endothelial cells is responsible for angiogenesis. VEGF receptor-2 (VEGFR-2) is critical for hypertrophic growth of cardiomyocytes and VEGFR-1 is essential for the regression of cardiomyocyte hypertrophy. Copper, through promoting VEGF production and suppressing VEGFR-2, switches the VEGF signaling pathway from VEGFR-2-dependent to VEGFR-1-dependent, leading to the regression of cardiomyocyte hypertrophy. Copper is also required for hypoxia-inducible factor-1 (HIF-1) transcriptional activity, acting on the interaction between HIF-1 and the hypoxia responsible element and the formation of HIF-1 transcriptional complex by inhibiting the factor inhibiting HIF-1. Therefore, therapeutic targets for copper supplementation-induced regression of cardiac hypertrophy include: (1) the recovery of copper availability for CCO and other critical cellular events; (2) the activation of HIF-1 transcriptional complex leading to the promotion of angiogenesis in the endothelial cells by VEGF and other factors; (3) the activation of VEGFR-1-dependent regression signaling pathway in the cardiomyocytes; and (4) the inhibition of VEGFR-2 through post-translational regulation in the hypertrophic cardiomyocytes. Future studies should focus on target-specific delivery of copper for the development of clinical application.
Collapse
Affiliation(s)
- Lily Zheng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Pengfei Han
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiaming Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Rui Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wen Yin
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tao Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wenjing Zhang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
34
|
Voelkel NF, Gomez-Arroyo J. The Role of Vascular Endothelial Growth Factor in Pulmonary Arterial Hypertension. The Angiogenesis Paradox. Am J Respir Cell Mol Biol 2014; 51:474-84. [DOI: 10.1165/rcmb.2014-0045tr] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
35
|
Comparative Analysis of Glycogene Expression in Different Mouse Tissues Using RNA-Seq Data. Int J Genomics 2014; 2014:837365. [PMID: 25121089 PMCID: PMC4121153 DOI: 10.1155/2014/837365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022] Open
Abstract
Glycogenes regulate a wide array of biological processes in the development of organisms as well as different diseases such as cancer, primary open-angle glaucoma, and renal dysfunction. The objective of this study was to explore the role of differentially expressed glycogenes (DEGGs) in three major tissues such as brain, muscle, and liver using mouse RNA-seq data, and we identified 579, 501, and 442 DEGGs for brain versus liver (BvL579), brain versus muscle (BvM501), and liver versus muscle (LvM442) groups. DAVID functional analysis suggested inflammatory response, glycosaminoglycan metabolic process, and protein maturation as the enriched biological processes in BvL579, BvM501, and LvM442, respectively. These DEGGs were then used to construct three interaction networks by using GeneMANIA, from which we detected potential hub genes such as PEMT and HPXN (BvL579), IGF2 and NID2 (BvM501), and STAT6 and FLT1 (LvM442), having the highest degree. Additionally, our community analysis results suggest that the significance of immune system related processes in liver, glycosphingolipid metabolic processes in the development of brain, and the processes such as cell proliferation, adhesion, and growth are important for muscle development. Further studies are required to confirm the role of predicted hub genes as well as the significance of biological processes.
Collapse
|
36
|
Bry M, Kivelä R, Leppänen VM, Alitalo K. Vascular Endothelial Growth Factor-B in Physiology and Disease. Physiol Rev 2014; 94:779-94. [DOI: 10.1152/physrev.00028.2013] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vascular endothelial growth factor-B (VEGF-B), discovered over 15 years ago, has long been seen as one of the more ambiguous members of the VEGF family. VEGF-B is produced as two isoforms: one that binds strongly to heparan sulfate in the pericellular matrix and a soluble form that can acquire binding via proteolytic processing. Both forms of VEGF-B bind to VEGF-receptor 1 (VEGFR-1) and the neuropilin-1 (NRP-1) coreceptor, which are expressed mainly in blood vascular endothelial cells. VEGF-B-deficient mice and rats are viable without any overt phenotype, and the ability of VEGF-B to induce angiogenesis in most tissues is weak. This has been a puzzle, as the related placenta growth factor (PlGF) binds to the same receptors and induces angiogenesis and arteriogenesis in a variety of tissues. However, it seems that VEGF-B is a vascular growth factor that is more tissue specific and can have trophic and metabolic effects, and its binding to VEGFR-1 shows subtle but important differences compared with that of PlGF. VEGF-B has the potential to induce coronary vessel growth and cardiac hypertrophy, which can protect the heart from ischemic damage as well as heart failure. In addition, VEGF-B is abundantly expressed in tissues with highly active energy metabolism, where it could support significant metabolic functions. VEGF-B also has a role in neuroprotection, but unlike other members of the VEGF family, it does not have a clear role in tumor progression. Here we review what is hitherto known about the functions of this growth factor in physiology and disease.
Collapse
Affiliation(s)
- Maija Bry
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Riikka Kivelä
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Leppänen
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Developmental hematopoiesis: ontogeny, genetic programming and conservation. Exp Hematol 2014; 42:669-83. [PMID: 24950425 DOI: 10.1016/j.exphem.2014.06.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/15/2014] [Accepted: 06/09/2014] [Indexed: 02/01/2023]
Abstract
Hematopoietic stem cells (HSCs) sustain blood production throughout life and are of pivotal importance in regenerative medicine. Although HSC generation from pluripotent stem cells would resolve their shortage for clinical applications, this has not yet been achieved mainly because of the poor mechanistic understanding of their programming. Bone marrow HSCs are first created during embryogenesis in the dorsal aorta (DA) of the midgestation conceptus, from where they migrate to the fetal liver and, eventually, the bone marrow. It is currently accepted that HSCs emerge from specialized endothelium, the hemogenic endothelium, localized in the ventral wall of the DA through an evolutionarily conserved process called the endothelial-to-hematopoietic transition. However, the endothelial-to-hematopoietic transition represents one of the last steps in HSC creation, and an understanding of earlier events in the specification of their progenitors is required if we are to create them from naïve pluripotent cells. Because of their ready availability and external development, zebrafish and Xenopus embryos have enormously facilitated our understanding of the early developmental processes leading to the programming of HSCs from nascent lateral plate mesoderm to hemogenic endothelium in the DA. The amenity of the Xenopus model to lineage tracing experiments has also contributed to the establishment of the distinct origins of embryonic (yolk sac) and adult (HSC) hematopoiesis, whereas the transparency of the zebrafish has allowed in vivo imaging of developing blood cells, particularly during and after the emergence of HSCs in the DA. Here, we discuss the key contributions of these model organisms to our understanding of developmental hematopoiesis.
Collapse
|
38
|
Distinct VEGF functions during bone development and homeostasis. Arch Immunol Ther Exp (Warsz) 2014; 62:363-8. [PMID: 24699630 DOI: 10.1007/s00005-014-0285-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Vascular endothelial growth factor-A (VEGF) is a key regulator of physiological hemangiogenesis during development, postnatal growth, and homeostasis. It is well known that VEGF is required for effective coupling of angiogenesis to endochondral and membranous bone formation during skeletal development. However, less well known are the roles of VEGF in regulating the differentiation and/or functions of skeletal cells such as chondrocytes, osteoblasts, and osteoclasts. In this review, we discuss some of these functions. During early skeletal development, VEGF is important for the survival of chondrocytes in the hypoxic regions of the cartilage models of future bones, the vascularization of developing bones and proliferation and differentiation of osteoblastic cells. Postnatally, osteoblast-derived VEGF is critical for maintaining bone homeostasis by stimulating the differentiation of mesenchymal stem cells to osteoblasts and repressing their differentiation to adipocytes. Recent data indicate that these effects of VEGF on osteogenic/adipogenic stem cell fates are based on an intracellular (intracrine) mechanism. In contrast, osteoblast-derived VEGF is also known to stimulate the differentiation of monocytes to osteoclasts by a paracrine mechanism. Mice with VEGF-deficient osteoblastic lineage cells exhibit age-dependent loss of bone mass and an increase in bone marrow fat. These changes are similar to the changes associated with osteoporosis in humans. Thus, a better understanding of the intracellular mechanisms by which VEGF regulates osteoblastic and adipogenic differentiation may lead to the identification of new targets for therapies to prevent osteoporotic bone loss.
Collapse
|
39
|
Neufeld S, Planas-Paz L, Lammert E. Blood and lymphatic vascular tube formation in mouse. Semin Cell Dev Biol 2014; 31:115-23. [PMID: 24631829 DOI: 10.1016/j.semcdb.2014.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/26/2014] [Indexed: 12/30/2022]
Abstract
The blood and lymphatic vasculatures are essential for nutrient delivery, gas exchange and fluid homeostasis in all tissues of higher vertebrates. They are composed of a hierarchical network of vessels, which are lined by vascular or lymphatic endothelial cells. For blood vascular lumen formation to occur, endothelial cell cords polarize creating apposing apical cell surfaces, which repulse each other and give rise to a small intercellular lumen. Following cell shape changes, the vascular lumen expands. Various junctional proteins, polarity complexes, extracellular matrix binding and actin remodelling molecules are required for blood vascular lumen formation. In contrast, little is known regarding the molecular mechanisms leading to lymphatic vascular tube formation. Current models agree that lymphatic vessels share a blood vessel origin, but they differ in identifying the mechanism by which a lymphatic lumen is formed. A ballooning mechanism was proposed, in which lymph sacs are connected via their lumen to the cardinal veins. Alternatively, a mechanism involving budding of streams of lymphatic endothelial cells from either the cardinal veins or both the cardinal veins and the intersomitic vessels, and subsequent assembly and lumenisation was recently described. Here, we discuss what is currently known about the molecular and cellular machinery that guides blood and lymphatic vascular tube formation in mouse.
Collapse
Affiliation(s)
- Sofia Neufeld
- Institute of Metabolic Physiology, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Lara Planas-Paz
- Institute of Metabolic Physiology, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Institute for Beta Cell Biology, German Diabetes Center, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany.
| |
Collapse
|
40
|
Barthelmes D, Zhu L, Shen W, Gillies MC, Irhimeh MR. Differential gene expression in Lin-/VEGF-R2+ bone marrow-derived endothelial progenitor cells isolated from diabetic mice. Cardiovasc Diabetol 2014; 13:42. [PMID: 24521356 PMCID: PMC3926942 DOI: 10.1186/1475-2840-13-42] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/03/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Diabetes is known to impair the number and function of endothelial progenitor cells in the circulation, causing structural and functional alterations in the micro- and macro-vasculature. The aim of this study was to identify early diabetes-related changes in the expression of genes that have been reported to be closely involved in endothelial progenitor cell migration and function. METHODS Based on review of current literature, this study examined the expression level of 35 genes that are known to be involved in endothelial progenitor cell migration and function in magnetically sorted Lin-/VEGF-R2+ endothelial progenitor cells obtained from the bone marrow of Akita mice in the early stages of diabetes (18 weeks) using RT-PCR and Western blotting. We used the Shapiro-Wilk and D'Agostino & Pearson Omnibus tests to assess normality. Differences between groups were evaluated by Student's t-test for normally distributed data (including Welch correction in cases of unequal variances) or Mann-Whitney test for not normally distributed data. RESULTS We observed a significant increase in the number of Lin-/VEGF-R2+ endothelial progenitor cells within the bone marrow in diabetic mice compared with non-diabetic mice. Two genes, SDF-1 and SELE, were significantly differentially expressed in diabetic Lin-/VEGF-R2+ endothelial progenitor cells and six other genes, CAV1, eNOS, CLDN5, NANOG, OCLN and BDNF, showed very low levels of expression in diabetic Lin-/VEGF-R2+ progenitor cells. CONCLUSION Low SDF-1 expression may contribute to the dysfunctional mobilization of bone marrow Lin-/VEGF-R2+ endothelial progenitor cells, which may contribute to microvascular injury in early diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Mohammad R Irhimeh
- Save Sight Institute, Level 1, South Block Sydney Hospital and Sydney Eye Hospital, Central Clinical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW 2000, Australia.
| |
Collapse
|
41
|
Wittko-Schneider IM, Schneider FT, Plate KH. Cerebral angiogenesis during development: who is conducting the orchestra? Methods Mol Biol 2014; 1135:3-20. [PMID: 24510850 DOI: 10.1007/978-1-4939-0320-7_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Blood vessels provide the brain with the oxygen and the nutrients it requires to develop and function. Endothelial cells (ECs) are the principal cell type forming the vascular system and driving its development and remodeling. All vessels are lined by a single EC layer. Larger blood vessels are additionally enveloped by vascular smooth muscle cells (VSMCs) and pericytes, which increase their stability and regulate their perfusion and form the blood-brain barrier (BBB). The development of the vascular system occurs by two processes: (1) vasculogenesis, the de novo assembly of the first blood vessels, and (2) angiogenesis, the creation of new blood vessels from preexisting ones by sprouting from or by division of the original vessel. The walls of maturing vessels produce a basal lamina and recruit pericytes and vascular smooth muscle cells for structural support. Whereas the process of vasculogenesis seems to be genetically programmed, angiogenesis is induced mainly by hypoxia in development and disease. Both processes and the subsequent vessel maturation are further orchestrated by a complex interplay of inhibiting and stimulating growth factors and their respective receptors, many of which are hypoxia-inducible. This chapter intends to give an overview about the array of factors directing the development and maintenance of the brain vasculature and their interdependent actions.
Collapse
Affiliation(s)
- Ina M Wittko-Schneider
- Institute for Stroke and Dementia Research, Klinikum der Universität München, München, Germany
| | | | | |
Collapse
|
42
|
Udan RS, Vadakkan TJ, Dickinson ME. Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac. Development 2013; 140:4041-50. [PMID: 24004946 DOI: 10.1242/dev.096255] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite extensive work showing the importance of blood flow in angiogenesis and vessel remodeling, very little is known about how changes in vessel diameter are orchestrated at the cellular level in response to mechanical forces. To define the cellular changes necessary for remodeling, we performed live confocal imaging of cultured mouse embryos during vessel remodeling. Our data revealed that vessel diameter increase occurs via two distinct processes that are dependent on normal blood flow: vessel fusions and directed endothelial cell migrations. Vessel fusions resulted in a rapid change in vessel diameter and were restricted to regions that experience the highest flow near the vitelline artery and vein. Directed cell migrations induced by blood flow resulted in the recruitment of endothelial cells to larger vessels from smaller capillaries and were observed in larger artery segments as they expanded. The dynamic and specific endothelial cell behaviors captured in this study reveal how sensitive endothelial cells are to changes in blood flow and how such responses drive vascular remodeling.
Collapse
Affiliation(s)
- Ryan S Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
43
|
Scianna M, Bell C, Preziosi L. A review of mathematical models for the formation of vascular networks. J Theor Biol 2013; 333:174-209. [DOI: 10.1016/j.jtbi.2013.04.037] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/15/2013] [Accepted: 04/30/2013] [Indexed: 02/08/2023]
|
44
|
McFee RM, Cupp AS. Vascular contributions to early ovarian development: potential roles of VEGFA isoforms. Reprod Fertil Dev 2013; 25:333-42. [PMID: 23021322 DOI: 10.1071/rd12134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/21/2012] [Indexed: 12/25/2022] Open
Abstract
Vascularisation is an essential component of ovarian morphogenesis; however, little is known regarding factors regulating the establishment of vasculature in the ovary. Angiogenesis involving extensive endothelial cell migration is a critical component of vessel formation in the embryonic testis but vasculogenic mechanisms appear to play a prominent role in ovarian vascularisation. Vasculature has a strong influence on the formation of ovarian structures, and the early developmental processes of ovigerous cord formation, primordial follicle assembly and follicle activation are all initiated in regions of the ovary that are in close association with the highly vascular medulla. The principal angiogenic factor, vascular endothelial growth factor A (VEGFA), has an important role in both endothelial cell differentiation and vascular pattern development. Expression of VEGFA has been localised to ovigerous cords and follicles in developing ovaries and an increased expression of pro-angiogenic Vegfa isoform mRNA in relation to anti-angiogenic isoform mRNA occurs at the same time-point as the peak of primordial follicle assembly in perinatal rats. Elucidation of specific genes that affect vascular development within the ovary may be critical for determining not only the normal mechanisms of ovarian morphogenesis, but also for understanding certain ovarian reproductive disorders.
Collapse
Affiliation(s)
- Renee M McFee
- Department of Animal Science, University of Nebraska-Lincoln, 3940 Fair Street, Lincoln, NB 68583-0908, USA
| | | |
Collapse
|
45
|
Abstract
The circulatory system is the first organ system to develop in the vertebrate embryo and is critical throughout gestation for the delivery of oxygen and nutrients to, as well as removal of metabolic waste products from, growing tissues. Endothelial cells, which constitute the luminal layer of all blood and lymphatic vessels, emerge de novo from the mesoderm in a process known as vasculogenesis. The vascular plexus that is initially formed is then remodeled and refined via proliferation, migration, and sprouting of endothelial cells to form new vessels from preexisting ones during angiogenesis. Mural cells are also recruited by endothelial cells to form the surrounding vessel wall. During this vascular remodeling process, primordial endothelial cells are specialized to acquire arterial, venous, and blood-forming hemogenic phenotypes and functions. A subset of venous endothelium is also specialized to become lymphatic endothelium later in development. The specialization of all endothelial cell subtypes requires extrinsic signals and intrinsic regulatory events, which will be discussed in this review.
Collapse
Affiliation(s)
- Kathrina L Marcelo
- Interdepartmental Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
46
|
Ennen JP, Verma M, Asakura A. Vascular-targeted therapies for Duchenne muscular dystrophy. Skelet Muscle 2013; 3:9. [PMID: 23618411 PMCID: PMC3651321 DOI: 10.1186/2044-5040-3-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/25/2013] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy and an X-linked recessive, progressive muscle wasting disease caused by the absence of a functional dystrophin protein. Dystrophin has a structural role as a cytoskeletal stabilization protein and protects cells against contraction-induced damage. Dystrophin also serves a signaling role through mechanotransduction of forces and localization of neuronal nitric oxide synthase (nNOS), which produces nitric oxide (NO) to facilitate vasorelaxation. In DMD, the signaling defects produce inadequate tissue perfusion caused by functional ischemia due to a diminished ability to respond to shear stress induced endothelium-dependent dilation. Additionally, the structural defects seen in DMD render myocytes with an increased susceptibility to mechanical stress. The combination of both defects is necessary to generate myocyte damage, which induces successive rounds of myofiber degeneration and regeneration, loss of calcium homeostasis, chronic inflammatory response, fibrosis, and myonecrosis. In individuals with DMD, these processes inevitably cause loss of ambulation shortly after the first decade and an abbreviated life with death in the third or fourth decade due to cardio-respiratory anomalies. There is no known cure for DMD, and although the culpable gene has been identified for more than twenty years, research on treatments has produced few clinically relevant results. Several recent studies on novel DMD therapeutics are vascular targeted and focused on attenuating the inherent functional ischemia. One approach improves vasorelaxation capacity through pharmaceutical inhibition of either phosphodiesterase 5 (PDE5) or angiotensin-converting enzyme (ACE). Another approach increases the density of the underlying vascular network by inducing angiogenesis, and this has been accomplished through either direct delivery of vascular endothelial growth factor (VEGF) or by downregulating the VEGF decoy-receptor type 1 (VEGFR-1 or Flt-1). The pro-angiogenic approaches also seem to be pro-myogenic and could resolve the age-related decline in satellite cell (SC) quantity seen in mdx models through expansion of the SC juxtavascular niche. Here we review these four vascular targeted treatment strategies for DMD and discuss mechanisms, proof of concept, and the potential for clinical relevance associated with each therapy.
Collapse
Affiliation(s)
- James P Ennen
- Stem Cell Institute, University of Minnesota Medical School, McGuire Translational Research Facility, Room 4-220, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
47
|
Katsura Y, Wada H, Murakami M, Akita H, Hama N, Kawamoto K, Kobayashi S, Marubashi S, Eguchi H, Tanemura M, Umeshita K, Doki Y, Mori M, Nagano H. PTK787/ZK222584 combined with interferon alpha and 5-fluorouracil synergistically inhibits VEGF signaling pathway in hepatocellular carcinoma. Ann Surg Oncol 2013; 20 Suppl 3:S517-26. [PMID: 23508585 DOI: 10.1245/s10434-013-2948-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND The prognosis of patients with hepatocellular carcinoma (HCC) and portal vein tumor thrombus remains poor. We previously reported the beneficial effects of interferon alpha (IFN) and 5-fluorouracil (5-FU) combination therapy for these patients. We showed that the mechanism of therapy was regulation of vascular endothelial growth factor (VEGF). Here, we combined IFN/5-FU therapy with the VEGF receptor-selective inhibitor PTK787/ZK222584 (PTK/ZK) and examined the antitumor effects and the mechanism of action. METHODS We studied two HCC cell lines, PLC/PRF/5 and HuH7, and a human umbilical vein endothelial cell line, HUVEC. We studied the effects of IFN/5-FU with or without PTK/ZK in growth inhibition assays, immunohistochemistry, Western blot analysis, and immunocytochemistry. RESULTS In a HuH7 xenograft model, the combination of PTK/ZK and IFN/5-FU significantly inhibited proliferation, induced apoptosis, decreased microvessel density, reduced the number of tumor cells that expressed VEGF receptor 2 (VEGFR-2), and repressed the phosphorylation of Akt in vivo. In HCC cells and HUVECs in vitro, IFN/5-FU plus PTK/ZK repressed the expression of VEGFR-2 and repressed the phosphorylation of VEGFR, Akt, Erk, and p38MAPK. CONCLUSIONS VEGF signaling inhibition enhanced the antitumor effects of IFN/5-FU therapy on HCC cells and endothelial cells via Erk, Akt, and p38MAPK pathways.
Collapse
Affiliation(s)
- Yoshiteru Katsura
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wittko-Schneider IM, Schneider FT, Plate KH. Brain homeostasis: VEGF receptor 1 and 2-two unequal brothers in mind. Cell Mol Life Sci 2013; 70:1705-25. [PMID: 23475067 PMCID: PMC3632714 DOI: 10.1007/s00018-013-1279-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/15/2022]
Abstract
Vascular endothelial growth factors (VEGFs), initially thought to act specifically on the vascular system, exert trophic effects on neural cells during development and adulthood. Therefore, the VEGF system serves as a promising therapeutic target for brain pathologies, but its simultaneous action on vascular cells paves the way for harmful side effects. To circumvent these deleterious effects, many studies have aimed to clarify whether VEGFs directly affect neural cells or if the effects are mediated secondarily via other cell types, like vascular cells. A great number of reports have shown the expression and function of VEGF receptors (VEGFRs), mainly VEGFR-1 and -2, in neural cells, where VEGFR-2 has been described as the major mediator of VEGF-A signals. This review aims to summarize and compare the divergent roles of VEGFR-1 and -2 during CNS development and homeostasis.
Collapse
Affiliation(s)
- Ina M Wittko-Schneider
- Neuroscience Center, Institute of Neurology (Edinger Institute), Goethe University Medical School, Heinrich-Hoffmann Strasse 7, 60528, Frankfurt, Germany.
| | | | | |
Collapse
|
49
|
Tiozzo C, Carraro G, Al Alam D, Baptista S, Danopoulos S, Li A, Lavarreda-Pearce M, Li C, De Langhe S, Chan B, Borok Z, Bellusci S, Minoo P. Mesodermal Pten inactivation leads to alveolar capillary dysplasia- like phenotype. J Clin Invest 2013; 122:3862-72. [PMID: 23023706 DOI: 10.1172/jci61334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 08/02/2012] [Indexed: 01/06/2023] Open
Abstract
Alveolar capillary dysplasia (ACD) is a congenital, lethal disorder of the pulmonary vasculature. Phosphatase and tensin homologue deleted from chromosome 10 (Pten) encodes a lipid phosphatase controlling key cellular functions, including stem/progenitor cell proliferation and differentiation; however, the role of PTEN in mesodermal lung cell lineage formation remains unexamined. To determine the role of mesodermal PTEN in the ontogeny of various mesenchymal cell lineages during lung development, we specifically deleted Pten in early embryonic lung mesenchyme in mice. Pups lacking Pten died at birth, with evidence of failure in blood oxygenation. Analysis at the cellular level showed defects in angioblast differentiation to endothelial cells and an accompanying accumulation of the angioblast cell population that was associated with disorganized capillary beds. We also found decreased expression of Forkhead box protein F1 (Foxf1), a gene associated with the ACD human phenotype. Analysis of human samples for ACD revealed a significant decrease in PTEN and increased activated protein kinase B (AKT). These studies demonstrate that mesodermal PTEN has a key role in controlling the amplification of angioblasts as well as their differentiation into endothelial cells, thereby directing the establishment of a functional gas exchange interface. Additionally, these mice could serve as a murine model of ACD.
Collapse
Affiliation(s)
- Caterina Tiozzo
- Department of Pediatrics, Division of Newborn Medicine, University of Southern California, Children's Hospital, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The treatment of festering wounds is one of the most important aspects of medical care. Macrophages are important components of wound repair, both in fending off infection and in coordinating tissue repair. Here we show that macrophages use a Wnt-Calcineurin-Flt1 signaling pathway to suppress wound vasculature and delay repair. Conditional mutants deficient in both Wntless/GPR177, the secretory transporter of Wnt ligands, and CNB1, the essential component of the nuclear factor of activated T cells dephosporylation complex, displayed enhanced angiogenesis and accelerated repair. Furthermore, in myeloid-like cells, we show that noncanonical Wnt activates Flt1, a naturally occurring inhibitor of vascular endothelial growth factor-A-mediated angiogenesis, but only when calcineurin function is intact. Then, as expected, conditional deletion of Flt1 in macrophages resulted in enhanced wound angiogenesis and repair. These results are consistent with the published link between enhanced angiogenesis and enhanced repair, and establish novel therapeutic approaches for treatment of wounds.
Collapse
|