1
|
Ibarra-García-Padilla R, Nambiar A, Hamre TA, Singleton EW, Uribe RA. Expansion of a neural crest gene signature following ectopic MYCN expression in sympathoadrenal lineage cells in vivo. PLoS One 2024; 19:e0310727. [PMID: 39292691 PMCID: PMC11410271 DOI: 10.1371/journal.pone.0310727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024] Open
Abstract
Neural crest cells (NCC) are multipotent migratory stem cells that originate from the neural tube during early vertebrate embryogenesis. NCCs give rise to a variety of cell types within the developing organism, including neurons and glia of the sympathetic nervous system. It has been suggested that failure in correct NCC differentiation leads to several diseases, including neuroblastoma (NB). During normal NCC development, MYCN is transiently expressed to promote NCC migration, and its downregulation precedes neuronal differentiation. Overexpression of MYCN has been linked to high-risk and aggressive NB progression. For this reason, understanding the effect overexpression of this oncogene has on the development of NCC-derived sympathoadrenal progenitors (SAP), which later give rise to sympathetic nerves, will help elucidate the developmental mechanisms that may prime the onset of NB. Here, we found that overexpressing human EGFP-MYCN within SAP lineage cells in zebrafish led to the transient formation of an abnormal SAP population, which displayed expanded and elevated expression of NCC markers while paradoxically also co-expressing SAP and neuronal differentiation markers. The aberrant NCC signature was corroborated with in vivo time-lapse confocal imaging in zebrafish larvae, which revealed transient expansion of sox10 reporter expression in MYCN overexpressing SAPs during the early stages of SAP development. In these aberrant MYCN overexpressing SAP cells, we also found evidence of dampened BMP signaling activity, indicating that BMP signaling disruption occurs following elevated MYCN expression. Furthermore, we discovered that pharmacological inhibition of BMP signaling was sufficient to create an aberrant NCC gene signature in SAP cells, phenocopying MYCN overexpression. Together, our results suggest that MYCN overexpression in SAPs disrupts their differentiation by eliciting abnormal NCC gene expression programs, and dampening BMP signaling response, having developmental implications for the priming of NB in vivo.
Collapse
Affiliation(s)
- Rodrigo Ibarra-García-Padilla
- Department of Biosciences, Rice University, Houston, Texas, United States of America
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, Texas, United States of America
| | - Annika Nambiar
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Thomas A Hamre
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Eileen W Singleton
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Rosa A Uribe
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| |
Collapse
|
2
|
Cardani S, Janes TA, Betzner W, Pagliardini S. Knockdown of PHOX2B in the retrotrapezoid nucleus reduces the central CO 2 chemoreflex in rats. eLife 2024; 13:RP94653. [PMID: 38727716 PMCID: PMC11087052 DOI: 10.7554/elife.94653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
PHOX2B is a transcription factor essential for the development of different classes of neurons in the central and peripheral nervous system. Heterozygous mutations in the PHOX2B coding region are responsible for the occurrence of Congenital Central Hypoventilation Syndrome (CCHS), a rare neurological disorder characterised by inadequate chemosensitivity and life-threatening sleep-related hypoventilation. Animal studies suggest that chemoreflex defects are caused in part by the improper development or function of PHOX2B expressing neurons in the retrotrapezoid nucleus (RTN), a central hub for CO2 chemosensitivity. Although the function of PHOX2B in rodents during development is well established, its role in the adult respiratory network remains unknown. In this study, we investigated whether reduction in PHOX2B expression in chemosensitive neuromedin-B (NMB) expressing neurons in the RTN altered respiratory function. Four weeks following local RTN injection of a lentiviral vector expressing the short hairpin RNA (shRNA) targeting Phox2b mRNA, a reduction of PHOX2B expression was observed in Nmb neurons compared to both naive rats and rats injected with the non-target shRNA. PHOX2B knockdown did not affect breathing in room air or under hypoxia, but ventilation was significantly impaired during hypercapnia. PHOX2B knockdown did not alter Nmb expression but it was associated with reduced expression of both Task2 and Gpr4, two CO2/pH sensors in the RTN. We conclude that PHOX2B in the adult brain has an important role in CO2 chemoreception and reduced PHOX2B expression in CCHS beyond the developmental period may contribute to the impaired central chemoreflex function.
Collapse
Affiliation(s)
- Silvia Cardani
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
| | - Tara A Janes
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
| | - William Betzner
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
| |
Collapse
|
3
|
Ernsberger U, Rohrer H. The sympathetic nervous system arose in the earliest vertebrates. Nature 2024; 629:46-48. [PMID: 38632426 DOI: 10.1038/d41586-024-01017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
|
4
|
Vermeiren S, Cabochette P, Dannawi M, Desiderio S, San José AS, Achouri Y, Kricha S, Sitte M, Salinas-Riester G, Vanhollebeke B, Brunet JF, Bellefroid EJ. Prdm12 represses the expression of the visceral neuron determinants Phox2a/b in developing somatosensory ganglia. iScience 2023; 26:108364. [PMID: 38025786 PMCID: PMC10663820 DOI: 10.1016/j.isci.2023.108364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Prdm12 is a transcriptional regulator essential for the emergence of the somatic nociceptive lineage during sensory neurogenesis. The exact mechanisms by which Prdm12 promotes nociceptor development remain, however, poorly understood. Here, we report that the trigeminal and dorsal root ganglia hypoplasia induced by the loss of Prdm12 involves Bax-dependent apoptosis and that it is accompanied by the ectopic expression of the visceral sensory neuron determinants Phox2a and Phox2b, which is, however, not sufficient to impose a complete fate switch in surviving somatosensory neurons. Mechanistically, our data reveal that Prdm12 is required from somatosensory neural precursors to early post-mitotic differentiating nociceptive neurons to repress Phox2a/b and that its repressive function is context dependent. Together, these findings reveal that besides its essential role in nociceptor survival during development, Prdm12 also promotes nociceptor fate via an additional mechanism, by preventing precursors from engaging into an alternate Phox2 driven visceral neuronal type differentiation program.
Collapse
Affiliation(s)
- Simon Vermeiren
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Pauline Cabochette
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Maya Dannawi
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Simon Desiderio
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Alba Sabaté San José
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Younes Achouri
- Transgenesis Platform, de Duve Institute, Université Catholique de Louvain, Institut de Duve, Brussels, Belgium
| | - Sadia Kricha
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Maren Sitte
- NGS Integrative Genomics, Department of Human Genetics at the University Medical Center Göttingen (UMG), 37075 Göttingen, Germany
| | - Gabriela Salinas-Riester
- NGS Integrative Genomics, Department of Human Genetics at the University Medical Center Göttingen (UMG), 37075 Göttingen, Germany
| | - Benoit Vanhollebeke
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Jean-François Brunet
- Institut de Biologie de l’ENS (IBENS), Inserm, CNRS, École Normale Supérieure, PSL Research University, 75005 Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, 75005 Paris, France
- Institut National de la Santé et de la Recherche Médicale U1024, 75005 Paris, France
| | - Eric J. Bellefroid
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| |
Collapse
|
5
|
Liu S, Xiang K, Yuan F, Xiang M. Generation of self-organized autonomic ganglion organoids from fibroblasts. iScience 2023; 26:106241. [PMID: 36922996 PMCID: PMC10009094 DOI: 10.1016/j.isci.2023.106241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Neural organoids have been shown to serve as powerful tools for studying the mechanism of neural development and diseases as well as for screening drugs and developing cell-based therapeutics. Somatic cells have previously been reprogrammed into scattered autonomic ganglion (AG) neurons but not AG organoids. Here we have identified a combination of triple transcription factors (TFs) Ascl1, Phox2a/b, and Hand2 (APH) capable of efficiently reprogramming mouse fibroblasts into self-organized and networked induced AG (iAG) organoids, and characterized them by immunostaining, qRT-PCR, patch-clamping, and scRNA-seq approaches. The iAG neurons exhibit molecular properties, subtype diversity, and electrophysiological characteristics of autonomic neurons. Moreover, they can integrate into the superior cervical ganglia following transplantation and innervate and control the beating rate of co-cultured ventricular myocytes. Thus, iAG organoids may provide a valuable tool to study the pathogenesis of autonomic nervous system diseases and screen for drugs, as well as a source for cell-based therapies.
Collapse
Affiliation(s)
- Shuting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Kangjian Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Fa Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
6
|
Abstract
Breathing (or respiration) is a complex motor behavior that originates in the brainstem. In minimalistic terms, breathing can be divided into two phases: inspiration (uptake of oxygen, O2) and expiration (release of carbon dioxide, CO2). The neurons that discharge in synchrony with these phases are arranged in three major groups along the brainstem: (i) pontine, (ii) dorsal medullary, and (iii) ventral medullary. These groups are formed by diverse neuron types that coalesce into heterogeneous nuclei or complexes, among which the preBötzinger complex in the ventral medullary group contains cells that generate the respiratory rhythm (Chapter 1). The respiratory rhythm is not rigid, but instead highly adaptable to the physic demands of the organism. In order to generate the appropriate respiratory rhythm, the preBötzinger complex receives direct and indirect chemosensory information from other brainstem respiratory nuclei (Chapter 2) and peripheral organs (Chapter 3). Even though breathing is a hard-wired unconscious behavior, it can be temporarily altered at will by other higher-order brain structures (Chapter 6), and by emotional states (Chapter 7). In this chapter, we focus on the development of brainstem respiratory groups and highlight the cell lineages that contribute to central and peripheral chemoreflexes.
Collapse
Affiliation(s)
- Eser Göksu Isik
- Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Luis R Hernandez-Miranda
- Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
7
|
Sarnat HB, Flores-Sarnat L, Boltshauser E. Area Postrema: Fetal Maturation, Tumors, Vomiting Center, Growth, Role in Neuromyelitis Optica. Pediatr Neurol 2019; 94:21-31. [PMID: 30797593 DOI: 10.1016/j.pediatrneurol.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The area postrema in the caudal fourth ventricular floor is highly vascular without blood-brain or blood-cerebrospinal fluid barrier. In addition to its function as vomiting center, several others are part of the circumventricular organs for vasomotor/angiotensin II regulation, role in neuromyelitis optica related to aquaporin-4, and somatic growth and appetite regulation. Functions are immature at birth. The purpose was to demonstrate neuronal, synaptic, glial, or ependymal maturation in the area postrema of normal fetuses. We describe three area postrema tumors. METHODS Sections of caudal fourth ventricle of 12 normal human fetal brains at autopsy aged six to 40 weeks and three infants aged three to 18 months were examined. Immunocytochemical neuronal and glial markers were applied to paraffin sections. Two infants with area postrema tumors and another with neurocutaneous melanocytosis and pernicious vomiting also studied. RESULTS Area postrema neurons exhibited cytologic maturity and synaptic circuitry by 14 weeks'. Astrocytes coexpressed vimentin, glial fibrillary acidic protein, and S-100β protein. The ependyma is thin over area postrema, with fetal ependymocytic basal processes. A glial layer separates area postrema from medullary tegmentum. Melanocytes infiltrated area postrema in the toddler with pernicious vomiting; two children had primary area postrema pilocytic astrocytomas. CONCLUSIONS Although area postrema is cytologically mature by 14 weeks, growth increases and functions mature during postnatal months. We recommend neuroimaging for patients with unexplained vomiting and that area postrema neuropathology includes synaptophysin and microtubule-associated protein-2 in patients with suspected dysfunction.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Departments of Paediatrics, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Pathology (Neuropathology), University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.
| | - Laura Flores-Sarnat
- Departments of Paediatrics, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Eugen Boltshauser
- Department of Paediatric Neurology, Children's University Hospital, Zürich, Switzerland
| |
Collapse
|
8
|
Cossais F, Lange C, Barrenschee M, Möding M, Ebsen M, Vogel I, Böttner M, Wedel T. Altered enteric expression of the homeobox transcription factor Phox2b in patients with diverticular disease. United European Gastroenterol J 2019; 7:349-357. [PMID: 31019703 DOI: 10.1177/2050640618824913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/22/2018] [Indexed: 12/17/2022] Open
Abstract
Background Diverticular disease, a major gastrointestinal disorder, is associated with modifications of the enteric nervous system, encompassing alterations of neurochemical coding and of the tyrosine receptor kinase Ret/GDNF pathway. However, molecular factors underlying these changes remain to be determined. Objectives We aimed to characterise the expression of Phox2b, an essential regulator of Ret and of neuronal subtype development, in the adult human enteric nervous system, and to evaluate its potential involvement in acute diverticulitis. Methods Site-specific gene expression of Phox2b in the adult colon was analysed by quantitative polymerase chain reaction. Colonic specimens of adult controls and patients with diverticulitis were subjected to quantitative polymerase chain reaction for Phox2b and dual-label immunochemistry for Phox2b and the neuronal markers RET and tyrosine hydroxylase or the glial marker S100β. Results The results indicate that Phox2b is physiologically expressed in myenteric neuronal and glial subpopulations in the adult enteric nervous system. Messenger RNA expression of Phox2b was increased in patients with diverticulitis and both neuronal, and glial protein expression of Phox2b were altered in these patients. Conclusions Alterations of Phox2b expression may contribute to the enteric neuropathy observed in diverticular disease. Future studies are required to characterise the functions of Phox2b in the adult enteric nervous system and to determine its potential as a therapeutic target in gastrointestinal disorders.
Collapse
Affiliation(s)
- François Cossais
- Institute of Anatomy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christina Lange
- Institute of Anatomy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Marie Möding
- Institute of Anatomy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Michael Ebsen
- Department of Pathology, Städtisches Krankenhaus Kiel, Kiel, Germany
| | - Ilka Vogel
- Department of Surgery, Städtisches Krankenhaus Kiel, Kiel, Germany
| | - Martina Böttner
- Institute of Anatomy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Thilo Wedel
- Institute of Anatomy, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
9
|
Fan Y, Chen P, Raza MU, Szebeni A, Szebeni K, Ordway GA, Stockmeier CA, Zhu MY. Altered Expression of Phox2 Transcription Factors in the Locus Coeruleus in Major Depressive Disorder Mimicked by Chronic Stress and Corticosterone Treatment In Vivo and In Vitro. Neuroscience 2018; 393:123-137. [PMID: 30315878 DOI: 10.1016/j.neuroscience.2018.09.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022]
Abstract
Phox2a and Phox2b are two homeodomain transcription factors playing a pivotal role in the development of noradrenergic neurons during the embryonic period. However, their expression and function in adulthood remain to be elucidated. Using human postmortem brain tissues, rat stress models and cultured cells, this study aimed to examine the alteration of Phox2a and Phox2b expression. The results show that Phox2a and Phox2b are normally expressed in the human locus coeruleus (LC) in adulthood. Furthermore, the levels of Phox2a protein and mRNA and protein levels of Phox2b were significantly elevated in the LC of brain donors that suffered from the major depressive disorder, as compared to age-matched and psychiatrically normal control donors. Fischer 344 rats subjected to chronic social defeat showed higher mRNA and protein levels of Phox2a and Phox2b in the LC, as compared to non-stressed control rats. In rats chronically administered oral corticosterone, mRNA and protein levels of Phox2b, but not Phox2a, in the LC were significantly increased. In addition, the corticosterone-induced increase in Phox2b protein was reversed by simultaneous treatment with either mifepristone or spironolactone. Exposing SH-SY5Y cells to corticosterone significantly increased expression of Phox2a and Phox2b, which was blocked by corticosteroid receptor antagonists. Taken together, these experiments reveal that Phox2 genes are expressed throughout the lifetime in the LC of humans and Fischer 344 rats. Alterations in their expression may play a role in major depressive disorder and possibly other stress-related disorders through their modulatory effects on the noradrenergic phenotype.
Collapse
Affiliation(s)
- Yan Fan
- Department of Biochemistry, Nantong University College of Medicine, Nantong, China
| | - Ping Chen
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Muhammad U Raza
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Attila Szebeni
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Katalin Szebeni
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Gregory A Ordway
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Meng-Yang Zhu
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| |
Collapse
|
10
|
Analysis of sporadic neuroblastic tumors reveals a novel PHOX2B mutation in neuroblastoma. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Tomolonis JA, Agarwal S, Shohet JM. Neuroblastoma pathogenesis: deregulation of embryonic neural crest development. Cell Tissue Res 2017; 372:245-262. [PMID: 29222693 DOI: 10.1007/s00441-017-2747-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
Neuroblastoma (NB) is an aggressive pediatric cancer that originates from neural crest tissues of the sympathetic nervous system. NB is highly heterogeneous both from a clinical and a molecular perspective. Clinically, this cancer represents a wide range of phenotypes ranging from spontaneous regression of 4S disease to unremitting treatment-refractory progression and death of high-risk metastatic disease. At a cellular level, the heterogeneous behavior of NB likely arises from an arrest and deregulation of normal neural crest development. In the present review, we summarize our current knowledge of neural crest development as it relates to pathways promoting 'stemness' and how deregulation may contribute to the development of tumor-initiating CSCs. There is an emerging consensus that such tumor subpopulations contribute to the evolution of drug resistance, metastasis and relapse in other equally aggressive malignancies. As relapsed, refractory disease remains the primary cause of death for neuroblastoma, the identification and targeting of CSCs or other primary drivers of tumor progression remains a critical, clinically significant goal for neuroblastoma. We will critically review recent and past evidence in the literature supporting the concept of CSCs as drivers of neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- Julie A Tomolonis
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Houston, TX, 77030, USA.,Medical Scientist Training Program (MSTP), Baylor College of Medicine, Houston, TX, 77030, USA.,Translational Biology & Molecular Medicine (TBMM) Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Saurabh Agarwal
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason M Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Houston, TX, 77030, USA. .,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA. .,Neuroblastoma Research Program, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Chan WH, Anderson CR, Gonsalvez DG. From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development. Cell Tissue Res 2017; 372:171-193. [PMID: 28971249 DOI: 10.1007/s00441-017-2693-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
The sympathetic division of the autonomic nervous system includes a variety of cells including neurons, endocrine cells and glial cells. A recent study (Furlan et al. 2017) has revised thinking about the developmental origin of these cells. It now appears that sympathetic neurons and chromaffin cells of the adrenal medulla do not have an immediate common ancestor in the form a "sympathoadrenal cell", as has been long believed. Instead, chromaffin cells arise from Schwann cell precursors. This review integrates the new findings with the expanding body of knowledge on the signalling pathways and transcription factors that regulate the origin of cells of the sympathetic division of the autonomic nervous system.
Collapse
Affiliation(s)
- W H Chan
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - C R Anderson
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - David G Gonsalvez
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
13
|
Ohman-Gault L, Huang T, Krimm R. The transcription factor Phox2b distinguishes between oral and non-oral sensory neurons in the geniculate ganglion. J Comp Neurol 2017; 525:3935-3950. [PMID: 28856690 DOI: 10.1002/cne.24312] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 02/01/2023]
Abstract
Many basic characteristics of gustatory neurons remain unknown, partly due to the absence of specific markers. Some neurons in the geniculate ganglion project to taste regions in the oral cavity, whereas others innervate the outer ear. We hypothesized that the transcription factor Phox2b would identify oral cavity-projecting neurons in the geniculate ganglion. To test this possibility, we characterized mice in which Phox2b-Cre mediated gene recombination labeled neurons with tdTomato. Nerve labeling revealed that all taste neurons projecting through the chorda tympani (27%) and greater superficial petrosal nerves (15%) expressed Phox2b during development, whereas non-oral somatosensory neurons (58%) in the geniculate ganglion did not. We found tdTomato-positive innervation within all taste buds. Most (57%) of the fungiform papillae had labeled innervation only in taste buds, whereas 43% of the fungiform papillae also had additional labeled innervation to the papilla epithelium. Chorda tympani nerve transection eliminated all labeled innervation to taste buds, but most of the additional innervation in the fungiform papillae remained. Some of these additional fibers also expressed tyrosine hydroxylase, suggesting a sympathetic origin. Consistent with this, both sympathetic and parasympathetic fibers innervating blood vessels and salivary glands contained tdTomato labeling. Phox2b-tdTomato labels nerve fascicles in the tongue of the developing embryo and demonstrates a similar stereotyped branching pattern DiI-labeling.
Collapse
Affiliation(s)
- Lisa Ohman-Gault
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Tao Huang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Robin Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
14
|
Hockman D, Burns AJ, Schlosser G, Gates KP, Jevans B, Mongera A, Fisher S, Unlu G, Knapik EW, Kaufman CK, Mosimann C, Zon LI, Lancman JJ, Dong PDS, Lickert H, Tucker AS, Baker CVH. Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes. eLife 2017; 6:e21231. [PMID: 28387645 PMCID: PMC5438250 DOI: 10.7554/elife.21231] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 04/07/2017] [Indexed: 01/01/2023] Open
Abstract
The evolutionary origins of the hypoxia-sensitive cells that trigger amniote respiratory reflexes - carotid body glomus cells, and 'pulmonary neuroendocrine cells' (PNECs) - are obscure. Homology has been proposed between glomus cells, which are neural crest-derived, and the hypoxia-sensitive 'neuroepithelial cells' (NECs) of fish gills, whose embryonic origin is unknown. NECs have also been likened to PNECs, which differentiate in situ within lung airway epithelia. Using genetic lineage-tracing and neural crest-deficient mutants in zebrafish, and physical fate-mapping in frog and lamprey, we find that NECs are not neural crest-derived, but endoderm-derived, like PNECs, whose endodermal origin we confirm. We discover neural crest-derived catecholaminergic cells associated with zebrafish pharyngeal arch blood vessels, and propose a new model for amniote hypoxia-sensitive cell evolution: endoderm-derived NECs were retained as PNECs, while the carotid body evolved via the aggregation of neural crest-derived catecholaminergic (chromaffin) cells already associated with blood vessels in anamniote pharyngeal arches.
Collapse
Affiliation(s)
- Dorit Hockman
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Keith P Gates
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Benjamin Jevans
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alessandro Mongera
- Department of Genetics, Max-Planck Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Shannon Fisher
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
| | - Gokhan Unlu
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - Ela W Knapik
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - Charles K Kaufman
- Children’s Hospital Boston, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Christian Mosimann
- Children’s Hospital Boston, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Leonard I Zon
- Children’s Hospital Boston, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - P Duc S Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, London, United Kingdom
| | - Clare V H Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Tao T, Sondalle SB, Shi H, Zhu S, Perez-Atayde AR, Peng J, Baserga SJ, Look AT. The pre-rRNA processing factor DEF is rate limiting for the pathogenesis of MYCN-driven neuroblastoma. Oncogene 2017; 36:3852-3867. [PMID: 28263972 PMCID: PMC5501763 DOI: 10.1038/onc.2016.527] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/08/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023]
Abstract
The nucleolar factor, digestive organ expansion factor (DEF), has a key role in ribosome biogenesis, functioning in pre-ribosomal RNA (pre-rRNA) processing as a component of the small ribosomal subunit (SSU) processome. Here we show that the peripheral sympathetic nervous system (PSNS) is very underdeveloped in def-deficient zebrafish, and that def haploinsufficiency significantly decreases disease penetrance and tumor growth rate in a MYCN-driven transgenic zebrafish model of neuroblastoma that arises in the PSNS. Consistent with these findings, DEF is highly expressed in human neuroblastoma, and its depletion in human neuroblastoma cell lines induces apoptosis. Interestingly, overexpression of MYCN in zebrafish and in human neuroblastoma cells results in the appearance of intermediate pre-rRNAs species that reflect the processing of pre-rRNAs through Pathway 2, a pathway that processes pre-rRNAs in a different temporal order than the more often used Pathway 1. Our results indicate that DEF and possibly other components of the SSU processome provide a novel site of vulnerability in neuroblastoma cells that could be exploited for targeted therapy.
Collapse
Affiliation(s)
- T Tao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S B Sondalle
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - H Shi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - S Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center and Mayo Clinic Center for Individualized Medicine, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center and Mayo Clinic Center for Individualized Medicine, Rochester, MN, USA
| | - A R Perez-Atayde
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - J Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - S J Baserga
- Departments of Molecular Biophysics &Biochemistry, Genetics and Therapeutic Radiology, Yale University and Yale University School of Medicine, New Haven, CT, USA
| | - A T Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Naftali O, Maman S, Meshel T, Sagi-Assif O, Ginat R, Witz IP. PHOX2B is a suppressor of neuroblastoma metastasis. Oncotarget 2016; 7:10627-37. [PMID: 26840262 PMCID: PMC4891146 DOI: 10.18632/oncotarget.7056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/23/2016] [Indexed: 12/27/2022] Open
Abstract
Paired like homeobox 2B (PHOX2B) is a minimal residual disease (MRD) marker of neuroblastoma. The presence of MRD, also referred to as micro-metastases, is a powerful marker of poor prognosis in neuroblastoma. Lung metastasis is considered a terminal event in neuroblastoma. Lung micro-metastatic neuroblastoma (MicroNB) cells show high expression levels of PHOX2B and possess a less malignant and metastatic phenotype than lung macro metastatic neuroblastoma (MacroNB) cells, which hardly express PHOX2B. In vitro assays showed that PHOX2B knockdown in MicroNB cells did not affect cell viability; however it decreased the migratory capacity of the MicroNB-shPHOX2B cells. An orthotopic inoculation of MicroNB-shPHOX2B cells into the adrenal gland of nude mice resulted in significantly larger primary tumors and a heavier micro-metastatic load in the lungs and bone-marrow, than when control cells were inoculated. PHOX2B expression was found to be regulated by methylation. The PHOX2B promoter in MacroNB cells is significantly more methylated than in MicroNB cells. Demethylation assays using 5-azacytidine demonstrated that methylation can indeed inhibit PHOX2B transcription in MacroNB cells. These pre-clinical data strongly suggest that PHOX2B functions as a suppressor of neuroblastoma progression.
Collapse
Affiliation(s)
- Osnat Naftali
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Tsipi Meshel
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Ravit Ginat
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| |
Collapse
|
17
|
Saiyed R, Rand CM, Carroll MS, Koliboski CM, Stewart TM, Brogadir CD, Kenny AS, Petersen EKE, Carley DW, Weese-Mayer DE. Congenital central hypoventilation syndrome (CCHS): Circadian temperature variation. Pediatr Pulmonol 2016; 51:300-7. [PMID: 26086998 DOI: 10.1002/ppul.23236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/01/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Congenital central hypoventilation syndrome (CCHS) is a rare neurocristopathy, which includes a control of breathing deficit and features of autonomic nervous system (ANS) dysregulation. In recognition of the fundamental role of the ANS in temperature regulation and rhythm and the lack of any prior characterization of circadian temperature rhythms in CCHS, we sought to explore peripheral and core temperatures and circadian patterning. We hypothesized that CCHS patients would exhibit lower peripheral skin temperatures (PST), variability, and circadian rhythmicity (vs. controls), as well as a disrupted relationship between core body temperature (CBT) and PST. METHODS PST was sampled every 3 min over four 24-hr periods in CCHS cases and similarly aged controls. CBT was sampled in a subset of these recordings. RESULTS PST was recorded from 25 CCHS cases (110,664 measures/230 days) and 39 controls (78,772 measures/164 days). Simultaneous CBT measurements were made from 23 CCHS patients. In CCHS, mean PST was lower overall (P = 0.03) and at night (P = 0.02), and PST variability (interquartile range) was higher at night (P = 0.05) (vs. controls). PST circadian rhythm remained intact but the phase relationship of PST to CBT rhythm was extremely variable in CCHS. CONCLUSIONS PST alterations in CCHS likely reflect altered autonomic control of peripheral vascular tone. These alterations represent a previously unreported manifestation of CCHS and may provide an opportunity for therapeutic intervention. The relationship between temperature dysregulation and CCHS may also offer insight into basic mechanisms underlying thermoregulation.
Collapse
Affiliation(s)
- Rehan Saiyed
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Casey M Rand
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Michael S Carroll
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Cynthia M Koliboski
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Tracey M Stewart
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Cindy D Brogadir
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Anna S Kenny
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Emily K E Petersen
- Cardiovascular Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - David W Carley
- Center for Narcolepsy, Sleep and Health Research (CNSHR), University of Illinois at Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
18
|
Yang L, Ke XX, Xuan F, Tan J, Hou J, Wang M, Cui H, Zhang Y. PHOX2B Is Associated with Neuroblastoma Cell Differentiation. Cancer Biother Radiopharm 2016; 31:44-51. [PMID: 26910576 DOI: 10.1089/cbr.2015.1952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neuroblastoma is a common pediatric malignancy that accounts for ∼15% of tumor-related deaths in children. The tumor is generally believed to originate from neural crest cells during early sympathetic neurogenesis. As the degree of neuroblastoma differentiation has been correlated with clinical outcome, clarifying the molecular mechanisms that drive neuroblastoma progression and differentiation is important for increasing the survival of these patients. In a previous study, the authors identified paired-like homeobox 2b (PHOX2B) as a key mediator of neuroblastoma pathogenesis in a TH-MYCN mouse model. In the present study, they aimed to define whether PHOX2B is also associated with proliferation and differentiation of human neuroblastoma cells. PHOX2B expression in neuroblastoma cells was evaluated by immunoblot analyses, and the effects of PHOX2B on the proliferation of neuroblastoma cells in vitro were determined using clonogenic and sphere formation assays. Xenograft experiments in NOD/SCID mice were used to examine the in vivo response to PHOX2B knockdown. Their data demonstrated that PHOX2B acts as a prognostic marker in neuroblastoma and that retinoic acid-induced neuronal differentiation downregulates PHOX2B expression, thereby suppressing the self-renewal capacity of neuroblastoma cells and inhibiting tumorigenicity. These findings confirmed that PHOX2B is a key regulator of neuroblastoma differentiation and stemness maintenance and indicated that PHOX2B might serve as a potential therapeutic target in neuroblastoma patients.
Collapse
Affiliation(s)
- Liqun Yang
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Xiao-Xue Ke
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Fan Xuan
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Juan Tan
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Jianbing Hou
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Mei Wang
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Hongjuan Cui
- 1 Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University , Chongqing, P.R. China
| | - Yundong Zhang
- 2 Department of Neurosurgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University , Chongqing, P.R. China
| |
Collapse
|
19
|
Stanzel S, Stubbusch J, Pataskar A, Howard MJ, Deller T, Ernsberger U, Tiwari VK, Rohrer H, Tsarovina K. Distinct roles of hand2 in developing and adult autonomic neurons. Dev Neurobiol 2016; 76:1111-24. [PMID: 26818017 DOI: 10.1002/dneu.22378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/08/2022]
Abstract
The bHLH transcription factor Hand2 is essential for the acquisition and maintenance of noradrenergic properties of embryonic sympathetic neurons and controls neuroblast proliferation. Hand2 is also expressed in embryonic and postnatal parasympathetic ganglia and remains expressed in sympathetic neurons up to the adult stage. Here, we address its function in developing parasympathetic and adult sympathetic neurons. We conditionally deleted Hand2 in the parasympathetic sphenopalatine ganglion by crossing a line of floxed Hand2 mice with DbhiCre transgenic mice, taking advantage of the transient Dbh expression in parasympathetic ganglia. Hand2 elimination does not affect Dbh expression and sphenopalatine ganglion size at E12.5 and E16.5, in contrast to sympathetic ganglia. These findings demonstrate different functions for Hand2 in the parasympathetic and sympathetic lineage. Our previous Hand2 knockdown in postmitotic, differentiated chick sympathetic neurons resulted in decreased expression of noradrenergic marker genes but it was unclear whether Hand2 is required for maintaining noradrenergic neuron identity in adult animals. We now show that Hand2 elimination in adult Dbh-expressing sympathetic neurons does not decrease the expression of Th and Dbh, in contrast to the situation during development. However, gene expression profiling of adult sympathetic neurons identified 75 Hand2-dependent target genes. Interestingly, a notable proportion of down-regulated genes (15%) encode for proteins with synaptic and neurotransmission functions. These results demonstrate a change in Hand2 target genes during maturation of sympathetic neurons. Whereas Hand2 controls genes regulating noradrenergic differentiation during development, Hand2 seems to be involved in the regulation of genes controlling neurotransmission in adult sympathetic neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1111-1124, 2016.
Collapse
Affiliation(s)
- Sabine Stanzel
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| | - Jutta Stubbusch
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| | - Abhijeet Pataskar
- Institute of Molecular Biology (IMB) Boehringer Ingelheim Foundation, Ackermannweg 4, Mainz, 55128, Germany
| | - Marthe J Howard
- Department of Neurosciences and Program in Neurosciences and Neurological Disorders, University of Toledo Health Sciences Campus, Toledo, Ohio, 43614
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany
| | - Uwe Ernsberger
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany.,Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany.,Ernst-Strüngmann-Institute, Deutschordenstr. 46, Frankfurt/M, 60528, Germany
| | - Vijay K Tiwari
- Institute of Molecular Biology (IMB) Boehringer Ingelheim Foundation, Ackermannweg 4, Mainz, 55128, Germany
| | - Hermann Rohrer
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany.,Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany.,Ernst-Strüngmann-Institute, Deutschordenstr. 46, Frankfurt/M, 60528, Germany
| | - Konstantina Tsarovina
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| |
Collapse
|
20
|
Gokozan HN, Baig F, Corcoran S, Catacutan FP, Gygli PE, Takakura AC, Moreira TS, Czeisler C, Otero JJ. Area postrema undergoes dynamic postnatal changes in mice and humans. J Comp Neurol 2015; 524:1259-69. [PMID: 26400711 DOI: 10.1002/cne.23903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 12/29/2022]
Abstract
The postnatal period in mammals represents a developmental epoch of significant change in the autonomic nervous system (ANS). This study focuses on postnatal development of the area postrema, a crucial ANS structure that regulates temperature, breathing, and satiety, among other activities. We find that the human area postrema undergoes significant developmental changes during postnatal development. To characterize these changes further, we used transgenic mouse reagents to delineate neuronal circuitry. We discovered that, although a well-formed ANS scaffold exists early in embryonic development, the area postrema shows a delayed maturation. Specifically, postnatal days 0-7 in mice show no significant change in area postrema volume or synaptic input from PHOX2B-derived neurons. In contrast, postnatal days 7-20 show a significant increase in volume and synaptic input from PHOX2B-derived neurons. We conclude that key ANS structures show unexpected dynamic developmental changes during postnatal development. These data provide a basis for understanding ANS dysfunction and disease predisposition in premature and postnatal humans.
Collapse
Affiliation(s)
- Hamza Numan Gokozan
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio, 43210
| | - Faisal Baig
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio, 43210
| | - Sarah Corcoran
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio, 43210
| | - Fay Patsy Catacutan
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio, 43210
| | - Patrick Edwin Gygli
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio, 43210
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-900, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, 05508-900, São Paulo, Brazil
| | - Catherine Czeisler
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio, 43210
| | - José J Otero
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio, 43210
| |
Collapse
|
21
|
Borodinsky LN, Belgacem YH. Crosstalk among electrical activity, trophic factors and morphogenetic proteins in the regulation of neurotransmitter phenotype specification. J Chem Neuroanat 2015; 73:3-8. [PMID: 26686293 DOI: 10.1016/j.jchemneu.2015.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/29/2015] [Accepted: 12/02/2015] [Indexed: 01/11/2023]
Abstract
Morphogenetic proteins are responsible for patterning the embryonic nervous system by enabling cell proliferation that will populate all the neural structures and by specifying neural progenitors that imprint different identities in differentiating neurons. The adoption of specific neurotransmitter phenotypes is crucial for the progression of neuronal differentiation, enabling neurons to connect with each other and with target tissues. Preliminary neurotransmitter specification originates from morphogen-driven neural progenitor specification through the combinatorial expression of transcription factors according to morphogen concentration gradients, which progressively restrict the identity that born neurons adopt. However, neurotransmitter phenotype is not immutable, instead trophic factors released from target tissues and environmental stimuli change expression of neurotransmitter-synthesizing enzymes and specific vesicular transporters modifying neuronal neurotransmitter identity. Here we review studies identifying the mechanisms of catecholaminergic, GABAergic, glutamatergic, cholinergic and serotonergic early specification and of the plasticity of these neurotransmitter phenotypes during development and in the adult nervous system. The emergence of spontaneous electrical activity in developing neurons recruits morphogenetic proteins in the process of neurotransmitter phenotype plasticity, which ultimately equips the nervous system and the whole organism with adaptability for optimal performance in a changing environment.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, United States.
| | - Yesser H Belgacem
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, United States
| |
Collapse
|
22
|
Abstract
Among the many forms of brain plasticity, changes in synaptic strength and changes in synapse number are particularly prominent. However, evidence for neurotransmitter respecification or switching has been accumulating steadily, both in the developing nervous system and in the adult brain, with observations of transmitter addition, loss, or replacement of one transmitter with another. Natural stimuli can drive these changes in transmitter identity, with matching changes in postsynaptic transmitter receptors. Strikingly, they often convert the synapse from excitatory to inhibitory or vice versa, providing a basis for changes in behavior in those cases in which it has been examined. Progress has been made in identifying the factors that induce transmitter switching and in understanding the molecular mechanisms by which it is achieved. There are many intriguing questions to be addressed.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences & Kavli Institute for Brain and Mind, UCSD, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Ke XX, Zhang D, Zhao H, Hu R, Dong Z, Yang R, Zhu S, Xia Q, Ding HF, Cui H. Phox2B correlates with MYCN and is a prognostic marker for neuroblastoma development. Oncol Lett 2015; 9:2507-2514. [PMID: 26137098 DOI: 10.3892/ol.2015.3088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/19/2015] [Indexed: 01/19/2023] Open
Abstract
Neuroblastoma is the one of the most common extracranial childhood malignancies, accounting for ∼15% of tumor-associated deaths in children. It is generally considered that neuroblastoma originates from neural crest cells in the paravertebral sympathetic ganglia and the adrenal medulla. However, the mechanism by which neuroblastoma arises during sympathetic neurogenesis and the cellular mechanism that drives neuroblastoma development remains unclear. The present study investigated the cell components during neuroblastoma development in the tyrosine hydroxylase-v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (TH-MYCN) mouse model, a transgenic mouse model of human neuroblastoma. The present study demonstrates that paired-like homeobox 2b (Phox2B)+ neuronal progenitors are the major cellular population in hyperplastic lesions and primary tumors. In addition, Phox2B+ neuronal progenitors in hyperplastic lesions or primary tumors were observed to be in an actively proliferative and undifferentiated state. The current study also demonstrated that high expression levels of Phox2B promotes neuroblastoma cell proliferation and xenograft tumor growth. These findings indicate that the proliferation of undifferentiated Phox2B+ neuronal progenitors is a cellular mechanism that promotes neuroblastoma development and indicates that Phox2B is a critical regulator in neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- Xiao-Xue Ke
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Dunke Zhang
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Hailong Zhao
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Renjian Hu
- Department of Pharmaceutical Engineering, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P.R. China
| | - Zhen Dong
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Rui Yang
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Shunqin Zhu
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Qingyou Xia
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Han-Fei Ding
- Department of Biochemistry and Molecular Biology, Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Hongjuan Cui
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| |
Collapse
|
24
|
Chipumuro E, Marco E, Christensen CL, Kwiatkowski N, Zhang T, Hatheway CM, Abraham BJ, Sharma B, Yeung C, Altabef A, Perez-Atayde A, Wong KK, Yuan GC, Gray NS, Young RA, George RE. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 2014; 159:1126-1139. [PMID: 25416950 DOI: 10.1016/j.cell.2014.10.024] [Citation(s) in RCA: 473] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/18/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023]
Abstract
The MYC oncoproteins are thought to stimulate tumor cell growth and proliferation through amplification of gene transcription, a mechanism that has thwarted most efforts to inhibit MYC function as potential cancer therapy. Using a covalent inhibitor of cyclin-dependent kinase 7 (CDK7) to disrupt the transcription of amplified MYCN in neuroblastoma cells, we demonstrate downregulation of the oncoprotein with consequent massive suppression of MYCN-driven global transcriptional amplification. This response translated to significant tumor regression in a mouse model of high-risk neuroblastoma, without the introduction of systemic toxicity. The striking treatment selectivity of MYCN-overexpressing cells correlated with preferential downregulation of super-enhancer-associated genes, including MYCN and other known oncogenic drivers in neuroblastoma. These results indicate that CDK7 inhibition, by selectively targeting the mechanisms that promote global transcriptional amplification in tumor cells, may be useful therapy for cancers that are driven by MYC family oncoproteins.
Collapse
Affiliation(s)
- Edmond Chipumuro
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Eugenio Marco
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard School of Public Health, Boston, MA 02115, USA
| | | | - Nicholas Kwiatkowski
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Clark M Hatheway
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bandana Sharma
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA
| | - Caleb Yeung
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Abigail Altabef
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard School of Public Health, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rani E George
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Young GT, Gutteridge A, Fox HDE, Wilbrey AL, Cao L, Cho LT, Brown AR, Benn CL, Kammonen LR, Friedman JH, Bictash M, Whiting P, Bilsland JG, Stevens EB. Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research. Mol Ther 2014; 22:1530-1543. [PMID: 24832007 PMCID: PMC4435594 DOI: 10.1038/mt.2014.86] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 05/02/2014] [Indexed: 12/25/2022] Open
Abstract
The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell–derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders.
Collapse
Affiliation(s)
| | | | - Heather DE Fox
- Pfizer Neusentis, Cambridge, UK; Current address: Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | - Julia H Friedman
- Oncology Research Unit, Pfizer Global Research and Development, Pearl River, NY, USA
| | | | | | | | | |
Collapse
|
26
|
SHP-2 deletion in postmigratory neural crest cells results in impaired cardiac sympathetic innervation. Proc Natl Acad Sci U S A 2014; 111:E1374-82. [PMID: 24706815 DOI: 10.1073/pnas.1319208111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autonomic innervation is an essential component of cardiovascular regulation that is first established from the neural crest (NC) lineage in utero and continues developing postnatally. Although in vitro studies have indicated that SH2-containing protein tyrosine phosphatase 2 (SHP-2) is a signaling factor critical for regulating sympathetic neuron differentiation, this has yet to be shown in the complex in vivo environment of cardiac autonomic innervation. Targeting SHP-2 within postmigratory NC lineages resulted in a fully penetrant mouse model of diminished sympathetic cardiac innervation and concomitant bradycardia. Immunohistochemistry of the sympathetic nerve marker tyrosine hydroxylase revealed a progressive loss of adrenergic ganglionic neurons and reduction of cardiac sympathetic axon density in Shp2 cKOs. Molecularly, Shp2 cKOs exhibit lineage-specific suppression of activated phospo-ERK1/2 signaling but not of other downstream targets of SHP-2 such as pAKT. Genetic restoration of the phosphorylated-extracellular signal-regulated kinase (pERK) deficiency via lineage-specific expression of constitutively active MEK1 was sufficient to rescue the sympathetic innervation deficit and its physiological consequences. These data indicate that SHP-2 signaling specifically through pERK in postmigratory NC lineages is essential for development and maintenance of sympathetic cardiac innervation postnatally.
Collapse
|
27
|
Stubbusch J, Narasimhan P, Huber K, Unsicker K, Rohrer H, Ernsberger U. Synaptic protein and pan-neuronal gene expression and their regulation by Dicer-dependent mechanisms differ between neurons and neuroendocrine cells. Neural Dev 2013; 8:16. [PMID: 23961995 PMCID: PMC3766641 DOI: 10.1186/1749-8104-8-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/19/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Neurons in sympathetic ganglia and neuroendocrine cells in the adrenal medulla share not only their embryonic origin from sympathoadrenal precursors in the neural crest but also a range of functional features. These include the capacity for noradrenaline biosynthesis, vesicular storage and regulated release. Yet the regulation of neuronal properties in early neuroendocrine differentiation is a matter of debate and the developmental expression of the vesicle fusion machinery, which includes components found in both neurons and neuroendocrine cells, is not resolved. RESULTS Analysis of synaptic protein and pan-neuronal marker mRNA expression during mouse development uncovers profound differences between sympathetic neurons and adrenal chromaffin cells, which result in qualitatively similar but quantitatively divergent transcript profiles. In sympathetic neurons embryonic upregulation of synaptic protein mRNA follows early and persistent induction of pan-neuronal marker transcripts. In adrenal chromaffin cells pan-neuronal marker expression occurs only transiently and synaptic protein messages remain at distinctly low levels throughout embryogenesis. Embryonic induction of synaptotagmin I (Syt1) in sympathetic ganglia and postnatal upregulation of synaptotagmin VII (Syt7) in adrenal medulla results in a cell type-specific difference in isoform prevalence. Dicer 1 inactivation in catecholaminergic cells reduces high neuronal synaptic protein mRNA levels but not their neuroendocrine low level expression. Pan-neuronal marker mRNAs are induced in chromaffin cells to yield a more neuron-like transcript pattern, while ultrastructure is not altered. CONCLUSIONS Our study demonstrates that remarkably different gene regulatory programs govern the expression of synaptic proteins in the neuronal and neuroendocrine branch of the sympathoadrenal system. They result in overlapping but quantitatively divergent transcript profiles. Dicer 1-dependent regulation is required to establish high neuronal mRNA levels for synaptic proteins and to maintain repression of neurofilament messages in neuroendocrine cells.
Collapse
Affiliation(s)
- Jutta Stubbusch
- Max Planck Institute for Brain Research, Deutschordenstrasse 46 D-60528, Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Distinct neuroblastoma-associated alterations of PHOX2B impair sympathetic neuronal differentiation in zebrafish models. PLoS Genet 2013; 9:e1003533. [PMID: 23754957 PMCID: PMC3675015 DOI: 10.1371/journal.pgen.1003533] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/14/2013] [Indexed: 11/19/2022] Open
Abstract
Heterozygous germline mutations and deletions in PHOX2B, a key regulator of autonomic neuron development, predispose to neuroblastoma, a tumor of the peripheral sympathetic nervous system. To gain insight into the oncogenic mechanisms engaged by these changes, we used zebrafish models to study the functional consequences of aberrant PHOX2B expression in the cells of the developing sympathetic nervous system. Allelic deficiency, modeled by phox2b morpholino knockdown, led to a decrease in the terminal differentiation markers th and dbh in sympathetic ganglion cells. The same effect was seen on overexpression of two distinct neuroblastoma-associated frameshift mutations, 676delG and K155X - but not the R100L missense mutation - in the presence of endogenous Phox2b, pointing to their dominant-negative effects. We demonstrate that Phox2b is capable of regulating itself as well as ascl1, and that phox2b deficiency uncouples this autoregulatory mechanism, leading to inhibition of sympathetic neuron differentiation. This effect on terminal differentiation is associated with an increased number of phox2b+, ascl1+, elavl3− cells that respond poorly to retinoic acid. These findings suggest that a reduced dosage of PHOX2B during development, through either a heterozygous deletion or dominant-negative mutation, imposes a block in the differentiation of sympathetic neuronal precursors, resulting in a cell population that is likely to be susceptible to secondary transforming events. Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most common cancer diagnosed in infancy. Although most cases arise sporadically, familial predisposition also occurs in association with mutations in a single copy of the PHOX2B gene, a “master regulator” of sympathetic neuronal development. The exact mechanisms by which these mutations increase susceptibility to neuroblastoma are unclear, primarily because of the paucity of optimal models in which to study very early development of the sympathetic nervous system. We took advantage of the ex vivo development and transparent nature of zebrafish embryos to study the roles of both normal and mutated PHOX2B in development of the sympathetic nervous system. We present data indicating that aberrant PHOX2B expression causes an arrest in the normal maturation of sympathetic neurons, leading to immature cells that are resistant to drug-induced differentiation. Indeed, we demonstrate that phox2b gene “dosage” is important for normal differentiation of sympathetic neurons in the zebrafish and suggest that the population of immature cells resulting from a decreased dosage of this pivotal factor may be susceptible to secondary mutations that could ultimately lead to neuroblastoma.
Collapse
|
29
|
The transcription factor Hmx1 and growth factor receptor activities control sympathetic neurons diversification. EMBO J 2013; 32:1613-25. [PMID: 23591430 DOI: 10.1038/emboj.2013.85] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/15/2013] [Indexed: 01/17/2023] Open
Abstract
The sympathetic nervous system relies on distinct populations of neurons that use noradrenaline or acetylcholine as neurotransmitter. We show that fating of the sympathetic lineage at early stages results in hybrid precursors from which, genetic cell-lineage tracing reveals, all types progressively emerge by principal mechanisms of maintenance, repression and induction of phenotypes. The homeobox transcription factor HMX1 represses Tlx3 and Ret, induces TrkA and maintains tyrosine hydroxylase (Th) expression in precursors, thus driving segregation of the noradrenergic sympathetic fate. Cholinergic sympathetic neurons develop through cross-regulatory interactions between TRKC and RET in precursors, which lead to Hmx1 repression and sustained Tlx3 expression, thereby resulting in failure of TrkA induction and loss of maintenance of Th expression. Our results provide direct evidence for a model in which diversification of noradrenergic and cholinergic sympathetic neurons is based on a principle of cross-repressive functions in which the specific cell fates are directed by an active suppression of the expression of transcription factors and receptors that direct the alternative fate.
Collapse
|
30
|
Vincentz JW, Firulli BA, Lin A, Spicer DB, Howard MJ, Firulli AB. Twist1 controls a cell-specification switch governing cell fate decisions within the cardiac neural crest. PLoS Genet 2013; 9:e1003405. [PMID: 23555309 PMCID: PMC3605159 DOI: 10.1371/journal.pgen.1003405] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/07/2013] [Indexed: 01/31/2023] Open
Abstract
Neural crest cells are multipotent progenitor cells that can generate both ectodermal cell types, such as neurons, and mesodermal cell types, such as smooth muscle. The mechanisms controlling this cell fate choice are not known. The basic Helix-loop-Helix (bHLH) transcription factor Twist1 is expressed throughout the migratory and post-migratory cardiac neural crest. Twist1 ablation or mutation of the Twist-box causes differentiation of ectopic neuronal cells, which molecularly resemble sympathetic ganglia, in the cardiac outflow tract. Twist1 interacts with the pro-neural factor Sox10 via its Twist-box domain and binds to the Phox2b promoter to repress transcriptional activity. Mesodermal cardiac neural crest trans-differentiation into ectodermal sympathetic ganglia-like neurons is dependent upon Phox2b function. Ectopic Twist1 expression in neural crest precursors disrupts sympathetic neurogenesis. These data demonstrate that Twist1 functions in post-migratory neural crest cells to repress pro-neural factors and thereby regulate cell fate determination between ectodermal and mesodermal lineages. During vertebrate development, a unique population of cells, termed neural crest cells, migrates throughout the developing embryo, generating various cell types, for example, the smooth muscle that divides the aorta and pulmonary artery where they connect to the heart, and the autonomic neurons, which coordinate organ function. The distinctions between neural crest cells that will form smooth muscle and those that will become neurons are thought to occur prior to migration. Here, we show that, in mice with mutations of the transcription factor Twist1, a subpopulation of presumptive smooth muscle cells, following migration to the heart, instead mis-specify to resemble autonomic neurons. Twist1 represses transcription of the pro-neural factor Phox2b both through antagonism of its upstream effector, Sox10, and through direct binding to its promoter. Phox2b is absolutely required for autonomic neuron development, and indeed, the aberrant neurons in Twist1 mutants disappear when Phox2b is also mutated. Ectopic Twist1 expression within all neural crest cells disrupts the specification of normal autonomic neurons. Collectively, these data reveal that neural crest cells can alter their cell fate from mesoderm to ectoderm after they have migrated and that Twist1 functions to maintain neural crest cell potency during embryonic development.
Collapse
Affiliation(s)
- Joshua W Vincentz
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatrics Cardiology, Departments of Anatomy, Indiana University Medical School, Indianapolis, Indiana, United States of America
| | | | | | | | | | | |
Collapse
|
31
|
Regulation of gene expression during early neuronal differentiation: evidence for patterns conserved across neuron populations and vertebrate classes. Cell Tissue Res 2012; 348:1-27. [PMID: 22437873 DOI: 10.1007/s00441-012-1367-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/08/2012] [Indexed: 12/19/2022]
Abstract
Analysis of transcription factor function during neurogenesis has provided a huge amount of data on the generation and specification of diverse neuron populations in the central and peripheral nervous systems of vertebrates. However, an understanding of the induction of key neuron functions including electrical information processing and synaptic transmission lags seriously behind. Whereas pan-neuronal markers such as neurofilaments, neuron-specific tubulin and RNA-binding proteins have often been included in developmental analysis, the molecular players underlying electrical activity and transmitter release have been neglected in studies addressing gene expression during neuronal induction. Here, I summarize the evidence for a distinct accumulation pattern of mRNAs for synaptic proteins, a pattern that is delayed compared with pan-neuronal gene expression during neurogenesis. The conservation of this pattern across diverse avian and mammalian neuron populations suggests a common mechanism for the regulation of various sets of neuronal genes during initial neuronal differentiation. The co-regulation of genes coding for synaptic proteins from embryonic to postnatal development indicates that the expression of the players required for synaptic transmission shares common regulatory features. For the ion channels involved in neuronal electrical activity, such as voltage-gated sodium channels, the situation is less clear because of the lack of comparative studies early during neurogenesis. Transcription factors have been characterized that regulate the expression of synaptic proteins in vitro and in vivo. They currently do not explain the co-regulation of these genes across different neuron populations. The neuron-restrictive silencing factor NRSF/REST targets a large gene set, but not all of the genes coding for pan-neuronal, synaptic and ion channel proteins. The discrepancy between NRSF/REST loss-of-function and silencer-to-activator-switch studies leaves the full functional implications of this factor open. Together with microRNAs, splicing regulators, chromatin remodellers and an increasing list of transcriptional regulators, the factor is embedded in feedback circuits with the potential to orchestrate neuronal differentiation. The precise regulation of the coordinated expression of proteins underlying key neuronal functions by these circuits during neuronal induction is a major emerging topic.
Collapse
|
32
|
Abstract
Autonomic neuron development is controlled by a network of transcription factors, which is induced by bone morphogenetic protein signalling in neural crest progenitor cells. This network intersects with a transcriptional program in migratory neural crest cells that pre-specifies autonomic neuron precursor cells. Recent findings demonstrate that the transcription factors acting in the initial specification and differentiation of sympathetic neurons are also important for the proliferation of progenitors and immature neurons during neurogenesis. Elimination of Phox2b, Hand2 and Gata3 in differentiated neurons affects the expression of subtype-specific and/or generic neuronal properties or neuron survival. Taken together, transcription factors previously shown to act in initial neuron specification and differentiation display a much broader spectrum of functions, including control of neurogenesis and the maintenance of subtype characteristics and survival of mature neurons.
Collapse
Affiliation(s)
- Hermann Rohrer
- Research Group Developmental Neurobiology, Max-Planck-Institute for Brain Research, 60528 Frankfurt/Main, Germany.
| |
Collapse
|
33
|
Reiff T, Huber L, Kramer M, Delattre O, Janoueix-Lerosey I, Rohrer H. Midkine and Alk signaling in sympathetic neuron proliferation and neuroblastoma predisposition. Development 2011; 138:4699-708. [PMID: 21989914 DOI: 10.1242/dev.072157] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood and arises from cells of the developing sympathoadrenergic lineage. Activating mutations in the gene encoding the ALK tyrosine kinase receptor predispose for NB. Here, we focus on the normal function of Alk signaling in the control of sympathetic neuron proliferation, as well as on the effects of mutant ALK. Forced expression of wild-type ALK and NB-related constitutively active ALK mutants in cultures of proliferating immature sympathetic neurons results in a strong proliferation increase, whereas Alk knockdown and pharmacological inhibition of Alk activity decrease proliferation. Alk activation upregulates NMyc and trkB and maintains Alk expression by an autoregulatory mechanism involving Hand2. The Alk-ligand Midkine (Mk) is expressed in immature sympathetic neurons and in vivo inhibition of Alk signaling by virus-mediated shRNA knockdown of Alk and Mk leads to strongly reduced sympathetic neuron proliferation. Taken together, these results demonstrate that the extent and timing of sympathetic neurogenesis is controlled by Mk/Alk signaling. The predisposition for NB caused by activating ALK mutations may thus be explained by aberrations of normal neurogenesis, i.e. elevated and sustained Alk signaling and increased NMyc expression.
Collapse
Affiliation(s)
- Tobias Reiff
- Research Group Developmental Neurobiology, Max Planck Institute for Brain Research, Deutschordenstr. 46, 60528, Frankfurt/M, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Huber L, Ferdin M, Holzmann J, Stubbusch J, Rohrer H. HoxB8 in noradrenergic specification and differentiation of the autonomic nervous system. Dev Biol 2011; 363:219-33. [PMID: 22236961 DOI: 10.1016/j.ydbio.2011.12.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 10/25/2022]
Abstract
Different prespecification of mesencephalic and trunk neural crest cells determines their response to environmental differentiation signals and contributes to the generation of different autonomic neuron subtypes, parasympathetic ciliary neurons in the head and trunk noradrenergic sympathetic neurons. The differentiation of ciliary and sympathetic neurons shares many features, including the initial BMP-induced expression of noradrenergic characteristics that is, however, subsequently lost in ciliary but maintained in sympathetic neurons. The molecular basis of specific prespecification and differentiation patterns has remained unclear. We show here that HoxB gene expression in trunk neural crest is maintained in sympathetic neurons. Ectopic expression of a single HoxB gene, HoxB8, in mesencephalic neural crest results in a strongly increased expression of sympathetic neuron characteristics like the transcription factor Hand2, tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) in ciliary neurons. Other subtype-specific properties like RGS4 and RCad are not induced. HoxB8 has only minor effects in postmitotic ciliary neurons and is unable to induce TH and DBH in the enteric nervous system. Thus, we conclude that HoxB8 acts by maintaining noradrenergic properties transiently expressed in ciliary neuron progenitors during normal development. HoxC8, HoxB9, HoxB1 and HoxD10 elicit either small and transient or no effects on noradrenergic differentiation, suggesting a selective effect of HoxB8. These results implicate that Hox genes contribute to the differential development of autonomic neuron precursors by maintaining noradrenergic properties in the trunk sympathetic neuron lineage.
Collapse
Affiliation(s)
- Leslie Huber
- Research Group Developmental Neurobiology, Max Planck Institute for Brain Research, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
35
|
Chesler L, Weiss WA. Genetically engineered murine models--contribution to our understanding of the genetics, molecular pathology and therapeutic targeting of neuroblastoma. Semin Cancer Biol 2011; 21:245-55. [PMID: 21958944 PMCID: PMC3504935 DOI: 10.1016/j.semcancer.2011.09.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/14/2011] [Indexed: 01/01/2023]
Abstract
Genetically engineered mouse models (GEMM) have made major contributions to a molecular understanding of several adult cancers and these results are increasingly being translated into the pre-clinical setting where GEMM will very likely make a major impact on the development of targeted therapeutics in the near future. The relationship of pediatric cancers to altered developmental programs, and their genetic simplicity relative to adult cancers provides unique opportunities for the application of new advances in GEMM technology. In neuroblastoma the well-characterized TH-MYCN GEMM is increasingly used for a variety of molecular-genetic, developmental and pre-clinical therapeutics applications. We discuss: the present and historical application of GEMM to neuroblastoma research, future opportunities, and relevant targets suitable for new GEMM strategies in neuroblastoma. We review the potential of these models to contribute both to an understanding of the developmental nature of neuroblastoma and to improved therapy for this disease.
Collapse
Affiliation(s)
- Louis Chesler
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research & The Royal Marsden NHS Trust, Sutton, Surrey SM2 5NG, United Kingdom.
| | | |
Collapse
|
36
|
Fan Y, Huang J, Duffourc M, Kao RL, Ordway GA, Huang R, Zhu MY. Transcription factor Phox2 upregulates expression of norepinephrine transporter and dopamine β-hydroxylase in adult rat brains. Neuroscience 2011; 192:37-53. [PMID: 21763404 PMCID: PMC3166407 DOI: 10.1016/j.neuroscience.2011.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 01/22/2023]
Abstract
Degeneration of the noradrenergic locus coeruleus (LC) in aging and neurodegenerative diseases is well documented. Slowing or reversing this effect may have therapeutic implications. Phox2a and Phox2b are homeodomain transcriptional factors that function as determinants of the noradrenergic phenotype during embryogenesis. In the present study, recombinant lentiviral eGFP-Phox2a and -Phox2b (vPhox2a and vPhox2b) were constructed to study the effects of Phox2a/2b over-expression on dopamine β-hydroxylase (DBH) and norepinephrine transporter (NET) levels in central noradrenergic neurons. Microinjection of vPhox2 into the LC of adult rats significantly increased Phox2 mRNA levels in the LC region. Over-expression of either Phox2a or Phox2b in the LC was paralleled by significant increases in mRNA and protein levels of DBH and NET in the LC. Similar increases in DBH and NET protein levels were observed in the hippocampus following vPhox2 microinjection. In the frontal cortex, only NET protein levels were significantly increased by vPhox2 microinjection. Over-expression of Phox2 genes resulted in a significant increase in BrdU-positive cells in the hippocampal dentate gyrus. The present study demonstrates an upregulatory effect of Phox2a and Phox2b on the expression of DBH and NET in noradrenergic neurons of rat brains, an effect not previously shown in adult animals. Phox2 genes may play an important role in maintaining the function of the noradrenergic neurons after birth, and regulation of Phox2 gene expression may have therapeutic utility in aging or disorders involving degeneration of noradrenergic neurons.
Collapse
Affiliation(s)
- Yan Fan
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
- Department of Biochemistry and Molecular Biology, Soochow University School of Medicine, Suzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Michelle Duffourc
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Race L. Kao
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Gregory A. Ordway
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Rui Huang
- Department of Biochemistry and Molecular Biology, Soochow University School of Medicine, Suzhou, China
| | - Meng-Yang Zhu
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
37
|
Mohlin SA, Wigerup C, Påhlman S. Neuroblastoma aggressiveness in relation to sympathetic neuronal differentiation stage. Semin Cancer Biol 2011; 21:276-82. [PMID: 21945591 DOI: 10.1016/j.semcancer.2011.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 09/08/2011] [Indexed: 01/01/2023]
Abstract
Neuroblastoma is a childhood malignancy of the sympathetic neuronal lineage. It is a rare disease, but since it is frequently diagnosed during infancy, neuroblastoma causes life-long medical follow up of those children that survive the disease. It was early recognized that a high tumor cell differentiation stage correlates to favorable clinical stage and positive clinical outcome. Today, highly differentiated tumors are surgically removed and not further treated. Cells of many established human neuroblastoma cell lines have the capacity to differentiate when stimulated properly, and these cell lines have been used as models for studying and understanding central concepts of tumor cell differentiation. One recent aspect of this issue is the observation that tumor cells can dedifferentiate and gain a stem cell-like phenotype during hypoxic conditions, which was first shown in neuroblastoma. Aberrant or blocked differentiation is a central aspect of neuroblastoma genesis. In this review we summarize known genetic and non-genetic events in neuroblastoma that might be coupled to an aberrant sympathetic neuronal differentiation and thereby indirectly influencing tumorigenesis and/or aggressive neuroblastoma behavior.
Collapse
Affiliation(s)
- Sofie A Mohlin
- Center for Molecular Pathology, Department of Laboratory Medicine, CREATE Health, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | |
Collapse
|
38
|
Stubbusch J, Majdazari A, Schmidt M, Schütz G, Deller T, Rohrer H. Generation of the tamoxifen-inducible DBH-Cre transgenic mouse line DBH-CT. Genesis 2011; 49:935-41. [PMID: 21634003 DOI: 10.1002/dvg.20773] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 05/05/2011] [Accepted: 05/25/2011] [Indexed: 11/11/2022]
Abstract
We generated transgenic mice bearing a tamoxifen-dependent Cre recombinase expressed under the control of the dopamine-β-hydroxylase promoter. By crossing to the ROSA26 reporter mice we show that tamoxifen-induced Cre recombinase in adult mice specifically activates β-galactosidase expression in differentiated noradrenergic neurons of the central and peripheral nervous system. Tamoxifen application in adult mice did not induce β-galactosidase activity in parasympathetic neurons that transiently express DBH during development. Thus, this transgenic mouse line represents a valuable tool to study gene function in mature noradrenergic neurons by conditional inactivation.
Collapse
Affiliation(s)
- Jutta Stubbusch
- Department of Neurochemistry, Research Group Developmental Neurobiology, Max-Planck-Institute for Brain Research, Frankfurt/M, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Flames N, Hobert O. Transcriptional Control of the Terminal Fate of Monoaminergic Neurons. Annu Rev Neurosci 2011; 34:153-84. [DOI: 10.1146/annurev-neuro-061010-113824] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nuria Flames
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032;
- Genes & Disease Program, Center for Genomic Regulation (CRG), Barcelona, Spain E-08003;
- Present address: Instituto de Biomedicina de Valencia IBV-CSIC, E-46010 Valencia, Spain
| | - Oliver Hobert
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032;
| |
Collapse
|
40
|
Schmidt M, Huber L, Majdazari A, Schütz G, Williams T, Rohrer H. The transcription factors AP-2β and AP-2α are required for survival of sympathetic progenitors and differentiated sympathetic neurons. Dev Biol 2011; 355:89-100. [DOI: 10.1016/j.ydbio.2011.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 11/26/2022]
|
41
|
Blentic A, Chambers D, Skinner A, Begbie J, Graham A. The formation of the cranial ganglia by placodally-derived sensory neuronal precursors. Mol Cell Neurosci 2011; 46:452-9. [DOI: 10.1016/j.mcn.2010.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/12/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022] Open
|
42
|
CtBP2 downregulation during neural crest specification induces expression of Mitf and REST, resulting in melanocyte differentiation and sympathoadrenal lineage suppression. Mol Cell Biol 2011; 31:955-70. [PMID: 21199918 DOI: 10.1128/mcb.01062-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trunk neural crest (NC) cells differentiate to neurons, melanocytes, and glia. In NC cultures, cyclic AMP (cAMP) induces melanocyte differentiation while suppressing the neuronal sympathoadrenal lineage, depending on the signal intensity. Melanocyte differentiation requires activation of CREB and cAMP-dependent protein kinase A (PKA), but the role of PKA is not understood. We have demonstrated, in NC cultures, cAMP-induced transcription of the microphthalmia-associated transcription factor gene (Mitf) and the RE-1 silencing transcription factor gene (REST), both Wnt-regulated genes. In NC cultures and zebrafish, knockdown of the corepressor of Wnt-mediated transcription C-terminal binding protein 2 (CtBP2) but not CtBP1 derepressed Mitf and REST expression and enhanced melanocyte differentiation. cAMP in NC and B16 melanoma cells decreased CtBP2 protein levels, while inhibition of PKA or proteasome rescued CtBP2 degradation. Interestingly, knockdown of homeodomain-interacting protein kinase 2 (HIPK2), a CtBP stability modulator, increased CtBP2 levels, suppressed expression of Mitf, REST, and melanocyte differentiation, and increased neuronal gene expression and sympathoadrenal lineage differentiation. We conclude that cAMP/PKA via HIPK2 promotes CtBP2 degradation, leading to Mitf and REST expression. Mitf induces melanocyte specification, and REST suppresses neuron-specific gene expression and the sympathoadrenal lineage. Our studies identify a novel role for REST in NC cell differentiation and suggest cross talk between cAMP and Wnt signaling in NC lineage specification.
Collapse
|
43
|
Early acquisition of neural crest competence during hESCs neuralization. PLoS One 2010; 5:e13890. [PMID: 21085480 PMCID: PMC2976694 DOI: 10.1371/journal.pone.0013890] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 09/23/2010] [Indexed: 11/19/2022] Open
Abstract
Background Neural crest stem cells (NCSCs) are a transient multipotent embryonic cell population that represents a defining characteristic of vertebrates. The neural crest (NC) gives rise to many derivatives including the neurons and glia of the sensory and autonomic ganglia of the peripheral nervous system, enteric neurons and glia, melanocytes, and the cartilaginous, bony and connective tissue of the craniofacial skeleton, cephalic neuroendocrine organs, and some heart vessels. Methodology/Principal Findings We present evidence that neural crest (NC) competence can be acquired very early when human embryonic stem cells (hESCs) are selectively neuralized towards dorsal neuroepithelium in the absence of feeder cells in fully defined conditions. When hESC-derived neurospheres are plated on fibronectin, some cells emigrate onto the substrate. These early migratory Neural Crest Stem Cells (emNCSCs) uniformly upregulate Sox10 and vimentin, downregulate N-cadherin, and remodel F-actin, consistent with a transition from neuroepithelium to a mesenchymal NC cell. Over 13% of emNCSCs upregulate CD73, a marker of mesenchymal lineage characteristic of cephalic NC and connexin 43, found on early migratory NC cells. We demonstrated that emNCSCs give rise in vitro to all NC lineages, are multipotent on clonal level, and appropriately respond to developmental factors. We suggest that human emNCSC resemble cephalic NC described in model organisms. Ex vivo emNCSCs can differentiate into neurons in Ret.k- mouse embryonic gut tissue cultures and transplanted emNCSCs incorporate into NC-derived structures but not CNS tissues in chick embryos. Conclusions/Significance These findings will provide a framework for further studying early human NC development including the epithelial to mesenchymal transition during NC delamination.
Collapse
|
44
|
Kuo BR, Erickson CA. Regional differences in neural crest morphogenesis. Cell Adh Migr 2010; 4:567-85. [PMID: 20962585 PMCID: PMC3011260 DOI: 10.4161/cam.4.4.12890] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/02/2010] [Indexed: 12/11/2022] Open
Abstract
Neural crest cells are pluripotent cells that emerge from the neural epithelium, migrate extensively, and differentiate into numerous derivatives, including neurons, glial cells, pigment cells and connective tissue. Major questions concerning their morphogenesis include: 1) what establishes the pathways of migration and 2) what controls the final destination and differentiation of various neural crest subpopulations. These questions will be addressed in this review. Neural crest cells from the trunk level have been explored most extensively. Studies show that melanoblasts are specified shortly after they depart from the neural tube, and this specification directs their migration into the dorsolateral pathway. We also consider other reports that present strong evidence for ventrally migrating neural crest cells being similarly fate restricted. Cranial neural crest cells have been less analyzed in this regard but the preponderance of evidence indicates that either the cranial neural crest cells are not fate-restricted, or are extremely plastic in their developmental capability and that specification does not control pathfinding. Thus, the guidance mechanisms that control cranial neural crest migration and their behavior vary significantly from the trunk. The vagal neural crest arises at the axial level between the cranial and trunk neural crest and represents a transitional cell population between the head and trunk neural crest. We summarize new data to support this claim. In particular, we show that: 1) the vagal-level neural crest cells exhibit modest developmental bias; 2) there are differences in the migratory behavior between the anterior and the posterior vagal neural crest cells reminiscent of the cranial and the trunk neural crest, respectively; 3) the vagal neural crest cells take the dorsolateral pathway to the pharyngeal arches and the heart, but the ventral pathway to the peripheral nervous system and the gut. However, these pathways are not rigidly specified because of prior fate restriction. Understanding the molecular, cellular and behavioral differences between these three populations of neural crest cells will be of enormous assistance when trying to understand the evolution of the neck.
Collapse
Affiliation(s)
- Bryan R Kuo
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
45
|
Potzner MR, Tsarovina K, Binder E, Penzo-Méndez A, Lefebvre V, Rohrer H, Wegner M, Sock E. Sequential requirement of Sox4 and Sox11 during development of the sympathetic nervous system. Development 2010; 137:775-84. [PMID: 20147379 DOI: 10.1242/dev.042101] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The highly related transcription factors Sox4 and Sox11 are expressed in the developing sympathetic nervous system. In the mouse, Sox11 appears first, whereas Sox4 is prevalent later. Using mouse mutagenesis and overexpression strategies in chicken, we studied the role of both SoxC proteins in this tissue. Neither Sox4 nor Sox11 predominantly functioned by promoting pan-neuronal or noradrenergic differentiation of sympathetic neurons as might have been expected from studies in neuronal precursors of the central nervous system. The transcriptional network that regulates the differentiation of sympathetic neurons remained intact and expression of noradrenergic markers showed only minor alterations. Instead, Sox11 was required in early sympathetic ganglia for proliferation of tyrosine hydroxylase-expressing cells, whereas Sox4 ensured the survival of these cells at later stages. In the absence of both Sox4 and Sox11, sympathetic ganglia remained hypoplastic throughout embryogenesis because of consecutive proliferation and survival defects. As a consequence, sympathetic ganglia were rudimentary in the adult and sympathetic innervation of target tissues was impaired leading to severe dysautonomia.
Collapse
Affiliation(s)
- Michaela R Potzner
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ernfors P. Cellular origin and developmental mechanisms during the formation of skin melanocytes. Exp Cell Res 2010; 316:1397-407. [PMID: 20211169 DOI: 10.1016/j.yexcr.2010.02.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 02/28/2010] [Indexed: 11/20/2022]
Abstract
Melanocytes are derived from the neural crest (NC), which are transient multipotent cells arising by delamination from the developing dorsal neural tube. During recent years, signaling systems and molecular mechanisms of melanocyte development have been studied in detail, but the exact diversification of the NC into melanocytes and how they migrate, expand and disperse in the skin have not been fully understood. The recent finding that Schwann cell precursors (SCPs) of the growing nerve represents a stem cell niche from which various cell types, including Schwann cells, endoneural fibroblasts and melanocytes arise has exposed new knowledge on the cellular basis for melanocyte development. This opens for the identification of new factors and reinterpretation of old data on cell fate instructive, proliferative, survival and cell homing factors participating in melanocyte development.
Collapse
Affiliation(s)
- Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
47
|
Zelko FA, Nelson MN, Leurgans SE, Berry-Kravis EM, Weese-Mayer DE. Congenital central hypoventilation syndrome: neurocognitive functioning in school age children. Pediatr Pulmonol 2010; 45:92-8. [PMID: 19960523 DOI: 10.1002/ppul.21170] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Examine indices of neurocognitive functioning in children with PHOX2B mutation-confirmed neonatal onset congenital central hypoventilation syndrome (CCHS) and relate them to indices of PHOX2B genotype, demographics, and disease severity. METHODS Subjects were 20 patients with PHOX2B mutation-confirmed CCHS diagnosed as neonates who had undergone neurocognitive assessment in the course of clinical care at the Rush Children's Hospital CCHS Center between 1990 and 2006. Neurocognitive variables of interest included Full Scale IQ (FSIQ) and Wechsler-derived marker indices (subtests) of verbal comprehension (Vocabulary), visuoperceptual reasoning (Block Design), working memory (Digit Span), and clerical/processing speed (Coding). RESULTS Single sample t-tests revealed participants' general intelligence index (FSIQ; mean 84.9, SD 23.6) to be lower than the general population, though the range of FSIQ observed was broad. Visuoperceptual reasoning and clerical/visuographic speed marker indices were similarly depressed. These deficits were related to special education participation but not to PHOX2B genotype status or other demographic and clinical risk factors. CONCLUSIONS PHOX2B mutation-confirmed CCHS confers risk for adverse neurocognitive outcome, though the range of functioning observed raises questions about factors that may contribute to neurocognitive variability. Visuoperceptual reasoning and clerical/visuographic speed appear particularly vulnerable. PHOX2B genotype and disease severity indicators were unrelated to neurocognitive indices, possibly due to our modest sample. Future research should employ comprehensive neurocognitive assessment emphasizing visuoperceptual ability, mental speed, attention, and information processing efficiency. Increased recognition and expedited diagnosis with PHOX2B testing should allow larger studies of the relationship between neurocognitive functioning, PHOX2B genotype/mutation, and disease severity and management.
Collapse
Affiliation(s)
- Frank A Zelko
- Department of Child and Adolescent Psychiatry, Children's Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60614, USA
| | | | | | | | | |
Collapse
|
48
|
The bHLH transcription factor Hand2 regulates the expression of nanog in ANS differentiation. Biochem Biophys Res Commun 2009; 390:223-9. [DOI: 10.1016/j.bbrc.2009.09.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 09/22/2009] [Indexed: 11/19/2022]
|
49
|
Apostolova G, Dechant G. Development of neurotransmitter phenotypes in sympathetic neurons. Auton Neurosci 2009; 151:30-8. [DOI: 10.1016/j.autneu.2009.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Generating diversity: Mechanisms regulating the differentiation of autonomic neuron phenotypes. Auton Neurosci 2009; 151:17-29. [PMID: 19819195 DOI: 10.1016/j.autneu.2009.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sympathetic and parasympathetic postganglionic neurons innervate a wide range of target tissues. The subpopulation of neurons innervating each target tissue can express unique combinations of neurotransmitters, neuropeptides, ion channels and receptors, which together comprise the chemical phenotype of the neurons. The target-specific chemical phenotype shown by autonomic postganglionic neurons arises during development. In this review, we examine the different mechanisms that generate such a diversity of neuronal phenotypes from the pool of apparently homogenous neural crest progenitor cells that form the sympathetic ganglia. There is evidence that the final chemical phenotype of autonomic postganglionic neurons is generated by both signals at the level of the cell body that trigger cell-autonomous programs, as well as signals from the target tissues they innervate.
Collapse
|