1
|
Kurup AJ, Bailet F, Fürthauer M. Myosin1G promotes Nodal signaling to control zebrafish left-right asymmetry. Nat Commun 2024; 15:6547. [PMID: 39095343 PMCID: PMC11297164 DOI: 10.1038/s41467-024-50868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Myosin1D (Myo1D) has recently emerged as a conserved regulator of animal Left-Right (LR) asymmetry that governs the morphogenesis of the vertebrate central LR Organizer (LRO). In addition to Myo1D, the zebrafish genome encodes the closely related Myo1G. Here we show that while Myo1G also controls LR asymmetry, it does so through an entirely different mechanism. Myo1G promotes the Nodal-mediated transfer of laterality information from the LRO to target tissues. At the cellular level, Myo1G is associated with endosomes positive for the TGFβ signaling adapter SARA. myo1g mutants have fewer SARA-positive Activin receptor endosomes and a reduced responsiveness to Nodal ligands that results in a delay of left-sided Nodal propagation and tissue-specific laterality defects in organs that are most distant from the LRO. Additionally, Myo1G promotes signaling by different Nodal ligands in specific biological contexts. Our findings therefore identify Myo1G as a context-dependent regulator of the Nodal signaling pathway.
Collapse
|
2
|
Azbazdar Y, De Robertis EM. Molecular analysis of a self-organizing signaling pathway for Xenopus axial patterning from egg to tailbud. Proc Natl Acad Sci U S A 2024; 121:e2408346121. [PMID: 38968117 PMCID: PMC11252917 DOI: 10.1073/pnas.2408346121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 07/07/2024] Open
Abstract
Xenopus embryos provide a favorable material to dissect the sequential steps that lead to dorsal-ventral (D-V) and anterior-posterior (A-P) cell differentiation. Here, we analyze the signaling pathways involved in this process using loss-of-function and gain-of-function approaches. The initial step was provided by Hwa, a transmembrane protein that robustly activates early β-catenin signaling when microinjected into the ventral side of the embryo leading to complete twinned axes. The following step was the activation of Xenopus Nodal-related growth factors, which could rescue the depletion of β-catenin and were themselves blocked by the extracellular Nodal antagonists Cerberus-Short and Lefty. During gastrulation, the Spemann-Mangold organizer secretes a cocktail of growth factor antagonists, of which the BMP antagonists Chordin and Noggin could rescue simultaneously D-V and A-P tissues in β-catenin-depleted embryos. Surprisingly, this rescue occurred in the absence of any β-catenin transcriptional activity as measured by β-catenin activated Luciferase reporters. The Wnt antagonist Dickkopf (Dkk1) strongly synergized with the early Hwa signal by inhibiting late Wnt signals. Depletion of Sizzled (Szl), an antagonist of the Tolloid chordinase, was epistatic over the Hwa and Dkk1 synergy. BMP4 mRNA injection blocked Hwa-induced ectopic axes, and Dkk1 inhibited BMP signaling late, but not early, during gastrulation. Several unexpected findings were made, e.g., well-patterned complete embryonic axes are induced by Chordin or Nodal in β-catenin knockdown embryos, dorsalization by Lithium chloride (LiCl) is mediated by Nodals, Dkk1 exerts its anteriorizing and dorsalizing effects by regulating late BMP signaling, and the Dkk1 phenotype requires Szl.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095-1662
| | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095-1662
| |
Collapse
|
3
|
Asashima M, Satou-Kobayashi Y. Spemann-Mangold organizer and mesoderm induction. Cells Dev 2024; 178:203903. [PMID: 38295873 DOI: 10.1016/j.cdev.2024.203903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The discovery of the Spemann-Mangold organizer strongly influenced subsequent research on embryonic induction, with research aiming to elucidate the molecular characteristics of organizer activity being currently underway. Herein, we review the history of research on embryonic induction, and describe how the mechanisms of induction phenomena and developmental processes have been investigated. Classical experiments investigating the differentiation capacity and inductive activity of various embryonic regions were conducted by many researchers, and important theories of region-specific induction and the concept for chain of induction were proposed. The transition from experimental embryology to developmental biology has enabled us to understand the mechanisms of embryonic induction at the molecular level. Consequently, many inducing substances and molecules such as transcriptional factors and peptide growth factors involved in the organizer formation were identified. One of peptide growth factors, activin, acts as a mesoderm- and endoderm-inducing substance. Activin induces several tissues and organs from the undifferentiated cell mass of amphibian embryos in a concentration-dependent manner. We review the extent to which we can control in vitro organogenesis from undifferentiated cells, and discuss the application to stem cell-based regenerative medicine based on insights gained from animal experiments, such as in amphibians.
Collapse
Affiliation(s)
- Makoto Asashima
- Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-0003, Japan.
| | - Yumeko Satou-Kobayashi
- Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-0003, Japan
| |
Collapse
|
4
|
Powell GT, Faro A, Zhao Y, Stickney H, Novellasdemunt L, Henriques P, Gestri G, White ER, Ren J, Lu W, Young RM, Hawkins TA, Cavodeassi F, Schwarz Q, Dreosti E, Raible DW, Li VSW, Wright GJ, Jones EY, Wilson SW. Cachd1 interacts with Wnt receptors and regulates neuronal asymmetry in the zebrafish brain. Science 2024; 384:573-579. [PMID: 38696577 PMCID: PMC7615972 DOI: 10.1126/science.ade6970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/27/2024] [Indexed: 05/04/2024]
Abstract
Neurons on the left and right sides of the nervous system often show asymmetric properties, but how such differences arise is poorly understood. Genetic screening in zebrafish revealed that loss of function of the transmembrane protein Cachd1 resulted in right-sided habenula neurons adopting left-sided identity. Cachd1 is expressed in neuronal progenitors, functions downstream of asymmetric environmental signals, and influences timing of the normally asymmetric patterns of neurogenesis. Biochemical and structural analyses demonstrated that Cachd1 can bind simultaneously to Lrp6 and Frizzled family Wnt co-receptors. Consistent with this, lrp6 mutant zebrafish lose asymmetry in the habenulae, and epistasis experiments support a role for Cachd1 in modulating Wnt pathway activity in the brain. These studies identify Cachd1 as a conserved Wnt receptor-interacting protein that regulates lateralized neuronal identity in the zebrafish brain.
Collapse
Affiliation(s)
- Gareth T. Powell
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Wellcome Trust Sanger Institute; Cambridge CB10 1SA, UK
| | - Ana Faro
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Heather Stickney
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Departments of Otolaryngology-HNS and Biological Structure, University of Washington; Seattle, WA 98195-7420, USA
- Ambry Genetics; Aliso Viejo, CA 92656, USA
| | - Laura Novellasdemunt
- The Francis Crick Institute; London, NW1 1AT, UK
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology; 08028, Barcelona, Spain
| | - Pedro Henriques
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Gaia Gestri
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | | | - Jingshan Ren
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Weixian Lu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Rodrigo M. Young
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Institute of Ophthalmology, University College London; London, EC1V 9EL, UK
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor; Camino La Piramide 5750, 8580745, Santiago, Chile
| | - Thomas A. Hawkins
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Florencia Cavodeassi
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- St. George’s, University of London; London, SW17 0RE, UK
| | - Quenten Schwarz
- Institute of Ophthalmology, University College London; London, EC1V 9EL, UK
| | - Elena Dreosti
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - David W. Raible
- Departments of Otolaryngology-HNS and Biological Structure, University of Washington; Seattle, WA 98195-7420, USA
| | | | - Gavin J. Wright
- Wellcome Trust Sanger Institute; Cambridge CB10 1SA, UK
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York; York, YO10 5DD, UK
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Stephen W. Wilson
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| |
Collapse
|
5
|
Shi D, Feng W, Zi Z. Machine learning unveils RNA polymerase II binding as a predictor for SMAD2-dependent transcription dynamics in response to Actvin signalling. IET Syst Biol 2024; 18:14-22. [PMID: 38193845 PMCID: PMC10860719 DOI: 10.1049/syb2.12085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 01/10/2024] Open
Abstract
The transforming growth factor-β (TGF-β) superfamily, including Nodal and Activin, plays a critical role in various cellular processes. Understanding the intricate regulation and gene expression dynamics of TGF-β signalling is of interest due to its diverse biological roles. A machine learning approach is used to predict gene expression patterns induced by Activin using features, such as histone modifications, RNA polymerase II binding, SMAD2-binding, and mRNA half-life. RNA sequencing and ChIP sequencing datasets were analysed and differentially expressed SMAD2-binding genes were identified. These genes were classified into activated and repressed categories based on their expression patterns. The predictive power of different features and combinations was evaluated using logistic regression models and their performances were assessed. Results showed that RNA polymerase II binding was the most informative feature for predicting the expression patterns of SMAD2-binding genes. The authors provide insights into the interplay between transcriptional regulation and Activin signalling and offers a computational framework for predicting gene expression patterns in response to cell signalling.
Collapse
Affiliation(s)
- Dan Shi
- Max Planck Institute for Molecular GeneticsOtto Warburg LaboratoryBerlinGermany
| | - Weihua Feng
- Zhengzhou Tobacco Research Institute of China National Tobacco CorporationZhengzhouChina
| | - Zhike Zi
- Max Planck Institute for Molecular GeneticsOtto Warburg LaboratoryBerlinGermany
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
6
|
Nagorska A, Zaucker A, Lambert F, Inman A, Toral-Perez S, Gorodkin J, Wan Y, Smutny M, Sampath K. Translational control of furina by an RNA regulon is important for left-right patterning, heart morphogenesis and cardiac valve function. Development 2023; 150:dev201657. [PMID: 38032088 PMCID: PMC10730018 DOI: 10.1242/dev.201657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Heart development is a complex process that requires asymmetric positioning of the heart, cardiac growth and valve morphogenesis. The mechanisms controlling heart morphogenesis and valve formation are not fully understood. The pro-convertase FurinA functions in heart development across vertebrates. How FurinA activity is regulated during heart development is unknown. Through computational analysis of the zebrafish transcriptome, we identified an RNA motif in a variant FurinA transcript harbouring a long 3' untranslated region (3'UTR). The alternative 3'UTR furina isoform is expressed prior to organ positioning. Somatic deletions in the furina 3'UTR lead to embryonic left-right patterning defects. Reporter localisation and RNA-binding assays show that the furina 3'UTR forms complexes with the conserved RNA-binding translational repressor, Ybx1. Conditional ybx1 mutant embryos show premature and increased Furin reporter expression, abnormal cardiac morphogenesis and looping defects. Mutant ybx1 hearts have an expanded atrioventricular canal, abnormal sino-atrial valves and retrograde blood flow from the ventricle to the atrium. This is similar to observations in humans with heart valve regurgitation. Thus, the furina 3'UTR element/Ybx1 regulon is important for translational repression of FurinA and regulation of heart development.
Collapse
Affiliation(s)
- Agnieszka Nagorska
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Andreas Zaucker
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Finnlay Lambert
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore 138672
| | - Angus Inman
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Sara Toral-Perez
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jan Gorodkin
- Center for non-coding RNAs in Technology and Health, Department of Veterinary and Animal Sciences, Faculty for Health and Medical Sciences, University of Copenhagen, Grønnega °rdsvej 3, 1870 Frederiksberg C, Denmark
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore 138672
| | - Michael Smutny
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- Centre for Mechanochemical Cell Biology, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Karuna Sampath
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- Centre for Mechanochemical Cell Biology, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- Centre for Early Life, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
7
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
8
|
Zhang H, Chen S, Shang C, Wu X, Wang Y, Li G. Interplay between Lefty and Nodal signaling is essential for the organizer and axial formation in amphioxus embryos. Dev Biol 2019; 456:63-73. [DOI: 10.1016/j.ydbio.2019.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/04/2023]
|
9
|
Fillatre J, Fauny JD, Fels JA, Li C, Goll M, Thisse C, Thisse B. TEADs, Yap, Taz, Vgll4s transcription factors control the establishment of Left-Right asymmetry in zebrafish. eLife 2019; 8:45241. [PMID: 31513014 PMCID: PMC6759317 DOI: 10.7554/elife.45241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
In many vertebrates, establishment of Left-Right (LR) asymmetry results from the activity of a ciliated organ functioning as the LR Organizer (LRO). While regulation of the formation of this structure by major signaling pathways has been described, the transcriptional control of LRO formation is poorly understood. Using the zebrafish model, we show that the transcription factors and cofactors mediating or regulating the transcriptional outcome of the Hippo signaling pathway play a pivotal role in controlling the expression of genes essential to the formation of the LRO including ligands and receptors of signaling pathways involved in this process and most genes required for motile ciliogenesis. Moreover, the transcription cofactor, Vgll4l regulates epigenetic programming in LRO progenitors by controlling the expression of writers and readers of DNA methylation marks. Altogether, our study uncovers a novel and essential role for the transcriptional effectors and regulators of the Hippo pathway in establishing LR asymmetry.
Collapse
Affiliation(s)
- Jonathan Fillatre
- Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - Jean-Daniel Fauny
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Illkirch-Graffenstaden, France.,Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | - Cheng Li
- Department of Genetics, University of Georgia, Athens, United States
| | - Mary Goll
- Department of Genetics, University of Georgia, Athens, United States
| | - Christine Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, United States.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Bernard Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, United States.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Illkirch-Graffenstaden, France
| |
Collapse
|
10
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
11
|
Zaucker A, Nagorska A, Kumari P, Hecker N, Wang Y, Huang S, Cooper L, Sivashanmugam L, VijayKumar S, Brosens J, Gorodkin J, Sampath K. Translational co-regulation of a ligand and inhibitor by a conserved RNA element. Nucleic Acids Res 2019; 46:104-119. [PMID: 29059375 PMCID: PMC5758872 DOI: 10.1093/nar/gkx938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022] Open
Abstract
In many organisms, transcriptional and post-transcriptional regulation of components of pathways or processes has been reported. However, to date, there are few reports of translational co-regulation of multiple components of a developmental signaling pathway. Here, we show that an RNA element which we previously identified as a dorsal localization element (DLE) in the 3'UTR of zebrafish nodal-related1/squint (ndr1/sqt) ligand mRNA, is shared by the related ligand nodal-related2/cyclops (ndr2/cyc) and the nodal inhibitors, lefty1 (lft1) and lefty2 mRNAs. We investigated the activity of the DLEs through functional assays in live zebrafish embryos. The lft1 DLE localizes fluorescently labeled RNA similarly to the ndr1/sqt DLE. Similar to the ndr1/sqt 3'UTR, the lft1 and lft2 3'UTRs are bound by the RNA-binding protein (RBP) and translational repressor, Y-box binding protein 1 (Ybx1), whereas deletions in the DLE abolish binding to Ybx1. Analysis of zebrafish ybx1 mutants shows that Ybx1 represses lefty1 translation in embryos. CRISPR/Cas9-mediated inactivation of human YBX1 also results in human NODAL translational de-repression, suggesting broader conservation of the DLE RNA element/Ybx1 RBP module in regulation of Nodal signaling. Our findings demonstrate translational co-regulation of components of a signaling pathway by an RNA element conserved in both sequence and structure and an RBP, revealing a 'translational regulon'.
Collapse
Affiliation(s)
- Andreas Zaucker
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Agnieszka Nagorska
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Pooja Kumari
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Nikolai Hecker
- Center for non-coding RNAs in Technology and Health, Department of Veterinary and Animal Sciences, Faculty for Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | - Yin Wang
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Sizhou Huang
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Ledean Cooper
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Lavanya Sivashanmugam
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Shruthi VijayKumar
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Jan Brosens
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Jan Gorodkin
- Center for non-coding RNAs in Technology and Health, Department of Veterinary and Animal Sciences, Faculty for Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | - Karuna Sampath
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
12
|
Molina MD, Quirin M, Haillot E, De Crozé N, Range R, Rouel M, Jimenez F, Amrouche R, Chessel A, Lepage T. MAPK and GSK3/ß-TRCP-mediated degradation of the maternal Ets domain transcriptional repressor Yan/Tel controls the spatial expression of nodal in the sea urchin embryo. PLoS Genet 2018; 14:e1007621. [PMID: 30222786 PMCID: PMC6160229 DOI: 10.1371/journal.pgen.1007621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/27/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022] Open
Abstract
In the sea urchin embryo, specification of the dorsal-ventral axis critically relies on the spatially restricted expression of nodal in the presumptive ventral ectoderm. The ventral restriction of nodal expression requires the activity of the maternal TGF-β ligand Panda but the mechanism by which Panda restricts nodal expression is unknown. Similarly, what initiates expression of nodal in the ectoderm and what are the mechanisms that link patterning along the primary and secondary axes is not well understood. We report that in Paracentrotus lividus, the activity of the maternally expressed ETS-domain transcription factor Yan/Tel is essential for the spatial restriction of nodal. Inhibiting translation of maternal yan/tel mRNA disrupted dorsal-ventral patterning in all germ layers by causing a massive ectopic expression of nodal starting from cleavage stages, mimicking the phenotype caused by inactivation of the maternal Nodal antagonist Panda. We show that like in the fly or in vertebrates, the activity of sea urchin Yan/Tel is regulated by phosphorylation by MAP kinases. However, unlike in the fly or in vertebrates, phosphorylation by GSK3 plays a central role in the regulation Yan/Tel stability in the sea urchin. We show that GSK3 phosphorylates Yan/Tel in vitro at two different sites including a β-TRCP ubiquitin ligase degradation motif and a C-terminal Ser/Thr rich cluster and that phosphorylation of Yan/Tel by GSK3 triggers its degradation by a β-TRCP/proteasome pathway. Finally, we show that, Yan is epistatic to Panda and that the activity of Yan/Tel is required downstream of Panda to restrict nodal expression. Our results identify Yan/Tel as a central regulator of the spatial expression of nodal in Paracentrotus lividus and uncover a key interaction between the gene regulatory networks responsible for patterning the embryo along the dorsal-ventral and animal-vegetal axes. Specification of the embryonic axes is an essential step during early development of metazoa. In the sea urchin embryo, specification of the dorsal-ventral axis critically relies on the spatial restriction of the expression of the TGF-ß family member Nodal in ventral cells, a process that requires the activity of the maternal determinant Panda. How the spatially restricted expression of nodal is established downstream of Panda is not well understood. We have discovered that, in the Mediterranean sea urchin Paracentrotus lividus, the spatial restriction of nodal on the ventral side of the embryo requires the inhibitory activity of a transcriptional repressor named Yan/Tel. This finding suggests a molecular mechanism for the control of nodal expression by the release of a repression. We found that this release requires the activity of two families of kinases that we identified as the MAP kinases and GSK3, a kinase which, intriguingly, was previously known as a key regulator of patterning along the animal-vegetal axis. We discovered that phosphorylation by MAPK and GSK3 triggers degradation of Yan/Tel by a β-TRCP proteasome pathway. Finally, we find that Yan/Tel likely acts downstream of Panda in the hierarchy of genes required for nodal restriction. Our study therefore identifies Yan/Tel as a new essential regulator of nodal expression downstream of Panda and identifies a novel key interaction between the gene regulatory networks responsible for patterning along the primary and secondary axis of polarity.
Collapse
Affiliation(s)
- M. Dolores Molina
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Magali Quirin
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Emmanuel Haillot
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Noémie De Crozé
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Ryan Range
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Mathieu Rouel
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Felipe Jimenez
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Radja Amrouche
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Aline Chessel
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Thierry Lepage
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
- * E-mail:
| |
Collapse
|
13
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
14
|
Juan T, Géminard C, Coutelis JB, Cerezo D, Polès S, Noselli S, Fürthauer M. Myosin1D is an evolutionarily conserved regulator of animal left-right asymmetry. Nat Commun 2018; 9:1942. [PMID: 29769531 PMCID: PMC5955935 DOI: 10.1038/s41467-018-04284-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/13/2018] [Indexed: 12/30/2022] Open
Abstract
The establishment of left-right (LR) asymmetry is fundamental to animal development, but the identification of a unifying mechanism establishing laterality across different phyla has remained elusive. A cilia-driven, directional fluid flow is important for symmetry breaking in numerous vertebrates, including zebrafish. Alternatively, LR asymmetry can be established independently of cilia, notably through the intrinsic chirality of the acto-myosin cytoskeleton. Here, we show that Myosin1D (Myo1D), a previously identified regulator of Drosophila LR asymmetry, is essential for the formation and function of the zebrafish LR organizer (LRO), Kupffer's vesicle (KV). Myo1D controls the orientation of LRO cilia and interacts functionally with the planar cell polarity (PCP) pathway component VanGogh-like2 (Vangl2), to shape a productive LRO flow. Our findings identify Myo1D as an evolutionarily conserved regulator of animal LR asymmetry, and show that functional interactions between Myo1D and PCP are central to the establishment of animal LR asymmetry.
Collapse
Affiliation(s)
- Thomas Juan
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France
| | - Charles Géminard
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France
| | - Jean-Baptiste Coutelis
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France
| | - Delphine Cerezo
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France
| | - Sophie Polès
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France
| | - Stéphane Noselli
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France.
| | - Maximilian Fürthauer
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France.
| |
Collapse
|
15
|
Schredelseker T, Driever W. Bsx controls pineal complex development. Development 2018; 145:dev.163477. [DOI: 10.1242/dev.163477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Abstract
Neuroendocrine cells in the pineal gland release melatonin during the night and in teleosts are directly photoreceptive. During development of the pineal complex, a small number of cells migrate leftward away from the pineal anlage to form the parapineal cell cluster, a process which is crucial for asymmetrical development of the bilateral habenular nuclei. Here we show that, throughout zebrafish embryonic development, the brain-specific homeobox (bsx) gene is expressed in all cell types of the pineal complex. We identified Bmp and Noto/Flh as major regulators of bsx expression in the pineal complex. Upon loss of Bsx through the generation of a targeted mutation, embryos fail to form a parapineal organ and develop right-isomerized habenulae. Crucial enzymes in the melatonin biosynthesis pathway are not expressed, suggesting absence of melatonin from the pineal gland of bsx mutants. Several genes involved in rod-like or cone-like phototransduction are also abnormally expressed, indicating that Bsx plays a pivotal role in differentiation of multiple cell types in the zebrafish pineal complex.
Collapse
Affiliation(s)
- Theresa Schredelseker
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, Albertstrasse 19, 79104 Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, Albertstrasse 19, 79104 Freiburg, Germany
| |
Collapse
|
16
|
Wei S, Wang Q. Molecular regulation of Nodal signaling during mesendoderm formation. Acta Biochim Biophys Sin (Shanghai) 2018; 50:74-81. [PMID: 29206913 DOI: 10.1093/abbs/gmx128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023] Open
Abstract
One of the most important events during vertebrate embryogenesis is the formation or specification of the three germ layers, endoderm, mesoderm, and ectoderm. After a series of rapid cleavages, embryos form the mesendoderm and ectoderm during late blastulation and early gastrulation. The mesendoderm then further differentiates into the mesoderm and endoderm. Nodal, a member of the transforming growth factor β (TGF-β) superfamily, plays a pivotal role in mesendoderm formation by regulating the expression of a number of critical transcription factors, including Mix-like, GATA, Sox, and Fox. Because the Nodal signal transduction pathway is well-characterized, increasing effort has been made to delineate the spatiotemporal modulation of Nodal signaling during embryonic development. In this review, we summarize the recent progress delineating molecular regulation of Nodal signal intensity and duration during mesendoderm formation.
Collapse
Affiliation(s)
- Shi Wei
- The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
17
|
Burdine RD, Grimes DT. Antagonistic interactions in the zebrafish midline prior to the emergence of asymmetric gene expression are important for left-right patterning. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0402. [PMID: 27821532 DOI: 10.1098/rstb.2015.0402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
Left-right (L-R) asymmetry of the internal organs of vertebrates is presaged by domains of asymmetric gene expression in the lateral plate mesoderm (LPM) during somitogenesis. Ciliated L-R coordinators (LRCs) are critical for biasing the initiation of asymmetrically expressed genes, such as nodal and pitx2, to the left LPM. Other midline structures, including the notochord and floorplate, are then required to maintain these asymmetries. Here we report an unexpected role for the zebrafish EGF-CFC gene one-eyed pinhead (oep) in the midline to promote pitx2 expression in the LPM. Late zygotic oep (LZoep) mutants have strongly reduced or absent pitx2 expression in the LPM, but this expression can be rescued to strong levels by restoring oep in midline structures only. Furthermore, removing midline structures from LZoep embryos can rescue pitx2 expression in the LPM, suggesting the midline is a source of an LPM pitx2 repressor that is itself inhibited by oep Reducing lefty1 activity in LZoep embryos mimics removal of the midline, implicating lefty1 in the midline-derived repression. Together, this suggests a model where Oep in the midline functions to overcome a midline-derived repressor, involving lefty1, to allow for the expression of left side-specific genes in the LPM.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Daniel T Grimes
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
18
|
Montague TG, Schier AF. Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm. eLife 2017; 6:28183. [PMID: 29140251 PMCID: PMC5745085 DOI: 10.7554/elife.28183] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/13/2017] [Indexed: 12/03/2022] Open
Abstract
Nodal is considered the key inducer of mesendoderm in vertebrate embryos and embryonic stem cells. Other TGF-beta-related signals, such as Vg1/Dvr1/Gdf3, have also been implicated in this process but their roles have been unclear or controversial. Here we report that zebrafish embryos without maternally provided vg1 fail to form endoderm and head and trunk mesoderm, and closely resemble nodal loss-of-function mutants. Although Nodal is processed and secreted without Vg1, it requires Vg1 for its endogenous activity. Conversely, Vg1 is unprocessed and resides in the endoplasmic reticulum without Nodal, and is only secreted, processed and active in the presence of Nodal. Co-expression of Nodal and Vg1 results in heterodimer formation and mesendoderm induction. Thus, mesendoderm induction relies on the combination of two TGF-beta-related signals: maternal and ubiquitous Vg1, and zygotic and localized Nodal. Modeling reveals that the pool of maternal Vg1 enables rapid signaling at low concentrations of zygotic Nodal. All animals begin life as just one cell – a fertilized egg. In order to make a recognizable adult, each embryo needs to make the three types of tissue that will eventually form all of the organs: endoderm, which will form the internal organs; mesoderm, which will form the muscle and bones; and ectoderm, which will generate the skin and nervous system. All vertebrates – animals with backbones like fish and humans – use the so-called Nodal signaling pathway to make the endoderm and mesoderm. Nodal is a signaling molecule that binds to receptors on the surface of cells. If Nodal binds to a receptor on a cell, it instructs that cell to become endoderm or mesoderm. As such, Nodal is critical for vertebrate life. However, there has been a 30-year debate in the field of developmental biology about whether a protein called Vg1, which has a similar molecular structure as Nodal, plays a role in the early development of vertebrates. Zebrafish are often used to study animal development, and Montague and Schier decided to test whether these fish need the gene for Vg1 (also known as Gdf3) by deleting it using a genome editing technique called CRISPR/Cas9. It turns out that female zebrafish can survive without this gene. Yet, when the offspring of these females do not inherit the instructions to make Vg1 from their mothers, they fail to form the endoderm and mesoderm. This means that the embryos do not have hearts, blood or other internal organs, and they die within three days. Two other groups of researchers have independently reported similar results. The findings reveal that Vg1 is critical for the Nodal signaling pathway to work in zebrafish. Montague and Schier then showed that, in this pathway, Nodal does not activate its receptors on its own. Instead, Nodal must interact with Vg1, and it is this Nodal-Vg1 complex that activates receptors, and instructs cells to become endoderm and mesoderm. Scientists currently use the Nodal signaling pathway to induce human embryonic stem cells growing in the laboratory to become mesoderm and endoderm. As such, these new findings could ultimately help researchers to grow tissues and organs for human patients.
Collapse
Affiliation(s)
- Tessa G Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Harvard Stem Cell Institute, Cambridge, United States.,FAS Center for Systems Biology, Harvard University, Cambridge, United States
| |
Collapse
|
19
|
Bisgrove BW, Su YC, Yost HJ. Maternal Gdf3 is an obligatory cofactor in Nodal signaling for embryonic axis formation in zebrafish. eLife 2017; 6:28534. [PMID: 29140249 PMCID: PMC5745076 DOI: 10.7554/elife.28534] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/10/2017] [Indexed: 11/18/2022] Open
Abstract
Zebrafish Gdf3 (Dvr1) is a member of the TGFβ superfamily of cell signaling ligands that includes Xenopus Vg1 and mammalian Gdf1/3. Surprisingly, engineered homozygous mutants in zebrafish have no apparent phenotype. Elimination of Gdf3 in oocytes of maternal-zygotic mutants results in embryonic lethality that can be fully rescued with gdf3 RNA, demonstrating that Gdf3 is required only early in development, beyond which mutants are viable and fertile. Gdf3 mutants are refractory to Nodal ligands and Nodal repressor Lefty1. Signaling driven by TGFβ ligand Activin and constitutively active receptors Alk4 and Alk2 remain intact in gdf3 mutants, indicating that Gdf3 functions at the same pathway step as Nodal. Targeting gdf3 and ndr2 RNA to specific lineages indicates that exogenous gdf3 is able to fully rescue mutants only when co-expressed with endogenous Nodal. Together, these findings demonstrate that Gdf3 is an essential cofactor of Nodal signaling during establishment of the embryonic axis. All vertebrates – animals with backbones like fish and humans – have body plans with three clear axes: head-to-tail, back-to-front and left-to-right. Animals lay down these plans as embryos, when signaling molecules bind to receptors on the surface of their cells. These signaling molecules include related proteins called “Nodal” and “Growth and Differentiation Factors”. However, there has been much debate in the field of developmental biology about whether these proteins work together or independently during the early development of vertebrates. Zebrafish are often used to study animal development, and Bisgrove et al. decided to test whether these fish need a Growth and Differentiation Factor known as Gdf3 by deleting it using genome editing. It turns out that zebrafish can survive and develop as normal without the gene for Gdf3, just as long as their mothers still had a working copy of the gene. Yet, when the offspring of mutant females did not inherit the instructions to make Gdf3 from their mothers, they died within a couple of days. This was true even if the offspring inherited a working copy of the gene from their fathers. Bisgrove et al. then went on to show that embryos from a mutant mother could be saved with an injection of short-lived RNA molecules that include the instructions to make some Gdf3 proteins. The injected mutant embryos could live to adulthood. This shows that Gdf3 is only needed during the embryo’s early development. Further experiments suggested that Gdf3 does cannot activate its receptors on its own. Instead, it is likely that Gdf3 interacts with Nodal to form a two-protein complex that activates the receptors. Two other groups of researchers have independently reported similar findings. Mutations affecting proteins very similar to Gdf3 have been found in people with congenital heart defects. By revealing the interaction between Gdf3 and Nodal, these new findings could help scientists to understand the genetic causes of this condition in more detail. Further studies using the mutant zebrafish could also be used to explore the causes of other developmental diseases.
Collapse
Affiliation(s)
- Brent W Bisgrove
- Molecular Medicine Program, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, United States
| | - Yi-Chu Su
- Molecular Medicine Program, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, United States
| | - H Joseph Yost
- Molecular Medicine Program, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, United States
| |
Collapse
|
20
|
Roberson S, Halpern ME. Development and connectivity of the habenular nuclei. Semin Cell Dev Biol 2017; 78:107-115. [PMID: 29107475 PMCID: PMC5920772 DOI: 10.1016/j.semcdb.2017.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/09/2017] [Indexed: 10/17/2022]
Abstract
Accumulating evidence has reinforced that the habenular region of the vertebrate dorsal forebrain is an essential integrating center, and a region strongly implicated in neurological disorders and addiction. Despite the important and diverse neuromodulatory roles the habenular nuclei play, their development has been understudied. The emphasis of this review is on the dorsal habenular nuclei of zebrafish, homologous to the medial nuclei of mammals, as recent work has revealed new information about the signaling pathways that regulate their formation. Additionally, the zebrafish dorsal habenulae have become a valuable model for probing how left-right differences are established in a vertebrate brain. Sonic hedgehog, fibroblast growth factors and Wingless-INT proteins are all involved in the generation of progenitor cells and ultimately, along with Notch signaling, influence habenular neurogenesis and left-right asymmetry. Intriguingly, a genetic network has emerged that leads to the differentiation of dorsal habenular neurons and, through localized chemokine signaling, directs the posterior outgrowth of their newly emerging axons towards their postsynaptic target, the midbrain interpeduncular nucleus.
Collapse
Affiliation(s)
- Sara Roberson
- Carnegie Institution for Science, Department of Embryology, 3520 San Martin Drive Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Marnie E Halpern
- Carnegie Institution for Science, Department of Embryology, 3520 San Martin Drive Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
21
|
Liu JX, Xu QH, Li S, Yu X, Liu W, Ouyang G, Zhang T, Chen LL. Transcriptional factors Eaf1/2 inhibit endoderm and mesoderm formation via suppressing TGF-β signaling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1103-1116. [DOI: 10.1016/j.bbagrm.2017.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 09/02/2017] [Accepted: 09/03/2017] [Indexed: 01/11/2023]
|
22
|
Abstract
Inhibitory Smads (I-Smads) have conserved carboxy-terminal MH2 domains but highly divergent amino-terminal regions when compared with receptor-regulated Smads (R-Smads) and common-partner Smads (co-Smads). Smad6 preferentially inhibits Smad signaling initiated by the bone morphogenetic protein (BMP) type I receptors ALK-3 and ALK-6, whereas Smad7 inhibits both transforming growth factor β (TGF-β)- and BMP-induced Smad signaling. I-Smads also regulate some non-Smad signaling pathways. Here, we discuss the vertebrate I-Smads, their roles as inhibitors of Smad activation and regulators of receptor stability, as scaffolds for non-Smad signaling, and their possible roles in the nucleus. We also discuss the posttranslational modification of I-Smads, including phosphorylation, ubiquitylation, acetylation, and methylation.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Tseng WC, Munisha M, Gutierrez JB, Dougan ST. Establishment of the Vertebrate Germ Layers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:307-381. [PMID: 27975275 DOI: 10.1007/978-3-319-46095-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.
Collapse
Affiliation(s)
- Wei-Chia Tseng
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Mumingjiang Munisha
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Juan B Gutierrez
- Department of Mathematics, University of Georgia, Athens, GA, 30602, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Scott T Dougan
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
24
|
Duboué ER, Halpern ME. Genetic and Transgenic Approaches to Study Zebrafish Brain Asymmetry and Lateralized Behavior. LATERALIZED BRAIN FUNCTIONS 2017. [DOI: 10.1007/978-1-4939-6725-4_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
25
|
Reade A, Motta-Mena LB, Gardner KH, Stainier DY, Weiner OD, Woo S. TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control. Development 2016; 144:345-355. [PMID: 27993986 DOI: 10.1242/dev.139238] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/28/2016] [Indexed: 01/27/2023]
Abstract
Here, we describe an optogenetic gene expression system optimized for use in zebrafish. This system overcomes the limitations of current inducible expression systems by enabling robust spatial and temporal regulation of gene expression in living organisms. Because existing optogenetic systems show toxicity in zebrafish, we re-engineered the blue-light-activated EL222 system for minimal toxicity while exhibiting a large range of induction, fine spatial precision and rapid kinetics. We validate several strategies to spatially restrict illumination and thus gene induction with our new TAEL (TA4-EL222) system. As a functional example, we show that TAEL is able to induce ectopic endodermal cells in the presumptive ectoderm via targeted sox32 induction. We also demonstrate that TAEL can be used to resolve multiple roles of Nodal signaling at different stages of embryonic development. Finally, we show how inducible gene editing can be achieved by combining the TAEL and CRISPR/Cas9 systems. This toolkit should be a broadly useful resource for the fish community.
Collapse
Affiliation(s)
- Anna Reade
- CVRI & Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Laura B Motta-Mena
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY 10031, USA.,Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA.,Biochemistry, Chemistry and Biology PhD Programs, Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Didier Y Stainier
- CVRI & Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.,Max Planck Institute for Heart and Lung Research, Dept. of Developmental Genetics, Bad Nauheim 61231, Germany
| | - Orion D Weiner
- CVRI & Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephanie Woo
- CVRI & Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
26
|
Sampath K, Robertson EJ. Keeping a lid on nodal: transcriptional and translational repression of nodal signalling. Open Biol 2016; 6:150200. [PMID: 26791244 PMCID: PMC4736825 DOI: 10.1098/rsob.150200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nodal is an evolutionarily conserved member of the transforming growth factor-β (TGF-β) superfamily of secreted signalling factors. Nodal factors are known to play key roles in embryonic development and asymmetry in a variety of organisms ranging from hydra and sea urchins to fish, mice and humans. In addition to embryonic patterning, Nodal signalling is required for maintenance of human embryonic stem cell pluripotency and mis-regulated Nodal signalling has been found associated with tumour metastases. Therefore, precise and timely regulation of this pathway is essential. Here, we discuss recent evidence from sea urchins, frogs, fish, mice and humans that show a role for transcriptional and translational repression of Nodal signalling during early development.
Collapse
Affiliation(s)
- Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AJ, UK
| | | |
Collapse
|
27
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
28
|
Lee HC, Lo HC, Lo DM, Su MY, Hu JR, Wu CC, Chang SN, Dai MS, Tsai C, Tsai HJ. Amiodarone Induces Overexpression of Similar to Versican b to Repress the EGFR/Gsk3b/Snail Signaling Axis during Cardiac Valve Formation of Zebrafish Embryos. PLoS One 2015; 10:e0144751. [PMID: 26650936 PMCID: PMC4674151 DOI: 10.1371/journal.pone.0144751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023] Open
Abstract
Although Amiodarone, a class III antiarrhythmic drug, inhibits zebrafish cardiac valve formation, the detailed molecular pathway is still unclear. Here, we proved that Amiodarone acts as an upstream regulator, stimulating similar to versican b (s-vcanb) overexpression at zebrafish embryonic heart and promoting cdh-5 overexpression by inhibiting snail1b at atrioventricular canal (AVC), thus blocking invagination of endocardial cells and, as a result, preventing the formation of cardiac valves. A closer investigation showed that an intricate set of signaling events ultimately caused the up-regulation of cdh5. In particular, we investigated the role of EGFR signaling and the activity of Gsk3b. It was found that knockdown of EGFR signaling resulted in phenotypes similar to those of Amiodarone-treated embryos. Since the reduced phosphorylation of EGFR was rescued by knockdown of s-vcanb, it was concluded that the inhibition of EGFR activity by Amiodarone is s-vcanb-dependent. Moreover, the activity of Gsk3b, a downstream effector of EGFR, was greatly increased in both Amiodarone-treated embryos and EGFR-inhibited embryos. Therefore, it was concluded that reduced EGFR signaling induced by Amiodarone treatment results in the inhibition of Snail functions through increased Gsk3b activity, which, in turn, reduces snail1b expression, leading to the up-regulation the cdh5 at the AVC, finally resulting in defective formation of valves. This signaling cascade implicates the EGFR/Gsk3b/Snail axis as the molecular basis for the inhibition of cardiac valve formation by Amiodarone.
Collapse
Affiliation(s)
- Hung-Chieh Lee
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Hao-Chan Lo
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Dao-Ming Lo
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Mai-Yan Su
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Jia-Rung Hu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chin-Chieh Wu
- Division of Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Sheng-Nan Chang
- Cardiovascular Center, National Taiwan University Hospital Yun Lin Branch, Yun Lin, Taiwan
| | - Ming-Shen Dai
- Division of Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Chia‐Ti Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
- * E-mail: (H-JT); (C-TT)
| | - Huai-Jen Tsai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- * E-mail: (H-JT); (C-TT)
| |
Collapse
|
29
|
Kuan YS, Roberson S, Akitake CM, Fortuno L, Gamse J, Moens C, Halpern ME. Distinct requirements for Wntless in habenular development. Dev Biol 2015; 406:117-128. [PMID: 26116173 PMCID: PMC4639407 DOI: 10.1016/j.ydbio.2015.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 01/24/2023]
Abstract
Secreted Wnt proteins play pivotal roles in development, including regulation of cell proliferation, differentiation, progenitor maintenance and tissue patterning. The transmembrane protein Wntless (Wls) is necessary for secretion of most Wnts and essential for effective Wnt signaling. During a mutagenesis screen to identify genes important for development of the habenular nuclei in the dorsal forebrain, we isolated a mutation in the sole wls gene of zebrafish and confirmed its identity with a second, independent allele. Early embryonic development appears normal in homozygous wls mutants, but they later lack the ventral habenular nuclei, form smaller dorsal habenulae and otic vesicles, have truncated jaw and fin cartilages and lack swim bladders. Activation of a reporter for β-catenin-dependent transcription is decreased in wls mutants, indicative of impaired signaling by the canonical Wnt pathway, and expression of Wnt-responsive genes is reduced in the dorsal diencephalon. Wnt signaling was previously implicated in patterning of the zebrafish brain and in the generation of left-right (L-R) differences between the bilaterally paired dorsal habenular nuclei. Outside of the epithalamic region, development of the brain is largely normal in wls mutants and, despite their reduced size, the dorsal habenulae retain L-R asymmetry. We find that homozygous wls mutants show a reduction in two cell populations that contribute to the presumptive dorsal habenulae. The results support distinct temporal requirements for Wls in habenular development and reveal a new role for Wnt signaling in the regulation of dorsal habenular progenitors.
Collapse
Affiliation(s)
- Yung-Shu Kuan
- Department of Embryology, Carnegie Institution for Science, USA
| | - Sara Roberson
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| | - Courtney M. Akitake
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| | - Lea Fortuno
- Department of Embryology, Carnegie Institution for Science, USA
| | - Joshua Gamse
- Department of Biological Sciences, Vanderbilt University, USA
| | - Cecilia Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Marnie E. Halpern
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| |
Collapse
|
30
|
Ma P, Swartz MR, Kindt LM, Kangas AM, Liang JO. Temperature Sensitivity of Neural Tube Defects in Zoep Mutants. Zebrafish 2015; 12:448-56. [PMID: 26366681 DOI: 10.1089/zeb.2015.1113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neural tube defects (NTD) occur when the flat neural plate epithelium fails to fold into the neural tube, the precursor to the brain and spinal cord. Squint (Sqt/Ndr1), a Nodal ligand, and One-eyed pinhead (Oep), a component of the Nodal receptor, are required for anterior neural tube closure in zebrafish. The NTD in sqt and Zoep mutants are incompletely penetrant. The penetrance of several defects in sqt mutants increases upon heat or cold shock. In this project, undergraduate students tested whether temperature influences the Zoep open neural tube phenotype. Single pairs of adults were spawned at 28.5°C, the normal temperature for zebrafish, and one half of the resulting embryos were moved to 34°C at different developmental time points. Analysis of variance indicated temperature and clutch/genetic background significantly contributed to the penetrance of the open neural tube phenotype. Heat shock affected the embryos only at or before the midblastula stage. Many factors, including temperature changes in the mother, nutrition, and genetic background, contribute to NTD in humans. Thus, sqt and Zoep mutants may serve as valuable models for studying the interactions between genetics and the environment during neurulation.
Collapse
Affiliation(s)
- Phyo Ma
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Morgan R Swartz
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | - Lexy M Kindt
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota.,2 Integrated Biosciences Graduate Program, University of Minnesota , Duluth, Minnesota
| | - Ashley M Kangas
- 1 Department of Biology, University of Minnesota Duluth , Duluth, Minnesota
| | | |
Collapse
|
31
|
RAP-011 improves erythropoiesis in zebrafish model of Diamond-Blackfan anemia through antagonizing lefty1. Blood 2015; 126:880-90. [DOI: 10.1182/blood-2015-01-622522] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
Key Points
Ribosome deficiency in zebrafish leads to defects in erythroid maturation and is reversed by RAP-011 treatment. Identification of lefty1 as a key mediator of erythropoiesis.
Collapse
|
32
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|
33
|
Thisse B, Thisse C. Formation of the vertebrate embryo: Moving beyond the Spemann organizer. Semin Cell Dev Biol 2015; 42:94-102. [PMID: 25999320 DOI: 10.1016/j.semcdb.2015.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
During the course of their classic experiments, Hilde Mangold and Hans Spemann discovered that the dorsal blastopore lip of an amphibian gastrula was able to induce formation of a complete embryonic axis when transplanted into the ventral side of a host gastrula embryo. Since then, the inducing activity of the dorsal lip has been known as the Spemann or dorsal organizer. During the past 25 years, studies performed in a variety of species have led to the identification of molecular factors associated with the properties of this tissue. However, none of them is, by itself, able to induce formation of the main body axis from a population of naive pluripotent embryonic cells. Recently, experiments performed using the zebrafish (Danio rerio) revealed that the organizing activities present in the embryo are not restricted to the Spemann organizer but are distributed along the entire blastula/gastrula margin. These organizing activities result from the interaction between two opposing gradients of morphogens, BMP and Nodal, that are the primary signals that trigger the cascade of developmental events leading to the organization of the embryo. These studies mark the end of the era during which developmental biologists saw the Spemann organizer as the core element for the organization of the vertebrate embryonic axis and, instead, provides opportunities for the experimental control of morphogenesis starting with a population of embryonic pluripotent cells that will be instructed using those two morphogen gradients.
Collapse
Affiliation(s)
- Bernard Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Christine Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
34
|
Manoli M, Driever W. nkx2.1 and nkx2.4 genes function partially redundant during development of the zebrafish hypothalamus, preoptic region, and pallidum. Front Neuroanat 2014; 8:145. [PMID: 25520628 PMCID: PMC4251446 DOI: 10.3389/fnana.2014.00145] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/14/2014] [Indexed: 01/27/2023] Open
Abstract
During ventral forebrain development, orthologs of the homeodomain transcription factor Nkx2.1 control patterning of hypothalamus, preoptic region, and ventral telencephalon. However, the relative contributions of Nkx2.1 and Nkx2.4 to prosencephalon development are poorly understood. Therefore, we analyzed functions of the previously uncharacterized nkx2.4-like zgc:171531 as well as of the presumed nkx2.1 orthologs nkx2.1a and nkx2.1b in zebrafish forebrain development. Our results show that zgc:171531 and nkx2.1a display overlapping expression patterns and a high sequence similarity. Together with a high degree of synteny conservation, these findings indicate that both these genes indeed are paralogs of nkx2.4. As a result, we name zgc:171531 now nkx2.4a, and changed the name of nkx2.1a to nkx2.4b, and of nkx2.1b to nkx2.1. In nkx2.1, nkx2.4a, and nkx2.4b triple morpholino knockdown (nkx2TKD) embryos we observed a loss of the rostral part of prosomere 3 and its derivative posterior tubercular and hypothalamic structures. Furthermore, there was a loss of rostral and intermediate hypothalamus, while a residual preoptic region still develops. The reduction of the ventral diencephalon was accompanied by a ventral expansion of the dorsally expressed pax6, revealing a dorsalization of the basal hypothalamus. Within the telencephalon we observed a loss of pallidal markers, while striatum and pallium are forming. At the neuronal level, nkx2TKD morphants lacked several neurosecretory neuron types, including avp, crh, and pomc expressing cells in the hypothalamus, but still form oxt neurons in the preoptic region. Our data reveals that, while nkx2.1, nkx2.4a, and nkx2.4b genes act partially redundant in hypothalamic development, nkx2.1 is specifically involved in the development of rostral ventral forebrain including the pallidum and preoptic regions, whereas nkx2.4a and nkx2.4b control the intermediate and caudal hypothalamus.
Collapse
Affiliation(s)
- Martha Manoli
- Developmental Biology, Faculty of Biology, Institute Biology I, University of Freiburg Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Faculty of Biology, Institute Biology I, University of Freiburg Freiburg, Germany ; Centre for Biological Signaling Studies (BIOSS), University of Freiburg Freiburg, Germany
| |
Collapse
|
35
|
Kang N, Won M, Rhee M, Ro H. Siah ubiquitin ligases modulate nodal signaling during zebrafish embryonic development. Mol Cells 2014; 37:389-98. [PMID: 24823357 PMCID: PMC4044310 DOI: 10.14348/molcells.2014.0032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 01/15/2023] Open
Abstract
Siah2 is a zebrafish homologue of mammalian Siah family. Siah acts as an E3 ubiquitin ligase that binds proteins destined for degradation. Extensive homology between siah and Drosophila Siah homologue (sina) suggests their important physiological roles during embryonic development. However, detailed functional studies of Siah in vertebrate development have not been carried out. Here we report that Siah2 specifically augments nodal related gene expression in marginal blastomeres at late blastula through early gastrula stages of zebrafish embryos. Siah2 dependent Nodal signaling augmentation is confirmed by cell-based reporter gene assays using 293T cells and 3TPluciferase reporter plasmid. We also established a molecular hierarchy of Siah as a upstream regulator of FoxH1/Fast1 transcriptional factor in Nodal signaling. Elevated expression of nodal related genes by overexpression of Siah2 was enough to override the inhibitory effects of atv and lft2 on the Nodal signaling. In particular, E3 ubiquitin ligase activity of Siah2 is critical to limit the duration and/or magnitude of Nodal signaling. Additionally, since the embryos injected with Siah morpholinos mimicked the atv overexpression phenotype at least in part, our data support a model in which Siah is involved in mesendoderm patterning via modulating Nodal signaling.
Collapse
Affiliation(s)
- Nami Kang
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Minho Won
- Program in Genomics of Differentiation, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland,
USA
| | - Myungchull Rhee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| |
Collapse
|
36
|
Garric L, Ronsin B, Roussigné M, Booton S, Gamse JT, Dufourcq P, Blader P. Pitx2c ensures habenular asymmetry by restricting parapineal cell number. Development 2014; 141:1572-9. [PMID: 24598158 DOI: 10.1242/dev.100305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Left-right (L/R) asymmetries in the brain are thought to underlie lateralised cognitive functions. Understanding how neuroanatomical asymmetries are established has been achieved through the study of the zebrafish epithalamus. Morphological symmetry in the epithalamus is broken by leftward migration of the parapineal, which is required for the subsequent elaboration of left habenular identity; the habenular nuclei flank the midline and show L/R asymmetries in marker expression and connectivity. The Nodal target pitx2c is expressed in the left epithalamus, but nothing is known about its role during the establishment of asymmetry in the brain. We show that abrogating Pitx2c function leads to the right habenula adopting aspects of left character, and to an increase in parapineal cell numbers. Parapineal ablation in Pitx2c loss of function results in right habenular isomerism, indicating that the parapineal is required for the left character detected in the right habenula in this context. Partial parapineal ablation in the absence of Pitx2c, however, reduces the number of parapineal cells to wild-type levels and restores habenular asymmetry. We provide evidence suggesting that antagonism between Nodal and Pitx2c activities sets an upper limit on parapineal cell numbers. We conclude that restricting parapineal cell number is crucial for the correct elaboration of epithalamic asymmetry.
Collapse
Affiliation(s)
- Laurence Garric
- Université de Toulouse, UPS, Centre de Biologie du Développement (CBD), 118 route de Narbonne, F-31062 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Li HY, Grifone R, Saquet A, Carron C, Shi DL. The Xenopus homologue of Down syndrome critical region protein 6 drives dorsoanterior gene expression and embryonic axis formation by antagonising polycomb group proteins. Development 2013; 140:4903-13. [DOI: 10.1242/dev.098319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mesoderm and embryonic axis formation in vertebrates is mediated by maternal and zygotic factors that activate the expression of target genes. Transcriptional derepression plays an important role in the regulation of expression in different contexts; however, its involvement and possible mechanism in mesoderm and embryonic axis formation are largely unknown. Here we demonstrate that XDSCR6, a Xenopus homologue of human Down syndrome critical region protein 6 (DSCR6, or RIPPLY3), regulates mesoderm and embryonic axis formation through derepression of polycomb group (PcG) proteins. Xdscr6 maternal mRNA is enriched in the endoderm of the early gastrula and potently triggers the formation of dorsal mesoderm and neural tissues in ectoderm explants; it also dorsalises ventral mesoderm during gastrulation and induces a secondary embryonic axis. A WRPW motif, which is present in all DSCR6 homologues, is necessary and sufficient for the dorsal mesoderm- and axis-inducing activity. Knockdown of Xdscr6 inhibits dorsal mesoderm gene expression and results in head deficiency. We further show that XDSCR6 physically interacts with PcG proteins through the WRPW motif, preventing the formation of PcG bodies and antagonising their repressor activity in embryonic axis formation. By chromatin immunoprecipitation, we demonstrate that XDSCR6 releases PcG proteins from chromatin and allows dorsal mesoderm gene transcription. Our studies suggest that XDSCR6 might function to sequester PcG proteins and identify a novel derepression mechanism implicated in embryonic induction and axis formation.
Collapse
Affiliation(s)
- Hong-Yan Li
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
- Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Raphaëlle Grifone
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - Audrey Saquet
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - Clémence Carron
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - De-Li Shi
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| |
Collapse
|
38
|
Genome wide analysis reveals Zic3 interaction with distal regulatory elements of stage specific developmental genes in zebrafish. PLoS Genet 2013; 9:e1003852. [PMID: 24204288 PMCID: PMC3814314 DOI: 10.1371/journal.pgen.1003852] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/19/2013] [Indexed: 02/06/2023] Open
Abstract
Zic3 regulates early embryonic patterning in vertebrates. Loss of Zic3 function is known to disrupt gastrulation, left-right patterning, and neurogenesis. However, molecular events downstream of this transcription factor are poorly characterized. Here we use the zebrafish as a model to study the developmental role of Zic3 in vivo, by applying a combination of two powerful genomics approaches – ChIP-seq and microarray. Besides confirming direct regulation of previously implicated Zic3 targets of the Nodal and canonical Wnt pathways, analysis of gastrula stage embryos uncovered a number of novel candidate target genes, among which were members of the non-canonical Wnt pathway and the neural pre-pattern genes. A similar analysis in zic3-expressing cells obtained by FACS at segmentation stage revealed a dramatic shift in Zic3 binding site locations and identified an entirely distinct set of target genes associated with later developmental functions such as neural development. We demonstrate cis-regulation of several of these target genes by Zic3 using in vivo enhancer assay. Analysis of Zic3 binding sites revealed a distribution biased towards distal intergenic regions, indicative of a long distance regulatory mechanism; some of these binding sites are highly conserved during evolution and act as functional enhancers. This demonstrated that Zic3 regulation of developmental genes is achieved predominantly through long distance regulatory mechanism and revealed that developmental transitions could be accompanied by dramatic changes in regulatory landscape. The Zic3 transcription factor regulates early embryonic patterning, and the loss of its function leads to defects in left-right body asymmetry. Previous studies have only identified a small number of Zic3 targets, which renders the molecular mechanism underlying its activity insufficiently understood. Utilizing two genomics technologies, next generation sequencing and microarray, we profile the genome-wide binding sites of Zic3 and identified its target genes in the developing zebrafish embryo. Our results show that Zic3 regulates its target genes predominantly through regulatory elements located far from promoters. Among the targets of Zic3 are the Nodal and Wnt pathways known to regulate gastrulation and left-right body asymmetry, as well as neural pre-pattern genes regulating proliferation of neural progenitors. Using enhancer activity assay, we further show that genomic regions bound by Zic3 function as enhancers. Our study provides a genome-wide view of the regulatory landscape of Zic3 and its changes during vertebrate development.
Collapse
|
39
|
Kapp LD, Abrams EW, Marlow FL, Mullins MC. The integrator complex subunit 6 (Ints6) confines the dorsal organizer in vertebrate embryogenesis. PLoS Genet 2013; 9:e1003822. [PMID: 24204286 PMCID: PMC3814294 DOI: 10.1371/journal.pgen.1003822] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Dorsoventral patterning of the embryonic axis relies upon the mutual antagonism of competing signaling pathways to establish a balance between ventralizing BMP signaling and dorsal cell fate specification mediated by the organizer. In zebrafish, the initial embryo-wide domain of BMP signaling is refined into a morphogenetic gradient following activation dorsally of a maternal Wnt pathway. The accumulation of β-catenin in nuclei on the dorsal side of the embryo then leads to repression of BMP signaling dorsally and the induction of dorsal cell fates mediated by Nodal and FGF signaling. A separate Wnt pathway operates zygotically via Wnt8a to limit dorsal cell fate specification and maintain the expression of ventralizing genes in ventrolateral domains. We have isolated a recessive dorsalizing maternal-effect mutation disrupting the gene encoding Integrator Complex Subunit 6 (Ints6). Due to widespread de-repression of dorsal organizer genes, embryos from mutant mothers fail to maintain expression of BMP ligands, fail to fully express vox and ved, two mediators of Wnt8a, display delayed cell movements during gastrulation, and severe dorsalization. Consistent with radial dorsalization, affected embryos display multiple independent axial domains along with ectopic dorsal forerunner cells. Limiting Nodal signaling or restoring BMP signaling restores wild-type patterning to affected embryos. Our results are consistent with a novel role for Ints6 in restricting the vertebrate organizer to a dorsal domain in embryonic patterning.
Collapse
Affiliation(s)
- Lee D. Kapp
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Elliott W. Abrams
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Florence L. Marlow
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Mary C. Mullins
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Araf kinase antagonizes Nodal-Smad2 activity in mesendoderm development by directly phosphorylating the Smad2 linker region. Nat Commun 2013; 4:1728. [PMID: 23591895 PMCID: PMC3644095 DOI: 10.1038/ncomms2762] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/18/2013] [Indexed: 02/06/2023] Open
Abstract
Smad2/3-mediated transforming growth factor β signalling and the Ras-Raf-Mek-Erk cascade have important roles in stem cell and development and tissue homeostasis. However, it remains unknown whether Raf kinases directly crosstalk with Smad2/3 signalling and how this would regulate embryonic development. Here we show that Araf antagonizes mesendoderm induction and patterning activity of Nodal/Smad2 signals in vertebrate embryos by directly inhibiting Smad2 signalling. Knockdown of araf in zebrafish embryos leads to an increase of activated Smad2 with a decrease in linker phosphorylation; consequently, the embryos have excess mesendoderm precursors and are dorsalized. Mechanistically, Araf physically binds to and phosphorylates Smad2 in the linker region with S253 being indispensable in a Mek/Erk-independent manner, thereby attenuating Smad2 signalling by accelerating degradation of activated Smad2. Our findings open avenues for investigating the potential significance of Raf regulation of transforming growth factor β signalling in versatile biological and pathological processes in the future.
Collapse
|
41
|
Sittaramane V, Pan X, Glasco DM, Huang P, Gurung S, Bock A, Li S, Wang H, Kawakami K, Matise MP, Chandrasekhar A. The PCP protein Vangl2 regulates migration of hindbrain motor neurons by acting in floor plate cells, and independently of cilia function. Dev Biol 2013; 382:400-12. [PMID: 23988578 DOI: 10.1016/j.ydbio.2013.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Vangl2, a core component of the Planar Cell Polarity pathway, is necessary for the caudal migration of Facial Branchiomotor (FBM) neurons in the vertebrate hindbrain. Studies in zebrafish suggest that vangl2 functions largely non-cell autonomously to regulate FBM neuron migration out of rhombomere 4 (r4), but the cell-type within which it acts is not known. Here, we demonstrate that vangl2 functions largely in floor plate cells to regulate caudal neuronal migration. Furthermore, FBM neurons fail to migrate caudally in the mouse Gli2 mutant that lacks the floor plate, suggesting an evolutionarily conserved role for this cell type in neuronal migration. Although hindbrain floor plate cilia are disorganized in vangl2 mutant embryos, cilia appear to be dispensable for neuronal migration. Notably, Vangl2 is enriched in the basolateral, but not apical, membranes of floor plate cells. Taken together, our data suggest strongly that Vangl2 regulates FBM neuron migration by acting in floor plate cells, independently of cilia function.
Collapse
Affiliation(s)
- Vinoth Sittaramane
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Full transcriptome analysis of early dorsoventral patterning in zebrafish. PLoS One 2013; 8:e70053. [PMID: 23922899 PMCID: PMC3726443 DOI: 10.1371/journal.pone.0070053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/14/2013] [Indexed: 11/20/2022] Open
Abstract
Understanding the molecular interactions that lead to the establishment of the major body axes during embryogenesis is one of the main goals of developmental biology. Although the past two decades have revolutionized our knowledge about the genetic basis of these patterning processes, the list of genes involved in axis formation is unlikely to be complete. In order to identify new genes involved in the establishment of the dorsoventral (DV) axis during early stages of zebrafish embryonic development, we employed next generation sequencing for full transcriptome analysis of normal embryos and embryos lacking overt DV pattern. A combination of different statistical approaches yielded 41 differentially expressed candidate genes and we confirmed by in situ hybridization the early dorsal expression of 32 genes that are transcribed shortly after the onset of zygotic transcription. Although promoter analysis of the validated genes suggests no general enrichment for the binding sites of early acting transcription factors, most of these genes carry “bivalent” epigenetic histone modifications at the time when zygotic transcription is initiated, suggesting a “poised” transcriptional status. Our results reveal some new candidates of the dorsal gene regulatory network and suggest that a plurality of the earliest upregulated genes on the dorsal side have a role in the modulation of the canonical Wnt pathway.
Collapse
|
43
|
Kolpa HJ, Peal DS, Lynch SN, Giokas AC, Ghatak S, Misra S, Norris RA, Macrae CA, Markwald RR, Ellinor P, Bischoff J, Milan DJ. miR-21 represses Pdcd4 during cardiac valvulogenesis. Development 2013; 140:2172-80. [PMID: 23578931 DOI: 10.1242/dev.084475] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The discovery of small non-coding microRNAs has revealed novel mechanisms of post-translational regulation of gene expression, the implications of which are still incompletely understood. We focused on microRNA 21 (miR-21), which is expressed in cardiac valve endothelium during development, in order to better understand its mechanistic role in cardiac valve development. Using a combination of in vivo gene knockdown in zebrafish and in vitro assays in human cells, we show that miR-21 is necessary for proper development of the atrioventricular valve (AV). We identify pdcd4b as a relevant in vivo target of miR-21 and show that protection of pdcd4b from miR-21 binding results in failure of AV development. In vitro experiments using human pulmonic valve endothelial cells demonstrate that miR-21 overexpression augments endothelial cell migration. PDCD4 knockdown alone was sufficient to enhance endothelial cell migration. These results demonstrate that miR-21 plays a necessary role in cardiac valvulogenesis, in large part due to an obligatory downregulation of PDCD4.
Collapse
Affiliation(s)
- Heather J Kolpa
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Integration of nodal and BMP signals in the heart requires FoxH1 to create left-right differences in cell migration rates that direct cardiac asymmetry. PLoS Genet 2013; 9:e1003109. [PMID: 23358434 PMCID: PMC3554567 DOI: 10.1371/journal.pgen.1003109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/05/2012] [Indexed: 12/18/2022] Open
Abstract
Failure to properly establish the left–right (L/R) axis is a major cause of congenital heart defects in humans, but how L/R patterning of the embryo leads to asymmetric cardiac morphogenesis is still unclear. We find that asymmetric Nodal signaling on the left and Bmp signaling act in parallel to establish zebrafish cardiac laterality by modulating cell migration velocities across the L/R axis. Moreover, we demonstrate that Nodal plays the crucial role in generating asymmetry in the heart and that Bmp signaling via Bmp4 is dispensable in the presence of asymmetric Nodal signaling. In addition, we identify a previously unappreciated role for the Nodal-transcription factor FoxH1 in mediating cell responsiveness to Bmp, further linking the control of these two pathways in the heart. The interplay between these TGFβ pathways is complex, with Nodal signaling potentially acting to limit the response to Bmp pathway activation and the dosage of Bmp signals being critical to limit migration rates. These findings have implications for understanding the complex genetic interactions that lead to congenital heart disease in humans. Defects in left–right (L/R) patterning can lead to severe defects in the formation of the heart. In fact, three of the most common forms of congenital heart disease, transposition of the great arteries, chamber septation defects, and chamber isomerisms, can be caused by earlier defects in L/R asymmetry. The Nodal and Bmp signaling pathways influence the development of cardiac asymmetry, but how these signals function in this process is not well understood. In this report, we have clarified the specific roles for the Nodal versus Bmp pathways in the heart. We find that Nodal signals increase the rate of cardiac cell migration, while Bmp signals decrease cardiac cell velocities. We demonstrate that asymmetric Nodal signaling plays a critical role in directing asymmetry in the heart in contrast to reports suggesting that signaling via Bmp4 is the more critical pathway. In fact, we find that Bmp4 signaling is dispensable for correct asymmetry in the heart in the presence of asymmetric Nodal signals. In addition, we have identified a novel integration between these two pathways at the level of the transcription factor FoxH1, which is required for cardiac cell responsiveness to both Nodal and Bmp signals. Taken together, this work significantly increases our understanding of how the signals regulating cardiac asymmetry function and integrate to consistently establish cardiac laterality. These results also suggest that human congenital heart defects that have not been found to result from single mutations within individual genes may develop due to combinations of mutations within components of these two separate pathways.
Collapse
|
45
|
Abstract
Differences between the left and right sides of the brain are present in many animal species. For instance, in humans the left cerebral hemisphere is largely responsible for language and tool use and the right for processing spatial information. Zebrafish have prominent left-right asymmetries in their epithalamus that have been associated with differential left and right eye use and navigational behavior. In wild-type (WT) zebrafish embryos, Nodal pathway genes are expressed in the left side of the pineal anlage. Shortly thereafter, a parapineal organ forms to the left of the pineal. The parapineal organ causes differences in gene expression, neuropil density, and connectivity of the left and right habenula nuclei. In embryos that have an open neural tube, such as embryos that are deficient in Nodal signaling or the cell adhesion protein N-cadherin, the left and right sides of the developing epithalamus remain separated from one another. We find that the brains of these embryos often become left isomerized: both sides of the brain develop morphology and gene expression patterns that are characteristic of the left side. However, other aspects of epithalamic development, such as differentiation of specific neuronal cell types, are intact. We propose that there is a mechanism in embryos with closed neural tubes that prevents both sides from developing like the left side. This mechanism fails when the two sides of the epithalamus are widely separated from one another, suggesting that it is dependent upon a signaling protein with limited range.
Collapse
|
46
|
The W-loop of alpha-cardiac actin is critical for heart function and endocardial cushion morphogenesis in zebrafish. Mol Cell Biol 2012; 32:3527-40. [PMID: 22751927 DOI: 10.1128/mcb.00486-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in cardiac actin (ACTC) have been associated with different cardiac abnormalities in humans, including dilated cardiomyopathy and septal defects. However, it is still poorly understood how altered ACTC structure affects cardiovascular physiology and results in the development of distinct congenital disorders. A zebrafish mutant (s434 mutation) was identified that displays blood regurgitation in a dilated heart and lacks endocardial cushion (EC) formation. We identified the mutation as a single nucleotide change in the alpha-cardiac actin 1a gene (actc1a), resulting in a Y169S amino acid substitution. This mutation is located at the W-loop of actin, which has been implicated in nucleotide sensing. Consequently, s434 mutants show loss of polymerized cardiac actin. An analogous mutation in yeast actin results in rapid depolymerization of F-actin into fragments that cannot reanneal. This polymerization defect can be partially rescued by phalloidin treatment, which stabilizes F-actin. In addition, actc1a mutants show defects in cardiac contractility and altered blood flow within the heart tube. This leads to downregulation or mislocalization of EC-specific gene expression and results in the absence of EC development. Our study underscores the importance of the W-loop for actin functionality and will help us to understand the structural and physiological consequences of ACTC mutations in human congenital disorders.
Collapse
|
47
|
Narayanan A, Lekven AC. Biphasic wnt8a expression is achieved through interactions of multiple regulatory inputs. Dev Dyn 2012; 241:1062-75. [PMID: 22473868 DOI: 10.1002/dvdy.23787] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Vertebrate axis development depends upon wnt8a transcription in a dynamic pool of mesoderm progenitors at the posterior pole of the gastrulating embryo. The transcriptional mechanisms controlling wnt8a expression are not understood, but previous studies identified two phases of wnt8a expression in zebrafish: Nodal-dependent activation during early gastrulation (phase I) and No tail (Ntl)-dependent regulation from mid gastrula stages (phase II). RESULTS We identified two upstream cis-regulatory regions, proximal and distal, each of which possesses a promoter. The proximal regulatory region contains a margin-specific enhancer that is required for both the Nodal and Ntl responses. Phase I expression requires Nodal activation of the margin enhancer in combination with the transcription factor Zbtb4 and the distal regulatory region. Phase II expression requires Ntl regulation of the margin enhancer in the context of the proximal regulatory region. An additional mechanism is required to ensure the transition from phase I to phase II regulation. Analysis of stickleback wnt8a suggests this mechanism of regulation may be conserved. CONCLUSIONS The seemingly simple wnt8a expression pattern reflects complex interactions of multiple regulatory inputs.
Collapse
Affiliation(s)
- Anand Narayanan
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | | |
Collapse
|
48
|
Lenhart KF, Lin SY, Titus TA, Postlethwait JH, Burdine RD. Two additional midline barriers function with midline lefty1 expression to maintain asymmetric Nodal signaling during left-right axis specification in zebrafish. Development 2011; 138:4405-10. [PMID: 21937597 DOI: 10.1242/dev.071092] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Left-right (L/R) patterning is crucial for the proper development of all vertebrates and requires asymmetric expression of nodal in the lateral plate mesoderm (LPM). The mechanisms governing asymmetric initiation of nodal have been studied extensively, but because Nodal is a potent activator of its own transcription, it is also crucial to understand the regulation required to maintain this asymmetry once it is established. The 'midline barrier', consisting of lefty1 expression, is a conserved mechanism for restricting Nodal activity to the left. However, the anterior and posterior extremes of the LPM are competent to respond to Nodal signals yet are not adjacent to this barrier, suggesting that lefty1 is not the only mechanism preventing ectopic Nodal activation. Here, we demonstrate the existence of two additional midline barriers. The first is a 'posterior barrier' mediated by Bmp signaling that prevents nodal propagation through the posterior LPM. In contrast to previous reports, we find that Bmp represses Nodal signaling independently of lefty1 expression and through the activity of a ligand other than Bmp4. The 'anterior barrier' is mediated by lefty2 expression in the left cardiac field and prevents Nodal activation from traveling across the anterior limit of the notochord and propagating down the right LPM. Both barriers appear to be conserved across model systems and are thus likely to be present in all vertebrates.
Collapse
Affiliation(s)
- Kari F Lenhart
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
49
|
Angerer LM, Yaguchi S, Angerer RC, Burke RD. The evolution of nervous system patterning: insights from sea urchin development. Development 2011; 138:3613-23. [PMID: 21828090 PMCID: PMC3152920 DOI: 10.1242/dev.058172] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields - the anterior neuroectoderm and the more posterior ciliary band neuroectoderm - during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution.
Collapse
Affiliation(s)
- Lynne M Angerer
- National Institute for Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
50
|
Tabibzadeh S. Isolation, characterization, and function of EBAF/LEFTY B: role in infertility. Ann N Y Acad Sci 2011; 1221:98-102. [DOI: 10.1111/j.1749-6632.2010.05944.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|