1
|
Behnke J, Goetz MJ, Holzfurtner L, Korte P, Weiss A, Shahzad T, Wilhelm J, Schermuly RT, Rivetti S, Bellusci S, Ehrhardt H. Senescence of lung mesenchymal stem cells of preterm infants by cyclic stretch and hyperoxia via p21. Am J Physiol Lung Cell Mol Physiol 2024; 327:L694-L711. [PMID: 39316679 PMCID: PMC11563592 DOI: 10.1152/ajplung.00355.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Phenotype distortion of lung resident mesenchymal stem cells (MSC) in preterm infants is a hallmark event in the pathogenesis of bronchopulmonary dysplasia (BPD). Here, we evaluated the impact of cyclic mechanical stretch (CMS) and hyperoxia (HOX). The negative action of HOX on proliferation and cell death was more pronounced at 80% than at 40%. Although the impact of CMS alone was modest, CMS plus HOX displayed the strongest effect sizes. Exposure to CMS and/or HOX induced the downregulation of PDGFRα, and cellular senescence preceded by p21 accumulation. p21 interference interfered with cellular senescence and resulted in aggravated cell death, arguing for a prosurvival mechanism. HOX 40% and limited exposure to HOX 80% prevailed in a reversible phenotype with reuptake of proliferation, while prolonged exposure to HOX 80% resulted in definite MSC growth arrest. Our mechanistic data explain how HOX and CMS induce the effects on MSC phenotype disruption. The results are congruent with the clinical observation that preterm infants requiring supplemental oxygen plus mechanical ventilation are at particular risk for BPD. Although inhibiting p21 is not a feasible approach, limiting the duration and magnitude of the exposures is promising.NEW & NOTEWORTHY Rarefication of lung mesenchymal stem cells (MSC) due to exposure to cyclic mechanical stretch (CMS) during mechanical ventilation with oxygen-rich gas is a hallmark of bronchopulmonary dysplasia in preterm infants, but the pathomechanistic understanding is incomplete. Our studies identify a common signaling mechanism mediated by p21 accumulation, leading to cellular senescence and cell death, most pronounced during the combined exposure with in principle reversible phenotype change depending on strength and duration of exposures.
Collapse
Affiliation(s)
- Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Maurizio J Goetz
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Lena Holzfurtner
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Pauline Korte
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Astrid Weiss
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jochen Wilhelm
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Ralph T Schermuly
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Stefano Rivetti
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Saverio Bellusci
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Division of Neonatology and Pediatric Intensive Care Medicine, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
2
|
Yang X, Li X, Guo Z, Zhang Z, Song X, Zhang M, Han X, He L, Zhou B. Generation and characterization of PDGFRα-GFP knock-in mice for visualization of PDGFRα + fibroblasts in vivo. Biochem Biophys Res Commun 2023; 687:149215. [PMID: 37949027 DOI: 10.1016/j.bbrc.2023.149215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The platelet-derived growth factor (PDGF) and its receptor, PDGFRα, are critical for tissue development and injury repair. To track PDGFRα-expressing cells in vivo, we generated a knock-in mouse line that expresses green fluorescent protein (GFP) under the control of the PDGFRα promoter. This genetic tool enabled us to detect PDGFRα expression in various organs during both neonatal and adult stages. Additionally, we confirmed the correlation between endogenous PDGFRα and transgenic PDGFRα expression using mouse injury models, showing the potential of this genetic reporter for studying PDGFRα-mediated signaling pathways and developing therapeutic strategies. Overall, the PDGFRα-GFP knock-in mouse line serves as a valuable tool for investigating the biology of PDGFRα and its role in normal development and disease.
Collapse
Affiliation(s)
- Xueying Yang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xufeng Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhihou Guo
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Zhuonan Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Xin Song
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Mingjun Zhang
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ximeng Han
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingjuan He
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China.
| | - Bin Zhou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
3
|
Heydarian M, Oak P, Zhang X, Kamgari N, Kindt A, Koschlig M, Pritzke T, Gonzalez-Rodriguez E, Förster K, Morty RE, Häfner F, Hübener C, Flemmer AW, Yildirim AO, Sudheendra D, Tian X, Petrera A, Kirsten H, Ahnert P, Morrell N, Desai TJ, Sucre J, Spiekerkoetter E, Hilgendorff A. Relationship between impaired BMP signalling and clinical risk factors at early-stage vascular injury in the preterm infant. Thorax 2022; 77:1176-1186. [PMID: 35580897 PMCID: PMC9685723 DOI: 10.1136/thoraxjnl-2021-218083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/11/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Chronic lung disease, that is, bronchopulmonary dysplasia (BPD) is the most common complication in preterm infants and develops as a consequence of the misguided formation of the gas-exchange area undergoing prenatal and postnatal injury. Subsequent vascular disease and its progression into pulmonary arterial hypertension critically determines long-term outcome in the BPD infant but lacks identification of early, disease-defining changes. METHODS We link impaired bone morphogenetic protein (BMP) signalling to the earliest onset of vascular pathology in the human preterm lung and delineate the specific effects of the most prevalent prenatal and postnatal clinical risk factors for lung injury mimicking clinically relevant conditions in a multilayered animal model using wild-type and transgenic neonatal mice. RESULTS We demonstrate (1) the significant reduction in BMP receptor 2 (BMPR2) expression at the onset of vascular pathology in the lung of preterm infants, later mirrored by reduced plasma BMP protein levels in infants with developing BPD, (2) the rapid impairment (and persistent change) of BMPR2 signalling on postnatal exposure to hyperoxia and mechanical ventilation, aggravated by prenatal cigarette smoke in a preclinical mouse model and (3) a link to defective alveolar septation and matrix remodelling through platelet derived growth factor-receptor alpha deficiency. In a treatment approach, we partially reversed vascular pathology by BMPR2-targeted treatment with FK506 in vitro and in vivo. CONCLUSION We identified impaired BMP signalling as a hallmark of early vascular disease in the injured neonatal lung while outlining its promising potential as a future biomarker or therapeutic target in this growing, high-risk patient population.
Collapse
Affiliation(s)
- Motaharehsadat Heydarian
- Institute for Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Prajakta Oak
- Institute for Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Xin Zhang
- Institute for Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Nona Kamgari
- Institute for Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Alida Kindt
- Division of Analytical Biosciences, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Markus Koschlig
- Institute for Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Tina Pritzke
- Institute for Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Erika Gonzalez-Rodriguez
- Institute for Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Kai Förster
- Institute for Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Neonatology, Dr. v. Hauner Children's Hospital, Ludwig-Maximilians University, LMU Hospital, Munich, Germany
| | - Rory E Morty
- Department of Translational Pulmonology, University Hospital Heidelberg, Translational Lung Research Center campus of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Friederike Häfner
- Institute for Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christoph Hübener
- Department of Obstetrics and Gynecology, Ludwig-Maximilians University, LMU Hospital, Munich, Germany
| | - Andreas W Flemmer
- Department of Neonatology, Dr. v. Hauner Children's Hospital, Ludwig-Maximilians University, LMU Hospital, Munich, Germany
| | - Ali Oender Yildirim
- Institute for Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Deepti Sudheendra
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, California, USA
| | - Xuefei Tian
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, California, USA
| | - Agnese Petrera
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), associated partner of the German Center for Lung Research (DZL), University of Leipzig, Leipzig, Germany
| | - Peter Ahnert
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), associated partner of the German Center for Lung Research (DZL), University of Leipzig, Leipzig, Germany
| | - Nick Morrell
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Tushar J Desai
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, California, USA
| | - Jennifer Sucre
- Mildred Stahlman Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | - Edda Spiekerkoetter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, California, USA
| | - Anne Hilgendorff
- Institute for Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Center for Comprehensive Developmental Care (CDeCLMU), Ludwig-Maximilians University, LMU Hospital, Munich, Germany
| |
Collapse
|
4
|
Friedmacher F, Rolle U, Puri P. Genetically Modified Mouse Models of Congenital Diaphragmatic Hernia: Opportunities and Limitations for Studying Altered Lung Development. Front Pediatr 2022; 10:867307. [PMID: 35633948 PMCID: PMC9136148 DOI: 10.3389/fped.2022.867307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common and life-threatening birth defect, characterized by an abnormal opening in the primordial diaphragm that interferes with normal lung development. As a result, CDH is accompanied by immature and hypoplastic lungs, being the leading cause of morbidity and mortality in patients with this condition. In recent decades, various animal models have contributed novel insights into the pathogenic mechanisms underlying CDH and associated pulmonary hypoplasia. In particular, the generation of genetically modified mouse models, which show both diaphragm and lung abnormalities, has resulted in the discovery of multiple genes and signaling pathways involved in the pathogenesis of CDH. This article aims to offer an up-to-date overview on CDH-implicated transcription factors, molecules regulating cell migration and signal transduction as well as components contributing to the formation of extracellular matrix, whilst also discussing the significance of these genetic models for studying altered lung development with regard to the human situation.
Collapse
Affiliation(s)
- Florian Friedmacher
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Udo Rolle
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Prem Puri
- Beacon Hospital, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Zhang K, Yao E, Chen B, Chuang E, Wong J, Seed RI, Nishimura SL, Wolters PJ, Chuang PT. Acquisition of cellular properties during alveolar formation requires differential activity and distribution of mitochondria. eLife 2022; 11:e68598. [PMID: 35384838 PMCID: PMC9183236 DOI: 10.7554/elife.68598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Alveolar formation requires coordinated movement and interaction between alveolar epithelial cells, mesenchymal myofibroblasts, and endothelial cells/pericytes to produce secondary septa. These processes rely on the acquisition of distinct cellular properties to enable ligand secretion for cell-cell signaling and initiate morphogenesis through cellular contraction, cell migration, and cell shape change. In this study, we showed that mitochondrial activity and distribution play a key role in bestowing cellular functions on both alveolar epithelial cells and mesenchymal myofibroblasts for generating secondary septa to form alveoli in mice. These results suggest that mitochondrial function is tightly regulated to empower cellular machineries in a spatially specific manner. Indeed, such regulation via mitochondria is required for secretion of ligands, such as platelet-derived growth factor, from alveolar epithelial cells to influence myofibroblast proliferation and contraction/migration. Moreover, mitochondrial function enables myofibroblast contraction/migration during alveolar formation. Together, these findings yield novel mechanistic insights into how mitochondria regulate pivotal steps of alveologenesis. They highlight selective utilization of energy in cells and diverse energy demands in different cellular processes during development. Our work serves as a paradigm for studying how mitochondria control tissue patterning.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Erica Yao
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Biao Chen
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Ethan Chuang
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Julia Wong
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Robert I Seed
- Department of Pathology, University of CaliforniaSan FranciscoUnited States
| | | | - Paul J Wolters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| |
Collapse
|
6
|
Abruzzese E, Apperley JF. Managing Pregnancy in Chronic Myeloid Leukaemia. HEMATOLOGIC MALIGNANCIES 2021:227-244. [DOI: 10.1007/978-3-030-71913-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Cellular crosstalk in the development and regeneration of the respiratory system. Nat Rev Mol Cell Biol 2019; 20:551-566. [PMID: 31217577 DOI: 10.1038/s41580-019-0141-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
The respiratory system, including the peripheral lungs, large airways and trachea, is one of the most recently evolved adaptations to terrestrial life. To support the exchange of respiratory gases, the respiratory system is interconnected with the cardiovascular system, and this interconnective nature requires a complex interplay between a myriad of cell types. Until recently, this complexity has hampered our understanding of how the respiratory system develops and responds to postnatal injury to maintain homeostasis. The advent of new single-cell sequencing technologies, developments in cellular and tissue imaging and advances in cell lineage tracing have begun to fill this gap. The view that emerges from these studies is that cellular and functional heterogeneity of the respiratory system is even greater than expected and also highly adaptive. In this Review, we explore the cellular crosstalk that coordinates the development and regeneration of the respiratory system. We discuss both the classic cell and developmental biology studies and recent single-cell analysis to provide an integrated understanding of the cellular niches that control how the respiratory system develops, interacts with the external environment and responds to injury.
Collapse
|
8
|
Minato Y, Kuwahara-Otani S, Maeda S, Yagi H. Platelet-derived growth factor receptor α gene is regulated by multiple first exons. Biochem Biophys Res Commun 2019; 510:489-494. [PMID: 30654933 DOI: 10.1016/j.bbrc.2019.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
Transcription of the platelet-derived growth factor receptor α (PDGFRA/Pdgfra) gene is considered to be precisely regulated. We have previously reported that the PDGFRA/Pdgfra gene is regulated by a dual promoter system in human and mouse, in which a novel PDGFRA/Pdgfra transcript has a first exon (exon 1β) different from that of the canonical PDGFRA/Pdgfra transcript (exon 1α). To elucidate the function of each transcript, we first investigated the contribution of different PDGFRA transcripts to final protein levels. Notably, knockdown experiments suggested the existence of other PDGFRA transcripts, and we identified five additional first exons (exons 1γ, 1δ, 1ε, 1ζ, and 1η) in intron 1 in both the human and mouse genes. The first exons of the mouse Pdgfra gene showed unique expression patterns: exon 1α was broadly expressed; exon 1β was highly expressed in embryos; exon 1γ was observed at relatively high levels in the adult central nervous system (CNS); and exon 1δ was expressed at relatively high levels in the developing CNS. Furthermore, in silico analysis of common putative transcription factor binding sites in the upstream regions of the first exons of both human and mouse PDGFRA/Pdgfra genes predicted common (such as Sry, Mzf1, and Cdx) and unique (such as Sox5, Lmo2, and GATA) transcription factors. Our findings show the diversity of the transcriptional regulation of the PDGFRA/Pdgfra gene.
Collapse
Affiliation(s)
- Yusuke Minato
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Sachi Kuwahara-Otani
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Seishi Maeda
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Hideshi Yagi
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
9
|
Gene Expression Signatures Point to a Male Sex-Specific Lung Mesenchymal Cell PDGF Receptor Signaling Defect in Infants Developing Bronchopulmonary Dysplasia. Sci Rep 2018; 8:17070. [PMID: 30459472 PMCID: PMC6244280 DOI: 10.1038/s41598-018-35256-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Male sex is a risk factor for development of bronchopulmonary dysplasia (BPD), a common chronic lung disease following preterm birth. We previously found that tracheal aspirate mesenchymal stromal cells (MSCs) from premature infants developing BPD show reduced expression of PDGFRα, which is required for normal lung development. We hypothesized that MSCs from male infants developing BPD exhibit a pathologic gene expression profile deficient in PDGFR and its downstream effectors, thereby favoring delayed lung development. In a discovery cohort of 6 male and 7 female premature infants, we analyzed the tracheal aspirate MSCs transcriptome. A unique gene signature distinguished MSCs from male infants developing BPD from all other MSCs. Genes involved in lung development, PDGF signaling and extracellular matrix remodeling were differentially expressed. We sought to confirm these findings in a second cohort of 13 male and 12 female premature infants. mRNA expression of PDGFRA, FGF7, WNT2, SPRY1, MMP3 and FOXF2 were significantly lower in MSCs from male infants developing BPD. In female infants developing BPD, tracheal aspirate levels of proinflammatory CCL2 and profibrotic Galectin-1 were higher compared to male infants developing BPD and female not developing BPD. Our findings support a notion for sex-specific differences in the mechanisms of BPD development.
Collapse
|
10
|
Oak P, Pritzke T, Thiel I, Koschlig M, Mous DS, Windhorst A, Jain N, Eickelberg O, Foerster K, Schulze A, Goepel W, Reicherzer T, Ehrhardt H, Rottier RJ, Ahnert P, Gortner L, Desai TJ, Hilgendorff A. Attenuated PDGF signaling drives alveolar and microvascular defects in neonatal chronic lung disease. EMBO Mol Med 2018; 9:1504-1520. [PMID: 28923828 PMCID: PMC5666314 DOI: 10.15252/emmm.201607308] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Neonatal chronic lung disease (nCLD) affects a significant number of neonates receiving mechanical ventilation with oxygen-rich gas (MV-O2). Regardless, the primary molecular driver of the disease remains elusive. We discover significant enrichment for SNPs in the PDGF-Rα gene in preterms with nCLD and directly test the effect of PDGF-Rα haploinsufficiency on the development of nCLD using a preclinical mouse model of MV-O2 In the context of MV-O2, attenuated PDGF signaling independently contributes to defective septation and endothelial cell apoptosis stemming from a PDGF-Rα-dependent reduction in lung VEGF-A. TGF-β contributes to the PDGF-Rα-dependent decrease in myofibroblast function. Remarkably, endotracheal treatment with exogenous PDGF-A rescues both the lung defects in haploinsufficient mice undergoing MV-O2 Overall, our results establish attenuated PDGF signaling as an important driver of nCLD pathology with provision of PDGF-A as a protective strategy for newborns undergoing MV-O2.
Collapse
Affiliation(s)
- Prajakta Oak
- Comprehensive Pneumology Center, University Hospital of the University of Munich and Helmholtz Zentrum Muenchen, Munich, Germany
| | - Tina Pritzke
- Comprehensive Pneumology Center, University Hospital of the University of Munich and Helmholtz Zentrum Muenchen, Munich, Germany
| | - Isabella Thiel
- Comprehensive Pneumology Center, University Hospital of the University of Munich and Helmholtz Zentrum Muenchen, Munich, Germany
| | - Markus Koschlig
- Comprehensive Pneumology Center, University Hospital of the University of Munich and Helmholtz Zentrum Muenchen, Munich, Germany
| | - Daphne S Mous
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Anita Windhorst
- Institute for Medical Informatics, Justus-Liebig-University, Giessen, Germany
| | - Noopur Jain
- Comprehensive Pneumology Center, University Hospital of the University of Munich and Helmholtz Zentrum Muenchen, Munich, Germany.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, University Hospital of the University of Munich and Helmholtz Zentrum Muenchen, Munich, Germany
| | - Kai Foerster
- Department of Neonatology, Perinatal Center Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Andreas Schulze
- Department of Neonatology, Perinatal Center Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Wolfgang Goepel
- Department of General Pediatrics, University Clinic of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Tobias Reicherzer
- Department of Neonatology, Perinatal Center Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Peter Ahnert
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Ludwig Gortner
- Department of Pediatrics and Neonatology, Medical University Vienna, Vienna, Austria
| | - Tushar J Desai
- Department of Internal Medicine, Pulmonary and Critical Care, Stanford University School of Medicine, Stanford, CA, USA
| | - Anne Hilgendorff
- Comprehensive Pneumology Center, University Hospital of the University of Munich and Helmholtz Zentrum Muenchen, Munich, Germany .,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.,Department of Neonatology, Perinatal Center Grosshadern, Ludwig-Maximilians University, Munich, Germany.,Center for Comprehensive Developmental Care, Dr. von Haunersches Children's Hospital University Hospital Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
11
|
Oak P, Hilgendorff A. The BPD trio? Interaction of dysregulated PDGF, VEGF, and TGF signaling in neonatal chronic lung disease. Mol Cell Pediatr 2017; 4:11. [PMID: 29116547 PMCID: PMC5676585 DOI: 10.1186/s40348-017-0076-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022] Open
Abstract
The development of neonatal chronic lung disease (nCLD), i.e., bronchopulmonary dysplasia (BPD) in preterm infants, significantly determines long-term outcome in this patient population. Risk factors include mechanical ventilation and oxygen toxicity impacting on the immature lung resulting in impaired alveolarization and vascularization. Disease development is characterized by inflammation, extracellular matrix remodeling, and apoptosis, closely intertwined with the dysregulation of growth factor signaling. This review focuses on the causes and consequences of altered signaling in central pathways like transforming growth factor (TGF), platelet-derived growth factor (PDGF), and vascular endothelial growth factor (VEGF) driving these above indicated processes, i.e., inflammation, matrix remodeling, and vascular development. We emphasize the shared and distinct role of these pathways as well as their interconnection in disease initiation and progression, generating important knowledge for the development of future treatment strategies.
Collapse
Affiliation(s)
- Prajakta Oak
- Comprehensive Pneumology Center, University Hospital of the University of Munich and Helmholtz Zentrum Muenchen, Munich, Germany
| | - Anne Hilgendorff
- Comprehensive Pneumology Center, University Hospital of the University of Munich and Helmholtz Zentrum Muenchen, Munich, Germany.
- Department of Neonatology, Perinatal Center Grosshadern, Ludwig-Maximilians University, Munich, Germany.
- Center for Comprehensive Developmental Care, Dr. von Haunersches Children's Hospital University, Hospital Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
12
|
García-Sanz P, Mirasierra M, Moratalla R, Vallejo M. Embryonic defence mechanisms against glucose-dependent oxidative stress require enhanced expression of Alx3 to prevent malformations during diabetic pregnancy. Sci Rep 2017; 7:389. [PMID: 28341857 PMCID: PMC5428206 DOI: 10.1038/s41598-017-00334-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress constitutes a major cause for increased risk of congenital malformations associated to severe hyperglycaemia during pregnancy. Mutations in the gene encoding the transcription factor ALX3 cause congenital craniofacial and neural tube defects. Since oxidative stress and lack of ALX3 favour excessive embryonic apoptosis, we investigated whether ALX3-deficiency further increases the risk of embryonic damage during gestational hyperglycaemia in mice. We found that congenital malformations associated to ALX3-deficiency are enhanced in diabetic pregnancies. Increased expression of genes encoding oxidative stress-scavenging enzymes in embryos from diabetic mothers was blunted in the absence of ALX3, leading to increased oxidative stress. Levels of ALX3 increased in response to glucose, but ALX3 did not activate oxidative stress defence genes directly. Instead, ALX3 stimulated the transcription of Foxo1, a master regulator of oxidative stress-scavenging genes, by binding to a newly identified binding site located in the Foxo1 promoter. Our data identify ALX3 as an important component of the defence mechanisms against the occurrence of developmental malformations during diabetic gestations, stimulating the expression of oxidative stress-scavenging genes in a glucose-dependent manner via Foxo1 activation. Thus, ALX3 deficiency provides a novel molecular mechanism for developmental defects arising from maternal hyperglycaemia.
Collapse
Affiliation(s)
- Patricia García-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, and CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Mirasierra
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, and CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| |
Collapse
|
13
|
Cass Y, Connor TH, Tabachnik A. Safe handling of oral antineoplastic medications: Focus on targeted therapeutics in the home setting. J Oncol Pharm Pract 2016; 23:350-378. [PMID: 27009803 DOI: 10.1177/1078155216637217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction With the growing number of oral targeted therapies being approved for use in cancer therapy, the potential for long-term administration of these drugs to cancer patients is expanding. The use of these drugs in the home setting has the potential to expose family members and caregivers to them either through direct contact with the drugs or indirectly by exposure to the parent compounds and/or their active metabolites in contaminated patients' waste. Methods A systematic literature review was performed and the known adverse health effect of 32 oral targeted therapeutics is summarized. In particular, the carcinogenicity, genotoxicity, and embryo-fetal toxicity, along with the route of excretion were evaluated. Results Carcinogenicity testing has not been performed on most of the oral targeted therapeutics and the genotoxicity data are mixed. However, the majority of these drugs exhibit adverse reproductive effects, some of which are severe. Currently, available data does not permit the possibility of a health hazard from inappropriate handling of drugs and contaminated patients waste to be ignored, especially in a long-term home setting. Further research is needed to understand these issues. Conclusions With the expanding use of targeted therapies in the home setting, family members and caregivers, especially those of reproductive risk age, are, potentially at risk. Overall basic education and related precautions should be taken to protect family members and caregivers from indirect or direct exposure from these drugs. Further investigations and discussion on this subject are warranted.
Collapse
Affiliation(s)
| | - Thomas H Connor
- 2 Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | | |
Collapse
|
14
|
Suzuki A, Sangani DR, Ansari A, Iwata J. Molecular mechanisms of midfacial developmental defects. Dev Dyn 2015; 245:276-93. [PMID: 26562615 DOI: 10.1002/dvdy.24368] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/19/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022] Open
Abstract
The morphogenesis of midfacial processes requires the coordination of a variety of cellular functions of both mesenchymal and epithelial cells to develop complex structures. Any failure or delay in midfacial development as well as any abnormal fusion of the medial and lateral nasal and maxillary prominences will result in developmental defects in the midface with a varying degree of severity, including cleft, hypoplasia, and midline expansion. Despite the advances in human genome sequencing technology, the causes of nearly 70% of all birth defects, which include midfacial development defects, remain unknown. Recent studies in animal models have highlighted the importance of specific signaling cascades and genetic-environmental interactions in the development of the midfacial region. This review will summarize the current understanding of the morphogenetic processes and molecular mechanisms underlying midfacial birth defects based on mouse models with midfacial developmental abnormalities.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Dhruvee R Sangani
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Afreen Ansari
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, Texas.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
15
|
Miwa H, Era T. Generation and characterization of PDGFRα-GFPCreERT2 knock-In mouse line. Genesis 2015; 53:329-36. [PMID: 25884589 DOI: 10.1002/dvg.22853] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 12/18/2022]
Abstract
Platelet-derived growth factor (PDGF) and its receptor play an important role in embryogenesis. PDGF receptor α (PDGFRα) is expressed specifically in the embryonic day 7.5 (E7.5) mesoderm and in the E9.5 neural crest among other tissues. PDGFRα-expressing cells and their descendants are involved in the formation of various tissues. To trace PDGFRα-expressing cells in vivo, we generated a knock-in mouse line that expressed a fusion protein of green fluorescent protein (GFP), Cre recombinase (Cre), and mutated estrogen receptor ligand-binding domain (ERT2) under the control of the PDGFRα promoter. In these mice, Cre activity in PDGFRα-expressing cells could be induced by tamoxifen treatment. Taken together, our results suggest that the knock-in mouse line generated here could be useful for studying PDGFRα-expressing cells and their descendants in vivo at various stages of development.
Collapse
Affiliation(s)
- Hiroyuki Miwa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
16
|
Palani R, Milojkovic D, Apperley JF. Managing pregnancy in chronic myeloid leukaemia. Ann Hematol 2015; 94 Suppl 2:S167-76. [PMID: 25814083 DOI: 10.1007/s00277-015-2317-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/12/2015] [Indexed: 11/26/2022]
Abstract
Over the past decade, we have witnessed significant advances in knowledge of the biology and treatment of chronic myeloid leukaemia (CML). The development of molecular-targeted therapy with tyrosine kinase inhibitors (TKIs) has fundamentally changed the outcome of this disease. Treatment with TKIs is now the standard of care in patients with CML and has dramatically improved long-term survival in the majority of patients. Patients who achieve major molecular response (MMR) after 2 years of treatment with imatinib have survival rates comparable to those of the general population. The success of TKIs has led to durable molecular response and possibility of normal life expectancies, such that it is now timely to address quality of life aspects such as fertility, pregnancy and family planning. Pregnancy in CML presents specific management and therapeutic challenges for the patient and the physician. Despite the recent treatment advances, we still have limited data on the safety of TKIs in pregnancy and its effect on fertility. However, there is a cause for concern and heightened awareness following the occurrence of a constellation of rare congenital malformations and spontaneous abortions in association with imatinib therapy. When a patient becomes pregnant whilst receiving TKI therapy, the difficulty lies in balancing the risk to the foetus of continuing therapy versus the risk to the patient of treatment interruption and potentially losing optimal disease response. All couples should be counselled on the risks associated with pregnancy whilst receiving TKI therapy. This is an essential aspect in patient care and frequently not emphasized enough by physicians. At the time of diagnosis, fertility preservation should be discussed with both male and female patients of childbearing potential. They should be made aware of fertility options which are available such as semen cryopreservation, ovarian or oocyte retrieval and storage and embryo cryopreservation in view of the potential detrimental effect of TKIs on fertility and gonadal function. The recommendation given to patients planning pregnancy differs according to their disease response to TKI therapy, which is the most important prognostic factor in CML.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Combined Modality Therapy/adverse effects
- Contraindications
- Drug Monitoring
- Evidence-Based Medicine
- Female
- Fertility Preservation
- Humans
- Lactation
- Leukapheresis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Male
- Patient Education as Topic
- Precision Medicine
- Pregnancy
- Pregnancy Complications, Neoplastic/diagnosis
- Pregnancy Complications, Neoplastic/drug therapy
- Pregnancy Complications, Neoplastic/therapy
- Prognosis
- Protein Kinase Inhibitors/adverse effects
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Teratogens/toxicity
Collapse
Affiliation(s)
- Renuka Palani
- Department of Haematology, Imperial College London, Hammersmith Hospital, London, UK,
| | | | | |
Collapse
|
17
|
McCulley D, Wienhold M, Sun X. The pulmonary mesenchyme directs lung development. Curr Opin Genet Dev 2015; 32:98-105. [PMID: 25796078 PMCID: PMC4763935 DOI: 10.1016/j.gde.2015.01.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 11/22/2022]
Abstract
Each of the steps of respiratory system development relies on intricate interactions and coordinated development of the lung epithelium and mesenchyme. In the past, more attention has been paid to the epithelium than the mesenchyme. The mesenchyme is a source of specification and morphogenetic signals as well as a host of surprisingly complex cell lineages that are critical for normal lung development and function. This review highlights recent research focusing on the mesenchyme that has revealed genetic and epigenetic mechanisms of its development in the context of other cell layers during respiratory lineage specification, branching morphogenesis, epithelial differentiation, lineage distinction, vascular development, and alveolar maturation.
Collapse
Affiliation(s)
- David McCulley
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Mark Wienhold
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
18
|
Noskovičová N, Petřek M, Eickelberg O, Heinzelmann K. Platelet-Derived Growth Factor Signaling in the Lung. From Lung Development and Disease to Clinical Studies. Am J Respir Cell Mol Biol 2015; 52:263-84. [DOI: 10.1165/rcmb.2014-0294tr] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
19
|
Mutafova-Yambolieva VN, Durnin L. The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 2014; 144:162-91. [PMID: 24887688 PMCID: PMC4185222 DOI: 10.1016/j.pharmthera.2014.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5'-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD(+), ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout.
Collapse
Affiliation(s)
| | - Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, United States
| |
Collapse
|
20
|
Lin C, Chen MH, Yao E, Song H, Gacayan R, Hui CC, Chuang PT. Differential regulation of Gli proteins by Sufu in the lung affects PDGF signaling and myofibroblast development. Dev Biol 2014; 392:324-333. [PMID: 24886827 PMCID: PMC4106470 DOI: 10.1016/j.ydbio.2014.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/30/2014] [Accepted: 05/20/2014] [Indexed: 01/03/2023]
Abstract
Mammalian Hedgehog (Hh) signaling relies on three Gli transcription factors to mediate Hh responses. This process is controlled in part by a major negative regulator, Sufu, through its effects on Gli protein level, distribution and activity. In this report, we showed that Sufu regulates Gli1 protein levels by antagonizing Numb/Itch. Otherwise, Numb/Itch would induce Gli1 protein degradation. This is in contrast to inhibition of Spop-mediated degradation of Gli2/3 by Sufu. Thus, controlling protein levels of all three Gli genes by Sufu is a conserved mechanism to modulate Hh responses albeit via distinct pathways. These findings in cell-based assays were further validated in vivo. In analyzing how Sufu controls Gli proteins in different tissues, we discovered that loss of Sufu in the lung exerts different effects on Hh target genes. Hh targets Ptch1/Hhip are upregulated in Sufu-deficient lungs, consistent with Hh pathway activation. Surprisingly, protein levels of Hh target Gli1 are reduced. We also found that myofibroblasts are absent from many prospective alveoli of Sufu-deficient lungs. Myofibroblast development is dependent on PDGF signaling. Interestingly, analysis of the Pdgfra promoter revealed a canonical Gli-binding site where Gli1 resides. These studies support a model in which loss of Sufu contributes to compromised Pdgfra activation and disrupts myofibroblast development in the lung. Our work illustrates the unappreciated complexity of Hh responses where distinct Hh targets could respond differently depending on the availability of Gli proteins that control their expression.
Collapse
Affiliation(s)
- Chuwen Lin
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States
| | - Miao-Hsueh Chen
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States; USDA/ARS Children׳s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States
| | - Hai Song
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States
| | - Rhodora Gacayan
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States
| | - Chi-chung Hui
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States.
| |
Collapse
|
21
|
Funa K, Sasahara M. The roles of PDGF in development and during neurogenesis in the normal and diseased nervous system. J Neuroimmune Pharmacol 2013; 9:168-81. [PMID: 23771592 PMCID: PMC3955130 DOI: 10.1007/s11481-013-9479-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/23/2013] [Indexed: 12/13/2022]
Abstract
The four platelet-derived growth factor (PDGF) ligands and PDGF receptors (PDGFRs), α and β (PDGFRA, PDGFRB), are essential proteins that are expressed during embryonic and mature nervous systems, i.e., in neural progenitors, neurons, astrocytes, oligodendrocytes, and vascular cells. PDGF exerts essential roles from the gastrulation period to adult neuronal maintenance by contributing to the regulation of development of preplacodal progenitors, placodal ectoderm, and neural crest cells to adult neural progenitors, in coordinating with other factors. In adulthood, PDGF plays critical roles for maintenance of many specific cell types in the nervous system together with vascular cells through controlling the blood brain barrier homeostasis. At injury or various stresses, PDGF modulates neuronal excitability through adjusting various ion channels, and affecting synaptic plasticity and function. Furthermore, PDGF stimulates survival signals, majorly PI3-K/Akt pathway but also other ways, rescuing cells from apoptosis. Studies imply an involvement of PDGF in dendrite spine morphology, being critical for memory in the developing brain. Recent studies suggest association of PDGF genes with neuropsychiatric disorders. In this review, we will describe the roles of PDGF in the nervous system, from the discovery to recent findings, in order to understand the broad spectrum of PDGF in the nervous system. Recent development of pharmacological and replacement therapies targeting the PDGF system is discussed.
Collapse
Affiliation(s)
- Keiko Funa
- Sahlgrenska Cancer Center, University of Gothenburg, Box 425, SE 405 30, Gothenburg, Sweden,
| | | |
Collapse
|
22
|
Kitagawa M, Takebe A, Ono Y, Imai T, Nakao K, Nishikawa SI, Era T. Phf14, a novel regulator of mesenchyme growth via platelet-derived growth factor (PDGF) receptor-α. J Biol Chem 2012; 287:27983-96. [PMID: 22730381 DOI: 10.1074/jbc.m112.350074] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The regulation of mesenchymal cell growth by signaling molecules plays an important role in maintaining tissue functions. Aberrant mesenchymal cell proliferation caused by disruption of this regulatory process leads to pathogenetic events such as fibrosis. In the current study we have identified a novel nuclear factor, Phf14, which controls the proliferation of mesenchymal cells by regulating PDGFRα expression. Phf14-null mice died just after birth due to respiratory failure. Histological analyses of the lungs of these mice showed interstitial hyperplasia with an increased number of PDGFRα(+) mesenchymal cells. PDGFRα expression was elevated in Phf14-null mesenchymal fibroblasts, resulting in increased proliferation. We demonstrated that Phf14 acts as a transcription factor that directly represses PDGFRα expression. Based on these results, we used an antibody against PDGFRα to successfully treat mouse lung fibrosis. This study shows that Phf14 acts as a negative regulator of PDGFRα expression in mesenchymal cells undergoing normal and abnormal proliferation, and is a potential target for new treatments of lung fibrosis.
Collapse
Affiliation(s)
- Michinori Kitagawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Chen L, Acciani T, Le Cras T, Lutzko C, Perl AKT. Dynamic regulation of platelet-derived growth factor receptor α expression in alveolar fibroblasts during realveolarization. Am J Respir Cell Mol Biol 2012; 47:517-27. [PMID: 22652199 DOI: 10.1165/rcmb.2012-0030oc] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although the importance of platelet-derived growth factor receptor (PDGFR)-α signaling during normal alveogenesis is known, it is unclear whether this signaling pathway can regulate realveolarization in the adult lung. During alveolar development, PDGFR-α-expressing cells induce α smooth muscle actin (α-SMA) and differentiate to interstitial myofibroblasts. Fibroblast growth factor (FGF) signaling regulates myofibroblast differentiation during alveolarization, whereas peroxisome proliferator-activated receptor (PPAR)-γ activation antagonizes myofibroblast differentiation in lung fibrosis. Using left lung pneumonectomy, the roles of FGF and PPAR-γ signaling in differentiation of myofibroblasts from PDGFR-α-positive precursors during compensatory lung growth were assessed. FGF receptor (FGFR) signaling was inhibited by conditionally activating a soluble dominant-negative FGFR2 transgene. PPAR-γ signaling was activated by administration of rosiglitazone. Changes in α-SMA and PDGFR-α protein expression were assessed in PDGFR-α-green fluorescent protein (GFP) reporter mice using immunohistochemistry, flow cytometry, and real-time PCR. Immunohistochemistry and flow cytometry demonstrated that the cell ratio and expression levels of PDGFR-α-GFP changed dynamically during alveolar regeneration and that α-SMA expression was induced in a subset of PDGFR-α-GFP cells. Expression of a dominant-negative FGFR2 and administration of rosiglitazone inhibited induction of α-SMA in PDGFR-α-positive fibroblasts and formation of new septae. Changes in gene expression of epithelial and mesenchymal signaling molecules were assessed after left lobe pneumonectomy, and results demonstrated that inhibition of FGFR2 signaling and increase in PPAR-γ signaling altered the expression of Shh, FGF, Wnt, and Bmp4, genes that are also important for epithelial-mesenchymal crosstalk during early lung development. Our data demonstrate for the first time that a comparable epithelial-mesenchymal crosstalk regulates fibroblast phenotypes during alveolar septation.
Collapse
Affiliation(s)
- Leiling Chen
- Division of Pulmonary Biology, Perinatal Institute, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | | | | | | | |
Collapse
|
24
|
Snider P, Simmons O, Rogers R, Young R, Gosnell M, Conway SJ. Notochordal and foregut abnormalities correlate with elevated neural crest apoptosis in Patch embryos. ACTA ACUST UNITED AC 2011; 91:551-64. [PMID: 21557455 DOI: 10.1002/bdra.20802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/25/2011] [Accepted: 02/04/2011] [Indexed: 01/17/2023]
Abstract
Although Patch mutants show severe abnormalities in many neural crest-derived structures including the face and the heart, there is a paucity of information characterizing the mechanisms underlying these congenital defects. Via manipulating the genetic background to circumvent early embryonic lethality, our results revealed that Patch phenotypes are most likely due to a significant decrease in migratory neural crest lineage due to diminished neural crest survival and elevated apoptosis. Homozygous mutant neural crest precursors can undergo typical expansion within the neural tube, epithelial-to-mesenchymal transformation, and initiate normal neural crest emigration. Moreover, in vitro explant culture demonstrated that when isolated from the surrounding mesenchyme, Patch mutant neural crest cells (NCCs) can migrate appropriately. Additionally, Patch foregut, notochord and somitic morphogenesis, and Sonic hedgehog expression profiles were all perturbed. Significantly, the timing of lethality and extent of apoptosis correlated with the degree of severity of Patch mutant foregut, notochord, and somite dysfunction. Finally, analysis of Balb/c-enriched surviving Patch mutants revealed that not all the neural crest subpopulations are affected and that Patch mutant neural crest-derived sympathetic ganglia and dorsal root ganglia were unaffected. We hypothesize that loss of normal coordinated signaling from the notochord, foregut, and somites underlies the diminished survival of the neural crest lineage within Patch mutants resulting in subsequent neural crest-deficient phenotypes.
Collapse
Affiliation(s)
- Paige Snider
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Eckert MA, Lwin TM, Chang AT, Kim J, Danis E, Ohno-Machado L, Yang J. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell 2011; 19:372-86. [PMID: 21397860 PMCID: PMC3072410 DOI: 10.1016/j.ccr.2011.01.036] [Citation(s) in RCA: 396] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 11/09/2010] [Accepted: 01/13/2011] [Indexed: 12/20/2022]
Abstract
The Twist1 transcription factor is known to promote tumor metastasis and induce Epithelial-Mesenchymal Transition (EMT). Here, we report that Twist1 is capable of promoting the formation of invadopodia, specialized membrane protrusions for extracellular matrix degradation. Twist1 induces PDGFRα expression, which in turn activates Src, to promote invadopodia formation. We show that Twist1 and PDGFRα are central mediators of invadopodia formation in response to various EMT-inducing signals. Induction of PDGFRα and invadopodia is essential for Twist1 to promote tumor metastasis. Consistent with PDGFRα being a direct transcriptional target of Twist1, coexpression of Twist1 and PDGFRα predicts poor survival in breast tumor patients. Therefore, invadopodia-mediated matrix degradation is a key function of Twist1 in promoting tumor metastasis.
Collapse
Affiliation(s)
- Mark A. Eckert
- Department of Pharmacology, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
- The Molecular Pathology Graduate Program, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Thinzar M. Lwin
- Department of Pharmacology, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Andrew T. Chang
- Department of Pharmacology, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
- The Biomedical Science Graduate Program, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Jihoon Kim
- Division of Biomedical Informatics, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Etienne Danis
- Department of Pharmacology, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Lucila Ohno-Machado
- Division of Biomedical Informatics, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Jing Yang
- Department of Pharmacology, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| |
Collapse
|
26
|
Mesenchymal cell survival in airway and interstitial pulmonary fibrosis. FIBROGENESIS & TISSUE REPAIR 2010; 3:15. [PMID: 20738867 PMCID: PMC2940818 DOI: 10.1186/1755-1536-3-15] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/25/2010] [Indexed: 02/06/2023]
Abstract
Fibrotic reactions in the airways of the lung or the pulmonary interstitium are a common pathologic outcome after exposure to a wide variety of toxic agents, including metals, particles or fibers. The survival of mesenchymal cells (fibroblasts and myofibroblasts) is a key factor in determining whether a fibroproliferative response that occurs after toxic injury to the lung will ultimately resolve or progress to a pathologic state. Several polypeptide growth factors, including members of the platelet-derived growth factor (PDGF) family and the epidermal growth factor (EGF) family, are prosurvival factors that stimulate a replicative and migratory mesenchymal cell phenotype during the early stages of lung fibrogenesis. This replicative phenotype can progress to a matrix synthetic phenotype in the presence of transforming growth factor-β1 (TGF-β1). The resolution of a fibrotic response requires growth arrest and apoptosis of mesenchymal cells, whereas progressive chronic fibrosis has been associated with mesenchymal cell resistance to apoptosis. Mesenchymal cell survival or apoptosis is further influenced by cytokines secreted during Th1 inflammation (e.g., IFN-γ) or Th2 inflammation (e.g., IL-13) that modulate the expression of growth factor activity through the STAT family of transcription factors. Understanding the mechanisms that regulate the survival or death of mesenchymal cells is central to ultimately developing therapeutic strategies for lung fibrosis.
Collapse
|
27
|
Wu N, Iwamoto T, Sugawara Y, Futaki M, Yoshizaki K, Yamamoto S, Yamada A, Nakamura T, Nonaka K, Fukumoto S. PDGFs regulate tooth germ proliferation and ameloblast differentiation. Arch Oral Biol 2010; 55:426-34. [PMID: 20392435 DOI: 10.1016/j.archoralbio.2010.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/02/2010] [Accepted: 03/12/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The purpose of this study was to elucidate the effects of platelet-derived growth factors (PDGFs) during tooth development, as well as the mechanisms underlying the interactions of growth factors with PDGF signalling during odontogenesis. DESIGN We used an ex vivo tooth germ organ culture system and two dental cell lines, SF2 cells and mDP cells, as models of odontogenesis. AG17, a tyrosine kinase inhibitor, was utilised for blocking PDGF receptor signalling. To analyse the expressions of PDGFs, reverse transcriptase (RT)-PCR and immunohistochemistry were performed. Proliferation was examined using a BrdU incorporation assay for the organ cultures and a cell counting kit for the cell lines. The expressions of Fgf2 and ameloblastin were analysed by real-time RT-PCR. RESULTS The PDGF ligands PDGF-A and PDGF-B, and their receptors, PDGFRalpha and PDGFRbeta, were expressed throughout the initial stages of tooth development. In the tooth germ organ cultures, PDGF-AA, but not PDGF-BB, accelerated cusp formation. Conversely, AG17 suppressed both growth and cusp formation of tooth germs. Exogenous PDGF-BB promoted mDP cell proliferation. Furthermore, PDGF-AA decreased Fgf2 expression and increased that of ameloblastin, a marker of differentiated ameloblasts. CONCLUSION Our results indicate that PDGFs are involved in initial tooth development and regulate tooth size and shape, as well as ameloblast differentiation.
Collapse
Affiliation(s)
- Nan Wu
- Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kawase-Koga Y, Otaegi G, Sun T. Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev Dyn 2010; 238:2800-12. [PMID: 19806666 DOI: 10.1002/dvdy.22109] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs, processed by the RNAase III enzyme Dicer, are approximately 22 nucleotide endogenous noncoding small RNAs. The function of Dicer in the mouse central nervous system (CNS) development is not well understood. Here, we show that specifically deleting Dicer expression in the CNS and in the cerebral cortex using two Cre lines results in reduced progenitor numbers, abnormal neuronal differentiation, and thinner cortical wall. Incomplete Dicer deletion during early embryonic stages contributes to normal development of early-born neurons in the cortex and motor neurons in the spinal cord. However, at late embryonic stages when Dicer is completely ablated in the CNS, the migration of late-born neurons in the cortex and oligodendrocyte precursor expansion and differentiation in the spinal cord are greatly affected. Our studies of different timings of Dicer deletion demonstrate the importance of the Dicer-mediated microRNA pathway in regulating distinct phases of neurogenesis and gliogenesis during the CNS development.
Collapse
Affiliation(s)
- Yoko Kawase-Koga
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10065, USA
| | | | | |
Collapse
|
29
|
Perl AKT, Gale E. FGF signaling is required for myofibroblast differentiation during alveolar regeneration. Am J Physiol Lung Cell Mol Physiol 2009; 297:L299-308. [PMID: 19502291 DOI: 10.1152/ajplung.00008.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Normal alveolarization has been studied in rodents using detailed morphometric techniques and loss of function approaches for growth factors and their receptors. However, it remains unclear how these growth factors direct the formation of secondary septae. We have previously developed a transgenic mouse model in which expression of a soluble dominant-negative FGF receptor (dnFGFR) in the prenatal period results in reduced alveolar septae formation and subsequent alveolar simplification. Retinoic acid (RA), a biologically active derivative of vitamin A, can induce regeneration of alveoli in adult rodents. In this study, we demonstrate that RA induces alveolar reseptation in this transgenic mouse model and that realveolarization in adult mice is FGF dependent. Proliferation in the lung parenchyma, an essential prerequisite for lung regrowth was enhanced after 14 days of RA treatment and was not influenced by dnFGFR expression. During normal lung development, formation of secondary septae is associated with the transient presence of alpha-smooth muscle actin (alphaSMA)-positive interstitial myofibroblasts. One week after completion of RA treatment, alphaSMA expression was detected in interstitial fibroblasts, supporting the concept that RA-initiated realveolarization recapitulates aspects of septation that occur during normal lung development. Expression of dnFGFR blocked realveolarization with increased PDGF receptor-alpha (PDGFRalpha)-positive cells and decreased alphaSMA-positive cells. Taken together, our data demonstrate that FGF signaling is required for the induction of alphaSMA in the PDGFRalpha-positive myofibroblast progenitor and the progression of alveolar regeneration.
Collapse
Affiliation(s)
- Anne-Karina T Perl
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Ohio, USA.
| | | |
Collapse
|
30
|
Sustained platelet-derived growth factor receptor alpha signaling in osteoblasts results in craniosynostosis by overactivating the phospholipase C-gamma pathway. Mol Cell Biol 2008; 29:881-91. [PMID: 19047372 DOI: 10.1128/mcb.00885-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The development and growth of the skull is controlled by cranial sutures, which serve as growth centers for osteogenesis by providing a pool of osteoprogenitors. These osteoprogenitors undergo intramembranous ossification by direct differentiation into osteoblasts, which synthesize the components of the extracellular bone matrix. A dysregulation of osteoblast differentiation can lead to premature fusion of sutures, resulting in an abnormal skull shape, a disease called craniosynostosis. Although several genes could be linked to craniosynostosis, the mechanisms regulating cranial suture development remain largely elusive. We have established transgenic mice conditionally expressing an autoactivated platelet-derived growth factor receptor alpha (PDGFRalpha) in neural crest cells (NCCs) and their derivatives. In these mice, premature fusion of NCC-derived sutures occurred at early postnatal stages. In vivo and in vitro experiments demonstrated enhanced proliferation of osteoprogenitors and accelerated ossification of osteoblasts. Furthermore, in osteoblasts expressing the autoactivated receptor, we detected an upregulation of the phospholipase C-gamma (PLC-gamma) pathway. Treatment of differentiating osteoblasts with a PLC-gamma-specific inhibitor prevented the mineralization of synthesized bone matrix. Thus, we show for the first time that PDGFRalpha signaling stimulates osteogenesis of NCC-derived osteoblasts by activating the PLC-gamma pathway, suggesting an involvement of this pathway in the etiology of human craniosynostosis.
Collapse
|
31
|
Pye SM, Cortes J, Ault P, Hatfield A, Kantarjian H, Pilot R, Rosti G, Apperley JF. The effects of imatinib on pregnancy outcome. Blood 2008; 111:5505-8. [PMID: 18322153 PMCID: PMC4916938 DOI: 10.1182/blood-2007-10-114900] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 02/08/2008] [Indexed: 01/07/2023] Open
Abstract
Imatinib has now been in use for almost 10 years. Despite this cumulative experience, little is known about its effects on pregnancy; as a result, there are few published data to facilitate the counseling of women who conceive while taking imatinib. The results we now present provide information which may be of use in such circumstances. Of 180 women exposed to imatinib during pregnancy, outcome data are available for 125 (69%). Of those with known outcomes, 50% delivered normal infants and 28% underwent elective terminations, 3 following the identification of abnormalities. There were a total of 12 infants in whom abnormalities were identified, 3 of which had strikingly similar complex malformations that are clearly a cause for concern. It appears that although most pregnancies exposed to imatinib are likely to have a successful outcome, there remains a risk that exposure may result in serious fetal malformations.
Collapse
MESH Headings
- Abnormalities, Multiple/chemically induced
- Abnormalities, Multiple/epidemiology
- Abortion, Spontaneous/chemically induced
- Abortion, Spontaneous/epidemiology
- Antineoplastic Agents/therapeutic use
- Benzamides
- Craniofacial Abnormalities/chemically induced
- Craniofacial Abnormalities/epidemiology
- Female
- Humans
- Imatinib Mesylate
- Incidence
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/epidemiology
- Piperazines/administration & dosage
- Piperazines/adverse effects
- Pregnancy
- Pregnancy Complications, Neoplastic/drug therapy
- Pregnancy Complications, Neoplastic/epidemiology
- Pregnancy Outcome
- Pyrimidines/administration & dosage
- Pyrimidines/adverse effects
- Retrospective Studies
- Risk Factors
Collapse
Affiliation(s)
- Seonaid M Pye
- Department of Haematology, Division of Investigative Science, Imperial College, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Platelet-derived growth factor receptor expression and amplification in choroid plexus carcinomas. Mod Pathol 2008; 21:265-70. [PMID: 18157090 DOI: 10.1038/modpathol.3800989] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Platelet-derived growth factor (PDGF) receptor signaling has been implicated in the development of glial tumors, but not yet been examined in choroid plexus carcinomas, pediatric tumors with dismal prognosis for which novel treatment options would be desirable. Therefore, protein expression of PDGF receptors alpha and beta as well as amplification status of the respective genes, PDGFRA and PDGFRB, were examined in a series of 22 patients harboring choroid plexus carcinoma using immunohistochemistry and chromogenic in situ hybridization (CISH). The majority of choroid plexus carcinomas expressed PDGF receptors with 6 cases (27%) displaying high staining scores for PDGF receptor alpha and 13 cases (59%) showing high staining scores for PDGF receptor beta. Correspondingly, copy-number gains of PDGFRA were observed in 8 cases out of 12 cases available for CISH and 1 case displayed amplification (six or more signals per nucleus). The proportion of choroid plexus carcinomas with amplification of PDGFRB was even higher (5/12 cases). PDGFRB amplification status and PDGF receptor beta protein expression scores were significantly correlated (P=0.01, Spearman). Expression status of PDGF receptor alpha or PDGF receptor beta was not significantly associated with progression-free survival. To conclude, expression and amplification of PDGF receptors, particularly PDGF receptor beta, are frequent in choroid plexus carcinomas, providing a first rationale for the development of treatments targeting PDGF receptor signaling in these rare malignant pediatric tumors.
Collapse
|
33
|
Bleyl SB, Moshrefi A, Shaw GM, Saijoh Y, Schoenwolf GC, Pennacchio LA, Slavotinek AM. Candidate genes for congenital diaphragmatic hernia from animal models: sequencing of FOG2 and PDGFRα reveals rare variants in diaphragmatic hernia patients. Eur J Hum Genet 2007; 15:950-8. [PMID: 17568391 DOI: 10.1038/sj.ejhg.5201872] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a common, life threatening birth defect. Although there is strong evidence implicating genetic factors in its pathogenesis, few causative genes have been identified, and in isolated CDH, only one de novo, nonsense mutation has been reported in FOG2 in a female with posterior diaphragmatic eventration. We report here that the homozygous null mouse for the Pdgfralpha gene has posterolateral diaphragmatic defects and thus is a model for human CDH. We hypothesized that mutations in this gene could cause human CDH. We sequenced PDGFRalpha and FOG2 in 96 patients with CDH, of which 53 had isolated CDH (55.2%), 36 had CDH and additional anomalies (37.5%), and 7 had CDH and known chromosome aberrations (7.3%). For FOG2, we identified novel sequence alterations predicting p.M703L and p.T843A in two patients with isolated CDH that were absent in 526 and 564 control chromosomes respectively. These altered amino acids were highly conserved. However, due to the lack of available parental DNA samples we were not able to determine if the sequence alterations were de novo. For PDGFRalpha, we found a single variant predicting p.L967V in a patient with CDH and multiple anomalies that was absent in 768 control chromosomes. This patient also had one cell with trisomy 15 on skin fibroblast culture, a finding of uncertain significance. Although our study identified sequence variants in FOG2 and PDGFRalpha, we have not definitively established the variants as mutations and we found no evidence that CDH commonly results from mutations in these genes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Chromosomes, Human, Pair 15
- Cohort Studies
- DNA-Binding Proteins/genetics
- Disease Models, Animal
- Embryo, Mammalian/abnormalities
- Genetic Variation
- Hernia, Diaphragmatic/genetics
- Hernias, Diaphragmatic, Congenital
- Humans
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Sequence Analysis, DNA
- Transcription Factors/genetics
- Trisomy
Collapse
Affiliation(s)
- S B Bleyl
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The elucidation of a growing number of species' genomes heralds an unprecedented opportunity to ascertain functional attributes of non-coding sequences. In particular, cis regulatory modules (CRMs) controlling gene expression constitute a rich treasure trove of data to be defined and experimentally validated. Such information will provide insight into cell lineage determination and differentiation and the genetic basis of heritable diseases as well as the development of novel tools for restricting the inactivation of genes to specific cell types or conditions. Historically, the study of CRMs and their individual transcription factor binding sites has been limited to proximal regions around gene loci. Two important by-products of the genomics revolution, artificial chromosome vectors and comparative genomics, have fueled efforts to define an increasing number of CRMs acting remotely to control gene expression. Such regulation from a distance has challenged our perspectives of gene expression control and perhaps the very definition of a gene. This review summarizes current approaches to characterize remote control of gene expression in transgenic mice and inherent limitations for accurately interpreting the essential nature of CRM activity.
Collapse
Affiliation(s)
- Xiaochun Long
- Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | |
Collapse
|
35
|
|
36
|
Zhuo Y, Hoyle GW, Shan B, Levy DR, Lasky JA. Over-expression of PDGF-C using a lung specific promoter results in abnormal lung development. Transgenic Res 2006; 15:543-55. [PMID: 16830225 DOI: 10.1007/s11248-006-9007-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 04/21/2006] [Indexed: 01/06/2023]
Abstract
PDGF isoforms are a family of polypeptides that bind to cell surface receptors and induce fibroblast proliferation and chemotaxis. PDGF-A and -B chain isoforms have previously been shown to be involved in murine lung development. A new PDGF polypeptide, PDGF-C, was recently recognized and differs from the PDGF-A and -B isoforms in that it requires proteolytic cleavage before it can bind and activate the PDGF alpha receptor. In these studies PDGF-C was over-expressed during embryogenesis using the lung specific surfactant protein C promoter. PDGF-C transgenic pups died from respiratory insufficiency within minutes following birth. At E18.5, nontransgenic lungs exhibited lung morphology consistent with the saccular stage of lung development. In contrast, E18.5 transgenic lungs retained many features of the canalicular stage of lung development and had abundant numbers of large poorly differentiated mesenchymal cells. These results suggest that PDGF-C is activated during lung development and is a potent growth factor for mesenchymal cells in vivo.
Collapse
Affiliation(s)
- Ying Zhuo
- Department of Medicine, Tulane University Health Sciences Center , 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
37
|
Toepoel M, Ackerschott B, van Zoelen EJJ. Haplotype-dependent binding of nuclear proteins to the promoter of the neural tube defects-associated platelet-derived growth factor alpha-receptor gene. Biochim Biophys Acta Mol Basis Dis 2006; 1741:350-7. [PMID: 16126374 DOI: 10.1016/j.bbadis.2005.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/28/2005] [Accepted: 08/03/2005] [Indexed: 11/19/2022]
Abstract
We have previously shown that polymorphisms in the promoter of the human platelet-derived growth factor alpha-receptor (PDGFRA) gene can be grouped into five distinct haplotypes, designated H1, H 2 alpha, H 2 beta, H 2 gamma and H 2 delta, and that specific combinations of these promoter haplotypes predispose to neural tube defects (NTDs). These promoter haplotypes differ strongly in their ability to drive reporter gene expression in various human cell lines, with highest activity for H 2 alpha and H 2 beta. Here, we show that the haplotype-linked PDGFRA promoter region extends to 3.6 kb upstream from the transcription start site, and contains a total of ten polymorphic sites. For two of these polymorphic sites, i.e. -909 C/A and +68 GAins/del, we observed differential binding of nuclear proteins from human osteosarcoma (HOS) cells. The protein complex binding specifically to -909 C, which is present in all haplotypes except the low activity haplotype H 2 gamma, contained members of the upstream stimulatory factor (USF) family of transcription factors. Furthermore, we identified a protein complex of 125 kDa which bound specifically to the low activity haplotype H1 at position +68 GAdel and may represent an H1-specific PDGFRA transcriptional repressor. The current identification of cis-acting elements in the PDGFRA promoter and the transcription factors that bind them, provides a new strategy for the identification of genes that are potentially involved in neural tube defects.
Collapse
Affiliation(s)
- Mascha Toepoel
- Department of Cell Biology FNWI, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | |
Collapse
|
38
|
Chiang MK, Liao YC, Kuwabara Y, Lo SH. Inactivation of tensin3 in mice results in growth retardation and postnatal lethality. Dev Biol 2005; 279:368-77. [PMID: 15733665 DOI: 10.1016/j.ydbio.2004.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 12/15/2004] [Accepted: 12/21/2004] [Indexed: 01/22/2023]
Abstract
Tensin family is a group of focal adhesion proteins that interact with integrins, actin, and phosphotyrosine-containing proteins. To explore the in vivo functions of a new member of the family, tensin3, we have generated mutant mice with a disrupted tensin3 gene. Inactivation of tensin3 resulted in growth retardation and postnatal lethality in one third of the homozygous mutants. Histological analysis of those mutants showed incomplete development of the small intestine, lung, and bone. Villus formation in the small intestine was affected and cells migrated slower in the runt mutants. Their lungs also displayed enlarged air space suggesting defects in alveogenesis. In addition, the resting zone was thicker and fewer proliferating cells were present in the growth plates of tensin3(-/-) tibiae. These observations indicate that tensin3 is essential for normal development and functions of the small intestine, lung, and bone. These phenotypes of the runt tensin3(-/-) mice are similar to some clinical features of Silver-Russell syndrome (SRS) which is a genetically inherited defect. About 10% of SRS cases have been linked to abnormality in chromosome 7p11.2-13, where human tensin3 gene is located, suggesting a potential link between tensin3 and SRS.
Collapse
Affiliation(s)
- Ming-Ko Chiang
- Center for Tissue Regeneration and Repair, Department of Orthopaedic Surgery, University of California-Davis, 4635 Second Avenue, Room 2000, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
39
|
Betsholtz C. Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 2005; 15:215-28. [PMID: 15207813 DOI: 10.1016/j.cytogfr.2004.03.005] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic analyses in mice have contributed significantly to the understanding of the physiological functions of platelet-derived growth factors (PDGFs) and their receptors. Phenotypic analyses of gene knockouts of PDGF-A, PDGF-B, PDGF alpha-receptors (PDGFRalpha) and beta-receptors (PDGFRbeta) have shown that these ligands and receptors play major roles during embryonic development. Conditional and subtle mutations in the same genes and analysis of chimeric mice have provided additional information about the roles of these genes in postnatal development. Transgenic over-expression studies have also demonstrated that PDGF ligands are capable of inducing pathological cell proliferation in a number of different organs. The present review summarizes these findings and discusses their implications for mammalian development and disease.
Collapse
Affiliation(s)
- Christer Betsholtz
- Department of Medical Biochemistry, University of Göteborg, P.O. Box 440, SE 405 30 Göteborg, Sweden.
| |
Collapse
|
40
|
Van Stry M, McLaughlin KA, Ataliotis P, Symes K. The mitochondrial-apoptotic pathway is triggered in Xenopus mesoderm cells deprived of PDGF receptor signaling during gastrulation. Dev Biol 2004; 268:232-42. [PMID: 15031119 DOI: 10.1016/j.ydbio.2003.12.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 10/28/2003] [Accepted: 12/23/2003] [Indexed: 11/20/2022]
Abstract
Platelet-derived growth factor receptor (PDGFR) signaling is required for normal gastrulation in Xenopus laevis. Embryos deprived of PDGFR signaling develop with a range of gastrulation-specific defects including spina bifida, shortened anteroposterior axis, and reduced anterior structures. These defects arise because the involuting mesoderm fails to move appropriately. In this study, we determine that inhibition of PDGFR signaling causes prospective head mesoderm cells to appear in the blastocoel cavity at the onset of gastrulation, stage 10. These aberrant cells undergo apoptosis via the caspase 3 pathway at an embryonic checkpoint called the early gastrula transition (EGT). They are TUNEL-positive and have increased levels of caspase 3 activity compared to control embryos. Apoptotic death of these mesoderm cells can be prevented by co-injection of mRNA encoding Bcl-2 or by injection of either a general caspase inhibitor or a caspase 3-specific inhibitor. Prevention of cell death, however, is not sufficient to rescue gastrulation defects in these embryos. Based on these data, we propose that PDGFR signaling is necessary for survival of prospective head mesoderm cells, and also plays an essential role in the control of their cell movement during gastrulation.
Collapse
|
41
|
Betsholtz C. Biology of platelet-derived growth factors in development. ACTA ACUST UNITED AC 2004; 69:272-85. [PMID: 14745969 DOI: 10.1002/bdrc.10030] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Platelet-derived growth factor (PDGF) was one of the first growth factors to be characterized, and the PDGF family of ligand and receptors has remained an archetype system for studies of the mechanisms of action of growth factors and receptor tyrosine kinases for more than two decades. The small size of the family has also facilitated genetic studies and, in particular, manipulations of the mouse PDGF and PDGF receptor genes have given important insights into the role of this family during mammalian development. These studies have shown that discrete populations of mesenchymal and neuroectodermal progenitor cells depend on PDGF signaling for their growth and distribution within developing organs. Other studies suggest that the same, or similar, cells may be targeted by exaggerated PDGF signaling in a number of pathological processes, including different types of cancer. The present review summarizes current views on the roles of PDGFs in developmental processes, and discusses the critical importance of the amount, spatial distribution, and bioavailability of the PDGF proteins for acquisition of the correct number and location of target cells.
Collapse
|
42
|
Zhu H, Wicker NJ, Volcik K, Zhang J, Shaw GM, Lammer EJ, Suarez L, Canfield M, Finnell RH. Promoter haplotype combinations for the human PDGFRA gene are associated with risk of neural tube defects. Mol Genet Metab 2004; 81:127-32. [PMID: 14741194 DOI: 10.1016/j.ymgme.2003.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent animal studies suggested that deregulated expression of the platelet-derived growth factor receptor alpha (PDGFRalpha) may contribute to the failure of normal neural tube closure (NTC). There is also suggestive evidence that the promoter haplotype of the PDGFRA is associated with genetic susceptibility in human neural tube defects (NTDs). The purpose of our study was to investigate the association between promoter haplotype combinations of the human PDGFRA gene and risk for NTDs in a Hispanic population from the Texas-Mexico border region. This population has a considerably higher prevalence of NTDs (16/10,000 live births) than that generally reported in the United States (8-10/10,000 live births). In the present study, NTDs were defined as spina bifida or anencephaly. The haplotype of PDGFRA gene promoter was determined by direct DNA sequence analysis. Two novel haplotypes, H2epsilon and H1beta, were found. We observed significant differences among variable haplotype groups from in vitro transient transfection studies in U2-OS osteosarcoma cell and two other cell lines (HeLa cell and MCF7 cell). Result from our case-control study demonstrated that the frequencies of haplotypes with low transcription activity were significantly higher in NTD mothers than that observed in control mothers (odds ratio=2.2, 95% CI=1.0-4.6). Infants with at least one low activity allele showed slightly higher risk (odds ratio=1.5, 95%=0.8-3.1). Our study suggests that the reduced transcriptional activity of PDGFRA gene could increase the risk of having an NTD-affected pregnancy.
Collapse
Affiliation(s)
- Huiping Zhu
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The mechanisms that control proliferation and differentiation of embryonic lung mesenchyme are largely unknown. We describe an explant system in which exogenous recombinant N-Sonic Hedgehog (N-Shh) protein sustains the survival and proliferation of lung mesenchyme in a dose-dependent manner. In addition, Shh upregulates several mesenchymal cell markers, including its target gene Patched (Ptc), intercellular signaling genes Bone Morphogenetic Protein-4 (Bmp4) and Noggin (Nog), and smooth muscle actin and myosin. In explants exposed to N-Shh in the medium, these products are upregulated throughout the mesenchyme, but not in the periphery. This exclusion zone correlates with the presence of an overlying mesothelial layer, which, as in vivo, expresses Fibroblast Growth Factor 9 (Fgf9). Recombinant Fgf9 protein inhibits the differentiation response of the mesenchyme to N-Shh, but does not affect proliferation. We propose a model for how factors made by two epithelial cell populations, the inner endoderm and the outer jacket of mesothelium, coordinately regulate the proliferation and differentiation of the lung mesoderm.
Collapse
Affiliation(s)
- Molly Weaver
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-2175, USA
| | | | | |
Collapse
|
44
|
Boström H, Gritli-Linde A, Betsholtz C. PDGF-A/PDGF alpha-receptor signaling is required for lung growth and the formation of alveoli but not for early lung branching morphogenesis. Dev Dyn 2002; 223:155-62. [PMID: 11803579 DOI: 10.1002/dvdy.1225] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Platelet-derived growth factors (PDGF) constitute a family of four gene products (PDGF-A-D) acting by means of two receptor tyrosine kinases, PDGFR alpha and beta. Three of the ligands (PDGF-A, -B, and -C) bind to PDGFR alpha with high affinity. Knockout of pdgf-a in mice has demonstrated a role for PDGF-A in the recruitment of smooth muscle cells to the alveolar sacs and their further compartmentalization into alveoli. Although this is a late, postnatal step in lung development, pdgf-a antisense oligonucleotides were previously shown to inhibit epithelial branching in rat lung explants in vitro, which reflects an early embryonic process. These conflicting results may be explained by substitution of genetic loss of pdgf-a by maternal transfer of PDGF-A to the knockout embryo or the presence of other PDGFR alpha agonists (PDGF-B and -C) in vivo, potentially masking an effect of PDGF-A on branching morphogenesis. Alternatively, the administration of pdgf-a antisense oligonucleotides affected other processes than the intended. To discriminate between these opposing possibilities, we have analyzed lung development in pdgfr alpha -/- embryos and lung primordia grown in vitro. Our analysis shows that, while the pdgfr alpha -/- lungs and explanted lung rudiments were smaller than normal, branching morphogenesis appears qualitatively intact and proceeds until at least embryonic day 15.5, generating both prospective conducting and respiratory airways. We conclude that, although PDGF-AA signaling over PDGFR alpha may have direct or indirect roles in overall lung growth, it does not specifically control early branching of the lung epithelium.
Collapse
Affiliation(s)
- Hans Boström
- Department of Medical Biochemistry, Göteborg University, Göteborg, Sweden.
| | | | | |
Collapse
|
45
|
Soutiere SE, Tankersley CG. Challenges implicit to gene discovery research in the control of ventilation during hypoxia. High Alt Med Biol 2001; 2:191-200. [PMID: 11443000 DOI: 10.1089/152702901750265297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Appointing physiological function to specific genetic determinants requires a systems physiologist to consider ways of assessing precise phenotypic mechanisms. The integration of ventilation, metabolism and thermoregulation, for example, is very complex and may differ among small and large mammalian species. This challenge is particularly applicable to the study of short- and long-term adaptation of these systems to hypoxic exposure associated with high altitude. Our laboratory has initiated a research effort to dissect the complexity of hypoxic adaptation using traditional quantitative genetic analysis and contemporary DNA genotyping techniques. Although the current evidence in murine models demonstrates that specific genes influence control of hypoxic ventilatory responses (HVR), the relevance of these determinants to human adaptation to altitude remains open to exploration. Our review discusses the progress and uncertainties associated with assigning a genetic basis to variation in acute and chronic HVR.
Collapse
Affiliation(s)
- S E Soutiere
- The Johns Hopkins University, School of Hygiene and Public Health, Department of Environmental Health Sciences, Division of Physiology, Baltimore, MD 21205, USA
| | | |
Collapse
|
46
|
Abstract
Platelet-derived growth factor (PDGF) was originally identified in platelets and in serum as a mitogen for fibroblasts, smooth muscle cells (SMC) and glia cells in culture. PDGF has since expanded to a family of dimers of at least four gene products, whose biological actions are mediated through two receptor tyrosine kinases, PDGFRs. The present review summarizes and discusses the biological functions of PDGFs and PDGFRs in developmental processes, mainly as revealed through genetic analysis in mice. Such studies have demonstrated multiple critical roles of PDGFs and PDGFRs in embryonic and postnatal development. PDGFs seem to act upon specific populations of progenitor cells that give rise to several different cell types with distinct functions in a variety of developmental processes. Analogies are seen between the cell functions and the developmental processes controlled by PDGFs. This suggests that ancestral PDGF and PDGFR expression patterns and functions may have been iterated in related sets of morphogenetic processes in the course of evolution.
Collapse
Affiliation(s)
- C Betsholtz
- Department of Medical Biochemistry, University of Göteborg, Sweden.
| | | | | |
Collapse
|