1
|
Jeon S, Park J, Moon JH, Shin D, Li L, O'Shea H, Hwang SU, Lee HJ, Brimble E, Lee JW, Clark SD, Lee SK. The patient-specific mouse model with Foxg1 frameshift mutation provides insights into the pathophysiology of FOXG1 syndrome. Nat Commun 2025; 16:4760. [PMID: 40404610 DOI: 10.1038/s41467-025-59838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/01/2025] [Indexed: 05/24/2025] Open
Abstract
Single allelic mutations in the FOXG1 gene lead to FOXG1 syndrome (FS). To understand the pathophysiology of FS, which vary depending on FOXG1 mutation types, patient-specific animal models are critical. Here, we report a patient-specific Q84Pfs heterozygous (Q84Pfs-Het) mouse model, which recapitulates various FS phenotypes across cellular, brain structural, and behavioral levels. Q84Pfs-Het cortex shows dysregulations of genes controlling cell proliferation, neuronal projection and migration, synaptic assembly, and synaptic vesicle transport. The Q84Pfs allele produces the N-terminal fragment of FOXG1 (Q84Pfs protein) in Q84Pfs-Het mouse brains, which forms intracellular speckles, interacts with FOXG1 full-length protein, and triggers the sequestration of FOXG1 to distinct subcellular domains. Q84Pfs protein promotes the radial glial cell identity and suppresses neuronal migration in the cortex. Our study uncovers the role of the FOXG1 fragment from FS-causing FOXG1 variants and identifies the genes involved in FS-like cellular and behavioral phenotypes, providing insights into the pathophysiology of FS.
Collapse
Affiliation(s)
- Shin Jeon
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA.
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA.
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Jaein Park
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Ji Hwan Moon
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Dongjun Shin
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Liwen Li
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Holly O'Shea
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Seon-Ung Hwang
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Elise Brimble
- FOXG1 Research Foundation, Port Washington, New York, USA
- Citizen Health, San Francisco, California, USA
| | - Jae W Lee
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Soo-Kyung Lee
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York, USA.
- FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA.
| |
Collapse
|
2
|
Jeon S, Park J, Moon JH, Shin D, Li L, O'Shea H, Hwang SU, Lee HJ, Brimble E, Lee JW, Clark S, Lee SK. The patient-specific mouse model with Foxg1 frameshift mutation provides insights into the pathophysiology of FOXG1 syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634140. [PMID: 39896554 PMCID: PMC11785084 DOI: 10.1101/2025.01.21.634140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Single allelic mutations in the forebrain-specific transcription factor gene FOXG1 lead to FOXG1 syndrome (FS). To decipher the disease mechanisms of FS, which vary depending on FOXG1 mutation types, patient-specific animal models are critical. Here, we report the first patient-specific FS mouse model, Q84Pfs heterozygous (Q84Pfs-Het) mice, which emulates one of the most predominant FS variants. Remarkably, Q84Pfs-Het mice recapitulate various human FS phenotypes across cellular, brain structural, and behavioral levels, such as microcephaly, corpus callosum agenesis, movement disorders, repetitive behaviors, and anxiety. Q84Pfs-Het cortex showed dysregulations of genes controlling cell proliferation, neuronal projection and migration, synaptic assembly, and synaptic vesicle transport. Interestingly, the FS-causing Q84Pfs allele produced the N-terminal fragment of FOXG1, denoted as Q84Pfs protein, in Q84Pfs-Het mouse brains. Q84Pfs fragment forms intracellular speckles, interacts with FOXG1 full-length protein, and triggers the sequestration of FOXG1 to distinct subcellular domains. Q84Pfs protein also promotes the radial glial cell identity and suppresses neuronal migration in the cortex. Together, our study uncovered the role of the FOXG1 fragment derived from FS-causing FOXG1 variants and identified the genes involved in FS-like cellular and behavioral phenotypes, providing essential insights into the pathophysiology of FS.
Collapse
|
3
|
Marelli E, Hughes J, Scotting PJ. SUMO-dependent transcriptional repression by Sox2 inhibits the proliferation of neural stem cells. PLoS One 2024; 19:e0298818. [PMID: 38507426 PMCID: PMC10954124 DOI: 10.1371/journal.pone.0298818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/30/2024] [Indexed: 03/22/2024] Open
Abstract
Sox2 is known for its roles in maintaining the stem cell state of embryonic stem cells and neural stem cells. In particular, it has been shown to slow the proliferation of these cell types. It is also known for its effects as an activating transcription factor. Despite this, analysis of published studies shows that it represses as many genes as it activates. Here, we identify a new set of target genes that Sox2 represses in neural stem cells. These genes are associated with centrosomes, centromeres and other aspects of cell cycle control. In addition, we show that SUMOylation of Sox2 is necessary for the repression of these genes and for its repressive effects on cell proliferation. Together, these data suggest that SUMO-dependent repression of this group of target genes is responsible for the role of Sox2 in regulating the proliferation of neural stem cells.
Collapse
Affiliation(s)
- Elisa Marelli
- School of Life Sciences, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| | - Jaime Hughes
- School of Life Sciences, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| | - Paul J. Scotting
- School of Life Sciences, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| |
Collapse
|
4
|
Park J, Moon JH, O'Shea H, Shin D, Hwang SU, Li L, Lee H, Brimble E, Lee J, Clark S, Lee SK, Jeon S. The patient-specific mouse model with Foxg1 frameshift mutation uncovers the pathophysiology of FOXG1 syndrome. RESEARCH SQUARE 2023:rs.3.rs-2953760. [PMID: 37398410 PMCID: PMC10312924 DOI: 10.21203/rs.3.rs-2953760/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Single allelic mutations in the gene encoding the forebrain-specific transcription factor FOXG1 lead to FOXG1 syndrome (FS). Patient-specific animal models are needed to understand the etiology of FS, as FS patients show a wide spectrum of symptoms correlated with location and mutation type in the FOXG1 gene. Here we report the first patient-specific FS mouse model, Q84Pfs heterozygous (Q84Pfs-Het) mice, mimicking one of the most predominant single nucleotide variants in FS. Intriguingly, we found that Q84Pfs-Het mice faithfully recapitulate human FS phenotypes at the cellular, brain structural, and behavioral levels. Importantly, Q84Pfs-Het mice exhibited myelination deficits like FS patients. Further, our transcriptome analysis of Q84Pfs-Het cortex revealed a new role for FOXG1 in synapse and oligodendrocyte development. The dysregulated genes in Q84Pfs-Het brains also predicted motor dysfunction and autism-like phenotypes. Correspondingly, Q84Pfs-Het mice showed movement deficits, repetitive behaviors, increased anxiety, and prolonged behavior arrest. Together, our study revealed the crucial postnatal role of FOXG1 in neuronal maturation and myelination and elucidated the essential pathophysiology mechanisms of FS.
Collapse
|
5
|
Hettige NC, Peng H, Wu H, Zhang X, Yerko V, Zhang Y, Jefri M, Soubannier V, Maussion G, Alsuwaidi S, Ni A, Rocha C, Krishnan J, McCarty V, Antonyan L, Schuppert A, Turecki G, Fon EA, Durcan TM, Ernst C. FOXG1 dose tunes cell proliferation dynamics in human forebrain progenitor cells. Stem Cell Reports 2022; 17:475-488. [PMID: 35148845 PMCID: PMC9040178 DOI: 10.1016/j.stemcr.2022.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 10/26/2022] Open
Abstract
Heterozygous loss-of-function mutations in Forkhead box G1 (FOXG1), a uniquely brain-expressed gene, cause microcephaly, seizures, and severe intellectual disability, whereas increased FOXG1 expression is frequently observed in glioblastoma. To investigate the role of FOXG1 in forebrain cell proliferation, we modeled FOXG1 syndrome using cells from three clinically diagnosed cases with two sex-matched healthy parents and one unrelated sex-matched control. Cells with heterozygous FOXG1 loss showed significant reduction in cell proliferation, increased ratio of cells in G0/G1 stage of the cell cycle, and increased frequency of primary cilia. Engineered loss of FOXG1 recapitulated this effect, while isogenic repair of a patient mutation reverted output markers to wild type. An engineered inducible FOXG1 cell line derived from a FOXG1 syndrome case demonstrated that FOXG1 dose-dependently affects all cell proliferation outputs measured. These findings provide strong support for the critical importance of FOXG1 levels in controlling human brain cell growth in health and disease.
Collapse
Affiliation(s)
- Nuwan C Hettige
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Huashan Peng
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Hanrong Wu
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Xin Zhang
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Volodymyr Yerko
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Ying Zhang
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Malvin Jefri
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Vincent Soubannier
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Montreal, QC H3A 2B4, Canada; The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Gilles Maussion
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Montreal, QC H3A 2B4, Canada; The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Shaima Alsuwaidi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Anjie Ni
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Cecilia Rocha
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Jeyashree Krishnan
- Institute for Computational Biomedicine, Aachen University, Pauwelsstraße 19, 52074 Aachen, Germany
| | - Vincent McCarty
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Lilit Antonyan
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Andreas Schuppert
- Institute for Computational Biomedicine, Aachen University, Pauwelsstraße 19, 52074 Aachen, Germany
| | - Gustavo Turecki
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Edward A Fon
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Montreal, QC H3A 2B4, Canada
| | - Thomas M Durcan
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Montreal, QC H3A 2B4, Canada; The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Carl Ernst
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
6
|
Cargnin F, Kwon JS, Katzman S, Chen B, Lee JW, Lee SK. FOXG1 Orchestrates Neocortical Organization and Cortico-Cortical Connections. Neuron 2018; 100:1083-1096.e5. [PMID: 30392794 DOI: 10.1016/j.neuron.2018.10.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022]
Abstract
The hallmarks of FOXG1 syndrome, which results from mutations in a single FOXG1 allele, include cortical atrophy and corpus callosum agenesis. However, the etiology for these structural deficits and the role of FOXG1 in cortical projection neurons remain unclear. Here we demonstrate that Foxg1 in pyramidal neurons plays essential roles in establishing cortical layers and the identity and axon trajectory of callosal projection neurons. The neuron-specific actions of Foxg1 are achieved by forming a transcription complex with Rp58. The Foxg1-Rp58 complex directly binds and represses Robo1, Slit3, and Reelin genes, the key regulators of callosal axon guidance and neuronal migration. We also found that inactivation of one Foxg1 allele specifically in cortical neurons was sufficient to cause cerebral cortical hypoplasia and corpus callosum agenesis. Together, this study reveals a novel gene regulatory pathway that specifies neuronal characteristics during cerebral cortex development and sheds light on the etiology of FOXG1 syndrome. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Francesca Cargnin
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ji-Sun Kwon
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sol Katzman
- Genomics Institute, University of California, Santa Cruz, CA 95064, USA
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Jae W Lee
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Soo-Kyung Lee
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
7
|
Wang L, Wang J, Jin T, Zhou Y, Chen Q. FoxG1 facilitates proliferation and inhibits differentiation by downregulating FoxO/Smad signaling in glioblastoma. Biochem Biophys Res Commun 2018; 504:46-53. [PMID: 30172378 DOI: 10.1016/j.bbrc.2018.08.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/18/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND To investigate the effects and underlying molecular mechanisms of FoxG1 expression on glioblastoma multiforme (GBM) models. METHODS Expression levels of FoxG1 and other cancer-related biomarkers were evaluated by qRT-PCR, immunoblotting and immunohistochemistry. Crystal violet staining and MTT assay and were applied in this study to verify cell proliferation ability and viability of GBM cell models with/without drug treatment. RESULTS Immunohistochemical and qRT-PCR assays showed that endogenous FoxG1 expression levels were positively correlated to the GBM disease progression. Overexpression of FoxG1 protein resulted in increased cell viability, G2/M cell cycle arrest, as well as the downregulation of p21 and cyclin B1. In addition, western blot assays reported that enforced expression of FoxG1 suppressed GAPF and facilitated the expression of Sox2 and Sox5. Meanwhile the downstream targets of FoxG1, such as FoxO1 and pSmad1/5/8 were activated. Overexpression of FoxG1 under TMZ treatment restored the cell viability as well as the expression levels of Sox2 and Sox5, yet downregulated expression levels of p21 and cyclin B1. The downstream FoxG1-induced FoxO/Smad signaling was re-inhibited under TMZ treatments. CONCLUSIONS Our findings suggest that FoxG1 functions as an onco-factor by promoting proliferation, as well as inhibiting differential responses in glioblastoma by downregulating FoxO/Smad signaling.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingchao Wang
- Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Tong Jin
- Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Zhou
- Department of Neurosurgery, Renmin Hospital of Hubei University of Medicine, Hubei, 442000, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
8
|
Götz M. Glial Cells Generate Neurons—Master Control within CNS Regions: Developmental Perspectives on Neural Stem Cells. Neuroscientist 2016; 9:379-97. [PMID: 14580122 DOI: 10.1177/1073858403257138] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A common problem in neural stem cell research is the poor generation of neuronal or oligodendroglial descendants. The author takes a developmental perspective to propose solutions to this problem. After a general overview of the recent progress in developmental neurobiology, she highlights the necessity of the sequential and hierarchical specification of CNS precursors toward the generation of specific cell types, for example, neurons. In the developing as well as the adult CNS, multipotent stem cells do not directly generate neurons but give rise to precursors that are specified and restricted toward the generation of neurons. Some molecular determinants of this fate restriction have been identified during recent years and reveal that progression via this fate-restricted state is a necessary step of neurogenesis. These discoveries also demonstrate that neuronal fate specification is inseparably linked at the molecular level to regionalization of the developing CNS. These fate determinants and their specific action in distinct region-specific con-texts are essential to direct the progeny of stem cells more efficiently toward the generation of the desired cell types. Recent data are discussed that demonstrate the common identity of precursors and stem cells in the developing and adult nervous system as radial glia, astroglia, or non-myelinating glia. A novel line-age model is proposed that incorporates these new views and explains why the default pathway of stem cells is astroglia. These new insights into the cellular and molecular mechanisms of neurogenesis help to design novel approaches for reconstitutive therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Magdalena Götz
- Max-Planck Institute of Neurobiology, Planegg-Martinsried/Munich, Germany.
| |
Collapse
|
9
|
Hernández-Bejarano M, Gestri G, Spawls L, Nieto-López F, Picker A, Tada M, Brand M, Bovolenta P, Wilson SW, Cavodeassi F. Opposing Shh and Fgf signals initiate nasotemporal patterning of the zebrafish retina. Development 2015; 142:3933-42. [PMID: 26428010 PMCID: PMC4712879 DOI: 10.1242/dev.125120] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/21/2015] [Indexed: 01/12/2023]
Abstract
The earliest known determinants of retinal nasotemporal identity are the transcriptional regulators Foxg1, which is expressed in the prospective nasal optic vesicle, and Foxd1, which is expressed in the prospective temporal optic vesicle. Previous work has shown that, in zebrafish, Fgf signals from the dorsal forebrain and olfactory primordia are required to specify nasal identity in the dorsal, prospective nasal, optic vesicle. Here, we show that Hh signalling from the ventral forebrain is required for specification of temporal identity in the ventral optic vesicle and is sufficient to induce temporal character when activated in the prospective nasal retina. Consequently, the evaginating optic vesicles become partitioned into prospective nasal and temporal domains by the opposing actions of Fgfs and Shh emanating from dorsal and ventral domains of the forebrain primordium. In absence of Fgf activity, foxd1 expression is established irrespective of levels of Hh signalling, indicating that the role of Shh in promoting foxd1 expression is only required in the presence of Fgf activity. Once the spatially complementary expression of foxd1 and foxg1 is established, the boundary between expression domains is maintained by mutual repression between Foxd1 and Foxg1. Summary: In the fish eye, Hh signalling from the ventral forebrain regulates spatial identity in the retina by promoting foxd1 expression. This role is required only in the presence of Fgf activity.
Collapse
Affiliation(s)
| | - Gaia Gestri
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1 6BT, UK
| | - Lana Spawls
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1 6BT, UK
| | - Francisco Nieto-López
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Alexander Picker
- Center of Regenerative Therapies Dresden (CRTD), Biotechnology Center, Dresden University of Technology, 01062 Dresden, Germany
| | - Masazumi Tada
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1 6BT, UK
| | - Michael Brand
- Center of Regenerative Therapies Dresden (CRTD), Biotechnology Center, Dresden University of Technology, 01062 Dresden, Germany
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain CIBER de Enfermedades Raras (CIBERER), C/Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1 6BT, UK
| | - Florencia Cavodeassi
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain CIBER de Enfermedades Raras (CIBERER), C/Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
10
|
Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development. Dev Biol 2014; 397:175-90. [PMID: 25446030 DOI: 10.1016/j.ydbio.2014.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/07/2014] [Accepted: 10/26/2014] [Indexed: 11/23/2022]
Abstract
The respective role of Pax2 and Pax8 in early kidney development in vertebrates is poorly understood. In this report, we have studied the roles of Pax8 and Pax2 in Xenopus pronephros development using a loss-of-function approach. Our results highlight a differential requirement of these two transcription factors for proper pronephros formation. Pax8 is necessary for the earliest steps of pronephric development and its depletion leads to a complete absence of pronephric tubule. Pax2 is required after the establishment of the tubule pronephric anlage, for the expression of several terminal differentiation markers of the pronephric tubule. Neither Pax2 nor Pax8 is essential to glomus development. We further show that Pax8 controls hnf1b, but not lhx1 and Osr2, expression in the kidney field as soon as the mid-neurula stage. Pax8 is also required for cell proliferation of pronephric precursors in the kidney field. It may exert its action through the wnt/beta-catenin pathway since activation of this pathway can rescue MoPax8 induced proliferation defect and Pax8 regulates expression of the wnt pathway components, dvl1 and sfrp3. Finally, we observed that loss of pronephros in Pax8 morphants correlates with an expanded vascular/blood gene expression domain indicating that Pax8 function is important to delimit the blood/endothelial genes expression domain in the anterior part of the dorso-lateral plate.
Collapse
|
11
|
Buisson N, Sirour C, Moreau N, Denker E, Le Bouffant R, Goullancourt A, Darribère T, Bello V. An adhesome comprising laminin, dystroglycan and myosin IIA is required during notochord development in Xenopus laevis. Development 2014; 141:4569-79. [PMID: 25359726 DOI: 10.1242/dev.116103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dystroglycan (Dg) is a transmembrane receptor for laminin that must be expressed at the right time and place in order to be involved in notochord morphogenesis. The function of Dg was examined in Xenopus laevis embryos by knockdown of Dg and overexpression and replacement of the endogenous Dg with a mutated form of the protein. This analysis revealed that Dg is required for correct laminin assembly, for cell polarization during mediolateral intercalation and for proper differentiation of vacuoles. Using mutations in the cytoplasmic domain, we identified two sites that are involved in cell polarization and are required for mediolateral cell intercalation, and a site that is required for vacuolation. Furthermore, using a proteomic analysis, the cytoskeletal non-muscle myosin IIA has been identified for the first time as a molecular link between the Dg-cytoplasmic domain and cortical actin. The data allowed us to identify the adhesome laminin-Dg-myosin IIA as being required to maintain the cortical actin cytoskeleton network during vacuolation, which is crucial to maintain the shape of notochordal cells.
Collapse
Affiliation(s)
- Nicolas Buisson
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Cathy Sirour
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7009, Observatoire Océanographique, Villefranche-sur-mer 06230, France
| | - Nicole Moreau
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Elsa Denker
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen N-5008, Norway
| | - Ronan Le Bouffant
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Aline Goullancourt
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Thierry Darribère
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Valérie Bello
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| |
Collapse
|
12
|
Kumamoto T, Hanashima C. Neuronal subtype specification in establishing mammalian neocortical circuits. Neurosci Res 2014; 86:37-49. [PMID: 25019611 DOI: 10.1016/j.neures.2014.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/28/2022]
Abstract
The functional integrity of the neocortical circuit relies on the precise production of diverse neuron populations and their assembly during development. In recent years, extensive progress has been made in the understanding of the mechanisms that control differentiation of each neuronal type within the neocortex. In this review, we address how the elaborate neocortical cytoarchitecture is established from a simple neuroepithelium based on recent studies examining the spatiotemporal mechanisms of neuronal subtype specification. We further discuss the critical events that underlie the conversion of the stem amniotes cerebrum to a mammalian-type neocortex, and extend these key findings in the light of mammalian evolution to understand how the neocortex in humans evolved from common ancestral mammals.
Collapse
Affiliation(s)
- Takuma Kumamoto
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
13
|
Fernández JP, Agüero TH, Vega López GA, Marranzino G, Cerrizuela S, Aybar MJ. Developmental expression and role of Kinesin Eg5 duringXenopus laevisembryogenesis. Dev Dyn 2013; 243:527-40. [DOI: 10.1002/dvdy.24094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 01/28/2023] Open
Affiliation(s)
- Juan P. Fernández
- INSIBIO, CONICET; Universidad Nacional de Tucumán; Tucumán Argentina
| | - Tristán H. Agüero
- INSIBIO, CONICET; Universidad Nacional de Tucumán; Tucumán Argentina
| | | | | | | | - Manuel J. Aybar
- INSIBIO, CONICET; Universidad Nacional de Tucumán; Tucumán Argentina
- Instituto de Biología “Dr. Francisco D. Barbieri,”; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán; Tucumán Argentina
| |
Collapse
|
14
|
Macrì S, Sgarra R, Ros G, Maurizio E, Zammitti S, Milani O, Onorati M, Vignali R, Manfioletti G. Expression and functional characterization of Xhmg-at-hook genes in Xenopus laevis. PLoS One 2013; 8:e69866. [PMID: 23936116 PMCID: PMC3723657 DOI: 10.1371/journal.pone.0069866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/12/2013] [Indexed: 01/12/2023] Open
Abstract
High Mobility Group A proteins (HMGA1 and HMGA2) are architectural nuclear factors involved in development, cell differentiation, and cancer formation and progression. Here we report the cloning, developmental expression and functional analysis of a new multi-AT-hook factor in Xenopus laevis (XHMG-AT-hook) that exists in three different isoforms. Xhmg-at-hook1 and 3 isoforms, but not isoform 2, are expressed throughout the entire development of Xenopus, both in the maternal and zygotic phase. Localized transcripts are present in the animal pole in the early maternal phase; during the zygotic phase, mRNA can be detected in the developing central nervous system (CNS), including the eye, and in the neural crest. We show evidence that XHMG-AT-hook proteins differ from typical HMGA proteins in terms of their properties in DNA binding and in protein/protein interaction. Finally, we provide evidence that they are involved in early CNS development and in neural crest differentiation.
Collapse
Affiliation(s)
- Simone Macrì
- Department of Biology, University of Pisa, Pisa, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gloria Ros
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Elisa Maurizio
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Salvina Zammitti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Marco Onorati
- Department of Biology, University of Pisa, Pisa, Italy
| | - Robert Vignali
- Department of Biology, University of Pisa, Pisa, Italy
- * E-mail: (GM); (RV)
| | | |
Collapse
|
15
|
Zhu XN, Kim DH, Lin HR, Budhavarapu VN, Rosenbaum HB, Mueller PR, Yew PR. Proteolysis of Xenopus Cip-type CDK inhibitor, p16Xic2, is regulated by PCNA binding and CDK2 phosphorylation. Cell Div 2013; 8:5. [PMID: 23607668 PMCID: PMC3655096 DOI: 10.1186/1747-1028-8-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/17/2013] [Indexed: 11/10/2022] Open
Abstract
Background Cell division is positively regulated by cyclin-dependent kinases (CDKs) partnered with cyclins and negatively regulated by CDK inhibitors. In the frog, Xenopus laevis, three types of CDK inhibitors have been described: p27Xic1 (Xic1) which shares sequence homology with both p21Cip1 and p27Kip1 from mammals, p16Xic2 (Xic2) which shares sequence homology with p21Cip1, and p17Xic3 (Xic3) which shares sequence homology with p27Kip1. While past studies have demonstrated that during DNA polymerase switching, Xic1 is targeted for protein turnover dependent upon DNA, Proliferating Cell Nuclear Antigen (PCNA), and the ubiquitin ligase CRL4Cdt2, little is known about the processes that regulate Xic2 or Xic3. Methods We used the Xenopus interphase egg extract as a model system to examine the regulation of Xic2 by proteolysis and phosphorylation. Results Our studies indicated that following primer synthesis during the initiation of DNA replication, Xic2 is targeted for DNA- and PCNA-dependent ubiquitin-mediated proteolysis and that Cdt2 can promote Xic2 turnover. Additionally, during interphase, Xic2 is phosphorylated by CDK2 at Ser-98 and Ser-131 in a DNA-independent manner, inhibiting Xic2 turnover. In the presence of double-stranded DNA ends, Xic2 is also phosphorylated at Ser-78 and Ser-81 by a caffeine-sensitive kinase, but this phosphorylation does not alter Xic2 turnover. Conversely, in the presence or absence of DNA, Xic3 was stable in the Xenopus interphase egg extract and did not exhibit a shift indicative of phosphorylation. Conclusions During interphase, Xic2 is targeted for DNA- and PCNA-dependent proteolysis that is negatively regulated by CDK2 phosphorylation. During a response to DNA damage, Xic2 may be alternatively regulated by phosphorylation by a caffeine-sensitive kinase. Our studies suggest that the three types of Xenopus CDK inhibitors, Xic1, Xic2, and Xic3 appear to be uniquely regulated which may reflect their specialized roles during cell division or early development in the frog.
Collapse
Affiliation(s)
- Xi-Ning Zhu
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kumamoto T, Toma KI, Gunadi, McKenna WL, Kasukawa T, Katzman S, Chen B, Hanashima C. Foxg1 coordinates the switch from nonradially to radially migrating glutamatergic subtypes in the neocortex through spatiotemporal repression. Cell Rep 2013; 3:931-45. [PMID: 23523356 DOI: 10.1016/j.celrep.2013.02.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 10/08/2012] [Accepted: 02/19/2013] [Indexed: 12/19/2022] Open
Abstract
The specification of neuronal subtypes in the cerebral cortex proceeds in a temporal manner; however, the regulation of the transitions between the sequentially generated subtypes is poorly understood. Here, we report that the forkhead box transcription factor Foxg1 coordinates the production of neocortical projection neurons through the global repression of a default gene program. The delayed activation of Foxg1 was necessary and sufficient to induce deep-layer neurogenesis, followed by a sequential wave of upper-layer neurogenesis. A genome-wide analysis revealed that Foxg1 binds to mammalian-specific noncoding sequences to repress over 12 transcription factors expressed in early progenitors, including Ebf2/3, Dmrt3, Dmrta1, and Eya2. These findings reveal an unexpected prolonged competence of progenitors to initiate corticogenesis at a progressed stage during development and identify Foxg1 as a critical initiator of neocorticogenesis through spatiotemporal repression, a system that balances the production of nonradially and radially migrating glutamatergic subtypes during mammalian cortical expansion.
Collapse
Affiliation(s)
- Takuma Kumamoto
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Paul V, Tonchev AB, Henningfeld KA, Pavlakis E, Rust B, Pieler T, Stoykova A. Scratch2 modulates neurogenesis and cell migration through antagonism of bHLH proteins in the developing neocortex. ACTA ACUST UNITED AC 2012. [PMID: 23180754 DOI: 10.1093/cercor/bhs356] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Scratch genes (Scrt) are neural-specific zinc-finger transcription factors (TFs) with an unknown function in the developing brain. Here, we show that, in addition to the reported expression of mammalian Scrt2 in postmitotic differentiating and mature neurons in the developing and early postnatal brain, Scrt2 is also localized in subsets of mitotic and neurogenic radial glial (RGP) and intermediate (IP) progenitors, as well as in their descendants-postmitotic IPs and differentiating neurons at the border subventricular/intermediate zone. Conditional activation of transgenic Scrt2 in cortical progenitors in mice promotes neuronal differentiation by favoring the direct mode of neurogenesis of RGPs at the onset of neurogenesis, at the expense of IP generation. Neuronal amplification via indirect IP neurogenesis is thereby extenuated, leading to a mild postnatal reduction of cortical thickness. Forced in vivo overexpression of Scrt2 suppressed the generation of IPs from RGPs and caused a delay in the radial migration of upper layer neurons toward the cortical plate. Mechanistically, our results indicate that Scrt2 negatively regulates the transcriptional activation of the basic helix loop helix TFs Ngn2/NeuroD1 on E-box containing common target genes, including Rnd2, a well-known major effector for migrational defects in developing cortex. Altogether, these findings reveal a modulatory role of Scrt2 protein in cortical neurogenesis and neuronal migration.
Collapse
Affiliation(s)
- Vanessa Paul
- Research Group Molecular Developmental Neurobiology, Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Danesin C, Houart C. A Fox stops the Wnt: implications for forebrain development and diseases. Curr Opin Genet Dev 2012; 22:323-30. [DOI: 10.1016/j.gde.2012.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/17/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
|
19
|
Elkouby YM, Polevoy H, Gutkovich YE, Michaelov A, Frank D. A hindbrain-repressive Wnt3a/Meis3/Tsh1 circuit promotes neuronal differentiation and coordinates tissue maturation. Development 2012; 139:1487-97. [PMID: 22399680 DOI: 10.1242/dev.072934] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
During development, early inducing programs must later be counterbalanced for coordinated tissue maturation. In Xenopus laevis embryos, activation of the Meis3 transcription factor by a mesodermal Wnt3a signal lies at the core of the hindbrain developmental program. We now identify a hindbrain restricting circuit, surprisingly comprising the hindbrain inducers Wnt3a and Meis3, and Tsh1 protein. Functional and biochemical analyses show that upon Tsh1 induction by strong Wnt3a/Meis3 feedback loop activity, the Meis3-Tsh1 transcription complex represses the Meis3 promoter, allowing cell cycle exit and neuron differentiation. Meis3 protein exhibits a conserved dual-role in hindbrain development, both inducing neural progenitors and maintaining their proliferative state. In this regulatory circuit, the Tsh1 co-repressor controls transcription factor gene expression that modulates cell cycle exit, morphogenesis and differentiation, thus coordinating neural tissue maturation. This newly identified Wnt/Meis/Tsh circuit could play an important role in diverse developmental and disease processes.
Collapse
Affiliation(s)
- Yaniv M Elkouby
- Department of Biochemistry, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
20
|
Morita H, Kajiura-Kobayashi H, Takagi C, Yamamoto TS, Nonaka S, Ueno N. Cell movements of the deep layer of non-neural ectoderm underlie complete neural tube closure in Xenopus. Development 2012; 139:1417-26. [PMID: 22378637 DOI: 10.1242/dev.073239] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In developing vertebrates, the neural tube forms from a sheet of neural ectoderm by complex cell movements and morphogenesis. Convergent extension movements and the apical constriction along with apical-basal elongation of cells in the neural ectoderm are thought to be essential for the neural tube closure (NTC) process. In addition, it is known that non-neural ectoderm also plays a crucial role in this process, as the neural tube fails to close in the absence of this tissue in chick and axolotl. However, the cellular and molecular mechanisms by which it functions in NTC are as yet unclear. We demonstrate here that the non-neural superficial epithelium moves in the direction of tensile forces applied along the dorsal-ventral axis during NTC. We found that this force is partly attributable to the deep layer of non-neural ectoderm cells, which moved collectively towards the dorsal midline along with the superficial layer. Moreover, inhibition of this movement by deleting integrin β1 function resulted in incomplete NTC. Furthermore, we demonstrated that other proposed mechanisms, such as oriented cell division, cell rearrangement and cell-shape changes have no or only minor roles in the non-neural movement. This study is the first to demonstrate dorsally oriented deep-cell migration in non-neural ectoderm, and suggests that a global reorganization of embryo tissues is involved in NTC.
Collapse
Affiliation(s)
- Hitoshi Morita
- Division of Morphogenesis, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Kaufmann LT, Niehrs C. Gadd45a and Gadd45g regulate neural development and exit from pluripotency in Xenopus. Mech Dev 2011; 128:401-11. [PMID: 21854844 DOI: 10.1016/j.mod.2011.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/01/2011] [Accepted: 08/03/2011] [Indexed: 01/07/2023]
Abstract
Gadd45 genes encode a small family of multifunctional stress response proteins, mediating cell proliferation, apoptosis, DNA repair and DNA demethylation. Their role during embryonic development is incompletely understood. Here we identified Xenopus Gadd45b, compared Gadd45a, Gadd45b and Gadd45g expression during Xenopus embryogenesis, and characterized their gain and loss of function phenotypes. Gadd45a and Gadd45g act redundantly and double Morpholino knock down leads to pleiotropic phenotypes, including shortened axes, head defects and misgastrulation. In contrast, Gadd45b, which is expressed at very low levels, shows little effect upon knock down or overexpression. Gadd45ag double Morphants show reduced neural cell proliferation and downregulation of pan-neural and neural crest markers. In contrast, Gadd45ag Morphants display increased expression of multipotency marker genes including Xenopus oct4 homologs as well as gastrula markers, while mesodermal markers are downregulated. The results indicate that Gadd45ag are required for early embryonic cells to exit pluripotency and enter differentiation.
Collapse
Affiliation(s)
- Lilian T Kaufmann
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, Heidelberg, Germany
| | | |
Collapse
|
22
|
Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone. PLoS One 2011; 6:e20309. [PMID: 21687713 PMCID: PMC3110623 DOI: 10.1371/journal.pone.0020309] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/27/2011] [Indexed: 11/19/2022] Open
Abstract
Yes-associated protein 65 (YAP) contains multiple protein-protein interaction domains and functions as both a transcriptional co-activator and as a scaffolding protein. Mouse embryos lacking YAP did not survive past embryonic day 8.5 and showed signs of defective yolk sac vasculogenesis, chorioallantoic fusion, and anterior-posterior (A-P) axis elongation. Given that the YAP knockout mouse defects might be due in part to nutritional deficiencies, we sought to better characterize a role for YAP during early development using embryos that develop externally. YAP morpholino (MO)-mediated loss-of-function in both frog and fish resulted in incomplete epiboly at gastrulation and impaired axis formation, similar to the mouse phenotype. In frog, germ layer specific genes were expressed, but they were temporally delayed. YAP MO-mediated partial knockdown in frog allowed a shortened axis to form. YAP gain-of-function in Xenopus expanded the progenitor populations in the neural plate (sox2+) and neural plate border zone (pax3+), while inhibiting the expression of later markers of tissues derived from the neural plate border zone (neural crest, pre-placodal ectoderm, hatching gland), as well as epidermis and somitic muscle. YAP directly regulates pax3 expression via association with TEAD1 (N-TEF) at a highly conserved, previously undescribed, TEAD-binding site within the 5′ regulatory region of pax3. Structure/function analyses revealed that the PDZ-binding motif of YAP contributes to the inhibition of epidermal and somitic muscle differentiation, but a complete, intact YAP protein is required for expansion of the neural plate and neural plate border zone progenitor pools. These results provide a thorough analysis of YAP mediated gene expression changes in loss- and gain-of-function experiments. Furthermore, this is the first report to use YAP structure-function analyzes to determine which portion of YAP is involved in specific gene expression changes and the first to show direct in vivo evidence of YAP's role in regulating pax3 neural crest expression.
Collapse
|
23
|
Archer TC, Jin J, Casey ES. Interaction of Sox1, Sox2, Sox3 and Oct4 during primary neurogenesis. Dev Biol 2010; 350:429-40. [PMID: 21147085 DOI: 10.1016/j.ydbio.2010.12.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 12/21/2022]
Abstract
Sox1, Sox2 and Sox3, the three members of the SoxB1 subgroup of transcription factors, have similar sequences, expression patterns and overexpression phenotypes. Thus, it has been suggested that they have redundant roles in the maintenance of neural stem cells in development. However, the long-term effect of overexpression or their function in combination with their putative co-factor Oct4 has not been tested. Here, we show that overexpression of sox1, sox2, sox3 or oct91, the Xenopus homologue of Oct4, results in the same phenotype: an expanded neural plate at the expense of epidermis and delayed neurogenesis. However, each of these proteins induced a unique profile of neural markers and the combination of Oct91 with each SoxB1 protein had different effects, as did continuous misexpression of the proteins. Overexpression studies indicate that Oct91 preferentially cooperates with Sox2 to maintain neural progenitor marker expression, while knockdown of Oct91 inhibits neural induction driven by either Sox2 or Sox3. Continuous expression of Sox1 and Sox2 in transgenic embryos represses neuron differentiation and inhibits anterior development while increasing cell proliferation. Constitutively active Sox3, however, leads to increased apoptosis suggesting that it functions as a tumor suppressor. While the SoxB1s have overlapping functions, they are not strictly redundant as they induce different sets of genes and are likely to partner with different proteins to maintain progenitor identity.
Collapse
Affiliation(s)
- Tenley C Archer
- Department of Biology, Georgetown University, Washington, DC 20057, USA.
| | | | | |
Collapse
|
24
|
Naylor RW, Collins RJ, Philpott A, Jones EA. Normal levels of p27 are necessary for somite segmentation and determining pronephric organ size. Organogenesis 2010; 5:201-10. [PMID: 20539739 DOI: 10.4161/org.5.4.9973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/31/2009] [Accepted: 09/02/2009] [Indexed: 11/19/2022] Open
Abstract
The Xenopus laevis cyclin dependent kinase inhibitor p27(Xic1) has been shown to be involved in exit from the cell cycle and differentiation of cells into a quiescent state in the nervous system, muscle tissue, heart and retina. We show that p27(Xic1) is expressed in the developing kidney in the nephrostomal regions. Using overexpression and morpholino oligonucleotide (MO) knock-down approaches we show normal levels of p27(Xic1) regulate pronephros organ size by regulating cell cycle exit. Knock-down of p27(Xic1) expression using a MO prevented myogenesis, as previously reported; an effect that subsequently inhibits pronephrogenesis. Furthermore, we show that normal levels of p27(Xic1) are required for somite segmentation also through its cell cycle control function. Finally, we provide evidence to suggest correct paraxial mesoderm segmentation is not necessary for pronephric induction in the intermediate mesoderm. These results indicate novel developmental roles for p27(Xic1), and reveal its differentiation function is not universally utilised in all developing tissues.
Collapse
Affiliation(s)
- Richard W Naylor
- Department of Biological Sciences; and Warwick University; Coventry, UK
| | | | | | | |
Collapse
|
25
|
Roth M, Bonev B, Lindsay J, Lea R, Panagiotaki N, Houart C, Papalopulu N. FoxG1 and TLE2 act cooperatively to regulate ventral telencephalon formation. Development 2010; 137:1553-62. [PMID: 20356955 DOI: 10.1242/dev.044909] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
FoxG1 is a conserved transcriptional repressor that plays a key role in the specification, proliferation and differentiation of the telencephalon, and is expressed from the earliest stages of telencephalic development through to the adult. How the interaction with co-factors might influence the multiplicity and diversity of FoxG1 function is not known. Here, we show that interaction of FoxG1 with TLE2, a Xenopus tropicalis co-repressor of the Groucho/TLE family, is crucial for regulating the early activity of FoxG1. We show that TLE2 is co-expressed with FoxG1 in the ventral telencephalon from the early neural plate stage and functionally cooperates with FoxG1 in an ectopic neurogenesis assay. FoxG1 has two potential TLE binding sites: an N-terminal eh1 motif and a C-terminal YWPMSPF motif. Although direct binding seems to be mediated by the N-terminal motif, both motifs appear important for functional synergism. In the neurogenesis assay, mutation of either motif abolishes functional cooperation of TLE2 with FoxG1, whereas in the forebrain deletion of both motifs renders FoxG1 unable to induce the ventral telencephalic marker Nkx2.1. Knocking down either FoxG1 or TLE2 disrupts the development of the ventral telencephalon, supporting the idea that endogenous TLE2 and FoxG1 work together to specify the ventral telencephalon.
Collapse
Affiliation(s)
- Martin Roth
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Manuel M, Martynoga B, Yu T, West JD, Mason JO, Price DJ. The transcription factor Foxg1 regulates the competence of telencephalic cells to adopt subpallial fates in mice. Development 2010; 137:487-97. [PMID: 20081193 PMCID: PMC2858907 DOI: 10.1242/dev.039800] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2099] [Indexed: 12/17/2022]
Abstract
Foxg1 is required for development of the ventral telencephalon in the embryonic mammalian forebrain. Although one existing hypothesis suggests that failed ventral telencephalic development in the absence of Foxg1 is due to reduced production of the morphogens sonic hedgehog (Shh) and fibroblast growth factor 8 (Fgf8), the possibility that telencephalic cells lacking Foxg1 are intrinsically incompetent to generate the ventral telencephalon has remained untested. We examined the ability of Foxg1(-/-) telencephalic cells to respond to Shh and Fgf8 by examining the expression of genes whose activation requires Shh or Fgf8 in vivo and by testing their responses to Shh and Fgf8 in culture. We found that many elements of the Shh and Fgf8 signalling pathways continue to function in the absence of Foxg1 but, nevertheless, we were unable to elicit normal responses of key ventral telencephalic marker genes in Foxg1(-/-) telencephalic tissue following a range of in vivo and in vitro manipulations. We explored the development of Foxg1(-/-) cells in Foxg1(-/-) Foxg1(+/+) chimeric embryos that contained ventral telencephalon created by normally patterned wild-type cells. We found that Foxg1(-/-) cells contributed to the chimeric ventral telencephalon, but that they retained abnormal specification, expressing dorsal rather than ventral telencephalic markers. These findings indicate that, in addition to regulating the production of ventralising signals, Foxg1 acts cell-autonomously in the telencephalon to ensure that cells develop the competence to adopt ventral identities.
Collapse
Affiliation(s)
- Martine Manuel
- Genes and Development Group, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Ossipova O, Ezan J, Sokol SY. PAR-1 phosphorylates Mind bomb to promote vertebrate neurogenesis. Dev Cell 2009; 17:222-33. [PMID: 19686683 DOI: 10.1016/j.devcel.2009.06.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 04/04/2009] [Accepted: 06/17/2009] [Indexed: 12/25/2022]
Abstract
Generation of neurons in the vertebrate central nervous system requires a complex transcriptional regulatory network and signaling processes in polarized neuroepithelial progenitor cells. Here we demonstrate that neurogenesis in the Xenopus neural plate in vivo and mammalian neural progenitors in vitro involves intrinsic antagonistic activities of the polarity proteins PAR-1 and aPKC. Furthermore, we show that Mind bomb (Mib), a ubiquitin ligase that promotes Notch ligand trafficking and activity, is a crucial molecular substrate for PAR-1. The phosphorylation of Mib by PAR-1 results in Mib degradation, repression of Notch signaling, and stimulation of neuronal differentiation. These observations suggest a conserved mechanism for neuronal fate determination that might operate during asymmetric divisions of polarized neural progenitor cells.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
29
|
Murato Y, Hashimoto C. Xhairy2functions inXenopuslens development by regulatingp27xic1expression. Dev Dyn 2009; 238:2179-92. [DOI: 10.1002/dvdy.21883] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
30
|
Roche DD, Liu KJ, Harland RM, Monsoro-Burq AH. Dazap2 is required for FGF-mediated posterior neural patterning, independent of Wnt and Cdx function. Dev Biol 2009; 333:26-36. [PMID: 19555680 DOI: 10.1016/j.ydbio.2009.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/19/2009] [Accepted: 06/15/2009] [Indexed: 01/15/2023]
Abstract
The organization of the embryonic neural plate requires coordination of multiple signal transduction pathways, including fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), and WNTs. Many studies have suggested that a critical component of this process is the patterning of posterior neural tissues by an FGF-caudal signaling cascade. Here, we have identified a novel player, Dazap2, and show that it is required in vivo for posterior neural fate. Loss of Dazap2 in embryos resulted in diminished expression of hoxb9 with a concurrent increase in the anterior marker otx2. Furthermore, we found that Dazap2 is required for FGF dependent posterior patterning; surprisingly, this is independent of Cdx activity. Furthermore, in contrast to FGF activity, Dazap2 induction of hoxb9 is not blocked by loss of canonical Wnt signaling. Functionally, we found that increasing Dazap2 levels alters neural patterning and induces posterior neural markers. This activity overcomes the anteriorizing effects of noggin, and is downstream of FGF receptor activation. Our results strongly suggest that Dazap2 is a novel and essential branch of FGF-induced neural patterning.
Collapse
Affiliation(s)
- Daniel D Roche
- Institut Curie, CNRS, UMR146, Centre Universitaire, Batiment 110, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
31
|
Damianitsch K, Melchert J, Pieler T. XsFRP5 modulates endodermal organogenesis in Xenopus laevis. Dev Biol 2009; 329:327-37. [PMID: 19285490 DOI: 10.1016/j.ydbio.2009.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 03/05/2009] [Accepted: 03/05/2009] [Indexed: 11/15/2022]
Abstract
Canonical Wnt signalling is known to be involved in the regulation of differentiation and proliferation in the context of endodermal organogenesis. Wnt mediated beta-catenin activation is understood to be modulated by secreted Frizzled-related proteins, such as XsFRP5, which is dynamically expressed in the prospective liver/ventral pancreatic precursor cells during late neurula stages, becoming liver specific at tailbud stages and shifting to the posterior stomach/anterior duodenum territory during tadpole stages of Xenopus embryogenesis. These expression characteristics prompted us to analyse the function of XsFRP5 in the context of endodermal organogenesis. We demonstrate that XsFRP5 can form a complex with and inhibit a multitude of different Wnt ligands, including both canonical and non-canonical ones. Knockdown of XsFRP5 results in transient pancreatic hypoplasia as well as in an enlargement of the stomach. In VegT-injected animal cap explants, XsFRP5 can induce expression of exocrine but not endocrine pancreatic marker genes. Both, its expression characteristics as well as its interactions with XsFRP5, define Wnt2b as a putative target for XsFRP5 in vivo. Knockdown of Wnt2b results in a hypoplastic stomach as well as in hypoplasia of the pancreas. On the basis of these findings we propose that XsFRP5 exerts an early regulatory function in the specification of the ventral pancreas, as well as a late function in controlling stomach size via inhibition of Wnt signalling.
Collapse
Affiliation(s)
- Katharina Damianitsch
- Department of Developmental Biochemistry, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37073 Göttingen, Germany
| | | | | |
Collapse
|
32
|
Repulsive guidance molecule A (RGM A) and its receptor neogenin during neural and neural crest cell development of Xenopus laevis. Biol Cell 2008; 100:659-73. [PMID: 18479252 DOI: 10.1042/bc20080023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND INFORMATION RGM A (repulsive guidance molecule A) is a GPI (glycosylphosphatidylinositol)-anchored glycoprotein which has repulsive properties on axons due to the interaction with its receptor neogenin. In addition, RGM A has been demonstrated to function as a BMP (bone morphogenetic protein) co-receptor. RESULTS In the present study, we provide the first analysis of early RGM A and neogenin expression and function in Xenopus laevis neural development. Tissue-specific RGM A expression starts at stage 12.5 in the anterior neural plate. Loss-of-function analyses suggest a function of RGM A and neogenin in regulating anterior neural marker genes, as well as eye development and neural crest cell migration. Furthermore, overexpression of RGM A leads to ectopic expression of neural crest cell marker genes. CONCLUSIONS These data indicate that RGM A and neogenin have important functions during early neural development, in addition to their role during axonal guidance and synapse formation.
Collapse
|
33
|
Schlosser G, Awtry T, Brugmann SA, Jensen ED, Neilson K, Ruan G, Stammler A, Voelker D, Yan B, Zhang C, Klymkowsky MW, Moody SA. Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion. Dev Biol 2008; 320:199-214. [PMID: 18571637 DOI: 10.1016/j.ydbio.2008.05.523] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/02/2008] [Accepted: 05/02/2008] [Indexed: 11/16/2022]
Abstract
Genes of the Eya family and of the Six1/2 subfamily are expressed throughout development of vertebrate cranial placodes and are required for their differentiation into ganglia and sense organs. How they regulate placodal neurogenesis, however, remains unclear. Through loss of function studies in Xenopus we show that Eya1 and Six1 are required for neuronal differentiation in all neurogenic placodes. The effects of overexpression of Eya1 or Six1 are dose dependent. At higher levels, Eya1 and Six1 expand the expression of SoxB1 genes (Sox2, Sox3), maintain cells in a proliferative state and block expression of neuronal determination and differentiation genes. At lower levels, Eya1 and Six1 promote neuronal differentiation, acting downstream of and/or parallel to Ngnr1. Our findings suggest that Eya1 and Six1 are required for both the regulation of placodal neuronal progenitor proliferation, through their effects on SoxB1 expression, and subsequent neuronal differentiation.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, University of Bremen, FB2, PO Box 330440, 28334 Bremen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lobjois V, Bel-Vialar S, Trousse F, Pituello F. Forcing neural progenitor cells to cycle is insufficient to alter cell-fate decision and timing of neuronal differentiation in the spinal cord. Neural Dev 2008; 3:4. [PMID: 18271960 PMCID: PMC2265710 DOI: 10.1186/1749-8104-3-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 02/13/2008] [Indexed: 01/29/2023] Open
Abstract
Background During the development of the nervous system, neural progenitor cells can either stay in the pool of proliferating undifferentiated cells or exit the cell cycle and differentiate. Two main factors will determine the fate of a neural progenitor cell: its position within the neuroepithelium and the time at which the cell initiates differentiation. In this paper we investigated the importance of the timing of cell cycle exit on cell-fate decision by forcing neural progenitors to cycle and studying the consequences on specification and differentiation programs. Results As a model, we chose the spinal progenitors of motor neurons (pMNs), which switch cell-fate from motor neurons to oligodendrocytes with time. To keep pMNs in the cell cycle, we forced the expression of G1-phase regulators, the D-type cyclins. We observed that keeping neural progenitor cells cycling is not sufficient to retain them in the progenitor domain (ventricular zone); transgenic cells instead migrate to the differentiating field (mantle zone) regardless of cell cycle exit. Cycling cells located in the mantle zone do not retain markers of neural progenitor cells such as Sox2 or Olig2 but upregulate transcription factors involved in motor neuron specification, including MNR2 and Islet1/2. These cycling cells also progress through neuronal differentiation to axonal extension. We also observed mitotic cells displaying all the features of differentiating motor neurons, including axonal projection via the ventral root. However, the rapid decrease observed in the proliferation rate of the transgenic motor neuron population suggests that they undergo only a limited number of divisions. Finally, quantification of the incidence of the phenotype in young and more mature neuroepithelium has allowed us to propose that once the transcriptional program assigning neural progenitor cells to a subtype of neurons is set up, transgenic cells progress in their program of differentiation regardless of cell cycle exit. Conclusion Our findings indicate that maintaining neural progenitor cells in proliferation is insufficient to prevent differentiation or alter cell-fate choice. Furthermore, our results indicate that the programs of neuronal specification and differentiation are controlled independently of cell cycle exit.
Collapse
Affiliation(s)
- Valérie Lobjois
- Centre de Biologie du Développement, UMR5547, Institut d'Exploration Fonctionnelle des Génomes IFR109, Université Toulouse III et Centre National de Recherche Scientifique, 31062 Toulouse, France.
| | | | | | | |
Collapse
|
35
|
Rogers CD, Archer TC, Cunningham DD, Grammer TC, Casey EMS. Sox3 expression is maintained by FGF signaling and restricted to the neural plate by Vent proteins in the Xenopus embryo. Dev Biol 2007; 313:307-19. [PMID: 18031719 DOI: 10.1016/j.ydbio.2007.10.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 10/03/2007] [Accepted: 10/18/2007] [Indexed: 11/30/2022]
Abstract
The formation of the nervous system is initiated when ectodermal cells adopt the neural fate. Studies in Xenopus demonstrate that inhibition of BMP results in the formation of neural tissue. However, the molecular mechanism driving the expression of early neural genes in response to this inhibition is unknown. Moreover, controversy remains regarding the sufficiency of BMP inhibition for neural induction. To address these questions, we performed a detailed analysis of the regulation of the soxB1 gene, sox3, one of the earliest genes expressed in the neuroectoderm. Using ectodermal explant assays, we analyzed the role of BMP, Wnt and FGF signaling in the regulation of sox3 and the closely related soxB1 gene, sox2. Our results demonstrate that both sox3 and sox2 are induced in response to BMP antagonism, but by distinct mechanisms and that the activation of both genes is independent of FGF signaling. However, both require FGF for the maintenance of their expression. Finally, sox3 genomic elements were identified and characterized and an element required for BMP-mediated repression via Vent proteins was identified through the use of transgenesis and computational analysis. Interestingly, none of the elements required for sox3 expression were identified in the sox2 locus. Together our data indicate that two closely related genes have unique mechanisms of gene regulation at the onset of neural development.
Collapse
Affiliation(s)
- Crystal D Rogers
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
36
|
Gessert S, Maurus D, Rössner A, Kühl M. Pescadillo is required for Xenopus laevis eye development and neural crest migration. Dev Biol 2007; 310:99-112. [PMID: 17727835 DOI: 10.1016/j.ydbio.2007.07.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/08/2007] [Accepted: 07/23/2007] [Indexed: 10/23/2022]
Abstract
Pescadillo is a multifunctional, nuclear protein involved in rRNA precursor processing, ribosomal assembly, and transcriptional regulation. Pescadillo has been assigned important functions in embryonic development and tumor formation. We previously identified pescadillo as a potential downstream target of non-canonical Wnt-4 signaling. Here we have investigated for the first time the function of the Xenopus laevis homolog of pescadillo during early embryogenesis on a molecular level. Loss of function analysis indicates that pescadillo is required for eye development and neural crest migration. BrdU incorporation and TUNEL assays indicate that a loss of pescadillo function affects proliferation and triggers apoptosis through a p53-mediated mechanism. Furthermore, pescadillo affects the expression of early eye-specific marker genes, likely independent of its function in regulating proliferation and apoptosis, and in addition migration of cranial neural crest cells. Our data indicate that pescadillo has multiple important functions during X. laevis development and that its function is highly conserved among different species.
Collapse
Affiliation(s)
- Susanne Gessert
- Department of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | |
Collapse
|
37
|
Carmona-Fontaine C, Acuña G, Ellwanger K, Niehrs C, Mayor R. Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism dependent on Dickkopf1 secreted by the prechordal mesoderm. Dev Biol 2007; 309:208-21. [PMID: 17669393 DOI: 10.1016/j.ydbio.2007.07.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/13/2007] [Accepted: 07/06/2007] [Indexed: 12/13/2022]
Abstract
It is known the interactions between the neural plate and epidermis generate neural crest (NC), but it is unknown why the NC develops only at the lateral border of the neural plate and not in the anterior fold. Using grafting experiments we show that there is a previously unidentified mechanism that precludes NC from the anterior region. We identify prechordal mesoderm as the tissue that inhibits NC in the anterior territory and show that the Wnt/beta-catenin antagonist Dkk1, secreted by this tissue, is sufficient to mimic this NC inhibition. We show that Dkk1 is required for preventing the formation of NC in the anterior neural folds as loss-of-function experiments using a Dkk1 blocking antibody in Xenopus as well as the analysis of Dkk1-null mouse embryos transform the anterior neural fold into NC. This can be mimicked by Wnt/beta-catenin signaling activation without affecting the anterior posterior patterning of the neural plate, or placodal specification. Finally, we show that the NC cells induced at the anterior neural fold are able to migrate and differentiate as normal NC. These results demonstrate that anterior regions of the embryo lack NC because of a mechanism, conserved from fish to mammals, that suppresses Wnt/beta-catenin signaling via Dkk1.
Collapse
|
38
|
Candal E, Alunni A, Thermes V, Jamen F, Joly JS, Bourrat F. Ol-insm1b, a SNAG family transcription factor involved in cell cycle arrest during medaka development. Dev Biol 2007; 309:1-17. [PMID: 17559827 DOI: 10.1016/j.ydbio.2007.04.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 04/14/2007] [Accepted: 04/26/2007] [Indexed: 11/28/2022]
Abstract
Through whole-mount in situ hybridisation screen on medaka (Oryzias latipes) brain, Ol-insm1b, a member of the Insm1/Mlt1 subfamily of SNAG-domain containing genes, has been isolated. It is strongly expressed during neurogenesis and pancreas organogenesis, with a pattern that suggests a role in cell cycle exit. Here, we describe Ol-insm1b expression pattern throughout development and in adult brain, and we report on its functional characterisation. Our data point to a previously unravelled role for Ol-insm1b as a down-regulator of cell proliferation during development, as it slows down the cycle without triggering apoptosis. Clonal analysis demonstrates that this effect is cell-autonomous, and, through molecular dissection studies, we demonstrate that it is likely to be non-transcriptional, albeit mediated by zinc-finger domains. Additionally, we report that Ol-insm1b mRNA, when injected in one cell of two-cell stage embryos, exhibits a surprising behaviour: it does not spread uniformly amongst daughter cells but remains cytoplasmically localised in the progeny of the injected blastomere. Our experiments suggest that Insm1 is a negative regulator of cell proliferation, possibly through mechanisms that do not involve modulation of transcription.
Collapse
Affiliation(s)
- Eva Candal
- INRA MSNC Group, DEPSN, Institut Fessard, CNRS, 1 Avenue de la Terrasse, 91198 GIF-SUR-YVETTE, France.
| | | | | | | | | | | |
Collapse
|
39
|
Regad T, Roth M, Bredenkamp N, Illing N, Papalopulu N. The neural progenitor-specifying activity of FoxG1 is antagonistically regulated by CKI and FGF. Nat Cell Biol 2007; 9:531-40. [PMID: 17435750 DOI: 10.1038/ncb1573] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Accepted: 03/13/2007] [Indexed: 12/25/2022]
Abstract
FoxG1 is an evolutionarily conserved, winged-helix transcriptional repressor that maintains progenitor cells in the vertebrate forebrain. How the activity of FoxG1 is regulated is not known. Here, we report that in the developing Xenopus and mouse forebrain, FoxG1 is nuclear in progenitor cells but cytoplasmic in differentiating cells. The subcellular localisation of FoxG1 is regulated at the post-translational level by casein kinase I (CKI) and fibroblast growth factor (FGF) signalling. CKI phosphorylation of Ser 19 of FoxG1 promotes nuclear import, whereas FGF-induced phosphorylation of Thr 226 promotes nuclear export. Interestingly, FGF-induced phosphorylation of FoxG1 is mediated Akt kinase (also known as protein B kinase, PKB) kinase, rather than the MAPK pathway. Phosphorylation of endogenous FoxG1 is blocked by CKI and Akt inhibitors. In the mouse olfactory placode cell line OP27, and in cortical progenitors, increased FGF signalling causes FoxG1 to exit the nucleus and promotes neuronal differentiation, whereas FGF and Akt inhibitors block this effect. Thus, CKI and FGF signalling converge on an antagonistic regulation of FoxG1, which in turn controls neurogenesis in the forebrain.
Collapse
Affiliation(s)
- Tarik Regad
- The Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QR, UK
| | | | | | | | | |
Collapse
|
40
|
Cosgrove RA, Philpott A. Cell cycling and differentiation do not require the retinoblastoma protein during early Xenopus development. Dev Biol 2007; 303:311-24. [PMID: 17188261 DOI: 10.1016/j.ydbio.2006.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 11/03/2006] [Accepted: 11/08/2006] [Indexed: 11/23/2022]
Abstract
The retinoblastoma protein (pRb) is a central regulator of the cell cycle, controlling passage through G1 phase. Moreover, pRb has also been shown to play a direct role in the differentiation of multiple tissues, including nerve and muscle. Rb null mice display embryonic lethality, although recent data have indicated that at least some of these defects are due to placental insufficiency. To investigate this further, we have examined the role of pRb in early development of the frog Xenopus laevis, which develops without the need for a placenta. Surprisingly, we see that loss of pXRb has no effect on either cell cycling or differentiation of neural or muscle tissue, while overexpression of pXRb similarly has no effects. We demonstrate that, in fact, pXRb is maintained in a hyperphosphorylated and therefore inactive state early in development. Therefore, Rb protein is not required for cell cycle control or differentiation in early embryos, indicating unusual control of these G1/G0 events at this developmental stage.
Collapse
Affiliation(s)
- Ruth A Cosgrove
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Addenbrookes Hospital, Hills Road, Cambridge CB2 0XZ, UK
| | | |
Collapse
|
41
|
Paris M, Wang WH, Shin MH, Franklin DS, Andrisani OM. Homeodomain transcription factor Phox2a, via cyclic AMP-mediated activation, induces p27Kip1 transcription, coordinating neural progenitor cell cycle exit and differentiation. Mol Cell Biol 2006; 26:8826-39. [PMID: 16982676 PMCID: PMC1636809 DOI: 10.1128/mcb.00575-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mechanisms coordinating neural progenitor cell cycle exit and differentiation are incompletely understood. The cyclin-dependent kinase inhibitor p27(Kip1) is transcriptionally induced, switching specific neural progenitors from proliferation to differentiation. However, neuronal differentiation-specific transcription factors mediating p27(Kip1) transcription have not been identified. We demonstrate the homeodomain transcription factor Phox2a, required for central nervous system (CNS)- and neural crest (NC)-derived noradrenergic neuron differentiation, coordinates cell cycle exit and differentiation by inducing p27(Kip1) transcription. Phox2a transcription and activation in the CNS-derived CAD cell line and primary NC cells is mediated by combined cyclic AMP (cAMP) and bone morphogenetic protein 2 (BMP2) signaling. In the CAD cellular model, cAMP and BMP2 signaling initially induces proliferation of the undifferentiated precursors, followed by p27(Kip1) transcription, G(1) arrest, and neuronal differentiation. Small interfering RNA silencing of either Phox2a or p27(Kip1) suppresses p27(Kip1) transcription and neuronal differentiation, suggesting a causal link between p27(Kip1) expression and differentiation. Conversely, ectopic Phox2a expression via the Tet-off expression system promotes accelerated CAD cell neuronal differentiation and p27(Kip1) transcription only in the presence of cAMP signaling. Importantly, endogenous or ectopically expressed Phox2a activated by cAMP signaling binds homeodomain cis-acting elements of the p27(Kip1) promoter in vivo and mediates p27(Kip1)-luciferase expression in CAD and NC cells. We conclude that developmental cues of cAMP signaling causally link Phox2a activation with p27(Kip1) transcription, thereby coordinating neural progenitor cell cycle exit and differentiation.
Collapse
Affiliation(s)
- Maryline Paris
- Department of Basic Medical Sciences, Purdue University, 625 Harrison Street, West Lafayette, IN 47907-2026, USA
| | | | | | | | | |
Collapse
|
42
|
Diks SH, Bink RJ, van de Water S, Joore J, van Rooijen C, Verbeek FJ, den Hertog J, Peppelenbosch MP, Zivkovic D. The novel gene asb11: a regulator of the size of the neural progenitor compartment. ACTA ACUST UNITED AC 2006; 174:581-92. [PMID: 16893969 PMCID: PMC2064263 DOI: 10.1083/jcb.200601081] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
From a differential display designed to isolate genes that are down-regulated upon differentiation of the central nervous system in Danio rerio embryos, we isolated d-asb11 (ankyrin repeat and suppressor of cytokine signaling box–containing protein 11). Knockdown of the d-Asb11 protein altered the expression of neural precursor genes sox2 and sox3 and resulted in an initial relative increase in proneural cell numbers. This was reflected by neurogenin1 expansion followed by premature neuronal differentiation, as demonstrated by HuC labeling and resulting in reduced size of the definitive neuronal compartment. Forced misexpression of d-asb11 was capable of ectopically inducing sox2 while it diminished or entirely abolished neurogenesis. Overexpression of d-Asb11 in both a pluripotent and a neural-committed progenitor cell line resulted in the stimulus-induced inhibition of terminal neuronal differentiation and enhanced proliferation. We conclude that d-Asb11 is a novel regulator of the neuronal progenitor compartment size by maintaining the neural precursors in the proliferating undifferentiated state possibly through the control of SoxB1 transcription factors.
Collapse
Affiliation(s)
- Sander H Diks
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, NL-9713 AV Groningen, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chalmers AD, Lachani K, Shin Y, Sherwood V, Cho KWY, Papalopulu N. Grainyhead-like 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis. Mech Dev 2006; 123:702-18. [PMID: 16916602 DOI: 10.1016/j.mod.2006.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 04/28/2006] [Accepted: 04/28/2006] [Indexed: 11/27/2022]
Abstract
The Xenopus ectoderm consists of two populations of cells, superficial polarised epithelial cells and deep, non-epithelial cells. These two cell types differ in their developmental fate. In the neural ectoderm, primary neurons are derived only from the deep cells. In the epidermal ectoderm, superficial cells express high levels of differentiation markers, while most of the deep cells do not differentiate until later when they produce the stratified adult epidermis. However, few molecular differences are known between the deep and superficial cells. Here, we have undertaken a systematic approach to identify genes that show layer-restricted expression by microarray analysis of deep and superficial cells at the gastrula stage, followed by wholemount in situ hybridisation. We have identified 32 differentially expressed genes, of which 26 show higher expression in the superficial layer and 6 in the deep layer and describe their expression at the gastrula and neurula stage. One of the identified genes is the transcription factor Grhl3, which we found to be expressed in the superficial layer of the gastrula ectoderm and the neurula epidermis. By using markers identified in this work, we show that Grlh3 promotes superficial gene expression in the deep layer of the epidermis. Concomitantly, deep layer specific genes are switched off, showing that Grlh3 can promote deep cells to take on a superficial cell identity in the embryonic epidermis.
Collapse
Affiliation(s)
- Andrew D Chalmers
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QR, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294:303-51. [PMID: 16677629 DOI: 10.1016/j.ydbio.2006.03.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/17/2022]
Abstract
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, AG Roth, University of Bremen, FB2, 28334 Bremen, Germany.
| |
Collapse
|
45
|
Klisch TJ, Souopgui J, Juergens K, Rust B, Pieler T, Henningfeld KA. Mxi1 is essential for neurogenesis in Xenopus and acts by bridging the pan-neural and proneural genes. Dev Biol 2006; 292:470-85. [PMID: 16457797 DOI: 10.1016/j.ydbio.2005.12.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 12/14/2005] [Accepted: 12/16/2005] [Indexed: 12/25/2022]
Abstract
We have isolated and characterized Xenopus Mxi1, a member of the Myc/Max/Mad family of bHLHZip transcription factors. Xmxi1 transcripts are present during gastrulation and early neurula stages, earlier and in broader domains as compared to the neuronal determination factor neurogenin (X-ngnr-1). Consistent with an early role in neurogenesis, Xmxi1 is positively regulated by Sox3, SoxD, and proneural genes, as well as negatively by the Notch pathway. Loss-of-function experiments demonstrate an essential role for Xmxi1 in the establishment of a mature neural state that can be activated by factors that induce neuronal differentiation, such as SoxD and X-ngnr-1. Overexpression of Xmxi1 in Xenopus embryos results in ectopic activation of Sox3, an early pan-neural marker of proliferating neural precursor cells. Within the neural plate, the neuronal differentiation marker N-tubulin and cell cycle control genes such as XPak3 and p27(Xic1) are inhibited, but the expression of early determination and differentiation markers, including X-ngnr-1 and X-MyT1, is not affected. Inhibition of neuronal differentiation by Xmxi1 is only transient, and, at early tailbud stages, both endogenous and ectopic neurogenesis are observed. While Xmxi1 enhances cell proliferation and apoptosis in the early Xenopus embryo, both activities appear not to be required for the function of Xmxi1 in primary neurogenesis.
Collapse
Affiliation(s)
- Tiemo J Klisch
- DFG-Center of Molecular Physiology of the Brain, Department of Developmental Biochemistry, University of Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Vonica A, Brivanlou AH. An obligatory caravanserai stop on the silk road to neural induction: Inhibition of BMP/GDF signaling. Semin Cell Dev Biol 2006; 17:117-32. [PMID: 16516504 DOI: 10.1016/j.semcdb.2005.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Work in Xenopus laevis produced the first molecular explanation for neural specification, the default model, where inactivation of the BMP pathway in ectodermal cells changes fates from epidermal to neural. This review covers the present status of our understanding of neural specification, with emphasis on Xenopus, but including relevant facts in other model systems. While recent experiments have increased the complexity of the molecular picture, they have also provided additional support for the default model and the central position of the BMP pathway. We conclude that synergy between accumulated knowledge and technical progress will maintain Xenopus at the forefront of research in neural development.
Collapse
Affiliation(s)
- Alin Vonica
- Laboratory of Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
47
|
Keren A, Bengal E, Frank D. p38 MAP kinase regulates the expression of XMyf5 and affects distinct myogenic programs during Xenopus development. Dev Biol 2005; 288:73-86. [PMID: 16248994 DOI: 10.1016/j.ydbio.2005.09.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 09/06/2005] [Accepted: 09/08/2005] [Indexed: 12/30/2022]
Abstract
The p38 MAPK signaling pathway is essential for skeletal muscle differentiation in tissue culture models. We demonstrate a novel role for p38 MAPK in myogenesis during early Xenopus laevis development. Interfering with p38 MAPK causes distinct defects in myogenesis. The initial expression of Myf5 is selectively blocked, while expression of MyoD is unaffected. Expression of a subset of muscle structural genes is reduced. Convergent extension movements are prevented and segmentation of the paraxial mesoderm is delayed, probably due to the failure of cells to withdraw from the cell cycle. Myotubes are properly formed; however, at later stages, they begin to degenerate, and the boundaries between somites disappear. Significant apoptotic cell death occurs in most parts of the somites. The ventral body wall muscle derived from migratory progenitor cells of the ventral somite region is poorly formed. Our data indicate that the developmental defects caused by p38alpha-knockdown were mediated by the loss of XMyf5 expression. Thus, this study identifies a specific intracellular pathway in which p38 MAPK and Myf5 proteins regulate a distinct myogenic program.
Collapse
Affiliation(s)
- Aviad Keren
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
48
|
Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:347-99. [PMID: 16003766 DOI: 10.1002/jez.b.21055] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ectodermal placodes comprise the adenohypophyseal, olfactory, lens, profundal, trigeminal, otic, lateral line, and epibranchial placodes. The first part of this review presents a brief overview of placode development. Placodes give rise to a variety of cell types and contribute to many sensory organs and ganglia of the vertebrate head. While different placodes differ with respect to location and derivative cell types, all appear to originate from a common panplacodal primordium, induced at the anterior neural plate border by a combination of mesodermal and neural signals and defined by the expression of Six1, Six4, and Eya genes. Evidence from mouse and zebrafish mutants suggests that these genes promote generic placodal properties such as cell proliferation, cell shape changes, and specification of neurons. The common developmental origin of placodes suggests that all placodes may have evolved in several steps from a common precursor. The second part of this review summarizes our current knowledge of placode evolution. Although placodes (like neural crest cells) have been proposed to be evolutionary novelties of vertebrates, recent studies in ascidians and amphioxus have proposed that some placodes originated earlier in the chordate lineage. However, while the origin of several cellular and molecular components of placodes (e.g., regionalized expression domains of transcription factors and some neuronal or neurosecretory cell types) clearly predates the origin of vertebrates, there is presently little evidence that these components are integrated into placodes in protochordates. A scenario is presented according to which all placodes evolved from an adenohypophyseal-olfactory protoplacode, which may have originated in the vertebrate ancestor from the anlage of a rostral neurosecretory organ (surviving as Hatschek's pit in present-day amphioxus).
Collapse
|
49
|
Candal E, Nguyen V, Joly JS, Bourrat F. Expression domains suggest cell-cycle independent roles of growth-arrest molecules in the adult brain of the medaka, Oryzias latipes. Brain Res Bull 2005; 66:426-30. [PMID: 16144625 DOI: 10.1016/j.brainresbull.2005.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Teleost fish are unique for their enormous potential to produce new neurons in the adult brain. Nevertheless, the regulation of this adult neurogenesis remains to be characterized. Does it resort to the same molecular mechanisms as those at play in embryonic development? Here, we analyse the expression of the neurogenic gene Ol-DeltaA in the brain of medaka (Oryzias latipes) embryos and adults. To determine the relationships between neurogenic and growth-arrest genes in the adult brain, we compare the expression domains of Ol-DeltaA with those of Ol-KIP and Ol-Gadd45gamma, two well-characterized genes involved in cell-cycle arrest and growth inhibition. While it is widely assumed that genes controlling cell-cycle exit show restricted expression domains next to proliferating cells (in the sites of prospective cell differentiation), we observe highly particular expression domains of Ol-KIP and Ol-Gadd45gamma not associated to proliferating areas of the adult brain, suggesting locally different and cell-cycle independent roles of these molecules in the adult brain.
Collapse
Affiliation(s)
- Eva Candal
- JE INRA U1126, INRA/CNRS Group, UPR 2197 DEPSN, CNRS, Institut de Neurosciences A. Fessard, Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
50
|
Chuang LC, Yew PR. Proliferating cell nuclear antigen recruits cyclin-dependent kinase inhibitor Xic1 to DNA and couples its proteolysis to DNA polymerase switching. J Biol Chem 2005; 280:35299-309. [PMID: 16118211 DOI: 10.1074/jbc.m506429200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Xenopus cyclin-dependent kinase (CDK) inhibitor, p27(Xic1) (Xic1), binds to CDK2-cyclins and proliferating cell nuclear antigen (PCNA), inhibits DNA synthesis in Xenopus extracts, and is targeted for ubiquitin-mediated proteolysis. Previous studies suggest that Xic1 ubiquitination and degradation are coupled to the initiation of DNA replication, but the precise timing and molecular mechanism of Xic1 proteolysis has not been determined. Here we demonstrate that Xic1 proteolysis is temporally restricted to late replication initiation following the requirements for DNA polymerase alpha-primase, replication factor C, and PCNA. Our studies also indicate that Xic1 degradation is absolutely dependent upon the binding of Xic1 to PCNA in both Xenopus egg and gastrulation stage extracts. Additionally, extracts depleted of PCNA do not support Xic1 proteolysis. Importantly, while the addition of recombinant wild-type PCNA alone restores Xic1 degradation, the addition of a PCNA mutant defective for trimer formation does not restore Xic1 proteolysis in PCNA-depleted extracts, suggesting Xic1 proteolysis requires both PCNA binding to Xic1 and the ability of PCNA to be loaded onto primed DNA by replication factor C. Taken together, our studies suggest that Xic1 is targeted for ubiquitination and degradation during DNA polymerase switching through its interaction with PCNA at a site of initiation.
Collapse
Affiliation(s)
- Li-Chiou Chuang
- University of Texas Health Science Center at San Antonio, Department of Molecular Medicine, Institute of Biotechnology, San Antonio, Texas 78245-3207, USA
| | | |
Collapse
|