1
|
Miao Y, Pourquié O. Cellular and molecular control of vertebrate somitogenesis. Nat Rev Mol Cell Biol 2024; 25:517-533. [PMID: 38418851 PMCID: PMC11694818 DOI: 10.1038/s41580-024-00709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Segmentation is a fundamental feature of the vertebrate body plan. This metameric organization is first implemented by somitogenesis in the early embryo, when paired epithelial blocks called somites are rhythmically formed to flank the neural tube. Recent advances in in vitro models have offered new opportunities to elucidate the mechanisms that underlie somitogenesis. Notably, models derived from human pluripotent stem cells introduced an efficient proxy for studying this process during human development. In this Review, we summarize the current understanding of somitogenesis gained from both in vivo studies and in vitro studies. We deconstruct the spatiotemporal dynamics of somitogenesis into four distinct modules: dynamic events in the presomitic mesoderm, segmental determination, somite anteroposterior polarity patterning, and epithelial morphogenesis. We first focus on the segmentation clock, as well as signalling and metabolic gradients along the tissue, before discussing the clock and wavefront and other models that account for segmental determination. We then detail the molecular and cellular mechanisms of anteroposterior polarity patterning and somite epithelialization.
Collapse
Affiliation(s)
- Yuchuan Miao
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Maeda Y, Kageyama R. The significance of ultradian oscillations in development. Curr Opin Genet Dev 2024; 86:102180. [PMID: 38522266 DOI: 10.1016/j.gde.2024.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/10/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Genes regulating developmental processes have been identified, but the mechanisms underlying their expression with the correct timing are still under investigation. Several genes show oscillatory expression that regulates the timing of developmental processes, such as somitogenesis and neurogenesis. These oscillations are also important for other developmental processes, such as cell proliferation and differentiation. In this review, we discuss the significance of oscillatory gene expression in developmental time and other forms of regulation.
Collapse
Affiliation(s)
- Yuki Maeda
- RIKEN Center for Brain Science, Wako 351-0198, Japan
| | | |
Collapse
|
3
|
Chandel AS, Keseroglu K, Özbudak EM. Oscillatory control of embryonic development. Development 2024; 151:dev202191. [PMID: 38727565 PMCID: PMC11128281 DOI: 10.1242/dev.202191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Proper embryonic development depends on the timely progression of a genetic program. One of the key mechanisms for achieving precise control of developmental timing is to use gene expression oscillations. In this Review, we examine how gene expression oscillations encode temporal information during vertebrate embryonic development by discussing the gene expression oscillations occurring during somitogenesis, neurogenesis, myogenesis and pancreas development. These oscillations play important but varied physiological functions in different contexts. Oscillations control the period of somite formation during somitogenesis, whereas they regulate the proliferation-to-differentiation switch of stem cells and progenitor cells during neurogenesis, myogenesis and pancreas development. We describe the similarities and differences of the expression pattern in space (i.e. whether oscillations are synchronous or asynchronous across neighboring cells) and in time (i.e. different time scales) of mammalian Hes/zebrafish Her genes and their targets in different tissues. We further summarize experimental evidence for the functional role of their oscillations. Finally, we discuss the outstanding questions for future research.
Collapse
Affiliation(s)
- Angad Singh Chandel
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kemal Keseroglu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ertuğrul M. Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Utsumi H, Yabe T, Koshida S, Yamashita A, Takada S. Deficiency of mastl, a mitotic regulator, results in cell detachment from developing tissues of zebrafish embryos. Front Cell Dev Biol 2024; 12:1375655. [PMID: 38533088 PMCID: PMC10964716 DOI: 10.3389/fcell.2024.1375655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
To form tissues with unique functions and structures, it is important that the cells that comprise them maintain physical contact. On the other hand, with each mitosis, drastic changes in cell shapes, cell adhesion, and cytoskeletal architecture may cause such contacts to be temporarily weakened, risking improper development and maintenance of tissues. Despite such risks, tissues form properly during normal development. However, it is not well understood whether mitotic abnormalities affect tissue formation. Here, analysis of zebrafish embryos with aberrant mitosis shows that proper progression of mitosis is important to maintain cell contact in developing tissues. By screening mutants with abnormal trunk and tail development, we obtained a mutant with perturbed expression of some tissue-specific genes in embryonic caudal regions. The responsible gene is mastl/gwl, which is involved in progression of mitosis. Analysis focusing on the chordo-neural hinge (CNH), the primordium of axial tissues, shows that cell detachment from the CNH is increased in mastl mutant embryos. Time-lapse imaging reveals that this cell detachment occurs during mitosis. These results suggest that cells are unable to maintain contact due to abnormalities in progression of mitosis in mastl mutants.
Collapse
Affiliation(s)
- Hideko Utsumi
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Taijiro Yabe
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Sumito Koshida
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- Shumei University, Yachiyo, Chiba, Japan
| | - Akira Yamashita
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- Graduate School of Arts and Science, The university of Tokyo, Tokyo, Japan
| | - Shinji Takada
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| |
Collapse
|
5
|
McDaniel C, Simsek MF, Chandel AS, Özbudak EM. Spatiotemporal control of pattern formation during somitogenesis. SCIENCE ADVANCES 2024; 10:eadk8937. [PMID: 38277458 PMCID: PMC10816718 DOI: 10.1126/sciadv.adk8937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Spatiotemporal patterns widely occur in biological, chemical, and physical systems. Particularly, embryonic development displays a diverse gamut of repetitive patterns established in many tissues and organs. Branching treelike structures in lungs, kidneys, livers, pancreases, and mammary glands as well as digits and bones in appendages, teeth, and palates are just a few examples. A fascinating instance of repetitive patterning is the sequential segmentation of the primary body axis, which is conserved in all vertebrates and many arthropods and annelids. In these species, the body axis elongates at the posterior end of the embryo containing an unsegmented tissue. Meanwhile, segments sequentially bud off from the anterior end of the unsegmented tissue, laying down an exquisite repetitive pattern and creating a segmented body plan. In vertebrates, the paraxial mesoderm is sequentially divided into somites. In this review, we will discuss the most prominent models, the most puzzling experimental data, and outstanding questions in vertebrate somite segmentation.
Collapse
Affiliation(s)
- Cassandra McDaniel
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - M. Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Angad Singh Chandel
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ertuğrul M. Özbudak
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
6
|
Loureiro C, Venzin OF, Oates AC. Generation of patterns in the paraxial mesoderm. Curr Top Dev Biol 2023; 159:372-405. [PMID: 38729682 DOI: 10.1016/bs.ctdb.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The Segmentation Clock is a tissue-level patterning system that enables the segmentation of the vertebral column precursors into transient multicellular blocks called somites. This patterning system comprises a set of elements that are essential for correct segmentation. Under the so-called "Clock and Wavefront" model, the system consists of two elements, a genetic oscillator that manifests itself as traveling waves of gene expression, and a regressing wavefront that transforms the temporally periodic signal encoded in the oscillations into a permanent spatially periodic pattern of somite boundaries. Over the last twenty years, every new discovery about the Segmentation Clock has been tightly linked to the nomenclature of the "Clock and Wavefront" model. This constrained allocation of discoveries into these two elements has generated long-standing debates in the field as what defines molecularly the wavefront and how and where the interaction between the two elements establishes the future somite boundaries. In this review, we propose an expansion of the "Clock and Wavefront" model into three elements, "Clock", "Wavefront" and signaling gradients. We first provide a detailed description of the components and regulatory mechanisms of each element, and we then examine how the spatiotemporal integration of the three elements leads to the establishment of the presumptive somite boundaries. To be as exhaustive as possible, we focus on the Segmentation Clock in zebrafish. Furthermore, we show how this three-element expansion of the model provides a better understanding of the somite formation process and we emphasize where our current understanding of this patterning system remains obscure.
Collapse
Affiliation(s)
- Cristina Loureiro
- Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology Lausanne EPFL, Switzerland
| | - Olivier F Venzin
- Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology Lausanne EPFL, Switzerland
| | - Andrew C Oates
- Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology Lausanne EPFL, Switzerland.
| |
Collapse
|
7
|
Periodic inhibition of Erk activity drives sequential somite segmentation. Nature 2023; 613:153-159. [PMID: 36517597 PMCID: PMC9846577 DOI: 10.1038/s41586-022-05527-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/04/2022] [Indexed: 12/23/2022]
Abstract
Sequential segmentation creates modular body plans of diverse metazoan embryos1-4. Somitogenesis establishes the segmental pattern of the vertebrate body axis. A molecular segmentation clock in the presomitic mesoderm sets the pace of somite formation4. However, how cells are primed to form a segment boundary at a specific location remains unclear. Here we developed precise reporters for the clock and double-phosphorylated Erk (ppErk) gradient in zebrafish. We show that the Her1-Her7 oscillator drives segmental commitment by periodically lowering ppErk, therefore projecting its oscillation onto the ppErk gradient. Pulsatile inhibition of the ppErk gradient can fully substitute for the role of the clock, and kinematic clock waves are dispensable for sequential segmentation. The clock functions upstream of ppErk, which in turn enables neighbouring cells to discretely establish somite boundaries in zebrafish5. Molecularly divergent clocks and morphogen gradients were identified in sequentially segmenting species3,4,6-8. Our findings imply that versatile clocks may establish sequential segmentation in diverse species provided that they inhibit gradients.
Collapse
|
8
|
Naganathan SR, Popović M, Oates AC. Left-right symmetry of zebrafish embryos requires somite surface tension. Nature 2022; 605:516-521. [PMID: 35477753 DOI: 10.1038/s41586-022-04646-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
The body axis of vertebrate embryos is periodically segmented into bilaterally symmetric pairs of somites1,2. The anteroposterior length of somites, their position and left-right symmetry are thought to be molecularly determined before somite morphogenesis3,4. Here we show that, in zebrafish embryos, initial somite anteroposterior lengths and positions are imprecise and, consequently, many somite pairs form left-right asymmetrically. Notably, these imprecisions are not left unchecked and we find that anteroposterior lengths adjust within an hour after somite formation, thereby increasing morphological symmetry. We find that anteroposterior length adjustments result entirely from changes in somite shape without change in somite volume, with changes in anteroposterior length being compensated by corresponding changes in mediolateral length. The anteroposterior adjustment mechanism is facilitated by somite surface tension, which we show by comparing in vivo experiments and in vitro single-somite explant cultures using a mechanical model. Length adjustment is inhibited by perturbation of molecules involved in surface tension, such as integrin and fibronectin. By contrast, the adjustment mechanism is unaffected by perturbations to the segmentation clock, therefore revealing a distinct process that influences morphological segment lengths. We propose that tissue surface tension provides a general mechanism to adjust shapes and ensure precision and symmetry of tissues in developing embryos.
Collapse
Affiliation(s)
- Sundar R Naganathan
- Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne, Switzerland.
| | - Marko Popović
- Institute of Physics, École polytechnique fédérale de Lausanne, Lausanne, Switzerland. .,Max Planck Institute for Physics of Complex Systems, Dresden, Germany. .,Center for Systems Biology Dresden, Dresden, Germany.
| | - Andrew C Oates
- Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Fulton T, Verd B, Steventon B. The unappreciated generative role of cell movements in pattern formation. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211293. [PMID: 35601454 PMCID: PMC9043703 DOI: 10.1098/rsos.211293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
The mechanisms underpinning the formation of patterned cellular landscapes has been the subject of extensive study as a fundamental problem of developmental biology. In most cases, attention has been given to situations in which cell movements are negligible, allowing researchers to focus on the cell-extrinsic signalling mechanisms, and intrinsic gene regulatory interactions that lead to pattern emergence at the tissue level. However, in many scenarios during development, cells rapidly change their neighbour relationships in order to drive tissue morphogenesis, while also undergoing patterning. To draw attention to the ubiquity of this problem and propose methodologies that will accommodate morphogenesis into the study of pattern formation, we review the current approaches to studying pattern formation in both static and motile cellular environments. We then consider how the cell movements themselves may contribute to the generation of pattern, rather than hinder it, with both a species specific and evolutionary viewpoint.
Collapse
Affiliation(s)
- Timothy Fulton
- Department of Genetics, University of Cambridge, Cambridge, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Berta Verd
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
10
|
Chou KT, Lee DYD, Chiou JG, Galera-Laporta L, Ly S, Garcia-Ojalvo J, Süel GM. A segmentation clock patterns cellular differentiation in a bacterial biofilm. Cell 2022; 185:145-157.e13. [PMID: 34995513 PMCID: PMC8754390 DOI: 10.1016/j.cell.2021.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023]
Abstract
Contrary to multicellular organisms that display segmentation during development, communities of unicellular organisms are believed to be devoid of such sophisticated patterning. Unexpectedly, we find that the gene expression underlying the nitrogen stress response of a developing Bacillus subtilis biofilm becomes organized into a ring-like pattern. Mathematical modeling and genetic probing of the underlying circuit indicate that this patterning is generated by a clock and wavefront mechanism, similar to that driving vertebrate somitogenesis. We experimentally validated this hypothesis by showing that predicted nutrient conditions can even lead to multiple concentric rings, resembling segments. We additionally confirmed that this patterning mechanism is driven by cell-autonomous oscillations. Importantly, we show that the clock and wavefront process also spatially patterns sporulation within the biofilm. Together, these findings reveal a biofilm segmentation clock that organizes cellular differentiation in space and time, thereby challenging the paradigm that such patterning mechanisms are exclusive to plant and animal development.
Collapse
Affiliation(s)
- Kwang-Tao Chou
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Dong-Yeon D Lee
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jian-Geng Chiou
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Leticia Galera-Laporta
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - San Ly
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Gürol M Süel
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; San Diego Center for Systems Biology, University of California San Diego, La Jolla, CA 92093-0380, USA; Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093-0380, USA.
| |
Collapse
|
11
|
Characterization of paralogous uncx transcription factor encoding genes in zebrafish. Gene X 2019; 721S:100011. [PMID: 31193955 PMCID: PMC6543554 DOI: 10.1016/j.gene.2019.100011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/23/2022] Open
Abstract
The paired-type homeodomain transcription factor Uncx is involved in multiple processes of embryogenesis in vertebrates. Reasoning that zebrafish genes uncx4.1 and uncx are orthologs of mouse Uncx, we studied their genomic environment and developmental expression. Evolutionary analyses indicate the zebrafish uncx genes as being paralogs deriving from teleost-specific whole-genome duplication. Whole-mount in situ mRNA hybridization of uncx transcripts in zebrafish embryos reveals novel expression domains, confirms those previously known, and suggests sub-functionalization of paralogs. Using genetic mutants and pharmacological inhibitors, we investigate the role of signaling pathways on the expression of zebrafish uncx genes in developing somites. In identifying putative functional role(s) of zebrafish uncx genes, we hypothesized that they encode transcription factors that coordinate growth and innervation of somitic muscles. The Uncx4.1 and Uncx genes derive from the teleost-specific whole-genome duplication. Uncx genes are expressed during embryogenesis in unique and overlapping domains. Uncx gene expression during somite differentiation is regulated by FGF signaling. Synteny and expression profiles correlate Uncx genes with axon guidance.
Collapse
Key Words
- AP, antero-posterior
- Ace, acerebellar
- CAMP, conserved ancestral microsyntenic pairs
- CNE, conserved non-coding elements
- CRM, cis-regulatory module
- CS, Corpuscle of Stannius
- CaP, caudal primary motor neuron axons
- Ce, cerebellum
- Development
- Di, diencephalon
- Elfn1, Extracellular Leucine Rich Repeat And Fibronectin Type III Domain Containing 1
- Ey, eye
- FB, forebrain
- FGF, fibroblast growth factor
- Flh, floating head
- HB, hindbrain
- HM, hybridization mix
- Hy, hypothalamus
- MO, morpholino
- Mical, molecule interacting with CasL
- No, notochord
- OP, olfactory placode
- OT, optic tectum
- PA, pharyngeal arches
- PSM, presomitic mesoderm
- SC, spinal cord
- Shh, sonic hedgehog
- Signaling pathway
- So, somites
- Synteny
- TSGD
- TSGD, teleost-specific genome duplication
- Te, telencephalon
- Th, thalamus
- Uncx
- VLP, ventro-lateral-posterior
- WIHC, whole-mount immunohistochemistry
- WISH, whole-mount in situ hybridization
- YE, yolk extension
- Yo, yolk
- Zebrafish
- cyc, cyclops
- fss, fused-somites
- hpf, hours post fertilization
- ptc, patched
- smu, slow-muscle-omitted
- syu, sonic-you
- yot, you-too
Collapse
|
12
|
Wopat S, Bagwell J, Sumigray KD, Dickson AL, Huitema LFA, Poss KD, Schulte-Merker S, Bagnat M. Spine Patterning Is Guided by Segmentation of the Notochord Sheath. Cell Rep 2019; 22:2026-2038. [PMID: 29466731 PMCID: PMC5860813 DOI: 10.1016/j.celrep.2018.01.084] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/10/2018] [Accepted: 01/26/2018] [Indexed: 01/05/2023] Open
Abstract
The spine is a segmented axial structure made of alternating vertebral bodies (centra) and intervertebral discs (IVDs) assembled around the notochord. Here, we show that, prior to centra formation, the outer epithelial cell layer of the zebrafish notochord, the sheath, segments into alternating domains corresponding to the prospective centra and IVD areas. This process occurs sequentially in an anteroposterior direction via the activation of Notch signaling in alternating segments of the sheath, which transition from cartilaginous to mineralizing domains. Subsequently, osteoblasts are recruited to the mineralized domains of the notochord sheath to form mature centra. Tissue-specific manipulation of Notch signaling in sheath cells produces notochord segmentation defects that are mirrored in the spine. Together, our findings demonstrate that notochord sheath segmentation provides a template for vertebral patterning in the zebrafish spine.
Collapse
Affiliation(s)
- Susan Wopat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jennifer Bagwell
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kaelyn D Sumigray
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA
| | - Amy L Dickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Leonie F A Huitema
- Hubrecht Institute - KNAW & UMC Utrecht, 3584 CT, Utrecht, the Netherlands
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Stefan Schulte-Merker
- Hubrecht Institute - KNAW & UMC Utrecht, 3584 CT, Utrecht, the Netherlands; Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, 48149 Münster, Germany; CiM Cluster of Excellence (EXC1003-CiM), 48149 Münster, Germany
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
13
|
Pedone E, Marucci L. Role of β-Catenin Activation Levels and Fluctuations in Controlling Cell Fate. Genes (Basel) 2019; 10:genes10020176. [PMID: 30823613 PMCID: PMC6410200 DOI: 10.3390/genes10020176] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Cells have developed numerous adaptation mechanisms to external cues by controlling signaling-pathway activity, both qualitatively and quantitatively. The Wnt/β-catenin pathway is a highly conserved signaling pathway involved in many biological processes, including cell proliferation, differentiation, somatic cell reprogramming, development, and cancer. The activity of the Wnt/β-catenin pathway and the temporal dynamics of its effector β-catenin are tightly controlled by complex regulations. The latter encompass feedback loops within the pathway (e.g., a negative feedback loop involving Axin2, a β-catenin transcriptional target) and crosstalk interactions with other signaling pathways. Here, we provide a review shedding light on the coupling between Wnt/β-catenin activation levels and fluctuations across processes and cellular systems; in particular, we focus on development, in vitro pluripotency maintenance, and cancer. Possible mechanisms originating Wnt/β-catenin dynamic behaviors and consequently driving different cellular responses are also reviewed, and new avenues for future research are suggested.
Collapse
Affiliation(s)
- Elisa Pedone
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- BrisSynBio, Bristol, BS8 1TQ, UK.
| |
Collapse
|
14
|
Keskin S, Simsek MF, Vu HT, Yang C, Devoto SH, Ay A, Özbudak EM. Regulatory Network of the Scoliosis-Associated Genes Establishes Rostrocaudal Patterning of Somites in Zebrafish. iScience 2019; 12:247-259. [PMID: 30711748 PMCID: PMC6360518 DOI: 10.1016/j.isci.2019.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
Gene regulatory networks govern pattern formation and differentiation during embryonic development. Segmentation of somites, precursors of the vertebral column among other tissues, is jointly controlled by temporal signals from the segmentation clock and spatial signals from morphogen gradients. To explore how these temporal and spatial signals are integrated, we combined time-controlled genetic perturbation experiments with computational modeling to reconstruct the core segmentation network in zebrafish. We found that Mesp family transcription factors link the temporal information of the segmentation clock with the spatial action of the fibroblast growth factor signaling gradient to establish rostrocaudal (head to tail) polarity of segmented somites. We further showed that cells gradually commit to patterning by the action of different genes at different spatiotemporal positions. Our study provides a blueprint of the zebrafish segmentation network, which includes evolutionarily conserved genes that are associated with the birth defect congenital scoliosis in humans. A core network establishes rostrocaudal polarity of segmented somites in zebrafish mesp genes link the segmentation clock with the FGF signaling gradient Gradual patterning is done by the action of different genes at different positions
Collapse
Affiliation(s)
- Sevdenur Keskin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - M Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ha T Vu
- Departments of Biology and Mathematics, Colgate University, Hamilton, NY 13346, USA
| | - Carlton Yang
- Departments of Biology and Mathematics, Colgate University, Hamilton, NY 13346, USA
| | - Stephen H Devoto
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | - Ahmet Ay
- Departments of Biology and Mathematics, Colgate University, Hamilton, NY 13346, USA.
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
15
|
Heude E, Tesarova M, Sefton EM, Jullian E, Adachi N, Grimaldi A, Zikmund T, Kaiser J, Kardon G, Kelly RG, Tajbakhsh S. Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues. eLife 2018; 7:40179. [PMID: 30451684 PMCID: PMC6310459 DOI: 10.7554/elife.40179] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/17/2018] [Indexed: 12/16/2022] Open
Abstract
In vertebrates, head and trunk muscles develop from different mesodermal populations and are regulated by distinct genetic networks. Neck muscles at the head-trunk interface remain poorly defined due to their complex morphogenesis and dual mesodermal origins. Here, we use genetically modified mice to establish a 3D model that integrates regulatory genes, cell populations and morphogenetic events that define this transition zone. We show that the evolutionary conserved cucullaris-derived muscles originate from posterior cardiopharyngeal mesoderm, not lateral plate mesoderm, and we define new boundaries for neural crest and mesodermal contributions to neck connective tissue. Furthermore, lineage studies and functional analysis of Tbx1- and Pax3-null mice reveal a unique developmental program for somitic neck muscles that is distinct from that of somitic trunk muscles. Our findings unveil the embryological and developmental requirements underlying tetrapod neck myogenesis and provide a blueprint to investigate how muscle subsets are selectively affected in some human myopathies.
Collapse
Affiliation(s)
- Eglantine Heude
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS UMR 3738, Paris, France
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Elizabeth M Sefton
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Estelle Jullian
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Noritaka Adachi
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Alexandre Grimaldi
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS UMR 3738, Paris, France
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS UMR 3738, Paris, France
| |
Collapse
|
16
|
Yin J, Lee R, Ono Y, Ingham PW, Saunders TE. Spatiotemporal Coordination of FGF and Shh Signaling Underlies the Specification of Myoblasts in the Zebrafish Embryo. Dev Cell 2018; 46:735-750.e4. [PMID: 30253169 DOI: 10.1016/j.devcel.2018.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/11/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
Somitic cells give rise to a variety of cell types in response to Hh, BMP, and FGF signaling. Cell position within the developing zebrafish somite is highly dynamic: how, when, and where these signals specify cell fate is largely unknown. Combining four-dimensional imaging with pathway perturbations, we characterize the spatiotemporal specification and localization of somitic cells. Muscle formation is guided by highly orchestrated waves of cell specification. We find that FGF directly and indirectly controls the differentiation of fast and slow-twitch muscle lineages, respectively. FGF signaling imposes tight temporal control on Shh induction of slow muscles by regulating the time at which fast-twitch progenitors displace slow-twitch progenitors from contacting the Shh-secreting notochord. Further, we find a reciprocal regulation of fast and slow muscle differentiation, morphogenesis, and migration. In conclusion, robust cell fate determination in the developing somite requires precise spatiotemporal coordination between distinct cell lineages and signaling pathways.
Collapse
Affiliation(s)
- Jianmin Yin
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Raymond Lee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore
| | - Yosuke Ono
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Living Systems Institute, University of Exeter, Exeter, UK
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore; Living Systems Institute, University of Exeter, Exeter, UK.
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore; Living Systems Institute, University of Exeter, Exeter, UK.
| |
Collapse
|
17
|
Fujino Y, Yamada K, Sugaya C, Ooka Y, Ovara H, Ban H, Akama K, Otosaka S, Kinoshita H, Yamasu K, Mishima Y, Kawamura A. Deadenylation by the CCR4-NOT complex contributes to the turnover of hairy-related mRNAs in the zebrafish segmentation clock. FEBS Lett 2018; 592:3388-3398. [PMID: 30281784 DOI: 10.1002/1873-3468.13261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 01/09/2023]
Abstract
In the zebrafish segmentation clock, hairy/enhancer of split-related genes her1, her7, and hes6 encodes components of core oscillators. Since the expression of cyclic genes proceeds rapidly in the presomitic mesoderm (PSM), these hairy-related mRNAs are subject to strict post-transcriptional regulation. In this study, we demonstrate that inhibition of the CCR4-NOT deadenylase complex lengthens poly(A) tails of hairy-related mRNAs and increases the amount of these mRNAs, which is accompanied by defective somite segmentation. In transgenic embryos, we show that EGFP mRNAs with 3'UTRs of hairy-related genes exhibit turnover similar to endogenous mRNAs. Our results suggest that turnover rates of her1, her7, and hes6 mRNAs are differently regulated by the CCR4-NOT deadenylase complex possibly through their 3'UTRs in the zebrafish PSM.
Collapse
Affiliation(s)
- Yuuri Fujino
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Kazuya Yamada
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Chihiro Sugaya
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Yuko Ooka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Hiroki Ovara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Hiroyuki Ban
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Kagari Akama
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Shiori Otosaka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Hirofumi Kinoshita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Yuichiro Mishima
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Japan
| | - Akinori Kawamura
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| |
Collapse
|
18
|
Geminin Orchestrates Somite Formation by Regulating Fgf8 and Notch Signaling. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6543196. [PMID: 29984243 PMCID: PMC6011172 DOI: 10.1155/2018/6543196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/24/2018] [Accepted: 05/08/2018] [Indexed: 11/20/2022]
Abstract
During somitogenesis, Fgf8 maintains the predifferentiation stage of presomitic mesoderm (PSM) cells and its retraction gives a cue for somite formation. Delta/Notch initiates the expression of oscillation genes in the tail bud and subsequently contributes to somite formation in a periodic way. Whether there exists a critical factor coordinating Fgf8 and Notch signaling pathways is largely unknown. Here, we demonstrate that the loss of function of geminin gave rise to narrower somites as a result of derepressed Fgf8 gradient in the PSM and tail bud. Furthermore, in geminin morphants, the somite boundary could not form properly but the oscillation of cyclic genes was normal, displaying the blurry somitic boundary and disturbed somite polarity along the AP axis. In mechanism, these manifestations were mediated by the disrupted association of the geminin/Brg1 complex with intron 3 of mib1. The latter interaction was found to positively regulate mib1 transcription, Notch activity, and sequential somite segmentation during somitogenesis. In addition, geminin was also shown to regulate the expression of deltaD in mib1-independent way. Collectively, our data for the first time demonstrate that geminin regulates Fgf8 and Notch signaling to regulate somite segmentation during somitogenesis.
Collapse
|
19
|
Pinto RA, Almeida-Santos J, Lourenço R, Saúde L. Identification of Dmrt2a downstream genes during zebrafish early development using a timely controlled approach. BMC DEVELOPMENTAL BIOLOGY 2018; 18:14. [PMID: 29914374 PMCID: PMC6006574 DOI: 10.1186/s12861-018-0173-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/25/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Dmrt2a is a zinc finger like transcription factor with several roles during zebrafish early development: left-right asymmetry, synchronisation of the somite clock genes and fast muscle differentiation. Despite the described functions, Dmrt2a mechanism of action is unknown. Therefore, with this work, we propose to identify Dmrt2a downstream genes during zebrafish early development. RESULTS We generated and validated a heat-shock inducible transgenic line, to timely control dmrt2a overexpression, and dmrt2a mutant lines. We characterised dmrt2a overexpression phenotype and verified that it was very similar to the one described after knockdown of this gene, with left-right asymmetry defects and desynchronisation of somite clock genes. Additionally, we identified a new phenotype of somite border malformation. We generated several dmrt2a mutant lines, but we only detected a weak to negligible phenotype. As dmrt2a has a paralog gene, dmrt2b, with similar functions and expression pattern, we evaluated the possibility of redundancy. We found that dmrt2b does not seem to compensate the lack of dmrt2a. Furthermore, we took advantage of one of our mutant lines to confirm dmrt2a morpholino specificity, which was previously shown to be a robust knockdown tool in two independent studies. Using the described genetic tools to perform and validate a microarray, we were able to identify six genes downstream of Dmrt2a: foxj1b, pxdc1b, cxcl12b, etv2, foxc1b and cyp1a. CONCLUSIONS In this work, we generated and validated several genetic tools for dmrt2a and identified six genes downstream of this transcription factor. The identified genes will be crucial to the future understanding of Dmrt2a mechanism of action in zebrafish.
Collapse
Affiliation(s)
- Rita Alexandra Pinto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - José Almeida-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.,Present address: Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Raquel Lourenço
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.,Present address: CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1150-190, Lisboa, Portugal
| | - Leonor Saúde
- Instituto de Medicina Molecular e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
20
|
Functional roles of the Ripply-mediated suppression of segmentation gene expression at the anterior presomitic mesoderm in zebrafish. Mech Dev 2018; 152:21-31. [PMID: 29879477 DOI: 10.1016/j.mod.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/02/2018] [Indexed: 01/06/2023]
Abstract
Somites sequentially form with a regular interval by the segmentation from the anterior region of the presomitic mesoderm (PSM). The expression of several genes involved in the somite segmentation is switched off at the transition from the anterior PSM to somites. Zebrafish Ripply1, which down-regulates a T-box transcription factor Tbx6, is required for the suppression of segmentation gene expression. However, the functional roles of the Ripply-mediated suppression of segmentation gene expression at the anterior PSM remain elusive. In this study, we generated ripply1 mutants and examined genetic interaction between ripply1/2 and tbx6. Zebrafish ripply1-/- embryos failed to form the somite boundaries as was observed in knockdown embryos. We found that somite segmentation defects in ripply1 mutants were suppressed by heterozygous mutation of tbx6 or partial translational inhibition of tbx6 by antisense morpholino. We further showed that somite boundaries that were recovered in tbx6+/-; ripply1-/- embryos were dependent on the function of ripply2, indicating that relative gene dosage between ripply1/2 and tbx6 plays a critical role in the somite formation. Interestingly, the expression of segmentation genes such mesp as was still not fully suppressed at the anterior PSM of tbx6+/-; ripply1-/- embryos although the somite formation and rostral-caudal polarity of somites were properly established. Furthermore, impaired myogenesis was observed in the segmented somites in tbx6+/-; ripply1-/- embryos. These results revealed that partial suppression of the segmentation gene expression by Ripply is sufficient to establish the rostral-caudal polarity of somites, and that stronger suppression of the segmentation gene expression by Ripply is required for proper myogenesis in zebrafish embryos.
Collapse
|
21
|
Tomka T, Iber D, Boareto M. Travelling waves in somitogenesis: Collective cellular properties emerge from time-delayed juxtacrine oscillation coupling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:76-87. [PMID: 29702125 DOI: 10.1016/j.pbiomolbio.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 11/18/2022]
Abstract
The sculpturing of the vertebrate body plan into segments begins with the sequential formation of somites in the presomitic mesoderm (PSM). The rhythmicity of this process is controlled by travelling waves of gene expression. These kinetic waves emerge from coupled cellular oscillators and sweep across the PSM. In zebrafish, the oscillations are driven by autorepression of her genes and are synchronized via Notch signalling. Mathematical modelling has played an important role in explaining how collective properties emerge from the molecular interactions. Increasingly more quantitative experimental data permits the validation of those mathematical models, yet leads to increasingly more complex model formulations that hamper an intuitive understanding of the underlying mechanisms. Here, we review previous efforts, and design a mechanistic model of the her1 oscillator, which represents the experimentally viable her7;hes6 double mutant. This genetically simplified system is ideally suited to conceptually recapitulate oscillatory entrainment and travelling wave formation, and to highlight open questions. It shows that three key parameters, the autorepression delay, the juxtacrine coupling delay, and the coupling strength, are sufficient to understand the emergence of the collective period, the collective amplitude, and the synchronization of neighbouring Her1 oscillators. Moreover, two spatiotemporal time delay gradients, in the autorepression and in the juxtacrine signalling, are required to explain the collective oscillatory dynamics and synchrony of PSM cells. The highlighted developmental principles likely apply more generally to other developmental processes, including neurogenesis and angiogenesis.
Collapse
Affiliation(s)
- Tomas Tomka
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland.
| | - Marcelo Boareto
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
22
|
Lleras Forero L, Narayanan R, Huitema LF, VanBergen M, Apschner A, Peterson-Maduro J, Logister I, Valentin G, Morelli LG, Oates AC, Schulte-Merker S. Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock. eLife 2018; 7:33843. [PMID: 29624170 PMCID: PMC5962341 DOI: 10.7554/elife.33843] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Segmentation of the axial skeleton in amniotes depends on the segmentation clock, which patterns the paraxial mesoderm and the sclerotome. While the segmentation clock clearly operates in teleosts, the role of the sclerotome in establishing the axial skeleton is unclear. We severely disrupt zebrafish paraxial segmentation, yet observe a largely normal segmentation process of the chordacentra. We demonstrate that axial entpd5+ notochord sheath cells are responsible for chordacentrum mineralization, and serve as a marker for axial segmentation. While autonomous within the notochord sheath, entpd5 expression and centrum formation show some plasticity and can respond to myotome pattern. These observations reveal for the first time the dynamics of notochord segmentation in a teleost, and are consistent with an autonomous patterning mechanism that is influenced, but not determined by adjacent paraxial mesoderm. This behavior is not consistent with a clock-type mechanism in the notochord.
Collapse
Affiliation(s)
- Laura Lleras Forero
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany.,CiM Cluster of Excellence (EXC-1003-CiM), Münster, Germany.,Hubrecht Institute-KNAW & UMC Utrecht, Utrecht, Netherlands
| | | | | | - Maaike VanBergen
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | | | | | - Ive Logister
- Hubrecht Institute-KNAW & UMC Utrecht, Utrecht, Netherlands
| | | | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Departamento de Fisica, FCEyN, UBA, Ciudad Universitaria, Buenos Aires, Argentina.,Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Andrew C Oates
- The Francis Crick Institute, London, United Kingdom.,Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| |
Collapse
|
23
|
Liu Y. Earlier and broader roles of Mesp1 in cardiovascular development. Cell Mol Life Sci 2017; 74:1969-1983. [PMID: 28050627 PMCID: PMC11107530 DOI: 10.1007/s00018-016-2448-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
Mesoderm posterior 1 is one of earliest markers of the nascent mesoderm. Its best-known function is driving the onset of the cardiovascular system. In the past decade, new evidence supports that Mesp1 acts earlier with greater breadth in cell fate decisions, and through cell-autonomous and cell non-autonomous mechanisms. This review summarizes these new aspects, with an emphasis on the upstream and downstream regulation around Mesp1 and how they may guide cell fate reprogramming.
Collapse
Affiliation(s)
- Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
24
|
Bao Y, Xu F, Shimeld SM. Phylogenetics of Lophotrochozoan bHLH Genes and the Evolution of Lineage-Specific Gene Duplicates. Genome Biol Evol 2017; 9:869-886. [PMID: 28338988 PMCID: PMC5381572 DOI: 10.1093/gbe/evx047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The gain and loss of genes encoding transcription factors is of importance to understanding the evolution of gene regulatory complexity. The basic helix–loop–helix (bHLH) genes encode a large superfamily of transcription factors. We systematically classify the bHLH genes from five mollusc, two annelid and one brachiopod genomes, tracing the pattern of bHLH gene evolution across these poorly studied Phyla. In total, 56–88 bHLH genes were identified in each genome, with most identifiable as members of previously described bilaterian families, or of new families we define. Of such families only one, Mesp, appears lost by all these species. Additional duplications have also played a role in the evolution of the bHLH gene repertoire, with many new lophotrochozoan-, mollusc-, bivalve-, or gastropod-specific genes defined. Using a combination of transcriptome mining, RT-PCR, and in situ hybridization we compared the expression of several of these novel genes in tissues and embryos of the molluscs Crassostrea gigas and Patella vulgata, finding both conserved expression and evidence for neofunctionalization. We also map the positions of the genes across these genomes, identifying numerous gene linkages. Some reflect recent paralog divergence by tandem duplication, others are remnants of ancient tandem duplications dating to the lophotrochozoan or bilaterian common ancestors. These data are built into a model of the evolution of bHLH genes in molluscs, showing formidable evolutionary stasis at the family level but considerable within-family diversification by tandem gene duplication.
Collapse
Affiliation(s)
- Yongbo Bao
- Department of Zoology, University of Oxford, United Kingdom.,Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Zhejiang, China
| | - Fei Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | |
Collapse
|
25
|
Abstract
Skeletal muscle performs an essential function in human physiology with defects in genes encoding a variety of cellular components resulting in various types of inherited muscle disorders. Muscular dystrophies (MDs) are a severe and heterogeneous type of human muscle disease, manifested by progressive muscle wasting and degeneration. The disease pathogenesis and therapeutic options for MDs have been investigated for decades using rodent models, and considerable knowledge has been accumulated on the cause and pathogenetic mechanisms of this group of human disorders. However, due to some differences between disease severity and progression, what is learned in mammalian models does not always transfer to humans, prompting the desire for additional and alternative models. More recently, zebrafish have emerged as a novel and robust animal model for the study of human muscle disease. Zebrafish MD models possess a number of distinct advantages for modeling human muscle disorders, including the availability and ease of generating mutations in homologous disease-causing genes, the ability to image living muscle tissue in an intact animal, and the suitability of zebrafish larvae for large-scale chemical screens. In this chapter, we review the current understanding of molecular and cellular mechanisms involved in MDs, the process of myogenesis in zebrafish, and the structural and functional characteristics of zebrafish larval muscles. We further discuss the insights gained from the key zebrafish MD models that have been so far generated, and we summarize the attempts that have been made to screen for small molecules inhibitors of the dystrophic phenotypes using these models. Overall, these studies demonstrate that zebrafish is a useful in vivo system for modeling aspects of human skeletal muscle disorders. Studies using these models have contributed both to the understanding of the pathogenesis of muscle wasting disorders and demonstrated their utility as highly relevant models to implement therapeutic screening regimens.
Collapse
Affiliation(s)
- M Li
- Monash University, Clayton, VIC, Australia
| | - K J Hromowyk
- The Ohio State University, Columbus, OH, United States
| | - S L Amacher
- The Ohio State University, Columbus, OH, United States
| | - P D Currie
- Monash University, Clayton, VIC, Australia
| |
Collapse
|
26
|
Mespaa can potently induce cardiac fates in zebrafish. Dev Biol 2016; 418:17-27. [PMID: 27554166 DOI: 10.1016/j.ydbio.2016.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/12/2016] [Accepted: 08/18/2016] [Indexed: 01/04/2023]
Abstract
The Mesp family of transcription factors have been implicated in the early formation and migration of the cardiac lineage, although the precise molecular mechanisms underlying this process remain unknown. In this study we examine the function of Mesp family members in zebrafish cardiac development and find that Mespaa is remarkably efficient at promoting cardiac fates in normally non-cardiogenic cells. However, Mespaa is dispensable for normal cardiac formation. Despite no overt defects in cardiovascular specification, we find a consistent defect in cardiac laterality in mespaa null embryos. This is further exacerbated by the depletion of other mesp paralogues, highlighting a conserved role for the mesp family in left-right asymmetry, distinct from a function in cardiac specification. Despite an early requirement for mespaa to promote cardiogenesis, cells over-expressing mespaa are found to both exhibit unique cellular behaviors and activate the transcription of gata5 only after the completion of gastrulation. We propose that while mespaa remains capable of driving cardiac progenitor formation in zebrafish, it may not play an essential role in the cardiac regulatory network. Furthermore, the late activation of migration and cardiac gene transcription in mespaa over-expressing cells challenges previous studies on the timing of these events and provides intriguing questions for future study.
Collapse
|
27
|
Yabe T, Hoshijima K, Yamamoto T, Takada S. Quadruple zebrafish mutant reveals different roles of Mesp genes in somite segmentation between mouse and zebrafish. Development 2016; 143:2842-52. [PMID: 27385009 DOI: 10.1242/dev.133173] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/17/2016] [Indexed: 01/02/2023]
Abstract
The segmental pattern of somites is generated by sequential conversion of the temporal periodicity provided by the molecular clock. Whereas the basic structure of this clock is conserved among different species, diversity also exists, especially in terms of the molecular network. The temporal periodicity is subsequently converted into the spatial pattern of somites, and Mesp2 plays crucial roles in this conversion in the mouse. However, it remains unclear whether Mesp genes play similar roles in other vertebrates. In this study, we generated zebrafish mutants lacking all four zebrafish Mesp genes by using TALEN-mediated genome editing. Contrary to the situation in the mouse Mesp2 mutant, in the zebrafish Mesp quadruple mutant embryos the positions of somite boundaries were clearly determined and morphological boundaries were formed, although their formation was not completely normal. However, each somite was caudalized in a similar manner to the mouse Mesp2 mutant, and the superficial horizontal myoseptum and lateral line primordia were not properly formed in the quadruple mutants. These results clarify the conserved and species-specific roles of Mesp in the link between the molecular clock and somite morphogenesis.
Collapse
Affiliation(s)
- Taijiro Yabe
- Division of Molecular and Developmental Biology, Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan Department for Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Shinji Takada
- Division of Molecular and Developmental Biology, Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan Department for Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
28
|
The developmental effects of pentachlorophenol on zebrafish embryos during segmentation: A systematic view. Sci Rep 2016; 6:25929. [PMID: 27181905 PMCID: PMC4867433 DOI: 10.1038/srep25929] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/25/2016] [Indexed: 11/26/2022] Open
Abstract
Pentachlorophenol (PCP) is a typical toxicant and prevailing pollutant whose toxicity has been broadly investigated. However, previous studies did not specifically investigate the underlying mechanisms of its developmental toxicity. Here, we chose zebrafish embryos as the model, exposed them to 2 different concentrations of PCP, and sequenced their entire transcriptomes at 10 and 24 hours post-fertilization (hpf). The sequencing analysis revealed that high concentrations of PCP elicited systematic responses at both time points. By combining the enrichment terms with single genes, the results were further analyzed using three categories: metabolism, transporters, and organogenesis. Hyperactive glycolysis was the most outstanding feature of the transcriptome at 10 hpf. The entire system seemed to be hypoxic, although hypoxia-inducible factor-1α (HIF1α) may have been suppressed by the upregulation of prolyl hydroxylase domain enzymes (PHDs). At 24 hpf, PCP primarily affected somitogenesis and lens formation probably resulting from the disruption of embryonic body plan at earlier stages. The proposed underlying toxicological mechanism of PCP was based on the crosstalk between each clue. Our study attempted to describe the developmental toxicity of environmental pollutants from a systematic view. Meanwhile, some features of gene expression profiling could serve as markers of human health or ecological risk.
Collapse
|
29
|
Deshwar AR, Chng SC, Ho L, Reversade B, Scott IC. The Apelin receptor enhances Nodal/TGFβ signaling to ensure proper cardiac development. eLife 2016; 5. [PMID: 27077952 PMCID: PMC4859801 DOI: 10.7554/elife.13758] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/11/2016] [Indexed: 01/07/2023] Open
Abstract
The Apelin receptor (Aplnr) is essential for heart development, controlling the early migration of cardiac progenitors. Here we demonstrate that in zebrafish Aplnr modulates Nodal/TGFβ signaling, a key pathway essential for mesendoderm induction and migration. Loss of Aplnr function leads to a reduction in Nodal target gene expression whereas activation of Aplnr by a non-peptide agonist increases the expression of these same targets. Furthermore, loss of Aplnr results in a delay in the expression of the cardiogenic transcription factors mespaa/ab. Elevating Nodal levels in aplnra/b morphant and double mutant embryos is sufficient to rescue cardiac differentiation defects. We demonstrate that loss of Aplnr attenuates the activity of a point source of Nodal ligands Squint and Cyclops in a non-cell autonomous manner. Our results favour a model in which Aplnr is required to fine-tune Nodal output, acting as a specific rheostat for the Nodal/TGFβ pathway during the earliest stages of cardiogenesis. DOI:http://dx.doi.org/10.7554/eLife.13758.001 In one of the first events that happens as an embryo develops, cells become the different stem cell populations that form the body’s organs. So what makes a cell become one stem cell type rather than another? In the case of the heart, the first important event is the activity of a signaling pathway called the Nodal/TGFβ pathway. Nodal signaling can drive cells to become many different stem cell types depending on its level of activity. Many different levels of regulation fine-tune Nodal signaling to produce these activity thresholds. Zebrafish that have a mutation in the gene that encodes a protein called the Apelin receptor have no heart. The loss of this receptor interferes with how heart stem cells (called cardiac progenitors) are made and how they move to where heart development occurs. Deshwar et al. have now studied mutant zebrafish in order to investigate how the Apelin receptor influences early heart development. This revealed that Nodal signaling levels are slightly lower in the mutant zebrafish embryos than in normal fish at the time when Nodal activity induces cardiac progenitors to form. When Nodal activity is experimentally boosted in zebrafish that lack the Apelin receptor, they become able to develop hearts. Deshwar et al. also found that the Apelin receptor does not work in cells that produce or receive Nodal signals. This suggests that the Apelin receptor modulates Nodal signaling levels by acting in cells that lie between the cells that release Nodal signals and the cardiac progenitors. An important question for future work to address is how this modulation works. As Nodal is a key determinant of many cell types in developing embryos, learning how Apelin receptors regulate its activity could help researchers to derive specific cell types from cultured stem cells for use in regenerative medicine. DOI:http://dx.doi.org/10.7554/eLife.13758.002
Collapse
Affiliation(s)
- Ashish R Deshwar
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Serene C Chng
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Lena Ho
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, Singapore, Singapore.,Institute of Molecular and Cellular Biology, A*STAR, Singapore, Singapore.,Department of Paediatrics, School of Medicine, National University of Singapore, , Singapore
| | - Ian C Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
30
|
Yabe T, Takada S. Molecular mechanism for cyclic generation of somites: Lessons from mice and zebrafish. Dev Growth Differ 2015; 58:31-42. [PMID: 26676827 DOI: 10.1111/dgd.12249] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/23/2022]
Abstract
The somite is the most prominent metameric structure observed during vertebrate embryogenesis, and its metamerism preserves the characteristic structures of the vertebrae and muscles in the adult body. During vertebrate somitogenesis, sequential formation of epithelialized cell boundaries generates the somites. According to the "clock and wavefront model," the periodical and sequential generation of somites is achieved by the integration of spatiotemporal information provided by the segmentation clock and wavefront. In the anterior region of the presomitic mesoderm, which is the somite precursor, the orchestration between the segmentation clock and the wavefront achieves morphogenesis of somites through multiple processes such as determination of somite boundary position, generation of morophological boundary, and establishment of the rostrocaudal polarity within a somite. Recently, numerous studies using various model animals including mouse, zebrafish, and chick have gradually revealed the molecular aspect of the "clock and wavefront" model and the molecular mechanism connecting the segmentation clock and the wavefront to the multiple processes of somite morphogenesis. In this review, we first summarize the current knowledge about the molecular mechanisms underlying the clock and the wavefront and then describe those of the three processes of somite morphogenesis. Especially, we will discuss the conservation and diversification in the molecular network of the somitigenesis among vertebrates, focusing on two typical model animals used for genetic analyses, i.e., the mouse and zebrafish. In this review, we described molecular mechanism for the generation of somites based on the spatiotemporal information provided by "segmentation clock" and "wavefront" focusing on the evidences obtained from mouse and zebrafish.
Collapse
Affiliation(s)
- Taijiro Yabe
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
31
|
A Local, Self-Organizing Reaction-Diffusion Model Can Explain Somite Patterning in Embryos. Cell Syst 2015; 1:257-69. [PMID: 27136055 DOI: 10.1016/j.cels.2015.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/11/2015] [Accepted: 10/07/2015] [Indexed: 11/22/2022]
Abstract
During somitogenesis in embryos, a posteriorly moving differentiation front arrests the oscillations of "segmentation clock" genes, leaving behind a frozen, periodic pattern of expression stripes. Both mathematical theories and experimental observations have invoked a "clock and wavefront" model to explain this phenomenon, in which long-range molecular gradients control the movement of the front and therefore the placement of the stripes in the embryo. Here, we develop a fundamentally different model-a progressive oscillatory reaction-diffusion (PORD) system driven by short-range interactions. In this model, posterior movement of the front is a local, emergent phenomenon that, in contrast to the clock and wavefront model, is not controlled by global positional information. The PORD model explains important features of somitogenesis, such as size regulation, that previous reaction-diffusion models could not explain. Moreover, the PORD and clock and wavefront models make different predictions about the results of FGF-inhibition and tissue-cutting experiments, and we demonstrate that the results of these experiments favor the PORD model.
Collapse
|
32
|
Shih NP, François P, Delaune EA, Amacher SL. Dynamics of the slowing segmentation clock reveal alternating two-segment periodicity. Development 2015; 142:1785-93. [PMID: 25968314 DOI: 10.1242/dev.119057] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The formation of reiterated somites along the vertebrate body axis is controlled by the segmentation clock, a molecular oscillator expressed within presomitic mesoderm (PSM) cells. Although PSM cells oscillate autonomously, they coordinate with neighboring cells to generate a sweeping wave of cyclic gene expression through the PSM that has a periodicity equal to that of somite formation. The velocity of each wave slows as it moves anteriorly through the PSM, although the dynamics of clock slowing have not been well characterized. Here, we investigate segmentation clock dynamics in the anterior PSM in developing zebrafish embryos using an in vivo clock reporter, her1:her1-venus. The her1:her1-venus reporter has single-cell resolution, allowing us to follow segmentation clock oscillations in individual cells in real-time. By retrospectively tracking oscillations of future somite boundary cells, we find that clock reporter signal increases in anterior PSM cells and that the periodicity of reporter oscillations slows to about ∼1.5 times the periodicity in posterior PSM cells. This gradual slowing of the clock in the anterior PSM creates peaks of clock expression that are separated at a two-segment periodicity both spatially and temporally, a phenomenon we observe in single cells and in tissue-wide analyses. These results differ from previous predictions that clock oscillations stop or are stabilized in the anterior PSM. Instead, PSM cells oscillate until they incorporate into somites. Our findings suggest that the segmentation clock may signal somite formation using a phase gradient with a two-somite periodicity.
Collapse
Affiliation(s)
- Nathan P Shih
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Paul François
- Department of Physics, McGill University, Montréal, Canada H3A 2T8
| | - Emilie A Delaune
- UMR 5305 CNRS/UCBL, 7 passage du Vercors, Lyon 69367, Cedex 07, France
| | - Sharon L Amacher
- Departments of Molecular Genetics and Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Bouldin CM, Manning AJ, Peng YH, Farr GH, Hung KL, Dong A, Kimelman D. Wnt signaling and tbx16 form a bistable switch to commit bipotential progenitors to mesoderm. Development 2015; 142:2499-507. [PMID: 26062939 DOI: 10.1242/dev.124024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/03/2015] [Indexed: 01/16/2023]
Abstract
Anterior to posterior growth of the vertebrate body is fueled by a posteriorly located population of bipotential neuro-mesodermal progenitor cells. These progenitors have a limited rate of proliferation and their maintenance is crucial for completion of the anterior-posterior axis. How they leave the progenitor state and commit to differentiation is largely unknown, in part because widespread modulation of factors essential for this process causes organism-wide effects. Using a novel assay, we show that zebrafish Tbx16 (Spadetail) is capable of advancing mesodermal differentiation cell-autonomously. Tbx16 locks cells into the mesodermal state by not only activating downstream mesodermal genes, but also by repressing bipotential progenitor genes, in part through a direct repression of sox2. We demonstrate that tbx16 is activated as cells move from an intermediate Wnt environment to a high Wnt environment, and show that Wnt signaling activates the tbx16 promoter. Importantly, high-level Wnt signaling is able to accelerate mesodermal differentiation cell-autonomously, just as we observe with Tbx16. Finally, because our assay for mesodermal commitment is quantitative we are able to show that the acceleration of mesodermal differentiation is surprisingly incomplete, implicating a potential separation of cell movement and differentiation during this process. Together, our data suggest a model in which high levels of Wnt signaling induce a transition to mesoderm by directly activating tbx16, which in turn acts to irreversibly flip a bistable switch, leading to maintenance of the mesodermal fate and repression of the bipotential progenitor state, even as cells leave the initial high-Wnt environment.
Collapse
Affiliation(s)
- Cortney M Bouldin
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alyssa J Manning
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Yu-Hsuan Peng
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Gist H Farr
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - King L Hung
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alice Dong
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
34
|
Della Noce I, Carra S, Brusegan C, Critelli R, Frassine A, De Lorenzo C, Giordano A, Bellipanni G, Villa E, Cotelli F, Pistocchi A, Schepis F. The Coiled-Coil Domain Containing 80 (ccdc80) gene regulates gadd45β2 expression in the developing somites of zebrafish as a new player of the hedgehog pathway. J Cell Physiol 2015; 230:821-30. [PMID: 25205658 DOI: 10.1002/jcp.24810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/05/2014] [Indexed: 11/10/2022]
Abstract
The Coiled-Coil Domain Containing 80 (CCDC80) gene has been identified as strongly induced in rat thyroid PC CL3 cells immortalized by the adenoviral E1A gene. In human, CCDC80 is a potential oncosoppressor due to its down-regulation in several tumor cell lines and tissues and it is expressed in almost all tissues. CCDC80 has homologous in mouse, chicken, and zebrafish. We cloned the zebrafish ccdc80 and analyzed its expression and function during embryonic development. The in-silico translated zebrafish protein shares high similarity with its mammalian homologous, with nuclear localization signals and a signal peptide. Gene expression analysis demonstrates that zebrafish ccdc80 is maternally and zygotically expressed throughout the development. In particular, ccdc80 is strongly expressed in the notochord and it is under the regulation of the Hedgehog pathway. In this work we investigated the functional effects of ccdc80-loss-of-function during embryonic development and verified its interaction with gadd45β2 in somitogenesis.
Collapse
Affiliation(s)
- Isabella Della Noce
- Department of Gastroenterology, University of Modena and Reggio Emilia, Modena, Italy; Parco Tecnologico Padano, via Einstein, Lodi, Italia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Windner SE, Doris RA, Ferguson CM, Nelson AC, Valentin G, Tan H, Oates AC, Wardle FC, Devoto SH. Tbx6, Mesp-b and Ripply1 regulate the onset of skeletal myogenesis in zebrafish. Development 2015; 142:1159-68. [PMID: 25725067 PMCID: PMC4360180 DOI: 10.1242/dev.113431] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022]
Abstract
During embryonic development, the paraxial mesoderm becomes segmented into somites, within which proliferative muscle progenitors and muscle fibers establish the skeletal musculature. Here, we demonstrate that a gene network previously implicated in somite boundary formation, involving the transcriptional regulators Tbx6, Mesp-b and Ripply1, also confers spatial and temporal regulation to skeletal myogenesis in zebrafish. We show that Tbx6 directly regulates mesp-b and ripply1 expression in vivo, and that the interactions within the regulatory network are largely conserved among vertebrates. Mesp-b is necessary and sufficient for the specification of a subpopulation of muscle progenitors, the central proportion of the Pax3(+)/Pax7(+) dermomyotome. Conditional ubiquitous expression indicates that Mesp-b acts by inhibiting myogenic differentiation and by inducing the dermomyotome marker meox1. By contrast, Ripply1 induces a negative-feedback loop by promoting Tbx6 protein degradation. Persistent Tbx6 expression in Ripply1 knockdown embryos correlates with a deficit in dermomyotome and myotome marker gene expression, suggesting that Ripply1 promotes myogenesis by terminating Tbx6-dependent inhibition of myogenic maturation. Together, our data suggest that Mesp-b is an intrinsic upstream regulator of skeletal muscle progenitors and that, in zebrafish, the genes regulating somite boundary formation also regulate the development of the dermomyotome in the anterior somite compartment.
Collapse
Affiliation(s)
| | - Rosemarie A Doris
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | | | - Andrew C Nelson
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Guillaume Valentin
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Haihan Tan
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Andrew C Oates
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Fiona C Wardle
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Stephen H Devoto
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
36
|
Li J, Yue Y, Dong X, Jia W, Li K, Liang D, Dong Z, Wang X, Nan X, Zhang Q, Zhao Q. Zebrafish foxc1a plays a crucial role in early somitogenesis by restricting the expression of aldh1a2 directly. J Biol Chem 2015; 290:10216-28. [PMID: 25724646 DOI: 10.1074/jbc.m114.612572] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Indexed: 11/06/2022] Open
Abstract
Foxc1a is a member of the forkhead transcription factors. It plays an essential role in zebrafish somitogenesis. However, little is known about the molecular mechanisms underlying its controlling somitogenesis. To uncover how foxc1a regulates zebrafish somitogenesis, we generated foxc1a knock-out zebrafish using TALEN (transcription activator-like effector nuclease) technology. The foxc1a null embryos exhibited defective somites at early development. Analyses on the expressions of the key genes that control processes of somitogenesis revealed that foxc1a controlled early somitogenesis by regulating the expression of myod1. In the somites of foxc1a knock-out embryos, expressions of fgf8a and deltaC were abolished, whereas the expression of aldh1a2 (responsible for providing retinoic acid signaling) was significantly increased. Once the increased retinoic acid level in the foxc1a null embryos was reduced by knocking down aldh1a2, the reduced expression of myod1 was partially rescued by resuming expressions of fgf8a and deltaC in the somites of the mutant embryos. Moreover, a chromatin immunoprecipitation assay on zebrafish embryos revealed that Foxc1a bound aldh1a2 promoter directly. On the other hand, neither knocking down fgf8a nor inhibiting Notch signaling affected the expression of aldh1a2, although knocking down fgf8a reduced expression of deltaC in the somites of zebrafish embryos at early somitogenesis and vice versa. Taken together, our results demonstrate that foxc1a plays an essential role in early somitogenesis by controlling Fgf and Notch signaling through restricting the expression of aldh1a2 in paraxial mesoderm directly.
Collapse
Affiliation(s)
- Jingyun Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and the Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Care Hospital Affiliated with Nanjing Medical University, Nanjing 210004, China
| | - Yunyun Yue
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Xiaohua Dong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Wenshuang Jia
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Kui Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Dong Liang
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Zhangji Dong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Xiaoxiao Wang
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Xiaoxi Nan
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Qinxin Zhang
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Qingshun Zhao
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| |
Collapse
|
37
|
|
38
|
Wanglar C, Takahashi J, Yabe T, Takada S. Tbx protein level critical for clock-mediated somite positioning is regulated through interaction between Tbx and Ripply. PLoS One 2014; 9:e107928. [PMID: 25259583 PMCID: PMC4178057 DOI: 10.1371/journal.pone.0107928] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022] Open
Abstract
Somitogenesis in vertebrates is a complex and dynamic process involving many sequences of events generated from the segmentation clock. Previous studies with mouse embryos revealed that the presumptive somite boundary is periodically created at the anterior border of the expression domain of Tbx6 protein. Ripply1 and Ripply2 are required for the determination of the Tbx6 protein border, but the mechanism by which this Tbx6 domain is regulated remains unclear. Furthermore, since zebrafish and frog Ripplys are known to be able to suppress Tbx6 function at the transcription level, it is also unclear whether Ripply-mediated mechanism of Tbx6 regulation is conserved among different species. Here, we tested the generality of Tbx6 protein-mediated process in somite segmentation by using zebrafish and further examined the mechanism of regulation of Tbx6 protein. By utilizing an antibody against zebrafish Tbx6/Fss, previously referred to as Tbx24, we found that the anterior border of Tbx6 domain coincided with the presumptive intersomitic boundary even in the zebrafish and it shifted dynamically during 1 cycle of segmentation. Consistent with the findings in mice, the tbx6 mRNA domain was located far anterior to its protein domain, indicating the possibility of posttranscriptional regulation. When both ripply1/2 were knockdown, the Tbx6 domain was anteriorly expanded. We further directly demonstrated that Ripply could reduce the expression level of Tbx6 protein depending on physical interaction between Ripply and Tbx6. Moreover, the onset of ripply1 and ripply2 expression occurred after reduction of FGF signaling at the anterior PSM, but this expression initiated much earlier on treatment with SU5402, a chemical inhibitor of FGF signaling. These results strongly suggest that Ripply is a direct regulator of the Tbx6 protein level for the establishment of intersomitic boundaries and mediates a reduction in FGF signaling for the positioning of the presumptive intersomitic boundary in the PSM.
Collapse
Affiliation(s)
- Chimwar Wanglar
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Jun Takahashi
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Taijiro Yabe
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- * E-mail:
| |
Collapse
|
39
|
Housley MP, Reischauer S, Dieu M, Raes M, Stainier DYR, Vanhollebeke B. Translational profiling through biotinylation of tagged ribosomes in zebrafish. Development 2014; 141:3988-93. [PMID: 25231762 DOI: 10.1242/dev.111849] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Heterogeneity within a population of cells of the same type is a common theme in metazoan biology. Dissecting complex developmental and physiological processes crucially relies on our ability to probe the expression profile of these cell subpopulations. Current strategies rely on cell enrichment based on sequential or simultaneous use of multiple intersecting markers starting from a heterogeneous cell suspension. The extensive tissue manipulations required to generate single-cell suspensions, as well as the complexity of the required equipment, inherently complicate these approaches. Here, we propose an alternative methodology based on a genetically encoded system in the model organism Danio rerio (zebrafish). In transgenic fish, we take advantage of the combinatorial biotin transfer system, where polysome-associated mRNAs are selectively recovered from cells expressing both a tagged ribosomal subunit, Rpl10a, and the bacterial biotin ligase BirA. We have applied this technique to skeletal muscle development and identified new genes with interesting temporal expression patterns. Through this work we have thus developed additional tools for highly specific gene expression profiling.
Collapse
Affiliation(s)
- Michael P Housley
- Department of Biochemistry & Biophysics, UCSF, San Francisco, CA 94158, USA
| | - Sven Reischauer
- Department of Biochemistry & Biophysics, UCSF, San Francisco, CA 94158, USA
| | - Marc Dieu
- URBC-Narilis, University of Namur, Namur B-5000, Belgium
| | - Martine Raes
- URBC-Narilis, University of Namur, Namur B-5000, Belgium
| | | | | |
Collapse
|
40
|
Soza-Ried C, Öztürk E, Ish-Horowicz D, Lewis J. Pulses of Notch activation synchronise oscillating somite cells and entrain the zebrafish segmentation clock. Development 2014; 141:1780-8. [PMID: 24715465 DOI: 10.1242/dev.102111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Formation of somites, the rudiments of vertebrate body segments, is an oscillatory process governed by a gene-expression oscillator, the segmentation clock. This operates in each cell of the presomitic mesoderm (PSM), but the individual cells drift out of synchrony when Delta/Notch signalling fails, causing gross anatomical defects. We and others have suggested that this is because synchrony is maintained by pulses of Notch activation, delivered cyclically by each cell to its neighbours, that serve to adjust or reset the phase of the intracellular oscillator. This, however, has never been proved. Here, we provide direct experimental evidence, using zebrafish containing a heat-shock-driven transgene that lets us deliver artificial pulses of expression of the Notch ligand DeltaC. In DeltaC-defective embryos, in which endogenous Notch signalling fails, the artificial pulses restore synchrony, thereby rescuing somite formation. The spacing of segment boundaries produced by repetitive heat-shocking varies according to the time interval between one heat-shock and the next. The induced synchrony is manifest both morphologically and at the level of the oscillations of her1, a core component of the intracellular oscillator. Thus, entrainment of intracellular clocks by periodic activation of the Notch pathway is indeed the mechanism maintaining cell synchrony during somitogenesis.
Collapse
Affiliation(s)
- Cristian Soza-Ried
- Vertebrate Development and Developmental Genetics Laboratories, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | |
Collapse
|
41
|
Bajard L, Morelli LG, Ares S, Pécréaux J, Jülicher F, Oates AC. Wnt-regulated dynamics of positional information in zebrafish somitogenesis. Development 2014; 141:1381-91. [PMID: 24595291 PMCID: PMC3943186 DOI: 10.1242/dev.093435] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
How signaling gradients supply positional information in a field of moving cells is an unsolved question in patterning and morphogenesis. Here, we ask how a Wnt signaling gradient regulates the dynamics of a wavefront of cellular change in a flow of cells during somitogenesis. Using time-controlled perturbations of Wnt signaling in the zebrafish embryo, we changed segment length without altering the rate of somite formation or embryonic elongation. This result implies specific Wnt regulation of the wavefront velocity. The observed Wnt signaling gradient dynamics and timing of downstream events support a model for wavefront regulation in which cell flow plays a dominant role in transporting positional information.
Collapse
Affiliation(s)
- Lola Bajard
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Akiyama R, Masuda M, Tsuge S, Bessho Y, Matsui T. An anterior limit of FGF/Erk signal activity marks the earliest future somite boundary in zebrafish. Development 2014; 141:1104-9. [PMID: 24504340 DOI: 10.1242/dev.098905] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Vertebrate segments called somites are generated by periodic segmentation of the anterior extremity of the presomitic mesoderm (PSM). During somite segmentation in zebrafish, mesp-b determines a future somite boundary at position B-2 within the PSM. Heat-shock experiments, however, suggest that an earlier future somite boundary exists at B-5, but the molecular signature of this boundary remains unidentified. Here, we characterized fibroblast growth factor (FGF) signal activity within the PSM, and demonstrated that an anterior limit of downstream Erk activity corresponds to the future B-5 somite boundary. Moreover, the segmentation clock is required for a stepwise posterior shift of the Erk activity boundary during each segmentation. Our results provide the first molecular evidence of the future somite boundary at B-5, and we propose that clock-dependent cyclic inhibition of the FGF/Erk signal is a key mechanism in the generation of perfect repetitive structures in zebrafish development.
Collapse
Affiliation(s)
- Ryutaro Akiyama
- Gene Regulation Research, Nara Institute Science and Technology, 8916-5 Takayama, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
43
|
Fagotto F, Winklbauer R, Rohani N. Ephrin-Eph signaling in embryonic tissue separation. Cell Adh Migr 2014; 8:308-26. [PMID: 25482630 PMCID: PMC4594459 DOI: 10.4161/19336918.2014.970028] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 01/19/2023] Open
Abstract
The physical separation of the embryonic regions that give rise to the tissues and organs of multicellular organisms is a fundamental aspect of morphogenesis. Pioneer experiments by Holtfreter had shown that embryonic cells can sort based on "tissue affinities," which have long been considered to rely on differences in cell-cell adhesion. However, vertebrate embryonic tissues also express a variety of cell surface cues, in particular ephrins and Eph receptors, and there is now firm evidence that these molecules are systematically used to induce local repulsion at contacts between different cell types, efficiently preventing mixing of adjacent cell populations.
Collapse
Affiliation(s)
| | - Rudolf Winklbauer
- Dpt. of Cell and Systems Biology; University of Toronto; Toronto, Canada
| | - Nazanin Rohani
- Dpt. of Biology; McGill University; Montreal, Quebec, Canada
| |
Collapse
|
44
|
Cota CD, Segade F, Davidson B. Heart genetics in a small package, exploiting the condensed genome of Ciona intestinalis. Brief Funct Genomics 2013; 13:3-14. [PMID: 24005910 DOI: 10.1093/bfgp/elt034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Defects in the initial establishment of cardiogenic cell fate are likely to contribute to pervasive human congenital cardiac abnormalities. However, the molecular underpinnings of nascent cardiac fate induction have proven difficult to decipher. In this review we explore the participation of extracellular, cellular and nuclear factors in comprehensive specification networks. At each level, we elaborate on insights gained through the study of cardiogenesis in the invertebrate chordate Ciona intestinalis and propose productive lines of future research. In-depth discussion of pre-cardiac induction is intended to serve as a paradigm, illustrating the potential use of Ciona to elucidate comprehensive networks underlying additional aspects of chordate cardiogenesis, including directed migration and subspecification of cardiac and pharyngeal lineages.
Collapse
|
45
|
Delaune EA, François P, Shih NP, Amacher SL. Single-cell-resolution imaging of the impact of Notch signaling and mitosis on segmentation clock dynamics. Dev Cell 2013; 23:995-1005. [PMID: 23153496 DOI: 10.1016/j.devcel.2012.09.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/30/2012] [Accepted: 09/13/2012] [Indexed: 01/11/2023]
Abstract
Vertebrate body segmentation is controlled by the segmentation clock, a molecular oscillator involving transcriptional oscillations of cyclic genes in presomitic mesoderm cells. The rapid and highly dynamic nature of this oscillating system has proved challenging for study at the single-cell level. We achieved visualization of clock activity with a cellular level of resolution in living embryos, allowing direct comparison of oscillations in neighbor cells. We provide direct evidence that presomitic mesoderm cells oscillate asynchronously in zebrafish Notch pathway mutants. By tracking oscillations in mitotic cells, we reveal that a robust cell-autonomous, Notch-independent mechanism resumes oscillations after mitosis. Finally, we find that cells preferentially divide at a certain oscillation phase, likely reducing the noise generated by cell division in cell synchrony and suggesting an intriguing relationship between the mitotic cycle and clock oscillation.
Collapse
Affiliation(s)
- Emilie A Delaune
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
46
|
Green SA, Norris RP, Terasaki M, Lowe CJ. FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii. Development 2013; 140:1024-33. [PMID: 23344709 DOI: 10.1242/dev.083790] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FGFs act in vertebrate mesoderm induction and also play key roles in early mesoderm formation in ascidians and amphioxus. However, in sea urchins initial characterizations of FGF function do not support a role in early mesoderm induction, making the ancestral roles of FGF signaling and mechanisms of mesoderm specification in deuterostomes unclear. In order to better characterize the evolution of mesoderm formation, we have examined the role of FGF signaling during mesoderm development in Saccoglossus kowalevskii, an experimentally tractable representative of hemichordates. We report the expression of an FGF ligand, fgf8/17/18, in ectoderm overlying sites of mesoderm specification within the archenteron endomesoderm. Embryological experiments demonstrate that mesoderm induction in the archenteron requires contact with ectoderm, and loss-of-function experiments indicate that both FGF ligand and receptor are necessary for mesoderm specification. fgf8/17/18 gain-of-function experiments establish that FGF8/17/18 is sufficient to induce mesoderm in adjacent endomesoderm. These experiments suggest that FGF signaling is necessary from the earliest stages of mesoderm specification and is required for all mesoderm development. Furthermore, they suggest that the archenteron is competent to form mesoderm or endoderm, and that FGF signaling from the ectoderm defines the location and amount of mesoderm. When considered in a comparative context, these data support a phylogenetically broad requirement for FGF8/17/18 signaling in mesoderm specification and suggest that FGF signaling played an ancestral role in deuterostome mesoderm formation.
Collapse
Affiliation(s)
- Stephen A Green
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
47
|
Lackner S, Schwendinger-Schreck J, Jülich D, Holley SA. Segmental assembly of fibronectin matrix requires rap1b and integrin α5. Dev Dyn 2013. [PMID: 23192979 DOI: 10.1002/dvdy.23909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND During segmentation of the zebrafish embryo, inside-out signaling activates Integrin α5, which is necessary for somite border morphogenesis. The direct activator of Integrin α5 during this process is unknown. One candidate is Rap1b, a small monomeric GTPase implicated in Integrin activation in the immune system. RESULTS Knockdown of rap1b, or overexpression of a dominant negative rap1b, causes a mild axis elongation defect in zebrafish. However, disruption of rap1b function in integrin α5(-/-) mutants results in a strong reduction in Fibronectin (FN) matrix assembly in the paraxial mesoderm and a failure in somite border morphogenesis along the entire anterior-posterior axis. Somite patterning appears unaffected, as her1 oscillations are maintained in single and double morphants/mutants, but somite polarity is gradually lost in itgα5(-/-) ; rap1b MO embryos. CONCLUSIONS In itgα5(-) (/) (-) mutants, rap1b is required for proper somite border morphogenesis in zebrafish. The loss of somite borders is not a result of aberrant segmental patterning. Rather, somite boundary formation initiates but is not completed, due to the failure to assemble FN matrix along the nascent boundary. We propose a model in which Rap1b activates Integrin/Fibronectin receptors as part of an "inside-out" signaling pathway that promotes Integrin binding to FN, FN matrix assembly, and subsequent stabilization of morphological somite boundaries.
Collapse
Affiliation(s)
- Simone Lackner
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | |
Collapse
|
48
|
Kriegmair MCM, Frenz S, Dusl M, Franz WM, David R, Rupp RAW. Cardiac differentiation in Xenopus is initiated by mespa. Cardiovasc Res 2012; 97:454-63. [PMID: 23241315 DOI: 10.1093/cvr/cvs354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AIMS Future cardiac repair strategies will require a profound understanding of the principles underlying cardiovascular differentiation. Owing to its extracorporal and rapid development, Xenopus laevis provides an ideal experimental system to address these issues in vivo. Whereas mammalian MesP1 is currently regarded as the earliest marker for the cardiovascular system, several MesP1-related factors from Xenopus-mespa, mespb, and mespo-have been assigned only to somitogenesis so far. We, therefore, analysed these genes comparatively for potential contributions to cardiogenesis. METHODS AND RESULTS RNA in situ hybridizations revealed a novel anterior expression domain exclusively occupied by mespa during gastrulation, which precedes the prospective heart field. Correspondingly, when overexpressed mespa most strongly induced cardiac markers in vivo as well as ex vivo. Transference to murine embryonic stem (ES) cells and subsequent FACS analyses for Flk-1 and Troponin I confirmed the high potential of mespa as a cardiac inducer. In vivo, Morpholino-based knockdown of mespa protein led to a dramatic loss of pro-cardiac and sarcomeric markers, which could be rescued either by mespa itself or human MesP1, but neither by mespb nor mespo. Epistatic analysis positioned mespa upstream of mespo and mespb, and revealed positive autoregulation for mespa at the time of its induction. CONCLUSIONS Our findings contribute to the understanding of conserved events initiating vertebrate cardiogenesis. We identify mespa as functional amphibian homologue of mammalian MesP1. These results will enable the dissection of cardiac specification from the very beginning in the highly versatile Xenopus system.
Collapse
Affiliation(s)
- Maximilian C M Kriegmair
- Department of Molecular Biology, Adolf-Butenandt-Institute, University of Munich LMU, Schillerstraβe 44, 80336 München, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Windner SE, Bird NC, Patterson SE, Doris RA, Devoto SH. Fss/Tbx6 is required for central dermomyotome cell fate in zebrafish. Biol Open 2012; 1:806-14. [PMID: 23213474 PMCID: PMC3507223 DOI: 10.1242/bio.20121958] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/29/2012] [Indexed: 12/18/2022] Open
Abstract
The dermomyotome is a pool of progenitor cells on the surface of the myotome. In zebrafish, dermomyotome precursors (anterior border cells, ABCs) can be first identified in the anterior portion of recently formed somites. They must be prevented from undergoing terminal differentiation during segmentation, even while mesodermal cells around them respond to signaling cues and differentiate. T-box containing transcription factors regulate many aspects of mesoderm fate including segmentation and somite patterning. The fused somites (fss) gene is the zebrafish ortholog of tbx6. We demonstrate that in addition to its requirement for segmentation, fss/tbx6 is also required for the specification of ABCs and subsequently the central dermomyotome. The absence of Tbx6-dependent central dermomyotome cells in fss/tbx6 mutants is spatially coincident with a patterning defect in the myotome. Using transgenic fish with a heat-shock inducible tbx6 gene in the fss/tbx6 mutant background, we further demonstrate that ubiquitous fss/tbx6 expression has spatially distinct effects on recovery of the dermomyotome and segment boundaries, suggesting that the mechanism of Fss/Tbx6 action is distinct with respect to dermomyotome development and segmentation. We propose that Fss/Tbx6 is required for preventing myogenic differentiation of central dermomyotome precursors before and after segmentation and that central dermomyotome cells represent a genetically and functionally distinct subpopulation within the zebrafish dermomyotome.
Collapse
Affiliation(s)
- Stefanie Elisabeth Windner
- Department of Biology, Wesleyan University , Middletown, CT 06459 , USA ; Division of Zoology and Functional Anatomy, Department of Organismic Biology, University of Salzburg , A-5020 Salzburg, Austria
| | | | | | | | | |
Collapse
|
50
|
Choorapoikayil S, Willems B, Ströhle P, Gajewski M. Analysis of her1 and her7 mutants reveals a spatio temporal separation of the somite clock module. PLoS One 2012; 7:e39073. [PMID: 22723933 PMCID: PMC3377618 DOI: 10.1371/journal.pone.0039073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/17/2012] [Indexed: 11/18/2022] Open
Abstract
Somitogenesis is controlled by a genetic network consisting of an oscillator (clock) and a gradient (wavefront). The "hairy and Enhancer of Split"- related (her) genes act downstream of the Delta/Notch (D/N) signaling pathway, and are crucial components of the segmentation clock. Due to genome duplication events, the zebrafish genome, possesses two gene copies of the mouse Hes7 homologue: her1 and her7. To better understand the functional consequences of this gene duplication, and to determine possible independent roles for these two genes during segmentation, two zebrafish mutants her1(hu2124) and her7(hu2526) were analyzed. In the course of embryonic development, her1(hu2124) mutants exhibit disruption of the three anterior-most somite borders, whereas her7(hu2526) mutants display somite border defects restricted to somites 8 (+/-3) to 17 (+/-3) along the anterior-posterior axis. Analysis of the molecular defects in her1(hu2124) mutants reveals a her1 auto regulatory feedback loop during early somitogenesis that is crucial for correct patterning and independent of her7 oscillation. This feedback loop appears to be restricted to early segmentation, as cyclic her1 expression is restored in her1(hu2124) embryos at later stages of development. Moreover, only the anterior deltaC expression pattern is disrupted in the presomitic mesoderm of her1(hu2124) mutants, while the posterior expression pattern of deltaC remains unaltered. Together, this data indicates the existence of an independent and genetically separable anterior and posterior deltaC clock modules in the presomitic mesdorm (PSM).
Collapse
|