1
|
Fernkorn M, Schröter C. Med12 cooperates with multiple differentiation signals to facilitate efficient lineage transitions in embryonic stem cells. J Cell Sci 2025; 138:jcs263794. [PMID: 40237177 DOI: 10.1242/jcs.263794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/23/2025] [Indexed: 04/18/2025] Open
Abstract
Cell differentiation results from coordinated changes in gene transcription in response to combinations of signals. Fibroblast growth factor (FGF), Wnt and mammalian target of rapamycin (mTOR) signals regulate the differentiation of pluripotent mammalian cells towards embryonic and extraembryonic lineages, but how these signals cooperate with general transcriptional regulators is not fully resolved. Here, we report a genome-wide CRISPR screen that reveals both signaling components and general transcriptional regulators for differentiation-associated gene expression in mouse embryonic stem cells (mESCs). Focusing on the Mediator subunit-encoding Med12 gene as one of the strongest hits in the screen, we show that it regulates gene expression in parallel to FGF and mTOR signals. Loss of Med12 is compatible with differentiation along both the embryonic epiblast and the extraembryonic primitive endoderm lineage but impairs pluripotency gene expression and slows down transitions between pluripotency states. These findings suggest that Med12 helps pluripotent cells to efficiently execute transcriptional changes during differentiation, thereby modulating the effects of a broad range of signals.
Collapse
Affiliation(s)
- Max Fernkorn
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
2
|
Schumacher S, Fernkorn M, Marten M, Chen R, Kim YS, Bedzhov I, Schröter C. Tissue-intrinsic beta-catenin signals antagonize Nodal-driven anterior visceral endoderm differentiation. Nat Commun 2024; 15:5055. [PMID: 38871742 PMCID: PMC11176336 DOI: 10.1038/s41467-024-49380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
The anterior-posterior axis of the mammalian embryo is laid down by the anterior visceral endoderm (AVE), an extraembryonic signaling center that is specified within the visceral endoderm. Current models posit that AVE differentiation is promoted globally by epiblast-derived Nodal signals, and spatially restricted by a BMP gradient established by the extraembryonic ectoderm. Here, we report spatially restricted AVE differentiation in bilayered embryo-like aggregates made from mouse embryonic stem cells that lack an extraembryonic ectoderm. Notably, clusters of AVE cells also form in pure visceral endoderm cultures upon activation of Nodal signaling, indicating that tissue-intrinsic factors can restrict AVE differentiation. We identify β-catenin activity as a tissue-intrinsic factor that antagonizes AVE-inducing Nodal signals. Together, our results show how an AVE-like population can arise through interactions between epiblast and visceral endoderm alone. This mechanism may be a flexible solution for axis patterning in a wide range of embryo geometries, and provide robustness to axis patterning when coupled with signal gradients.
Collapse
Affiliation(s)
- Sina Schumacher
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Max Fernkorn
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Michelle Marten
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Rui Chen
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Yung Su Kim
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Integrated Biosystems and Biomechanics Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ivan Bedzhov
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
3
|
Fischer SC, Schardt S, Lilao-Garzón J, Muñoz-Descalzo S. The salt-and-pepper pattern in mouse blastocysts is compatible with signaling beyond the nearest neighbors. iScience 2023; 26:108106. [PMID: 37915595 PMCID: PMC10616410 DOI: 10.1016/j.isci.2023.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Embryos develop in a concerted sequence of spatiotemporal arrangements of cells. In the preimplantation mouse embryo, the distribution of the cells in the inner cell mass evolves from a salt-and-pepper pattern to spatial segregation of two distinct cell types. The exact properties of the salt-and-pepper pattern have not been analyzed so far. We investigate the spatiotemporal distribution of NANOG- and GATA6-expressing cells in the ICM of the mouse blastocysts with quantitative three-dimensional single-cell-based neighborhood analyses. A combination of spatial statistics and agent-based modeling reveals that the cell fate distribution follows a local clustering pattern. Using ordinary differential equations modeling, we show that this pattern can be established by a distance-based signaling mechanism enabling cells to integrate information from the whole inner cell mass into their cell fate decision. Our work highlights the importance of longer-range signaling to ensure coordinated decisions in groups of cells to successfully build embryos.
Collapse
Affiliation(s)
- Sabine C. Fischer
- Julius-Maximilians-Universität Würzburg, Faculty of Biology, Center for Computational and Theoretical Biology, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Simon Schardt
- Julius-Maximilians-Universität Würzburg, Faculty of Biology, Center for Computational and Theoretical Biology, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Joaquín Lilao-Garzón
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe "Físico" 17, Las Palmas de Gran Canaria 35016, Spain
| | - Silvia Muñoz-Descalzo
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe "Físico" 17, Las Palmas de Gran Canaria 35016, Spain
| |
Collapse
|
4
|
Schardt S, Fischer SC. Adjusting the range of cell-cell communication enables fine-tuning of cell fate patterns from checkerboard to engulfing. J Math Biol 2023; 87:54. [PMID: 37679573 PMCID: PMC10485129 DOI: 10.1007/s00285-023-01959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 09/09/2023]
Abstract
During development, spatio-temporal patterns ranging from checkerboard to engulfing occur with precise proportions of the respective cell fates. Key developmental regulators are intracellular transcriptional interactions and intercellular signaling. We present an analytically tractable mathematical model based on signaling that reliably generates different cell type patterns with specified proportions. Employing statistical mechanics, We derived a cell fate decision model for two cell types. A detailed steady state analysis on the resulting dynamical system yielded necessary conditions to generate spatially heterogeneous patterns. This allows the cell type proportions to be controlled by a single model parameter. Cell-cell communication is realized by local and global signaling mechanisms. These result in different cell type patterns. A nearest neighbor signal yields checkerboard patterns. Increasing the signal dispersion, cell fate clusters and an engulfing pattern can be generated. Altogether, the presented model allows us to reliably generate heterogeneous cell type patterns of different kinds as well as desired proportions.
Collapse
Affiliation(s)
- Simon Schardt
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Sabine C. Fischer
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Gattiglio M, Protzek M, Schröter C. Population-level antagonism between FGF and BMP signaling steers mesoderm differentiation in embryonic stem cells. Biol Open 2023; 12:bio059941. [PMID: 37530863 PMCID: PMC10445724 DOI: 10.1242/bio.059941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
The mesodermal precursor populations for different internal organ systems are specified during gastrulation by the combined activity of extracellular signaling systems such as BMP, Wnt, Nodal and FGF. The BMP, Wnt and Nodal signaling requirements for the differentiation of specific mesoderm subtypes in mammals have been mapped in detail, but how FGF shapes mesodermal cell type diversity is not precisely known. It is also not clear how FGF signaling integrates with the activity of other signaling systems involved in mesoderm differentiation. Here, we address these questions by analyzing the effects of targeted signaling manipulations in differentiating stem cell populations at single-cell resolution. We identify opposing functions of BMP and FGF, and map FGF-dependent and -independent mesodermal lineages. Stimulation with exogenous FGF boosts the expression of endogenous Fgf genes while repressing Bmp ligand genes. This positive autoregulation of FGF signaling, coupled with the repression of BMP signaling, may contribute to the specification of reproducible and coherent cohorts of cells with the same identity via a community effect, both in the embryo and in synthetic embryo-like systems.
Collapse
Affiliation(s)
- Marina Gattiglio
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, 44227Dortmund, Germany
| | - Michelle Protzek
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, 44227Dortmund, Germany
| | - Christian Schröter
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, 44227Dortmund, Germany
| |
Collapse
|
6
|
Hislop J, Alavi A, Song Q, Schoenberger R, Kamyar KF, LeGraw R, Velazquez J, Mokhtari T, Taheri MN, Rytel M, de Sousa Lopes SMC, Watkins S, Stolz D, Kiani S, Sozen B, Bar-Joseph Z, Ebrahimkhani MR. Modelling Human Post-Implantation Development via Extra-Embryonic Niche Engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545118. [PMID: 37398391 PMCID: PMC10312773 DOI: 10.1101/2023.06.15.545118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Implantation of the human embryo commences a critical developmental stage that comprises profound morphogenetic alteration of embryonic and extra-embryonic tissues, axis formation, and gastrulation events. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons. Additionally, human stem cell models of early post-implantation development with both embryonic and extra-embryonic tissue morphogenesis are lacking. Here, we present iDiscoid, produced from human induced pluripotent stem cells via an engineered a synthetic gene circuit. iDiscoids exhibit reciprocal co-development of human embryonic tissue and engineered extra-embryonic niche in a model of human post-implantation. They exhibit unanticipated self-organization and tissue boundary formation that recapitulates yolk sac-like tissue specification with extra-embryonic mesoderm and hematopoietic characteristics, the formation of bilaminar disc-like embryonic morphology, the development of an amniotic-like cavity, and acquisition of an anterior-like hypoblast pole and posterior-like axis. iDiscoids offer an easy-to-use, high-throughput, reproducible, and scalable platform to probe multifaceted aspects of human early post-implantation development. Thus, they have the potential to provide a tractable human model for drug testing, developmental toxicology, and disease modeling.
Collapse
Affiliation(s)
- Joshua Hislop
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amir Alavi
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Qi Song
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rayna Schoenberger
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Keshavarz F. Kamyar
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ryan LeGraw
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jeremy Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tahere Mokhtari
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mohammad Nasser Taheri
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Matthew Rytel
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg, 2333 ZC Leiden, the Netherlands
| | - Simon Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donna Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samira Kiani
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mo R. Ebrahimkhani
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
7
|
Garg V, Yang Y, Nowotschin S, Setty M, Kuo YY, Sharma R, Polyzos A, Salataj E, Murphy D, Jang A, Pe’er D, Apostolou E, Hadjantonakis AK. Single-cell analysis of bidirectional reprogramming between early embryonic states reveals mechanisms of differential lineage plasticities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534648. [PMID: 37034770 PMCID: PMC10081288 DOI: 10.1101/2023.03.28.534648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Two distinct fates, pluripotent epiblast (EPI) and primitive (extra-embryonic) endoderm (PrE), arise from common progenitor cells, the inner cell mass (ICM), in mammalian embryos. To study how these sister identities are forged, we leveraged embryonic (ES) and eXtraembryonic ENdoderm (XEN) stem cells - in vitro counterparts of the EPI and PrE. Bidirectional reprogramming between ES and XEN coupled with single-cell RNA and ATAC-seq analyses uncovered distinct rates, efficiencies and trajectories of state conversions, identifying drivers and roadblocks of reciprocal conversions. While GATA4-mediated ES-to-iXEN conversion was rapid and nearly deterministic, OCT4, KLF4 and SOX2-induced XEN-to-iPS reprogramming progressed with diminished efficiency and kinetics. The dominant PrE transcriptional program, safeguarded by Gata4, and globally elevated chromatin accessibility of EPI underscored the differential plasticities of the two states. Mapping in vitro trajectories to embryos revealed reprogramming in either direction tracked along, and toggled between, EPI and PrE in vivo states without transitioning through the ICM.
Collapse
Affiliation(s)
- Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | - Yang Yang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manu Setty
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Polyzos
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eralda Salataj
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dylan Murphy
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Amy Jang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe’er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Effie Apostolou
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| |
Collapse
|
8
|
Chowdhary S, Hadjantonakis AK. Journey of the mouse primitive endoderm: from specification to maturation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210252. [PMID: 36252215 PMCID: PMC9574636 DOI: 10.1098/rstb.2021.0252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
The blastocyst is a conserved stage and distinct milestone in the development of the mammalian embryo. Blastocyst stage embryos comprise three cell lineages which arise through two sequential binary cell fate specification steps. In the first, extra-embryonic trophectoderm (TE) cells segregate from inner cell mass (ICM) cells. Subsequently, ICM cells acquire a pluripotent epiblast (Epi) or extra-embryonic primitive endoderm (PrE, also referred to as hypoblast) identity. In the mouse, nascent Epi and PrE cells emerge in a salt-and-pepper distribution in the early blastocyst and are subsequently sorted into adjacent tissue layers by the late blastocyst stage. Epi cells cluster at the interior of the ICM, while PrE cells are positioned on its surface interfacing the blastocyst cavity, where they display apicobasal polarity. As the embryo implants into the maternal uterus, cells at the periphery of the PrE epithelium, at the intersection with the TE, break away and migrate along the TE as they mature into parietal endoderm (ParE). PrE cells remaining in association with the Epi mature into visceral endoderm. In this review, we discuss our current understanding of the PrE from its specification to its maturation. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Sayali Chowdhary
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
9
|
Bahrami-Nejad Z, Zhang ZB, Tholen S, Sharma S, Rabiee A, Zhao ML, Kraemer FB, Teruel MN. Early enforcement of cell identity by a functional component of the terminally differentiated state. PLoS Biol 2022; 20:e3001900. [PMID: 36469503 PMCID: PMC9721491 DOI: 10.1371/journal.pbio.3001900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
How progenitor cells can attain a distinct differentiated cell identity is a challenging problem given the fluctuating signaling environment in which cells exist and that critical transcription factors are often not unique to a differentiation process. Here, we test the hypothesis that a unique differentiated cell identity can result from a core component of the differentiated state doubling up as a signaling protein that also drives differentiation. Using live single-cell imaging in the adipocyte differentiation system, we show that progenitor fat cells (preadipocytes) can only commit to terminally differentiate after up-regulating FABP4, a lipid buffer that is highly enriched in mature adipocytes. Upon induction of adipogenesis in mouse preadipocyte cells, we show that after a long delay, cells first abruptly start to engage a positive feedback between CEBPA and PPARG before then engaging, after a second delay, a positive feedback between FABP4 and PPARG. These sequential positive feedbacks both need to engage in order to drive PPARG levels past the threshold for irreversible differentiation. In the last step before commitment, PPARG transcriptionally increases FABP4 expression while fatty acid-loaded FABP4 increases PPARG activity. Together, our study suggests a control principle for robust cell identity whereby a core component of the differentiated state also promotes differentiation from its own progenitor state.
Collapse
Affiliation(s)
- Zahra Bahrami-Nejad
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| | - Zhi-Bo Zhang
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
- Department of Biochemistry and the Drukier Institute for Children’s Health, Weill Cornell Medical College of Cornell University, New York, New York, United States of America
| | - Stefan Tholen
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| | - Sanjeev Sharma
- Department of Biochemistry and the Drukier Institute for Children’s Health, Weill Cornell Medical College of Cornell University, New York, New York, United States of America
| | - Atefeh Rabiee
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California, United States of America
| | - Michael L. Zhao
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| | - Fredric B. Kraemer
- Department of Medicine/Division of Endocrinology, Stanford University, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Mary N. Teruel
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
- Department of Biochemistry and the Drukier Institute for Children’s Health, Weill Cornell Medical College of Cornell University, New York, New York, United States of America
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, United States of America
- Weill Center for Metabolic Health, Division of Endocrinology, Diabetes & Metabolism, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College of Cornell University, New York, New York, United States of America
| |
Collapse
|
10
|
Sathyanarayanan A, Ing-Simmons E, Chen R, Jeong HW, Ozguldez HO, Fan R, Duethorn B, Kim KP, Kim YS, Stehling M, Brinkmann H, Schöler HR, Adams RH, Vaquerizas JM, Bedzhov I. Early developmental plasticity enables the induction of an intermediate extraembryonic cell state. SCIENCE ADVANCES 2022; 8:eabl9583. [PMID: 36332016 PMCID: PMC9635831 DOI: 10.1126/sciadv.abl9583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/19/2022] [Indexed: 05/23/2023]
Abstract
Two fundamental elements of pre-implantation embryogenesis are cells' intrinsic self-organization program and their developmental plasticity, which allows embryos to compensate for alterations in cell position and number; yet, these elements are still poorly understood. To be able to decipher these features, we established culture conditions that enable the two fates of blastocysts' extraembryonic lineages-the primitive endoderm and the trophectoderm-to coexist. This plasticity emerges following the mechanisms of the first lineage segregation in the mouse embryo, and it manifests as an extended potential for extraembryonic chimerism during the pre-implantation embryogenesis. Moreover, this shared state enables robust assembly into higher-order blastocyst-like structures, thus combining both the cell fate plasticity and self-organization features of the early extraembryonic lineages.
Collapse
Affiliation(s)
- Anusha Sathyanarayanan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Elizabeth Ing-Simmons
- Regulatory Genomics Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Rui Chen
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
- Faculty of Medicine, University of Münster, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hatice O. Ozguldez
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Binyamin Duethorn
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, Korea
| | - Yung Su Kim
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Heike Brinkmann
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
- Faculty of Medicine, University of Münster, Röntgenstrasse 20, 48149 Münster, Germany
| | - Juan M. Vaquerizas
- Regulatory Genomics Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| |
Collapse
|
11
|
Munger C, Kohler TN, Slatery E, Ellermann AL, Bergmann S, Penfold C, Ampartzidis I, Chen Y, Hollfelder F, Boroviak TE. Microgel culture and spatial identity mapping elucidate the signalling requirements for primate epiblast and amnion formation. Development 2022; 149:276630. [PMID: 36125063 PMCID: PMC7614365 DOI: 10.1242/dev.200263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/01/2022] [Indexed: 11/20/2022]
Abstract
The early specification and rapid growth of extraembryonic membranes are distinctive hallmarks of primate embryogenesis. These complex tasks are resolved through an intricate combination of signals controlling the induction of extraembryonic lineages and, at the same time, safeguarding the pluripotent epiblast. Here, we delineate the signals orchestrating primate epiblast and amnion identity. We encapsulated marmoset pluripotent stem cells into agarose microgels and identified culture conditions for the development of epiblast- and amnion-spheroids. Spatial identity mapping authenticated spheroids generated in vitro by comparison with marmoset embryos in vivo. We leveraged the microgel system to functionally interrogate the signalling environment of the post-implantation primate embryo. Single-cell profiling of the resulting spheroids demonstrated that activin/nodal signalling is required for embryonic lineage identity. BMP4 promoted amnion formation and maturation, which was counteracted by FGF signalling. Our combination of microgel culture, single-cell profiling and spatial identity mapping provides a powerful approach to decipher the essential cues for embryonic and extraembryonic lineage formation in primate embryogenesis.
Collapse
Affiliation(s)
- Clara Munger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Timo N. Kohler
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Erin Slatery
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
| | - Anna L. Ellermann
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
| | - Christopher Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
- Wellcome Trust – Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Ioakeim Ampartzidis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
| | - Yutong Chen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
- Correspondence: T.E.B. (), F.H. ()
| | - Thorsten E. Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
- Correspondence: T.E.B. (), F.H. ()
| |
Collapse
|
12
|
Robert C, Prista von Bonhorst F, De Decker Y, Dupont G, Gonze D. Initial source of heterogeneity in a model for cell fate decision in the early mammalian embryo. Interface Focus 2022; 12:20220010. [PMID: 35865503 PMCID: PMC9184963 DOI: 10.1098/rsfs.2022.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/12/2022] [Indexed: 08/30/2024] Open
Abstract
During development, cells from a population of common progenitors evolve towards different fates characterized by distinct levels of specific transcription factors, a process known as cell differentiation. This evolution is governed by gene regulatory networks modulated by intercellular signalling. In order to evolve towards distinct fates, cells forming the population of common progenitors must display some heterogeneity. We applied a modelling approach to obtain insights into the possible sources of cell-to-cell variability initiating the specification of cells of the inner cell mass into epiblast or primitive endoderm cells in early mammalian embryo. At the single-cell level, these cell fates correspond to three possible steady states of the model. A combination of numerical simulations and bifurcation analyses predicts that the behaviour of the model is preserved with respect to the source of variability and that cell-cell coupling induces the emergence of multiple steady states associated with various cell fate configurations, and to a distribution of the levels of expression of key transcription factors. Statistical analysis of these time-dependent distributions reveals differences in the evolutions of the variance-to-mean ratios of key variables of the system, depending on the simulated source of variability, and, by comparison with experimental data, points to the rate of synthesis of the key transcription factor NANOG as a likely initial source of heterogeneity.
Collapse
Affiliation(s)
- Corentin Robert
- Unit of Theoretical Chronobiology and Université Libre de Bruxelles (ULB), Brussels CP 231, Belgium
- Nonlinear Physical Chemistry Unit, Université Libre de Bruxelles (ULB), Brussels CP 231, Belgium
| | | | - Yannick De Decker
- Nonlinear Physical Chemistry Unit, Université Libre de Bruxelles (ULB), Brussels CP 231, Belgium
| | - Geneviève Dupont
- Unit of Theoretical Chronobiology and Université Libre de Bruxelles (ULB), Brussels CP 231, Belgium
| | - Didier Gonze
- Unit of Theoretical Chronobiology and Université Libre de Bruxelles (ULB), Brussels CP 231, Belgium
| |
Collapse
|
13
|
Allègre N, Chauveau S, Dennis C, Renaud Y, Meistermann D, Estrella LV, Pouchin P, Cohen-Tannoudji M, David L, Chazaud C. NANOG initiates epiblast fate through the coordination of pluripotency genes expression. Nat Commun 2022; 13:3550. [PMID: 35729116 PMCID: PMC9213552 DOI: 10.1038/s41467-022-30858-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/24/2022] [Indexed: 12/20/2022] Open
Abstract
The epiblast is the source of all mammalian embryonic tissues and of pluripotent embryonic stem cells. It differentiates alongside the primitive endoderm in a “salt and pepper” pattern from inner cell mass (ICM) progenitors during the preimplantation stages through the activity of NANOG, GATA6 and the FGF pathway. When and how epiblast lineage specification is initiated is still unclear. Here, we show that the coordinated expression of pluripotency markers defines epiblast identity. Conversely, ICM progenitor cells display random cell-to-cell variability in expression of various pluripotency markers, remarkably dissimilar from the epiblast signature and independently from NANOG, GATA6 and FGF activities. Coordination of pluripotency markers expression fails in Nanog and Gata6 double KO (DKO) embryos. Collectively, our data suggest that NANOG triggers epiblast specification by ensuring the coordinated expression of pluripotency markers in a subset of cells, implying a stochastic mechanism. These features are likely conserved, as suggested by analysis of human embryos. Pluripotent epiblast cells segregate from primitive endoderm in the blastocyst inner cell mass (ICM). Here the authors show that mosaic epiblast differentiation during mouse and human preimplantation development initiates stochastically in ICM progenitors, independently of the FGF pathway, and requires NANOG activity
Collapse
Affiliation(s)
- Nicolas Allègre
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France
| | - Sabine Chauveau
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France
| | - Cynthia Dennis
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France.,Byonet, 19 rue du courait, F-63200, Riom, France
| | - Dimitri Meistermann
- Université de Nantes, CHU Nantes, INSERM, CR2TI, UMR 1064, ITUN, F-44000, Nantes, France.,Université de Nantes, CNRS, LS2N, CNRS UMR 6004, F-44000, Nantes, France
| | - Lorena Valverde Estrella
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France
| | - Pierre Pouchin
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, F-75015, Paris, France
| | - Laurent David
- Université de Nantes, CHU Nantes, INSERM, CR2TI, UMR 1064, ITUN, F-44000, Nantes, France.,Université de Nantes, CHU Nantes, INSERM, CNRS, UMS Biocore, INSERM UMS 016, CNRS UMS 3556, F-44000, Nantes, France
| | - Claire Chazaud
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
14
|
Raina D, Fabris F, Morelli LG, Schröter C. Intermittent ERK oscillations downstream of FGF in mouse embryonic stem cells. Development 2022; 149:dev199710. [PMID: 35175328 PMCID: PMC8918804 DOI: 10.1242/dev.199710] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/31/2021] [Indexed: 01/20/2023]
Abstract
Signal transduction networks generate characteristic dynamic activities to process extracellular signals and guide cell fate decisions such as to divide or differentiate. The differentiation of pluripotent cells is controlled by FGF/ERK signaling. However, only a few studies have addressed the dynamic activity of the FGF/ERK signaling network in pluripotent cells at high time resolution. Here, we use live cell sensors in wild-type and Fgf4-mutant mouse embryonic stem cells to measure dynamic ERK activity in single cells, for defined ligand concentrations and differentiation states. These sensors reveal pulses of ERK activity. Pulsing patterns are heterogeneous between individual cells. Consecutive pulse sequences occur more frequently than expected from simple stochastic models. Sequences become more prevalent with higher ligand concentration, but are rarer in more differentiated cells. Our results suggest that FGF/ERK signaling operates in the vicinity of a transition point between oscillatory and non-oscillatory dynamics in embryonic stem cells. The resulting heterogeneous dynamic signaling activities add a new dimension to cellular heterogeneity that may be linked to divergent fate decisions in stem cell cultures.
Collapse
Affiliation(s)
- Dhruv Raina
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Fiorella Fabris
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
| | - Luis G. Morelli
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
- Departamento de Física, FCEyN UBA, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| |
Collapse
|
15
|
Raina D, Bahadori A, Stanoev A, Protzek M, Koseska A, Schröter C. Cell-cell communication through FGF4 generates and maintains robust proportions of differentiated cell types in embryonic stem cells. Development 2021; 148:dev199926. [PMID: 34651174 PMCID: PMC8602943 DOI: 10.1242/dev.199926] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/04/2021] [Indexed: 01/20/2023]
Abstract
During embryonic development and tissue homeostasis, reproducible proportions of differentiated cell types are specified from populations of multipotent precursor cells. Molecular mechanisms that enable both robust cell-type proportioning despite variable initial conditions in the precursor cells, and the re-establishment of these proportions upon perturbations in a developing tissue remain to be characterized. Here, we report that the differentiation of robust proportions of epiblast-like and primitive endoderm-like cells in mouse embryonic stem cell cultures emerges at the population level through cell-cell communication via a short-range fibroblast growth factor 4 (FGF4) signal. We characterize the molecular and dynamical properties of the communication mechanism and show how it controls both robust cell-type proportioning from a wide range of experimentally controlled initial conditions, as well as the autonomous re-establishment of these proportions following the isolation of one cell type. The generation and maintenance of reproducible proportions of discrete cell types is a new function for FGF signaling that might operate in a range of developing tissues.
Collapse
Affiliation(s)
| | | | | | | | | | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
16
|
Olivieri D, Castelli E, Kawamura YK, Papasaikas P, Lukonin I, Rittirsch M, Hess D, Smallwood SA, Stadler MB, Peters AHFM, Betschinger J. Cooperation between HDAC3 and DAX1 mediates lineage restriction of embryonic stem cells. EMBO J 2021; 40:e106818. [PMID: 33909924 PMCID: PMC8204867 DOI: 10.15252/embj.2020106818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) are biased toward producing embryonic rather than extraembryonic endoderm fates. Here, we identify the mechanism of this barrier and report that the histone deacetylase Hdac3 and the transcriptional corepressor Dax1 cooperatively limit the lineage repertoire of mESCs by silencing an enhancer of the extraembryonic endoderm-specifying transcription factor Gata6. This restriction is opposed by the pluripotency transcription factors Nr5a2 and Esrrb, which promote cell type conversion. Perturbation of the barrier extends mESC potency and allows formation of 3D spheroids that mimic the spatial segregation of embryonic epiblast and extraembryonic endoderm in early embryos. Overall, this study shows that transcriptional repressors stabilize pluripotency by biasing the equilibrium between embryonic and extraembryonic lineages that is hardwired into the mESC transcriptional network.
Collapse
Affiliation(s)
- Daniel Olivieri
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Eleonora Castelli
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of SciencesUniversity of BaselBaselSwitzerland
| | - Yumiko K Kawamura
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Ilya Lukonin
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Melanie Rittirsch
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | | | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of SciencesUniversity of BaselBaselSwitzerland
| | - Joerg Betschinger
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
17
|
Zhong J, Han C, Zhang X, Chen P, Liu R. scGET: Predicting Cell Fate Transition During Early Embryonic Development by Single-cell Graph Entropy. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:461-474. [PMID: 34954425 PMCID: PMC8864248 DOI: 10.1016/j.gpb.2020.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/08/2020] [Accepted: 01/02/2021] [Indexed: 01/26/2023]
Abstract
During early embryonic development, cell fate commitment represents a critical transition or "tipping point" of embryonic differentiation, at which there is a drastic and qualitative shift of the cell populations. In this study, we presented a computational approach, scGET, to explore the gene-gene associations based on single-cell RNA sequencing (scRNA-seq) data for critical transition prediction. Specifically, by transforming the gene expression data to the local network entropy, the single-cell graph entropy (SGE) value quantitatively characterizes the stability and criticality of gene regulatory networks among cell populations and thus can be employed to detect the critical signal of cell fate or lineage commitment at the single-cell level. Being applied to five scRNA-seq datasets of embryonic differentiation, scGET accurately predicts all the impending cell fate transitions. After identifying the "dark genes" that are non-differentially expressed genes but sensitive to the SGE value, the underlying signaling mechanisms were revealed, suggesting that the synergy of dark genes and their downstream targets may play a key role in various cell development processes.The application in all five datasets demonstrates the effectiveness of scGET in analyzing scRNA-seq data from a network perspective and its potential to track the dynamics of cell differentiation. The source code of scGET is accessible at https://github.com/zhongjiayuna/scGET_Project.
Collapse
Affiliation(s)
- Jiayuan Zhong
- School of Mathematics, South China University of Technology, Guangzhou 510640, PR China
| | - Chongyin Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xuhang Zhang
- School of Computer Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Pei Chen
- School of Mathematics, South China University of Technology, Guangzhou 510640, PR China.
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou 510640, PR China; Pazhou Lab, Guangzhou 510330, PR China.
| |
Collapse
|
18
|
Posfai E, Lanner F, Mulas C, Leitch HG. All models are wrong, but some are useful: Establishing standards for stem cell-based embryo models. Stem Cell Reports 2021; 16:1117-1141. [PMID: 33979598 PMCID: PMC8185978 DOI: 10.1016/j.stemcr.2021.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Detailed studies of the embryo allow an increasingly mechanistic understanding of development, which has proved of profound relevance to human disease. The last decade has seen in vitro cultured stem cell-based models of embryo development flourish, which provide an alternative to the embryo for accessible experimentation. However, the usefulness of any stem cell-based embryo model will be determined by how accurately it reflects in vivo embryonic development, and/or the extent to which it facilitates new discoveries. Stringent benchmarking of embryo models is thus an important consideration for this growing field. Here we provide an overview of means to evaluate both the properties of stem cells, the building blocks of most embryo models, as well as the usefulness of current and future in vitro embryo models.
Collapse
Affiliation(s)
- Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden; Ming Wai Lau Center for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Carla Mulas
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Harry G Leitch
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
19
|
Toyooka Y. Pluripotent stem cells in the research for extraembryonic cell differentiation. Dev Growth Differ 2021; 63:127-139. [PMID: 33583019 DOI: 10.1111/dgd.12716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Mouse embryonic stem cells (mESCs) are pluripotent stem cell populations derived from the preimplantation embryo and are used to study the differentiation of many types of somatic and germ cells in developing embryos. They are also used to study cell lineages of extraembryonic tissues, such as the trophectoderm (TE) and the primitive endoderm (PrE). mESC cultures are suitable systems for reproducing cellular and molecular events occurring during the differentiation of these cell types, such as changes in gene expression patterns, signaling events, and genome rearrangements although the consistency between the results obtained using mESCs and those of in vivo studies on embryos should be carefully taken into account. Since TE and PrE cells can be induced from mESCs in vitro, mESC cultures are useful systems to study differentiation of these cell lineages during development, if used appropriately. In addition, human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs), are capable of generating extraembryonic lineages in vitro and are promising tools to study the differentiation of these lineages in the human embryo.
Collapse
Affiliation(s)
- Yayoi Toyooka
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Stanoev A, Schröter C, Koseska A. Robustness and timing of cellular differentiation through population-based symmetry breaking. Development 2021; 148:dev.197608. [PMID: 33472845 DOI: 10.1242/dev.197608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/24/2020] [Indexed: 01/23/2023]
Abstract
During mammalian development and homeostasis, cells often transition from a multilineage primed state to one of several differentiated cell types that are marked by the expression of mutually exclusive genetic markers. These observations have been classically explained by single-cell multistability as the dynamical basis of differentiation, where robust cell-type proportioning relies on pre-existing cell-to-cell differences. We propose a conceptually different dynamical mechanism in which cell types emerge and are maintained collectively by cell-cell communication as a novel inhomogeneous state of the coupled system. Differentiation can be triggered by cell number increase as the population grows in size, through organisation of the initial homogeneous population before the symmetry-breaking bifurcation point. Robust proportioning and reliable recovery of the differentiated cell types following a perturbation is an inherent feature of the inhomogeneous state that is collectively maintained. This dynamical mechanism is valid for systems with steady-state or oscillatory single-cell dynamics. Therefore, our results suggest that timing and subsequent differentiation in robust cell-type proportions can emerge from the cooperative behaviour of growing cell populations during development.
Collapse
Affiliation(s)
- Angel Stanoev
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Aneta Koseska
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
21
|
Guillemin A, Stumpf MPH. Noise and the molecular processes underlying cell fate decision-making. Phys Biol 2021; 18:011002. [PMID: 33181489 DOI: 10.1088/1478-3975/abc9d1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell fate decision-making events involve the interplay of many molecular processes, ranging from signal transduction to genetic regulation, as well as a set of molecular and physiological feedback loops. Each aspect offers a rich field of investigation in its own right, but to understand the whole process, even in simple terms, we need to consider them together. Here we attempt to characterise this process by focussing on the roles of noise during cell fate decisions. We use a range of recent results to develop a view of the sequence of events by which a cell progresses from a pluripotent or multipotent to a differentiated state: chromatin organisation, transcription factor stoichiometry, and cellular signalling all change during this progression, and all shape cellular variability, which becomes maximal at the transition state.
Collapse
Affiliation(s)
- Anissa Guillemin
- School of BioSciences, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
22
|
Gastruloids: Embryonic Organoids from Mouse Embryonic Stem Cells to Study Patterning and Development in Early Mammalian Embryos. Methods Mol Biol 2021; 2258:131-147. [PMID: 33340359 DOI: 10.1007/978-1-0716-1174-6_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gastruloids are embryonic organoids made from small, defined numbers of mouse embryonic stem cells (mESCs) aggregated in suspension culture, which over time form 3D structures that mimic many of the features of early mammalian development. Unlike embryoid bodies that are usually disorganized when grown over several days, gastruloids display distinct, well-organized gene expression domains demarcating the emergence of the three body axes, anteroposterior axial elongation, and implementation of collinear Hox transcriptional patterns over 5-7 days of culture. As such gastruloids represent a useful experimental system that is complementary to in vivo approaches in studying early developmental patterning mechanisms regulating the acquisition of cell fates. In this protocol, we describe the most recent method for generating gastruloids with high reproducibility, and provide a comprehensive list of possible challenges as well as steps for protocol optimization.
Collapse
|
23
|
Liebisch T, Drusko A, Mathew B, Stelzer EHK, Fischer SC, Matthäus F. Cell fate clusters in ICM organoids arise from cell fate heredity and division: a modelling approach. Sci Rep 2020; 10:22405. [PMID: 33376253 PMCID: PMC7772343 DOI: 10.1038/s41598-020-80141-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/17/2020] [Indexed: 01/13/2023] Open
Abstract
During the mammalian preimplantation phase, cells undergo two subsequent cell fate decisions. During the first decision, the trophectoderm and the inner cell mass are formed. Subsequently, the inner cell mass segregates into the epiblast and the primitive endoderm. Inner cell mass organoids represent an experimental model system, mimicking the second cell fate decision. It has been shown that cells of the same fate tend to cluster stronger than expected for random cell fate decisions. Three major processes are hypothesised to contribute to the cell fate arrangements: (1) chemical signalling; (2) cell sorting; and (3) cell proliferation. In order to quantify the influence of cell proliferation on the observed cell lineage type clustering, we developed an agent-based model accounting for mechanical cell-cell interaction, i.e. adhesion and repulsion, cell division, stochastic cell fate decision and cell fate heredity. The model supports the hypothesis that initial cell fate acquisition is a stochastically driven process, taking place in the early development of inner cell mass organoids. Further, we show that the observed neighbourhood structures can emerge solely due to cell fate heredity during cell division.
Collapse
Affiliation(s)
- Tim Liebisch
- Faculty of Biological Sciences and Frankfurt Institute for Advanced Studies (FIAS), Goethe Universität Frankfurt am Main, Ruth-Moufang-Straße 1, 60438, Frankfurt, Germany.
| | - Armin Drusko
- Faculty of Biological Sciences and Frankfurt Institute for Advanced Studies (FIAS), Goethe Universität Frankfurt am Main, Ruth-Moufang-Straße 1, 60438, Frankfurt, Germany
| | - Biena Mathew
- Faculty of Biological Sciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Max-von-Laue Str. 15, 60438, Frankfurt, Germany
| | - Ernst H K Stelzer
- Faculty of Biological Sciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Max-von-Laue Str. 15, 60438, Frankfurt, Germany
| | - Sabine C Fischer
- Center for Computational and Theoretical Biology (CCTB), Julius-Maximilians-Universität Würzburg, Campus Hubland Nord 32, 97074, Würzburg, Germany
| | - Franziska Matthäus
- Faculty of Biological Sciences and Frankfurt Institute for Advanced Studies (FIAS), Goethe Universität Frankfurt am Main, Ruth-Moufang-Straße 1, 60438, Frankfurt, Germany
| |
Collapse
|
24
|
Amadei G, Lau KYC, De Jonghe J, Gantner CW, Sozen B, Chan C, Zhu M, Kyprianou C, Hollfelder F, Zernicka-Goetz M. Inducible Stem-Cell-Derived Embryos Capture Mouse Morphogenetic Events In Vitro. Dev Cell 2020; 56:366-382.e9. [PMID: 33378662 PMCID: PMC7883308 DOI: 10.1016/j.devcel.2020.12.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/26/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
The development of mouse embryos can be partially recapitulated by combining embryonic stem cells (ESCs), trophoblast stem cells (TS), and extra-embryonic endoderm (XEN) stem cells to generate embryo-like structures called ETX embryos. Although ETX embryos transcriptionally capture the mouse gastrula, their ability to recapitulate complex morphogenic events such as gastrulation is limited, possibly due to the limited potential of XEN cells. To address this, we generated ESCs transiently expressing transcription factor Gata4, which drives the extra-embryonic endoderm fate, and combined them with ESCs and TS cells to generate induced ETX embryos (iETX embryos). We show that iETX embryos establish a robust anterior signaling center that migrates unilaterally to break embryo symmetry. Furthermore, iETX embryos gastrulate generating embryonic and extra-embryonic mesoderm and definitive endoderm. Our findings reveal that replacement of XEN cells with ESCs transiently expressing Gata4 endows iETX embryos with greater developmental potential, thus enabling the study of the establishment of anterior-posterior patterning and gastrulation in an in vitro system. Stem cells generate mouse-embryo-like structures with improved potential These structures undertake anterior visceral endoderm formation and gastrulation Single-cell sequencing shows improved resemblance to mouse embryo
Collapse
Affiliation(s)
- Gianluca Amadei
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Kasey Y C Lau
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Joachim De Jonghe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Carlos W Gantner
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Berna Sozen
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| | - Christopher Chan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Meng Zhu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Christos Kyprianou
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA.
| |
Collapse
|
25
|
Fiorentino J, Torres-Padilla ME, Scialdone A. Measuring and Modeling Single-Cell Heterogeneity and Fate Decision in Mouse Embryos. Annu Rev Genet 2020; 54:167-187. [PMID: 32867543 DOI: 10.1146/annurev-genet-021920-110200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular heterogeneity is a property of any living system; however, its relationship with cellular fate decision remains an open question. Recent technological advances have enabled valuable insights, especially in complex systems such as the mouse embryo. In this review, we discuss recent studies that characterize cellular heterogeneity at different levels during mouse development, from the two-cell stage up to gastrulation. In addition to key experimental findings, we review mathematical modeling approaches that help researchers interpret these findings. Disentangling the role of heterogeneity in cell fate decision will likely rely on the refined integration of experiments, large-scale omics data, and mathematical modeling, complemented by the use of synthetic embryos and gastruloids as promising in vitro models.
Collapse
Affiliation(s)
- Jonathan Fiorentino
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany; .,Institute of Functional Epigenetics (IFE) and Institute of Computational Biology (ICB), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany; .,Faculty of Biology, Ludwig-Maximilians Universität, D-82152 Planegg-Martinsried, Germany
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany; .,Institute of Functional Epigenetics (IFE) and Institute of Computational Biology (ICB), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| |
Collapse
|
26
|
Pokrass MJ, Ryan KA, Xin T, Pielstick B, Timp W, Greco V, Regot S. Cell-Cycle-Dependent ERK Signaling Dynamics Direct Fate Specification in the Mammalian Preimplantation Embryo. Dev Cell 2020; 55:328-340.e5. [PMID: 33091369 PMCID: PMC7658051 DOI: 10.1016/j.devcel.2020.09.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/12/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Despite the noisy nature of single cells, multicellular organisms robustly generate different cell types from one zygote. This process involves dynamic cross regulation between signaling and gene expression that is difficult to capture with fixed-cell approaches. To study signaling dynamics and fate specification during preimplantation development, we generated a transgenic mouse expressing the ERK kinase translocation reporter and measured ERK activity in single cells of live embryos. Our results show primarily active ERK in both the inner cell mass and trophectoderm cells due to fibroblast growth factor (FGF) signaling. Strikingly, a subset of mitotic events results in a short pulse of ERK inactivity in both daughter cells that correlates with elevated endpoint NANOG levels. Moreover, endogenous tagging of Nanog in embryonic stem cells reveals that ERK inhibition promotes enhanced stabilization of NANOG protein after mitosis. Our data show that cell cycle, signaling, and differentiation are coordinated during preimplantation development.
Collapse
Affiliation(s)
- Michael J Pokrass
- Department Molecular Biology and Genetics, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular, and Molecular Biology Graduate Program, Baltimore, MD, USA
| | - Kathleen A Ryan
- Department Molecular Biology and Genetics, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tianchi Xin
- Genetics Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Brittany Pielstick
- Biochemistry, Cellular, and Molecular Biology Graduate Program, Baltimore, MD, USA; Biomedical Engineering Department, the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Winston Timp
- Biomedical Engineering Department, the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Valentina Greco
- Genetics Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sergi Regot
- Department Molecular Biology and Genetics, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Saiz N, Hadjantonakis AK. Coordination between patterning and morphogenesis ensures robustness during mouse development. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190562. [PMID: 32829684 PMCID: PMC7482220 DOI: 10.1098/rstb.2019.0562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian preimplantation embryo is a highly tractable, self-organizing developmental system in which three cell types are consistently specified without the need for maternal factors or external signals. Studies in the mouse over the past decades have greatly improved our understanding of the cues that trigger symmetry breaking in the embryo, the transcription factors that control lineage specification and commitment, and the mechanical forces that drive morphogenesis and inform cell fate decisions. These studies have also uncovered how these multiple inputs are integrated to allocate the right number of cells to each lineage despite inherent biological noise, and as a response to perturbations. In this review, we summarize our current understanding of how these processes are coordinated to ensure a robust and precise developmental outcome during early mouse development. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Néstor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
28
|
Saiz N, Mora-Bitria L, Rahman S, George H, Herder JP, Garcia-Ojalvo J, Hadjantonakis AK. Growth-factor-mediated coupling between lineage size and cell fate choice underlies robustness of mammalian development. eLife 2020; 9:e56079. [PMID: 32720894 PMCID: PMC7513828 DOI: 10.7554/elife.56079] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/24/2020] [Indexed: 01/03/2023] Open
Abstract
Precise control and maintenance of population size is fundamental for organismal development and homeostasis. The three cell types of the mammalian blastocyst are generated in precise proportions over a short time, suggesting a mechanism to ensure a reproducible outcome. We developed a minimal mathematical model demonstrating growth factor signaling is sufficient to guarantee this robustness and which anticipates an embryo's response to perturbations in lineage composition. Addition of lineage-restricted cells both in vivo and in silico, causes a shift of the fate of progenitors away from the supernumerary cell type, while eliminating cells using laser ablation biases the specification of progenitors toward the targeted cell type. Finally, FGF4 couples fate decisions to lineage composition through changes in local growth factor concentration, providing a basis for the regulative abilities of the early mammalian embryo whereby fate decisions are coordinated at the population level to robustly generate tissues in the right proportions.
Collapse
Affiliation(s)
- Néstor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Laura Mora-Bitria
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Shahadat Rahman
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Hannah George
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jeremy P Herder
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
29
|
Fischer SC, Corujo-Simon E, Lilao-Garzon J, Stelzer EHK, Muñoz-Descalzo S. The transition from local to global patterns governs the differentiation of mouse blastocysts. PLoS One 2020; 15:e0233030. [PMID: 32413083 PMCID: PMC7228118 DOI: 10.1371/journal.pone.0233030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/27/2020] [Indexed: 01/06/2023] Open
Abstract
During mammalian blastocyst development, inner cell mass (ICM) cells differentiate into epiblast (Epi) or primitive endoderm (PrE). These two fates are characterized by the expression of the transcription factors NANOG and GATA6, respectively. Here, we investigate the spatio-temporal distribution of NANOG and GATA6 expressing cells in the ICM of the mouse blastocysts with quantitative three-dimensional single cell-based neighbourhood analyses. We define the cell neighbourhood by local features, which include the expression levels of both fate markers expressed in each cell and its neighbours, and the number of neighbouring cells. We further include the position of a cell relative to the centre of the ICM as a global positional feature. Our analyses reveal a local three-dimensional pattern that is already present in early blastocysts: 1) Cells expressing the highest NANOG levels are surrounded by approximately nine neighbours, while 2) cells expressing GATA6 cluster according to their GATA6 levels. This local pattern evolves into a global pattern in the ICM that starts to emerge in mid blastocysts. We show that FGF/MAPK signalling is involved in the three-dimensional distribution of the cells and, using a mutant background, we further show that the GATA6 neighbourhood is regulated by NANOG. Our quantitative study suggests that the three-dimensional cell neighbourhood plays a role in Epi and PrE precursor specification. Our results highlight the importance of analysing the three-dimensional cell neighbourhood while investigating cell fate decisions during early mouse embryonic development.
Collapse
Affiliation(s)
- Sabine C. Fischer
- Physikalische Biologie, Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Elena Corujo-Simon
- Department of Biology and Biochemistry, University of Bath, Bath, England, United Kingdom
| | - Joaquin Lilao-Garzon
- Department of Biology and Biochemistry, University of Bath, Bath, England, United Kingdom
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ernst H. K. Stelzer
- Physikalische Biologie, Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Silvia Muñoz-Descalzo
- Department of Biology and Biochemistry, University of Bath, Bath, England, United Kingdom
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
30
|
Laing AF, Tirumala V, Hegarty E, Mondal S, Zhao P, Hamilton WB, Brickman JM, Ben-Yakar A. An automated microfluidic device for time-lapse imaging of mouse embryonic stem cells. BIOMICROFLUIDICS 2019; 13:054102. [PMID: 31558920 PMCID: PMC6748857 DOI: 10.1063/1.5124057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Long-term, time-lapse imaging studies of embryonic stem cells (ESCs) require a controlled and stable culturing environment for high-resolution imaging. Microfluidics is well-suited for such studies, especially when the media composition needs to be rapidly and accurately altered without disrupting the imaging. Current studies in plates, which can only add molecules at the start of an experiment without any information on the levels of endogenous signaling before the exposure, are incompatible with continuous high-resolution imaging and cell-tracking. Here, we present a custom designed, fully automated microfluidic chip to overcome these challenges. A unique feature of our chip includes three-dimensional ports that can connect completely sealed on-chip valves for fluid control to individually addressable cell culture chambers with thin glass bottoms for high-resolution imaging. We developed a robust protocol for on-chip culturing of mouse ESCs for minimum of 3 days, to carry out experiments reliably and repeatedly. The on-chip ESC growth rate was similar to that on standard culture plates with same initial cell density. We tested the chips for high-resolution, time-lapse imaging of a sensitive reporter of ESC lineage priming, Nanog-GFP, and HHex-Venus with an H2B-mCherry nuclear marker for cell-tracking. Two color imaging of cells was possible over a 24-hr period while maintaining cell viability. Importantly, changing the media did not affect our ability to track individual cells. This system now enables long-term fluorescence imaging studies in a reliable and automated manner in a fully controlled microenvironment.
Collapse
Affiliation(s)
- Adam F. Laing
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas 78712, USA
| | - Venkat Tirumala
- Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Austin, Texas 78712, USA
| | - Evan Hegarty
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas 78712, USA
| | - Sudip Mondal
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas 78712, USA
| | - Peisen Zhao
- Department of Electrical and Computer Engineering, The University of Texas at Austin, 2501 Speedway, Austin, Texas 78712, USA
| | - William B. Hamilton
- The Novo Nordisk Foundation Center for Stem Cell Biology—DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Joshua M. Brickman
- The Novo Nordisk Foundation Center for Stem Cell Biology—DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | | |
Collapse
|
31
|
Deathridge J, Antolović V, Parsons M, Chubb JR. Live imaging of ERK signalling dynamics in differentiating mouse embryonic stem cells. Development 2019; 146:dev172940. [PMID: 31064783 PMCID: PMC6602347 DOI: 10.1242/dev.172940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/29/2019] [Indexed: 12/18/2022]
Abstract
Stimulation of the ERK/MAPK pathway is required for the exit from pluripotency and onset of differentiation in mouse embryonic stem cells (ESCs). The dynamic behaviour of ERK activity in individual cells during this transition is unclear. Using a FRET-based biosensor, we monitored ERK signalling dynamics of single mouse ESCs during differentiation. ERK activity was highly heterogeneous, with considerable variability in ERK signalling between single cells within ESC colonies. Different triggers of differentiation induced distinct ERK activity profiles. Surprisingly, the dynamic features of ERK signalling were not strongly coupled to loss of pluripotency marker expression, regardless of the differentiation stimulus, suggesting the normal dynamic range of ERK signalling is not rate-limiting in single cells during differentiation. ERK signalling dynamics were sensitive to the degree of cell crowding and were similar in neighbouring cells. Sister cells from a mitotic division also showed more similar ERK activity, an effect that was apparent whether cells remained adjacent or moved apart after division. These data suggest a combination of cell lineage and niche contributes to the absolute level of ERK signalling in mouse ESCs.
Collapse
Affiliation(s)
- Julia Deathridge
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, London SE1 1UL, UK
| | - Vlatka Antolović
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, London SE1 1UL, UK
| | - Jonathan R Chubb
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
32
|
The N-end rule pathway enzyme Naa10 supports epiblast specification in mouse embryonic stem cells by modulating FGF/MAPK. In Vitro Cell Dev Biol Anim 2019; 55:355-367. [PMID: 30993557 DOI: 10.1007/s11626-019-00341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
N-terminal acetylation (Nt-acetylation) refers to the acetylation of the free α-amino group at the N-terminus of a polypeptide. While the effects of Nt-acetylation are multifaceted, its most known function is in the acetylation-dependent N-end rule protein degradation pathway (Ac/N-end rule pathway), where Nt-acetylation is recognized as a degron by designated E3 ligases, eventually leading to target degradation by the ubiquitin-proteasome system. Naa10 is the catalytic subunit of the major Nt-acetylation enzyme NatA, which Nt-acetylates proteins whose second amino acid has a small side chain. In humans, NAA10 is the responsible mutated gene in Ogden syndrome and is thought to play important roles in development. However, it is unclear how the Ac/N-end rule pathway affects the differentiation ability of mouse embryonic stem cells (mESCs). We hypothesized that the balance of pluripotency factors may be maintained by the Ac/N-end rule pathway. Thus, we established Naa10 knockout mESCs to test this hypothesis. We found that Naa10 deficiency attenuated differentiation towards the epiblast lineage, deviating towards primitive endoderm. However, this was not caused by disturbing the balance of pluripotency factors, rather by augmenting FGF/MAPK signaling.
Collapse
|
33
|
Zhong Y, Binas B. Transcriptome analysis shows ambiguous phenotypes of murine primitive endoderm-related stem cell lines. Genes Cells 2019; 24:324-331. [PMID: 30821040 DOI: 10.1111/gtc.12678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 01/06/2023]
Abstract
Primitive endoderm (PrE)-related cell lines (XEN, pXEN and nEnd cells) show key features of the PrE. By transcriptome analysis, we show: (a) Compared to embryonic stem cells, PrE-related cell lines are less in vivo like, although early nEnd cells are most similar to the PrE. (b) These cell lines show post-PrE features of parietal (XEN and pXEN cells) or visceral (nEnd cells) endoderm, likely driven by Tgf-β and Wnt/Activin signaling, respectively. (c) pXEN and nEnd cell lines additionally show pre-PrE features. Hence, neither pXEN nor nEnd cell cultures represent a distinct in vivo entity. Rather, their properties are compatible with mixed and hybrid phenotypes. Our findings indicate that pre-PrE, PrE and early post-PrE phenotypes result from different niches, which need to be better understood to derive cell lines that distinctly represent the early stages of the extraembryonic endoderm.
Collapse
Affiliation(s)
- Yixiang Zhong
- Department of Molecular & Life Science, College of Science and Convergence Technology, Hanyang University, Gyeonggi-do, Korea
| | - Bert Binas
- Department of Molecular & Life Science, College of Science and Convergence Technology, Hanyang University, Gyeonggi-do, Korea
| |
Collapse
|
34
|
Bai C, Zhang H, Zhang X, Yang W, Li X, Gao Y. MiR-15/16 mediate crosstalk between the MAPK and Wnt/β-catenin pathways during hepatocyte differentiation from amniotic epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:567-581. [PMID: 30753902 DOI: 10.1016/j.bbagrm.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023]
Abstract
MiR-15/16 play an important role in liver development and hepatocyte differentiation, but the mechanisms by which these miRNAs regulate their targets and downstream genes to influence cell fate are poorly understood. In this study, we showed up-regulation of miR-15/16 during HGF- and FGF4-induced hepatocyte differentiation from amniotic epithelial cells (AECs). To elucidate the role of miR-15/16 and their targets in hepatocyte differentiation, we investigated the roles of miR-15/16 in both the MAPK and Wnt/β-catenin pathways, which were predicted to be involved in miR-15/16 signaling. Our results demonstrated that the transcription of miR-15/16 was enhanced by c-Fos, c-Jun, and CREB, important elements of the MAPK pathway, and miR-15/16 in turn directly targeted adenomatous polyposis coli (APC) protein, a major member of the β-catenin degradation complex. MiR-15/16 destroyed these degradation complexes to activate β-catenin, and the activated β-catenin combined with LEF/TCF7L1 to form a transcriptional complex that enhanced transcription of hepatocyte nuclear factor 4 alpha (HNF4α). HNF4α also bound the promoter region of miR-15/16 and promoted its transcription, thereby forming a regulatory circuit to promote the differentiation of AECs into hepatocytes. Endogenous miRNAs are, therefore, involved in hepatocyte differentiation from AECs and should be considered during the development of an effective hepatocyte transplant therapy for liver damage.
Collapse
Affiliation(s)
- Chunyu Bai
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of precision medicine, Jining Medical University, Jining, Shandong 272067, PR China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Hongwei Zhang
- Department of Neurosurgery, Second Hospital of Tianjin Medical University, Tianjin 300211, PR China
| | - Xiangyang Zhang
- College of Basic Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Wancai Yang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of precision medicine, Jining Medical University, Jining, Shandong 272067, PR China; Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xiangchen Li
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang 311300, PR China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Yuhua Gao
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of precision medicine, Jining Medical University, Jining, Shandong 272067, PR China; College of Basic Medicine, Jining Medical University, Jining, Shandong 272067, PR China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
35
|
Azami T, Bassalert C, Allègre N, Estrella LV, Pouchin P, Ema M, Chazaud C. Regulation of ERK signalling pathway in the developing mouse blastocyst. Development 2019; 146:dev.177139. [DOI: 10.1242/dev.177139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022]
Abstract
Activation of the ERK signalling pathway is essential for the differentiation of the inner cell mass (ICM) during mouse preimplantation development. We show here that ERK phosphorylation is present in ICM precursor cells, in differentiated Primitive Endoderm (PrE) cells as well as in the mature, formative state Epiblast (Epi). We further show that DUSP4 and ETV5, factors often involved in negative feedback loops of the FGF pathway are differently regulated. While DUSP4 presence clearly depends on ERK phosphorylation in PrE cells, ETV5 localises mainly to Epi cells. Unexpectedly, ETV5 accumulation does not depend on direct activation by ERK but requires NANOG activity. Indeed ETV5, like Fgf4 expression, is not present in Nanog mutant embryos. Our results lead us to propose that in pluripotent early Epi cells, NANOG induces the expression of both Fgf4 and Etv5 to enable the differentiation of neighbouring cells into PrE while protecting the Epi identity from autocrine signalling.
Collapse
Affiliation(s)
- Takuya Azami
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Cécilia Bassalert
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Nicolas Allègre
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Lorena Valverde Estrella
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Pierre Pouchin
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study 606-8501, Japan
| | - Claire Chazaud
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| |
Collapse
|
36
|
Simon CS, Zhang L, Wu T, Cai W, Saiz N, Nowotschin S, Cai CL, Hadjantonakis AK. A Gata4 nuclear GFP transcriptional reporter to study endoderm and cardiac development in the mouse. Biol Open 2018; 7:bio.036517. [PMID: 30530745 PMCID: PMC6310872 DOI: 10.1242/bio.036517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The GATA zinc-finger transcription factor GATA4 is expressed in a variety of tissues during mouse embryonic development and in adult organs. These include the primitive endoderm of the blastocyst, visceral endoderm of the early post-implantation embryo, as well as lateral plate mesoderm, developing heart, liver, lung and gonads. Here, we generate a novel Gata4 targeted allele used to generate both a Gata4H2B-GFP transcriptional reporter and a Gata4FLAG fusion protein to analyse dynamic expression domains. We demonstrate that the Gata4H2B-GFP transcriptional reporter faithfully recapitulates known sites of Gata4 mRNA expression and correlates with endogenous GATA4 protein levels. This reporter labels nuclei of Gata4 expressing cells and is suitable for time-lapse imaging and single cell analyses. As such, this Gata4H2B-GFP allele will be a useful tool for studying Gata4 expression and transcriptional regulation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Claire S Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lu Zhang
- Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tao Wu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Weibin Cai
- Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nestor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chen-Leng Cai
- Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
37
|
Mathew B, Muñoz-Descalzo S, Corujo-Simon E, Schröter C, Stelzer EHK, Fischer SC. Mouse ICM Organoids Reveal Three-Dimensional Cell Fate Clustering. Biophys J 2018; 116:127-141. [PMID: 30514631 PMCID: PMC6341222 DOI: 10.1016/j.bpj.2018.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 02/05/2023] Open
Abstract
During mammalian preimplantation, cells of the inner cell mass (ICM) adopt either an embryonic or an extraembryonic fate. This process is tightly regulated in space and time and has been studied previously in mouse embryos and embryonic stem cell models. Current research suggests that cell fates are arranged in a salt-and-pepper pattern of random cell positioning or a spatially alternating pattern. However, the details of the three-dimensional patterns of cell fate specification have not been investigated in the embryo nor in in vitro systems. We developed ICM organoids as a, to our knowledge, novel three-dimensional in vitro stem cell system to model mechanisms of fate decisions that occur in the ICM. ICM organoids show similarities to the in vivo system that arise regardless of the differences in geometry and total cell number. Inspecting ICM organoids and mouse embryos, we describe a so far unknown local clustering of cells with identical fates in both systems. These findings are based on the three-dimensional quantitative analysis of spatiotemporal patterns of NANOG and GATA6 expression in combination with computational rule-based modeling. The pattern identified by our analysis is distinct from the current view of a salt-and-pepper pattern. Our investigation of the spatial distributions both in vivo and in vitro dissects the contributions of the different parts of the embryo to cell fate specifications. In perspective, our combination of quantitative in vivo and in vitro analyses can be extended to other mammalian organisms and thus creates a powerful approach to study embryogenesis.
Collapse
Affiliation(s)
- Biena Mathew
- Physikalische Biologie, Fachbereich Biowissenschaften, Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Silvia Muñoz-Descalzo
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom; Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Elena Corujo-Simon
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Christian Schröter
- Department of Systemic Cell Biology, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Ernst H K Stelzer
- Physikalische Biologie, Fachbereich Biowissenschaften, Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Sabine C Fischer
- Physikalische Biologie, Fachbereich Biowissenschaften, Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
38
|
Plusa B, Hadjantonakis AK. (De)constructing the blastocyst: Lessons in self-organization from the mouse. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.coisb.2018.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Nené NR, Rivington J, Zaikin A. Sensitivity of asymmetric rate-dependent critical systems to initial conditions: Insights into cellular decision making. Phys Rev E 2018; 98:022317. [PMID: 30253525 DOI: 10.1103/physreve.98.022317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 11/07/2022]
Abstract
The work reported here aims to address the effects of time-dependent parameters and stochasticity on decision making in biological systems. We achieve this by extending previous studies that resorted to simple bifurcation normal forms, although in the present case we focus primarily on the issue of the system's sensitivity to initial conditions in the presence of two different noise distributions, Gaussian and Lévy. In addition, we also assess the impact of two-way sweeping at different rates through the critical region of a canonical Pitchfork bifurcation with a constant external asymmetry. The parallel with decision making in biocircuits is performed on this simple system since it is equivalent in its available states and dynamics to more complex genetic circuits published previously. Overall we verify that rate-dependent effects, previously reported as being important features of bifurcating systems, are specific to particular initial conditions. Processing of each starting state, which for the normal form underlying this study is akin to a classification task, is affected by the balance between sweeping speed through critical regions and the type of fluctuations added. For the heavy-tailed noise, two-way dynamic bifurcations are more efficient in processing the external signals, here understood to be jointly represented by the critical parameter profile and the external asymmetry amplitude, when compared to the system relying on escape dynamics. This is particular to the case when the system starts at an attractor not favored by the asymmetry and, in conjunction, when the sweeping amplitude is large.
Collapse
Affiliation(s)
- Nuno R Nené
- Department of Genetics, University of Cambridge, CB2 3EH Cambridge, United Kingdom.,Institute for Women's Health, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - James Rivington
- Department of Mathematics, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - Alexey Zaikin
- Institute for Women's Health, University College London, Gower Street, WC1E 6BT London, United Kingdom.,Department of Mathematics, University College London, Gower Street, WC1E 6BT London, United Kingdom.,Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
40
|
Nett IR, Mulas C, Gatto L, Lilley KS, Smith A. Negative feedback via RSK modulates Erk-dependent progression from naïve pluripotency. EMBO Rep 2018; 19:e45642. [PMID: 29895711 PMCID: PMC6073214 DOI: 10.15252/embr.201745642] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signalling is implicated in initiation of embryonic stem (ES) cell differentiation. The pathway is subject to complex feedback regulation. Here, we examined the ERK-responsive phosphoproteome in ES cells and identified the negative regulator RSK1 as a prominent target. We used CRISPR/Cas9 to create combinatorial mutations in RSK family genes. Genotypes that included homozygous null mutations in Rps6ka1, encoding RSK1, resulted in elevated ERK phosphorylation. These RSK-depleted ES cells exhibit altered kinetics of transition into differentiation, with accelerated downregulation of naïve pluripotency factors, precocious expression of transitional epiblast markers and early onset of lineage specification. We further show that chemical inhibition of RSK increases ERK phosphorylation and expedites ES cell transition without compromising multilineage potential. These findings demonstrate that the ERK activation profile influences the dynamics of pluripotency progression and highlight the role of signalling feedback in temporal control of cell state transitions.
Collapse
Affiliation(s)
- Isabelle Re Nett
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Carla Mulas
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Laurent Gatto
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
- Computational Proteomics Unit, Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
41
|
Pfeffer PL. Building Principles for Constructing a Mammalian Blastocyst Embryo. BIOLOGY 2018; 7:biology7030041. [PMID: 30041494 PMCID: PMC6164496 DOI: 10.3390/biology7030041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022]
Abstract
The self-organisation of a fertilised egg to form a blastocyst structure, which consists of three distinct cell lineages (trophoblast, epiblast and hypoblast) arranged around an off-centre cavity, is unique to mammals. While the starting point (the zygote) and endpoint (the blastocyst) are similar in all mammals, the intervening events have diverged. This review examines and compares the descriptive and functional data surrounding embryonic gene activation, symmetry-breaking, first and second lineage establishment, and fate commitment in a wide range of mammalian orders. The exquisite detail known from mouse embryogenesis, embryonic stem cell studies and the wealth of recent single cell transcriptomic experiments are used to highlight the building principles underlying early mammalian embryonic development.
Collapse
Affiliation(s)
- Peter L Pfeffer
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
| |
Collapse
|
42
|
Fang X, Liu Q, Bohrer C, Hensel Z, Han W, Wang J, Xiao J. Cell fate potentials and switching kinetics uncovered in a classic bistable genetic switch. Nat Commun 2018; 9:2787. [PMID: 30018349 PMCID: PMC6050291 DOI: 10.1038/s41467-018-05071-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
Bistable switches are common gene regulatory motifs directing two mutually exclusive cell fates. Theoretical studies suggest that bistable switches are sufficient to encode more than two cell fates without rewiring the circuitry due to the non-equilibrium, heterogeneous cellular environment. However, such a scenario has not been experimentally observed. Here by developing a new, dual single-molecule gene-expression reporting system, we find that for the two mutually repressing transcription factors CI and Cro in the classic bistable bacteriophage λ switch, there exist two new production states, in which neither CI nor Cro is produced, or both CI and Cro are produced. We construct the corresponding potential landscape and map the transition kinetics among the four production states. These findings uncover cell fate potentials beyond the classical picture of bistable switches, and open a new window to explore the genetic and environmental origins of the cell fate decision-making process in gene regulatory networks.
Collapse
Affiliation(s)
- Xiaona Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, 130022, China
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- College of Physics, Jilin University, Changchun, 130012, China
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, 130022, China
| | - Christopher Bohrer
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Zach Hensel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Wei Han
- College of Physics, Jilin University, Changchun, 130012, China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, 130022, China.
- College of Physics, Jilin University, Changchun, 130012, China.
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY, 11790, USA.
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
43
|
Morgani SM, Saiz N, Garg V, Raina D, Simon CS, Kang M, Arias AM, Nichols J, Schröter C, Hadjantonakis AK. A Sprouty4 reporter to monitor FGF/ERK signaling activity in ESCs and mice. Dev Biol 2018; 441:104-126. [PMID: 29964027 DOI: 10.1016/j.ydbio.2018.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Abstract
The FGF/ERK signaling pathway is highly conserved throughout evolution and plays fundamental roles during embryonic development and in adult organisms. While a plethora of expression data exists for ligands, receptors and pathway regulators, we know little about the spatial organization or dynamics of signaling in individual cells within populations. To this end we developed a transcriptional readout of FGF/ERK activity by targeting a histone H2B-linked Venus fluorophore to the endogenous locus of Spry4, an early pathway target, and generated Spry4H2B-Venus embryonic stem cells (ESCs) and a derivative mouse line. The Spry4H2B-Venus reporter was heterogeneously expressed within ESC cultures and responded to FGF/ERK signaling manipulation. In vivo, the Spry4H2B-Venus reporter recapitulated the expression pattern of Spry4 and localized to sites of known FGF/ERK activity including the inner cell mass of the pre-implantation embryo and the limb buds, somites and isthmus of the post-implantation embryo. Additionally, we observed highly localized reporter expression within adult organs. Genetic and chemical disruption of FGF/ERK signaling, in vivo in pre- and post-implantation embryos, abrogated Venus expression establishing the reporter as an accurate signaling readout. This tool will provide new insights into the dynamics of the FGF/ERK signaling pathway during mammalian development.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Nestor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Dhruv Raina
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Claire S Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Minjung Kang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | | | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
44
|
Zinkle A, Mohammadi M. A threshold model for receptor tyrosine kinase signaling specificity and cell fate determination. F1000Res 2018; 7:F1000 Faculty Rev-872. [PMID: 29983915 PMCID: PMC6013765 DOI: 10.12688/f1000research.14143.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 11/20/2022] Open
Abstract
Upon ligand engagement, the single-pass transmembrane receptor tyrosine kinases (RTKs) dimerize to transmit qualitatively and quantitatively different intracellular signals that alter the transcriptional landscape and thereby determine the cellular response. The molecular mechanisms underlying these fundamental events are not well understood. Considering recent insights into the structural biology of fibroblast growth factor signaling, we propose a threshold model for RTK signaling specificity in which quantitative differences in the strength/longevity of ligand-induced receptor dimers on the cell surface lead to quantitative differences in the phosphorylation of activation loop (A-loop) tyrosines as well as qualitative differences in the phosphorylation of tyrosines mediating substrate recruitment. In this model, quantitative differences on A-loop tyrosine phosphorylation result in gradations in kinase activation, leading to the generation of intracellular signals of varying amplitude/duration. In contrast, qualitative differences in the pattern of tyrosine phosphorylation on the receptor result in the recruitment/activation of distinct substrates/intracellular pathways. Commensurate with both the dynamics of the intracellular signal and the types of intracellular pathways activated, unique transcriptional signatures are established. Our model provides a framework for engineering clinically useful ligands that can tune receptor dimerization stability so as to bias the cellular transcriptome to achieve a desired cellular output.
Collapse
Affiliation(s)
- Allen Zinkle
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Moosa Mohammadi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
45
|
p53-Dependent and -Independent Epithelial Integrity: Beyond miRNAs and Metabolic Fluctuations. Cancers (Basel) 2018; 10:cancers10060162. [PMID: 29799511 PMCID: PMC6024951 DOI: 10.3390/cancers10060162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
In addition to its classical roles as a tumor suppressor, p53 has also been shown to act as a guardian of epithelial integrity by inducing the microRNAs that target transcriptional factors driving epithelial⁻mesenchymal transition. On the other hand, the ENCODE project demonstrated an enrichment of putative motifs for the binding of p53 in epithelial-specific enhancers, such as CDH1 (encoding E-cadherin) enhancers although its biological significance remained unknown. Recently, we identified two novel modes of epithelial integrity (i.e., maintenance of CDH1 expression): one involves the binding of p53 to a CDH1 enhancer region and the other does not. In the former, the binding of p53 is necessary to maintain permissive histone modifications around the CDH1 transcription start site, whereas in the latter, p53 does not bind to this region nor affect histone modifications. Furthermore, these mechanisms likely coexisted within the same tissue. Thus, the mechanisms involved in epithelial integrity appear to be much more complex than previously thought. In this review, we describe our findings, which may instigate further experimental scrutiny towards understanding the whole picture of epithelial integrity as well as the related complex asymmetrical functions of p53. Such understanding will be important not only for cancer biology but also for the safety of regenerative medicine.
Collapse
|
46
|
Simon CS, Hadjantonakis AK, Schröter C. Making lineage decisions with biological noise: Lessons from the early mouse embryo. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e319. [PMID: 29709110 DOI: 10.1002/wdev.319] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/09/2018] [Accepted: 03/13/2018] [Indexed: 12/18/2022]
Abstract
Understanding how individual cells make fate decisions that lead to the faithful formation and homeostatic maintenance of tissues is a fundamental goal of contemporary developmental and stem cell biology. Seemingly uniform populations of stem cells and multipotent progenitors display a surprising degree of heterogeneity, primarily originating from the inherent stochastic nature of molecular processes underlying gene expression. Despite this heterogeneity, lineage decisions result in tissues of a defined size and with consistent proportions of differentiated cell types. Using the early mouse embryo as a model we review recent developments that have allowed the quantification of molecular intercellular heterogeneity during cell differentiation. We first discuss the relationship between these heterogeneities and developmental cellular potential. We then review recent theoretical approaches that formalize the mechanisms underlying fate decisions in the inner cell mass of the blastocyst stage embryo. These models build on our extensive knowledge of the genetic control of fate decisions in this system and will become essential tools for a rigorous understanding of the connection between noisy molecular processes and reproducible outcomes at the multicellular level. We conclude by suggesting that cell-to-cell communication provides a mechanism to exploit and buffer intercellular variability in a self-organized process that culminates in the reproducible formation of the mature mammalian blastocyst stage embryo that is ready for implantation into the maternal uterus. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Gene Expression and Transcriptional Hierarchies > Quantitative Methods and Models.
Collapse
Affiliation(s)
- Claire S Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
47
|
Meng Y, Moore R, Tao W, Smith ER, Tse JD, Caslini C, Xu XX. GATA6 phosphorylation by Erk1/2 propels exit from pluripotency and commitment to primitive endoderm. Dev Biol 2018; 436:55-65. [PMID: 29454706 PMCID: PMC5912698 DOI: 10.1016/j.ydbio.2018.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
The transcription factor GATA6 and the Fgf/Ras/MAPK signaling pathway are essential for the development of the primitive endoderm (PrE), one of the two lineages derived from the pluripotent inner cell mass (ICM) of mammalian blastocysts. A mutant mouse line in which Gata6-coding exons are replaced with H2BGFP (histone H2B Green Fluorescence Protein fusion protein) was developed to monitor Gata6 promoter activity. In the Gata6-H2BGFP heterozygous blastocysts, the ICM cells that initially had uniform GFP fluorescence signal at E3.5 diverged into two populations by the 64-cell stage, either as the GFP-high PrE or the GFP-low epiblasts (Epi). However in the GATA6-null blastocysts, the originally moderate GFP expression subsided in all ICM cells, indicating that the GATA6 protein is required to maintain its own promoter activity during PrE linage commitment. In embryonic stem cells, expressed GATA6 was shown to bind and activate the Gata6 promoter in PrE differentiation. Mutations of a conserved serine residue (S264) for Erk1/2 phosphorylation in GATA6 protein drastically impacted its ability to activate its own promoter. We conclude that phosphorylation of GATA6 by Erk1/2 compels exit from pluripotent state, and the phosphorylation propels a GATA6 positive feedback regulatory circuit to compel PrE differentiation. Our findings resolve the longstanding question on the dual requirements of GATA6 and Ras/MAPK pathway for PrE commitment of the pluripotent ICM.
Collapse
Affiliation(s)
- Yue Meng
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Robert Moore
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wensi Tao
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elizabeth R Smith
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jeffrey D Tse
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Corrado Caslini
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xiang-Xi Xu
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
48
|
Transcriptome variations among human embryonic stem cell lines are associated with their differentiation propensity. PLoS One 2018; 13:e0192625. [PMID: 29444173 PMCID: PMC5812638 DOI: 10.1371/journal.pone.0192625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/26/2018] [Indexed: 12/20/2022] Open
Abstract
Human embryonic stem cells (hESCs) have the potential to form any cell type in the body, making them attractive cell sources in drug screening, regenerative medicine, disease and developmental processes modeling. However, not all hESC lines have the equal potency to generate desired cell types in vitro. Significant variations have been observed for the differentiation efficiency of various human ESC lines. The precise underpinning molecular mechanisms are still unclear. In this work, we compared transcriptome variations of four hESC lines H7, HUES1, HUES8 and HUES9. We found that hESC lines have different gene expression profiles, and these differentially expressed genes (DEGs) are significantly enriched in developmental processes, such as ectodermal, mesodermal and endodermal development. The enrichment difference between hESC lines was consistent with its lineage bias. Among these DEGs, some pluripotency factors and genes involved in signaling transduction showed great variations as well. The pleiotropic functions of these genes in controlling hESC identity and early lineage specification, implicated that different hESC lines may utilize distinct balance mechanisms to maintain pluripotent state. When the balance is broken in a certain environment, gene expression variation between them could impact on their different lineage specification behavior.
Collapse
|
49
|
Abstract
During the first days following fertilization, cells of mammalian embryo gradually lose totipotency, acquiring distinct identity. The first three lineages specified in the mammalian embryo are pluripotent epiblast, which later gives rise to the embryo proper, and two extraembryonic lineages, hypoblast (also known as primitive endoderm) and trophectoderm, which form tissues supporting development of the fetus in utero. Most of our knowledge regarding the mechanisms of early lineage specification in mammals comes from studies in the mouse. However, the growing body of evidence points to both similarities and species-specific differences. Understanding molecular and cellular mechanisms of early embryonic development in nonrodent mammals expands our understanding of basic mechanisms of differentiation and is essential for the development of effective protocols for assisted reproduction in agriculture, veterinary medicine, and for biomedical research. This review summarizes the current state of knowledge on key events in epiblast, hypoblast, and trophoblast differentiation in domestic mammals.
Collapse
Affiliation(s)
- Anna Piliszek
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland.
| | - Zofia E Madeja
- Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
50
|
Kukushkin NV. Taking memory beyond the brain: Does tobacco dream of the mosaic virus? Neurobiol Learn Mem 2018; 153:111-116. [PMID: 29396326 DOI: 10.1016/j.nlm.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/05/2018] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
Abstract
Memory is typically defined through animal behavior, but this point of view may limit our understanding of many related processes in diverse biological systems. The concept of memory can be broadened meaningfully by considering it from the perspective of time and homeostasis. On the one hand, this theoretical angle can help explain and predict the behavior of various non-neural systems such as insulin-secreting cells, plants, or signaling cascades. On the other hand, it emphasizes biological continuity between neural phenomena, such as synaptic plasticity, and their evolutionary precursors in cellular signaling.
Collapse
Affiliation(s)
- Nikolay V Kukushkin
- Center for Neural Science, New York University, 4 Washington Pl, New York, NY 10003, USA.
| |
Collapse
|