1
|
Lambert KA, Clements CM, Mukherjee N, Pacheco TR, Shellman SX, Henen MA, Vögeli B, Goldstein NB, Birlea S, Hintzsche J, Caryotakis G, Tan AC, Zhao R, Norris DA, Robinson WA, Wang Y, VanTreeck JG, Shellman YG. SASH1 S519N Variant Links Skin Hyperpigmentation and Premature Hair Graying to Dysfunction of Melanocyte Lineage. J Invest Dermatol 2025; 145:144-154.e3. [PMID: 38848986 PMCID: PMC11621233 DOI: 10.1016/j.jid.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 06/09/2024]
Abstract
A better understanding of human melanocyte (MC) and MC stem cell biology is essential for treating MC-related diseases. This study employed an inherited pigmentation disorder carrying the SASH1S519N variant in a Hispanic family to investigate SASH1 function in the MC lineage and the underlying mechanism for this disorder. We used a multidisciplinary approach, including clinical examinations, human cell assays, yeast 2-hybrid screening, and biochemical techniques. Results linked early hair graying to the SASH1S519N variant, a previously unrecognized clinical phenotype in hyperpigmentation disorders. In vitro, we identified SASH1 as a regulator in MC stem cell maintenance and discovered that TNKS2 is crucial for SASH1's role. In addition, the S519N variant is located in one of multiple tankyrase-binding motifs and alters the binding kinetics and affinity of the interaction. In summary, this disorder links both gain and loss of pigmentation in the same individual, hinting to accelerated aging in human MC stem cells. The findings offer insights into the roles of SASH1 and TNKS2 in MC stem cell maintenance and the molecular mechanisms of pigmentation disorders. We propose that a comprehensive clinical evaluation of patients with MC-related disorders should include an assessment and history of hair pigmentation loss.
Collapse
Affiliation(s)
- Karoline A Lambert
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Christopher M Clements
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Nabanita Mukherjee
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Theresa R Pacheco
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Samantha X Shellman
- Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Nathaniel B Goldstein
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Stanca Birlea
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA; Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Griffin Caryotakis
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA; Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Aik-Choon Tan
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA; Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - David A Norris
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - William A Robinson
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Yizhou Wang
- Department of Chemistry, College of Arts and Sciences, Emory University, Atlanta, Georgia, USA
| | - Jillian G VanTreeck
- College of Biological Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Yiqun G Shellman
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA; Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
2
|
Sun H, Shami Shah A, Chiu DC, Bonfini A, Buchon N, Baskin JM. Wnt/β-catenin signaling within multiple cell types dependent upon kramer regulates Drosophila intestinal stem cell proliferation. iScience 2024; 27:110113. [PMID: 38952681 PMCID: PMC11215309 DOI: 10.1016/j.isci.2024.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/08/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
The gut epithelium is subject to constant renewal, a process reliant upon intestinal stem cell (ISC) proliferation that is driven by Wnt/β-catenin signaling. Despite the importance of Wnt signaling within ISCs, the relevance of Wnt signaling within other gut cell types and the underlying mechanisms that modulate Wnt signaling in these contexts remain incompletely understood. Using challenge of the Drosophila midgut with a non-lethal enteric pathogen, we examine the cellular determinants of ISC proliferation, harnessing kramer, a recently identified regulator of Wnt signaling pathways, as a mechanistic tool. We find that Wnt signaling within Prospero-positive cells supports ISC proliferation and that kramer regulates Wnt signaling in this context by antagonizing kelch, a Cullin-3 E3 ligase adaptor that mediates Dishevelled polyubiquitination. This work establishes kramer as a physiological regulator of Wnt/β-catenin signaling in vivo and suggests enteroendocrine cells as a new cell type that regulates ISC proliferation via Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Hongyan Sun
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Adnan Shami Shah
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Din-Chi Chiu
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alessandro Bonfini
- Cornell Institute of Host Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, P.R. China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Nicolas Buchon
- Cornell Institute of Host Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M. Baskin
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Van Gerrewey T, Chung HS. MAPK Cascades in Plant Microbiota Structure and Functioning. J Microbiol 2024; 62:231-248. [PMID: 38587594 DOI: 10.1007/s12275-024-00114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 04/09/2024]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules that coordinate diverse biological processes such as plant innate immunity and development. Recently, MAPK cascades have emerged as pivotal regulators of the plant holobiont, influencing the assembly of normal plant microbiota, essential for maintaining optimal plant growth and health. In this review, we provide an overview of current knowledge on MAPK cascades, from upstream perception of microbial stimuli to downstream host responses. Synthesizing recent findings, we explore the intricate connections between MAPK signaling and the assembly and functioning of plant microbiota. Additionally, the role of MAPK activation in orchestrating dynamic changes in root exudation to shape microbiota composition is discussed. Finally, our review concludes by emphasizing the necessity for more sophisticated techniques to accurately decipher the role of MAPK signaling in establishing the plant holobiont relationship.
Collapse
Affiliation(s)
- Thijs Van Gerrewey
- Plant Biotechnology Research Center, Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, 21985, Republic of Korea
| | - Hoo Sun Chung
- Plant Biotechnology Research Center, Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, 21985, Republic of Korea.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
4
|
Qiu C, Zhang Z, Wine RN, Campbell ZT, Zhang J, Hall TMT. Intra- and inter-molecular regulation by intrinsically-disordered regions governs PUF protein RNA binding. Nat Commun 2023; 14:7323. [PMID: 37953271 PMCID: PMC10641069 DOI: 10.1038/s41467-023-43098-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
PUF proteins are characterized by globular RNA-binding domains. They also interact with partner proteins that modulate their RNA-binding activities. Caenorhabditis elegans PUF protein fem-3 binding factor-2 (FBF-2) partners with intrinsically disordered Lateral Signaling Target-1 (LST-1) to regulate target mRNAs in germline stem cells. Here, we report that an intrinsically disordered region (IDR) at the C-terminus of FBF-2 autoinhibits its RNA-binding affinity by increasing the off rate for RNA binding. Moreover, the FBF-2 C-terminal region interacts with its globular RNA-binding domain at the same site where LST-1 binds. This intramolecular interaction restrains an electronegative cluster of amino acid residues near the 5' end of the bound RNA to inhibit RNA binding. LST-1 binding in place of the FBF-2 C-terminus therefore releases autoinhibition and increases RNA-binding affinity. This regulatory mechanism, driven by IDRs, provides a biochemical and biophysical explanation for the interdependence of FBF-2 and LST-1 in germline stem cell self-renewal.
Collapse
Affiliation(s)
- Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Zihan Zhang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert N Wine
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Zachary T Campbell
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jun Zhang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
5
|
Spencer ZT, Ng VH, Benchabane H, Siddiqui GS, Duwadi D, Maines B, Bryant JM, Schwarzkopf A, Yuan K, Kassel SN, Mishra A, Pimentel A, Lebensohn AM, Rohatgi R, Gerber SA, Robbins DJ, Lee E, Ahmed Y. The USP46 deubiquitylase complex increases Wingless/Wnt signaling strength by stabilizing Arrow/LRP6. Nat Commun 2023; 14:6174. [PMID: 37798281 PMCID: PMC10556106 DOI: 10.1038/s41467-023-41843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
The control of Wnt receptor abundance is critical for animal development and to prevent tumorigenesis, but the mechanisms that mediate receptor stabilization remain uncertain. We demonstrate that stabilization of the essential Wingless/Wnt receptor Arrow/LRP6 by the evolutionarily conserved Usp46-Uaf1-Wdr20 deubiquitylase complex controls signaling strength in Drosophila. By reducing Arrow ubiquitylation and turnover, the Usp46 complex increases cell surface levels of Arrow and enhances the sensitivity of target cells to stimulation by the Wingless morphogen, thereby increasing the amplitude and spatial range of signaling responses. Usp46 inactivation in Wingless-responding cells destabilizes Arrow, reduces cytoplasmic accumulation of the transcriptional coactivator Armadillo/β-catenin, and attenuates or abolishes Wingless target gene activation, which prevents the concentration-dependent regulation of signaling strength. Consequently, Wingless-dependent developmental patterning and tissue homeostasis are disrupted. These results reveal an evolutionarily conserved mechanism that mediates Wnt/Wingless receptor stabilization and underlies the precise activation of signaling throughout the spatial range of the morphogen gradient.
Collapse
Affiliation(s)
- Zachary T Spencer
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Victoria H Ng
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Ghalia Saad Siddiqui
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Deepesh Duwadi
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Ben Maines
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Jamal M Bryant
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Anna Schwarzkopf
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kai Yuan
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Sara N Kassel
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Anant Mishra
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Ashley Pimentel
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Andres M Lebensohn
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Scott A Gerber
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03766, USA
| | - David J Robbins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
6
|
Lambert KA, Clements CM, Mukherjee N, Pacheco TR, Shellman SX, Henen MA, Vögeli B, Goldstein NB, Birlea S, Hintzsche J, Tan AC, Zhao R, Norris DA, Robinson WA, Wang Y, VanTreeck JG, Shellman YG. SASH1 interacts with TNKS2 and promotes human melanocyte stem cell maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559624. [PMID: 37808724 PMCID: PMC10557680 DOI: 10.1101/2023.09.26.559624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Both aging spots (hyperpigmentation) and hair graying (lack of pigmentation) are associated with aging, two seemingly opposite pigmentation phenotypes. It is not clear how they are mechanistically connected. This study investigated the underlying mechanism in a family with an inherited pigmentation disorder. Clinical examinations identified accelerated hair graying and skin dyspigmentation (intermixed hyper and hypopigmentation) in the family members carrying the SASH1 S519N variant. Cell assays indicated that SASH1 promoted stem-like characteristics in human melanocytes, and SASH1 S519N was defective in this function. Multiple assays showed that SASH1 binds to tankyrase 2 (TNKS2), which is required for SASH1's promotion of stem-like function. Further, the SASH1 S519N variant is in a bona fide Tankyrase-binding motif, and SASH1 S519N alters the binding kinetics and affinity. Results here indicate SASH1 as a novel protein regulating the appropriate balance between melanocyte stem cells (McSC) and mature melanocytes (MCs), with S519N variant causing defects. We propose that dysfunction of McSC maintenance connects multiple aging-associated pigmentation phenotypes in the general population.
Collapse
|
7
|
Aitken C, Mehta V, Schwartz MA, Tzima E. Mechanisms of endothelial flow sensing. NATURE CARDIOVASCULAR RESEARCH 2023; 2:517-529. [PMID: 39195881 DOI: 10.1038/s44161-023-00276-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/14/2023] [Indexed: 08/29/2024]
Abstract
Fluid shear stress plays a key role in sculpting blood vessels during development, in adult vascular homeostasis and in vascular pathologies. During evolution, endothelial cells evolved several mechanosensors that convert physical forces into biochemical signals, a process termed mechanotransduction. This Review discusses our understanding of endothelial flow sensing and suggests important questions for future investigation.
Collapse
Affiliation(s)
- Claire Aitken
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vedanta Mehta
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Ellie Tzima
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
8
|
Sun H, Shah AS, Bonfini A, Buchon NS, Baskin JM. Wnt/β-catenin signaling within multiple cell types dependent upon kramer regulates Drosophila intestinal stem cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529411. [PMID: 36865263 PMCID: PMC9980071 DOI: 10.1101/2023.02.21.529411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The gut epithelium is subject to constant renewal, a process reliant upon intestinal stem cell (ISC) proliferation that is driven by Wnt/β-catenin signaling. Despite the importance of Wnt signaling within ISCs, the relevance of Wnt signaling within other gut cell types and the underlying mechanisms that modulate Wnt signaling in these contexts remain incompletely understood. Using challenge of the Drosophila midgut with a non-lethal enteric pathogen, we examine the cellular determinants of ISC proliferation, harnessing kramer, a recently identified regulator of Wnt signaling pathways, as a mechanistic tool. We find that Wnt signaling within Prospero-positive cells supports ISC proliferation and that kramer regulates Wnt signaling in this context by antagonizing kelch, a Cullin-3 E3 ligase adaptor that mediates Dishevelled polyubiquitination. This work establishes kramer as a physiological regulator of Wnt/β-catenin signaling in vivo and suggests enteroendocrine cells as a new cell type that regulates ISC proliferation via Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Hongyan Sun
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Adnan Shami Shah
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Alessandro Bonfini
- Cornell Institute of Host Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Nicolas S. Buchon
- Cornell Institute of Host Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Jeremy M. Baskin
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
9
|
Auger NA, Medina-Feliciano JG, Quispe-Parra DJ, Colón-Marrero S, Ortiz-Zuazaga H, García-Arrarás JE. Characterization and Expression of Holothurian Wnt Signaling Genes during Adult Intestinal Organogenesis. Genes (Basel) 2023; 14:309. [PMID: 36833237 PMCID: PMC9957329 DOI: 10.3390/genes14020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Wnt signaling has been shown to play multiple roles in regenerative processes, one of the most widely studied of which is the regeneration of the intestinal luminal epithelia. Most studies in this area have focused on self-renewal of the luminal stem cells; however, Wnt signaling may also have more dynamic functions, such as facilitating intestinal organogenesis. To explore this possibility, we employed the sea cucumber Holothuria glaberrima that can regenerate a full intestine over the course of 21 days after evisceration. We collected RNA-seq data from various intestinal tissues and regeneration stages and used these data to define the Wnt genes present in H. glaberrima and the differential gene expression (DGE) patterns during the regenerative process. Twelve Wnt genes were found, and their presence was confirmed in the draft genome of H. glaberrima. The expressions of additional Wnt-associated genes, such as Frizzled and Disheveled, as well as genes from the Wnt/β-catenin and Wnt/Planar Cell Polarity (PCP) pathways, were also analyzed. DGE showed unique distributions of Wnt in early- and late-stage intestinal regenerates, consistent with the Wnt/β-catenin pathway being upregulated during early-stages and the Wnt/PCP pathway being upregulated during late-stages. Our results demonstrate the diversity of Wnt signaling during intestinal regeneration, highlighting possible roles in adult organogenesis.
Collapse
Affiliation(s)
- Noah A. Auger
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | | | - David J. Quispe-Parra
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - Stephanie Colón-Marrero
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - Humberto Ortiz-Zuazaga
- Department of Computer Science, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - José E. García-Arrarás
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| |
Collapse
|
10
|
Sowa ST, Bosetti C, Galera-Prat A, Johnson MS, Lehtiö L. An Evolutionary Perspective on the Origin, Conservation and Binding Partner Acquisition of Tankyrases. Biomolecules 2022; 12:1688. [PMID: 36421702 PMCID: PMC9688111 DOI: 10.3390/biom12111688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 01/04/2024] Open
Abstract
Tankyrases are poly-ADP-ribosyltransferases that regulate many crucial and diverse cellular processes in humans such as Wnt signaling, telomere homeostasis, mitotic spindle formation and glucose metabolism. While tankyrases are present in most animals, functional differences across species may exist. In this work, we confirm the widespread distribution of tankyrases throughout the branches of multicellular animal life and identify the single-celled choanoflagellates as earliest origin of tankyrases. We further show that the sequences and structural aspects of TNKSs are well-conserved even between distantly related species. We also experimentally characterized an anciently diverged tankyrase homolog from the sponge Amphimedon queenslandica and show that the basic functional aspects, such as poly-ADP-ribosylation activity and interaction with the canonical tankyrase binding peptide motif, are conserved. Conversely, the presence of tankyrase binding motifs in orthologs of confirmed interaction partners varies greatly between species, indicating that tankyrases may have different sets of interaction partners depending on the animal lineage. Overall, our analysis suggests a remarkable degree of conservation for tankyrases, and that their regulatory functions in cells have likely changed considerably throughout evolution.
Collapse
Affiliation(s)
- Sven T. Sowa
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Chiara Bosetti
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Albert Galera-Prat
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering and InFLAMES Research Flagship Center, Åbo Akademi University, 20520 Turku, Finland
| | - Lari Lehtiö
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| |
Collapse
|
11
|
Martínez Traverso IM, Steimle JD, Zhao X, Wang J, Martin JF. LATS1/2 control TGFB-directed epithelial-to-mesenchymal transition in the murine dorsal cranial neuroepithelium through YAP regulation. Development 2022; 149:dev200860. [PMID: 36125128 PMCID: PMC9587805 DOI: 10.1242/dev.200860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
Hippo signaling, an evolutionarily conserved kinase cascade involved in organ size control, plays key roles in various tissue developmental processes, but its role in craniofacial development remains poorly understood. Using the transgenic Wnt1-Cre2 driver, we inactivated the Hippo signaling components Lats1 and Lats2 in the cranial neuroepithelium of mouse embryos and found that the double conditional knockout (DCKO) of Lats1/2 resulted in neural tube and craniofacial defects. Lats1/2 DCKO mutant embryos had microcephaly with delayed and defective neural tube closure. Furthermore, neuroepithelial cell shape and architecture were disrupted within the cranial neural tube in Lats1/2 DCKO mutants. RNA sequencing of embryonic neural tubes revealed increased TGFB signaling in Lats1/2 DCKO mutants. Moreover, markers of epithelial-to-mesenchymal transition (EMT) were upregulated in the cranial neural tube. Inactivation of Hippo signaling downstream effectors, Yap and Taz, suppressed neuroepithelial defects, aberrant EMT and TGFB upregulation in Lats1/2 DCKO embryos, indicating that LATS1/2 function via YAP and TAZ. Our findings reveal important roles for Hippo signaling in modulating TGFB signaling during neural crest EMT.
Collapse
Affiliation(s)
- Idaliz M. Martínez Traverso
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey D. Steimle
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - James F. Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX 77030 , USA
| |
Collapse
|
12
|
Lv S, Yang Y, Yu G, Peng L, Zheng S, Singh SK, Vílchez JI, Kaushal R, Zi H, Yi D, Wang Y, Luo S, Wu X, Zuo Z, Huang W, Liu R, Du J, Macho AP, Tang K, Zhang H. Dysfunction of histone demethylase IBM1 in Arabidopsis causes autoimmunity and reshapes the root microbiome. THE ISME JOURNAL 2022; 16:2513-2524. [PMID: 35908110 PMCID: PMC9561531 DOI: 10.1038/s41396-022-01297-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
Root microbiota is important for plant growth and fitness. Little is known about whether and how the assembly of root microbiota may be controlled by epigenetic regulation, which is crucial for gene transcription and genome stability. Here we show that dysfunction of the histone demethylase IBM1 (INCREASE IN BONSAI METHYLATION 1) in Arabidopsis thaliana substantially reshaped the root microbiota, with the majority of the significant amplicon sequence variants (ASVs) being decreased. Transcriptome analyses of plants grown in soil and in sterile growth medium jointly disclosed salicylic acid (SA)-mediated autoimmunity and production of the defense metabolite camalexin in the ibm1 mutants. Analyses of genome-wide histone modifications and DNA methylation highlighted epigenetic modifications permissive for transcription at several important defense regulators. Consistently, ibm1 mutants showed increased resistance to the pathogen Pseudomonas syringae DC3000 with stronger immune responses. In addition, ibm1 showed substantially impaired plant growth promotion in response to beneficial bacteria; the impairment was partially mimicked by exogenous application of SA to wild-type plants, and by a null mutation of AGP19 that is important for cell expansion and that is repressed with DNA hypermethylation in ibm1. IBM1-dependent epigenetic regulation imposes strong and broad impacts on plant-microbe interactions and thereby shapes the assembly of root microbiota.
Collapse
|
13
|
HGprt deficiency disrupts dopaminergic circuit development in a genetic mouse model of Lesch–Nyhan disease. Cell Mol Life Sci 2022; 79:341. [PMID: 35660973 PMCID: PMC9167210 DOI: 10.1007/s00018-022-04326-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 11/20/2022]
Abstract
In Lesch–Nyhan disease (LND), deficiency of the purine salvage enzyme hypoxanthine guanine phosphoribosyl transferase (HGprt) leads to a characteristic neurobehavioral phenotype dominated by dystonia, cognitive deficits and incapacitating self-injurious behavior. It has been known for decades that LND is associated with dysfunction of midbrain dopamine neurons, without overt structural brain abnormalities. Emerging post mortem and in vitro evidence supports the hypothesis that the dopaminergic dysfunction in LND is of developmental origin, but specific pathogenic mechanisms have not been revealed. In the current study, HGprt deficiency causes specific neurodevelopmental abnormalities in mice during embryogenesis, particularly affecting proliferation and migration of developing midbrain dopamine (mDA) neurons. In mutant embryos at E14.5, proliferation was increased, accompanied by a decrease in cell cycle exit and the distribution and orientation of dividing cells suggested a premature deviation from their migratory route. An abnormally structured radial glia-like scaffold supporting this mDA neuronal migration might lie at the basis of these abnormalities. Consequently, these abnormalities were associated with an increase in area occupied by TH+ cells and an abnormal mDA subpopulation organization at E18.5. Finally, dopaminergic innervation was disorganized in prefrontal and decreased in HGprt deficient primary motor and somatosensory cortices. These data provide direct in vivo evidence for a neurodevelopmental nature of the brain disorder in LND. Future studies should not only focus the specific molecular mechanisms underlying the reported neurodevelopmental abnormalities, but also on optimal timing of therapeutic interventions to rescue the DA neuron defects, which may also be relevant for other neurodevelopmental disorders.
Collapse
|
14
|
Reshef YA, Rumker L, Kang JB, Nathan A, Korsunsky I, Asgari S, Murray MB, Moody DB, Raychaudhuri S. Co-varying neighborhood analysis identifies cell populations associated with phenotypes of interest from single-cell transcriptomics. Nat Biotechnol 2022; 40:355-363. [PMID: 34675423 PMCID: PMC8930733 DOI: 10.1038/s41587-021-01066-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
As single-cell datasets grow in sample size, there is a critical need to characterize cell states that vary across samples and associate with sample attributes, such as clinical phenotypes. Current statistical approaches typically map cells to clusters and then assess differences in cluster abundance. Here we present co-varying neighborhood analysis (CNA), an unbiased method to identify associated cell populations with greater flexibility than cluster-based approaches. CNA characterizes dominant axes of variation across samples by identifying groups of small regions in transcriptional space-termed neighborhoods-that co-vary in abundance across samples, suggesting shared function or regulation. CNA performs statistical testing for associations between any sample-level attribute and the abundances of these co-varying neighborhood groups. Simulations show that CNA enables more sensitive and accurate identification of disease-associated cell states than a cluster-based approach. When applied to published datasets, CNA captures a Notch activation signature in rheumatoid arthritis, identifies monocyte populations expanded in sepsis and identifies a novel T cell population associated with progression to active tuberculosis.
Collapse
Affiliation(s)
- Yakir A Reshef
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laurie Rumker
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joyce B Kang
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ilya Korsunsky
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samira Asgari
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Megan B Murray
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Versus Arthritis Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
The birth of piRNAs: how mammalian piRNAs are produced, originated, and evolved. Mamm Genome 2021; 33:293-311. [PMID: 34724117 PMCID: PMC9114089 DOI: 10.1007/s00335-021-09927-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
Abstract
PIWI-interacting RNAs (piRNAs), small noncoding RNAs 24–35 nucleotides long, are essential for animal fertility. They play critical roles in a range of functions, including transposable element suppression, gene expression regulation, imprinting, and viral defense. In mammals, piRNAs are the most abundant small RNAs in adult testes and the only small RNAs that direct epigenetic modification of chromatin in the nucleus. The production of piRNAs is a complex process from transcription to post-transcription, requiring unique machinery often distinct from the biogenesis of other RNAs. In mice, piRNA biogenesis occurs in specialized subcellular locations, involves dynamic developmental regulation, and displays sexual dimorphism. Furthermore, the genomic loci and sequences of piRNAs evolve much more rapidly than most of the genomic regions. Understanding piRNA biogenesis should reveal novel RNA regulations recognizing and processing piRNA precursors and the forces driving the gain and loss of piRNAs during animal evolution. Such findings may provide the basis for the development of engineered piRNAs capable of modulating epigenetic regulation, thereby offering possible single-dose RNA therapy without changing the genomic DNA. In this review, we focus on the biogenesis of piRNAs in mammalian adult testes that are derived from long non-coding RNAs. Although piRNA biogenesis is believed to be evolutionarily conserved from fruit flies to humans, recent studies argue for the existence of diverse, mammalian-specific RNA-processing pathways that convert precursor RNAs into piRNAs, perhaps associated with the unique features of mammalian piRNAs or germ cell development. We end with the discussion of major questions in the field, including substrate recognition and the birth of new piRNAs.
Collapse
|
16
|
Abstract
Plant intra-individual and inter-individual variation can be determined by the epigenome, a set of covalent modifications of DNA and chromatin that can alter genome structure and activity without changes to the genome sequence. The epigenome of plant cells is plastic, that is, it can change in response to internal or external cues, such as during development or due to environmental changes, to create a memory of such events. Ongoing advances in technologies to read and write epigenomic patterns with increasing resolution, scale and precision are enabling the extent of plant epigenome variation to be more extensively characterized and functionally interrogated. In this Review, we discuss epigenome dynamics and variation within plants during development and in response to environmental changes, including stress, as well as between plants. We review known or potential functions of such plasticity and emphasize the importance of investigating the causality of epigenomic changes. Finally, we discuss emerging technologies that may underpin future research into plant epigenome plasticity.
Collapse
Affiliation(s)
- James P B Lloyd
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
17
|
Geng X, Ho YC, Srinivasan RS. Biochemical and mechanical signals in the lymphatic vasculature. Cell Mol Life Sci 2021; 78:5903-5923. [PMID: 34240226 PMCID: PMC11072415 DOI: 10.1007/s00018-021-03886-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Lymphatic vasculature is an integral part of the cardiovascular system where it maintains interstitial fluid balance. Additionally, lymphatic vasculature regulates lipid assimilation and inflammatory response. Lymphatic vasculature is composed of lymphatic capillaries, collecting lymphatic vessels and valves that function in synergy to absorb and transport fluid against gravitational and pressure gradients. Defects in lymphatic vessels or valves leads to fluid accumulation in tissues (lymphedema), chylous ascites, chylothorax, metabolic disorders and inflammation. The past three decades of research has identified numerous molecules that are necessary for the stepwise development of lymphatic vasculature. However, approaches to treat lymphatic disorders are still limited to massages and compression bandages. Hence, better understanding of the mechanisms that regulate lymphatic vascular development and function is urgently needed to develop efficient therapies. Recent research has linked mechanical signals such as shear stress and matrix stiffness with biochemical pathways that regulate lymphatic vessel growth, patterning and maturation and valve formation. The goal of this review article is to highlight these innovative developments and speculate on unanswered questions.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
18
|
Sun R, Wang Z, Claus Henn B, Su L, Lu Q, Lin X, Wright RO, Bellinger DC, Kile M, Mazumdar M, Tellez-Rojo MM, Schnaas L, Christiani DC. Identification of novel loci associated with infant cognitive ability. Mol Psychiatry 2020; 25:3010-3019. [PMID: 30120420 PMCID: PMC6378130 DOI: 10.1038/s41380-018-0205-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 12/02/2022]
Abstract
It is believed that genetic factors play a large role in the development of many cognitive and neurological processes; however, epidemiological evidence for the genetic basis of childhood neurodevelopment is very limited. Identification of the genetic polymorphisms associated with early-stage neurodevelopment will help elucidate biological mechanisms involved in neuro-behavior and provide a better understanding of the developing brain. To search for such variants, we performed a genome-wide association study (GWAS) for infant mental and motor ability at two years of age with mothers and children recruited from cohorts in Bangladesh and Mexico. Infant ability was assessed using mental and motor composite scores calculated with country-specific versions of the Bayley Scales of Infant Development. A missense variant (rs1055153) located in the gene WWTR1 reached genome-wide significance in association with mental composite score (meta-analysis effect size of minor allele βmeta = -6.04; 95% CI: -8.13 to -3.94; P = 1.56×10-8). Infants carrying the minor allele reported substantially lower cognitive scores in both cohorts, and this variant is predicted to be in the top 0.3% of most deleterious substitutions in the human genome. Fine mapping and region-based association testing provided additional suggestive evidence that both WWTR1 and a second gene, LRP1B, were associated with infant cognitive ability. Comparisons with recently conducted GWAS in intelligence and educational attainment indicate that our phenotypes do not possess a high genetic correlation with either adolescent or adult cognitive traits, suggesting that infant neurological assessments should be treated as an independent outcome of interest. Additional functional studies and replication efforts in other cohorts may help uncover new biological pathways and genetic architectures that are crucial to the developing brain.
Collapse
Affiliation(s)
- Ryan Sun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Zhaoxi Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Robert O Wright
- Department of Preventive Medicine, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - David C Bellinger
- Department of Psychiatry, Harvard Medical School and Boston Children's Hospital, Boston, MA, 02115, USA
| | - Molly Kile
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Martha Maria Tellez-Rojo
- Center of Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, 62100, Mexico
| | - Lourdes Schnaas
- Center of Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, 62100, Mexico
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
19
|
Li P, Huang P, Li X, Yin D, Ma Z, Wang H, Song H. Tankyrase Mediates K63-Linked Ubiquitination of JNK to Confer Stress Tolerance and Influence Lifespan in Drosophila. Cell Rep 2019; 25:437-448. [PMID: 30304683 DOI: 10.1016/j.celrep.2018.09.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 07/18/2018] [Accepted: 09/12/2018] [Indexed: 01/25/2023] Open
Abstract
Tankyrase (Tnks) transfers poly(ADP-ribose) on substrates. Whereas studies have highlighted the pivotal roles of Tnks in cancer, cherubism, systemic sclerosis, and viral infection, the requirement for Tnks under physiological contexts remains unclear. Here, we report that the loss of Tnks or its muscle-specific knockdown impairs lifespan, stress tolerance, and energy homeostasis in adult Drosophila. We find that Tnks is a positive regulator in the JNK signaling pathway, and modest alterations in the activity of JNK signaling can strengthen or suppress the Tnks mutant phenotypes. We further identify JNK as a direct substrate of Tnks. Although Tnks-dependent poly-ADP-ribosylation is tightly coupled to proteolysis in the proteasome, we demonstrate that Tnks initiates degradation-independent ubiquitination on two lysine residues of JNK to promote its kinase activity and in vivo functions. Our study uncovers a type of posttranslational modification of Tnks substrates and provides insights into Tnks-mediated physiological roles.
Collapse
Affiliation(s)
- Ping Li
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaojiao Li
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dingzi Yin
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiwei Ma
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiyun Song
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
20
|
Pollock K, Liu M, Zaleska M, Meniconi M, Pfuhl M, Collins I, Guettler S. Fragment-based screening identifies molecules targeting the substrate-binding ankyrin repeat domains of tankyrase. Sci Rep 2019; 9:19130. [PMID: 31836723 PMCID: PMC6911004 DOI: 10.1038/s41598-019-55240-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
The PARP enzyme and scaffolding protein tankyrase (TNKS, TNKS2) uses its ankyrin repeat clusters (ARCs) to bind a wide range of proteins and thereby controls diverse cellular functions. A number of these are implicated in cancer-relevant processes, including Wnt/β-catenin signalling, Hippo signalling and telomere maintenance. The ARCs recognise a conserved tankyrase-binding peptide motif (TBM). All currently available tankyrase inhibitors target the catalytic domain and inhibit tankyrase's poly(ADP-ribosyl)ation function. However, there is emerging evidence that catalysis-independent "scaffolding" mechanisms contribute to tankyrase function. Here we report a fragment-based screening programme against tankyrase ARC domains, using a combination of biophysical assays, including differential scanning fluorimetry (DSF) and nuclear magnetic resonance (NMR) spectroscopy. We identify fragment molecules that will serve as starting points for the development of tankyrase substrate binding antagonists. Such compounds will enable probing the scaffolding functions of tankyrase, and may, in the future, provide potential alternative therapeutic approaches to inhibiting tankyrase activity in cancer and other conditions.
Collapse
Affiliation(s)
- Katie Pollock
- Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
- Cancer Research UK Beatson Institute, Drug Discovery Programme, Glasgow, G61 1BD, United Kingdom
| | - Manjuan Liu
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
| | - Mariola Zaleska
- Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
| | - Mirco Meniconi
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
| | - Mark Pfuhl
- School of Cardiovascular Medicine and Sciences and Randall Centre, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom.
| | - Sebastian Guettler
- Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom.
| |
Collapse
|
21
|
Lybrand DB, Naiman M, Laumann JM, Boardman M, Petshow S, Hansen K, Scott G, Wehrli M. Destruction complex dynamics: Wnt/β-catenin signaling alters Axin-GSK3β interactions in vivo. Development 2019; 146:dev164145. [PMID: 31189665 PMCID: PMC6633605 DOI: 10.1242/dev.164145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/05/2019] [Indexed: 01/20/2023]
Abstract
The central regulator of the Wnt/β-catenin pathway is the Axin/APC/GSK3β destruction complex (DC), which, under unstimulated conditions, targets cytoplasmic β-catenin for degradation. How Wnt activation inhibits the DC to permit β-catenin-dependent signaling remains controversial, in part because the DC and its regulation have never been observed in vivo Using bimolecular fluorescence complementation (BiFC) methods, we have now analyzed the activity of the DC under near-physiological conditions in Drosophila By focusing on well-established patterns of Wnt/Wg signaling in the developing Drosophila wing, we have defined the sequence of events by which activated Wnt receptors induce a conformational change within the DC, resulting in modified Axin-GSK3β interactions that prevent β-catenin degradation. Surprisingly, the nucleus is surrounded by active DCs, which principally control the degradation of β-catenin and thereby nuclear access. These DCs are inactivated and removed upon Wnt signal transduction. These results suggest a novel mechanistic model for dynamic Wnt signal transduction in vivo.
Collapse
Affiliation(s)
- Daniel B Lybrand
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
- Reed College, Portland, OR 97202, USA
| | - Misha Naiman
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
- Reed College, Portland, OR 97202, USA
| | - Jessie May Laumann
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mitzi Boardman
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Samuel Petshow
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Kevin Hansen
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Gregory Scott
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Marcel Wehrli
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Portland, OR 97239, USA
| |
Collapse
|
22
|
Tian A, Duwadi D, Benchabane H, Ahmed Y. Essential long-range action of Wingless/Wnt in adult intestinal compartmentalization. PLoS Genet 2019; 15:e1008111. [PMID: 31194729 PMCID: PMC6563961 DOI: 10.1371/journal.pgen.1008111] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Signal transduction activated by Wingless/Wnt ligands directs cell proliferation and fate specification in metazoans, and its overactivation underlies the development of the vast majority of colorectal cancers. In the conventional model, the secretion and movement of Wingless to cells distant from its source of synthesis are essential for long-range signaling in tissue patterning. However, this model was upended recently by an unanticipated finding: replacement of wild-type Drosophila Wingless with a membrane-tethered form produced viable adults with largely normal external morphology, which suggested that Wingless secretion and movement are dispensable for tissue patterning. Herein, we tested this foundational principle in the adult intestine, where Wingless signaling gradients coincide with all major boundaries between compartments. We find that the critical roles of Wingless during adult intestinal development, which include regulation of target gene activation, boundary formation, stem cell proliferation, epithelial cell fate specification, muscle differentiation, gut folding, and signaling crosstalk with the Decapentaplegic pathway, are all disrupted by Wingless tethering. These findings provide new evidence that supports the requirement for the direct, long-range action of Wingless in tissue patterning, with relevance for animal development, tissue homeostasis and Wnt-driven disease.
Collapse
Affiliation(s)
- Ai Tian
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Deepesh Duwadi
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| |
Collapse
|
23
|
Gultekin Y, Steller H. Axin proteolysis by Iduna is required for the regulation of stem cell proliferation and intestinal homeostasis in Drosophila. Development 2019; 146:dev.169284. [PMID: 30796047 DOI: 10.1242/dev.169284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022]
Abstract
Self-renewal of intestinal stem cells is controlled by Wingless/Wnt-β catenin signaling in both Drosophila and mammals. As Axin is a rate-limiting factor in Wingless signaling, its regulation is essential. Iduna is an evolutionarily conserved ubiquitin E3 ligase that has been identified as a crucial regulator for degradation of ADP-ribosylated Axin and, thus, of Wnt/β-catenin signaling. However, its physiological significance remains to be demonstrated. Here, we generated loss-of-function mutants of Iduna to investigate its physiological role in Drosophila Genetic depletion of Iduna causes the accumulation of both Tankyrase and Axin. Increase of Axin protein in enterocytes non-autonomously enhanced stem cell divisions in the Drosophila midgut. Enterocytes secreted Unpaired proteins and thereby stimulated the activity of the JAK-STAT pathway in intestinal stem cells. A decrease in Axin gene expression suppressed the over-proliferation of stem cells and restored their numbers to normal levels in Iduna mutants. These findings suggest that Iduna-mediated regulation of Axin proteolysis is essential for tissue homeostasis in the Drosophila midgut.
Collapse
Affiliation(s)
- Yetis Gultekin
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Hermann Steller
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
24
|
Wang Z, Tacchelly-Benites O, Noble GP, Johnson MK, Gagné JP, Poirier GG, Ahmed Y. A Context-Dependent Role for the RNF146 Ubiquitin Ligase in Wingless/Wnt Signaling in Drosophila. Genetics 2019; 211:913-923. [PMID: 30593492 PMCID: PMC6404254 DOI: 10.1534/genetics.118.301393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/23/2018] [Indexed: 12/17/2022] Open
Abstract
Aberrant activation of the Wnt signal transduction pathway triggers the development of colorectal cancer. The ADP-ribose polymerase Tankyrase (TNKS) mediates proteolysis of Axin-a negative regulator of Wnt signaling-and provides a promising therapeutic target for Wnt-driven diseases. Proteolysis of TNKS substrates is mediated through their ubiquitination by the poly-ADP-ribose (pADPr)-dependent RING-domain E3 ubiquitin ligase RNF146/Iduna. Like TNKS, RNF146 promotes Axin proteolysis and Wnt pathway activation in some cultured cell lines, but in contrast with TNKS, RNF146 is dispensable for Axin degradation in colorectal carcinoma cells. Thus, the contexts in which RNF146 is essential for TNKS-mediated Axin destabilization and Wnt signaling remain uncertain. Herein, we tested the requirement for RNF146 in TNKS-mediated Axin proteolysis and Wnt pathway activation in a range of in vivo settings. Using null mutants in Drosophila, we provide genetic and biochemical evidence that Rnf146 and Tnks function in the same proteolysis pathway in vivo Furthermore, like Tnks, Drosophila Rnf146 promotes Wingless signaling in multiple developmental contexts by buffering Axin levels to ensure they remain below the threshold at which Wingless signaling is inhibited. However, in contrast with Tnks, Rnf146 is dispensable for Wingless target gene activation and the Wingless-dependent control of intestinal stem cell proliferation in the adult midgut during homeostasis. Together, these findings demonstrate that the requirement for Rnf146 in Tnks-mediated Axin proteolysis and Wingless pathway activation is dependent on physiological context, and suggest that, in some cell types, functionally redundant pADPr-dependent E3 ligases or other compensatory mechanisms promote the Tnks-dependent proteolysis of Axin in both mammalian and Drosophila cells.
Collapse
Affiliation(s)
- Zhenghan Wang
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College HB7400, Hanover, New Hampshire 03755
| | - Ofelia Tacchelly-Benites
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College HB7400, Hanover, New Hampshire 03755
| | - Geoffrey P Noble
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College HB7400, Hanover, New Hampshire 03755
| | - Megan K Johnson
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College HB7400, Hanover, New Hampshire 03755
| | - Jean-Philippe Gagné
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, CHUL Pavilion, Axe Oncologie, Québec G1V 4G2, Canada
| | - Guy G Poirier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, CHUL Pavilion, Axe Oncologie, Québec G1V 4G2, Canada
| | - Yashi Ahmed
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College HB7400, Hanover, New Hampshire 03755
| |
Collapse
|
25
|
Schaefer KN, Peifer M. Wnt/Beta-Catenin Signaling Regulation and a Role for Biomolecular Condensates. Dev Cell 2019; 48:429-444. [PMID: 30782412 PMCID: PMC6386181 DOI: 10.1016/j.devcel.2019.01.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022]
Abstract
Wnt/β-Catenin signaling plays key roles in tissue homeostasis and cell fate decisions in embryonic and post-embryonic development across the animal kingdom. As a result, pathway mutations are associated with developmental disorders and many human cancers. The multiprotein destruction complex keeps signaling off in the absence of Wnt ligands and needs to be downregulated for pathway activation. We discuss new insights into destruction complex activity and regulation, highlighting parallels to the control of other cell biological processes by biomolecular condensates that form by phase separation to suggest that the destruction complex acts as a biomolecular condensate in Wnt pathway regulation.
Collapse
Affiliation(s)
- Kristina N Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
26
|
Ye P, Chiang YJ, Qi Z, Li Y, Wang S, Liu Y, Li X, Chen YG. Tankyrases maintain homeostasis of intestinal epithelium by preventing cell death. PLoS Genet 2018; 14:e1007697. [PMID: 30260955 PMCID: PMC6177203 DOI: 10.1371/journal.pgen.1007697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/09/2018] [Accepted: 09/16/2018] [Indexed: 12/25/2022] Open
Abstract
Lgr5+ intestinal stem cells are crucial for fast homeostatic renewal of intestinal epithelium and Wnt/β-catenin signaling plays an essential role in this process by sustaining stem cell self-renewal. The poly(ADP-ribose) polymerases tankyrases (TNKSs) mediate protein poly-ADP-ribosylation and are involved in multiple cellular processes such as Wnt signaling regulation, mitotic progression and telomere maintenance. However, little is known about the physiological function of TNKSs in epithelium homeostasis regulation. Here, using Villin-creERT2;Tnks1-/-;Tnks2fl/fl (DKO) mice, we observed that loss of TNKSs causes a rapid decrease of Lgr5+ intestinal stem cells and magnified apoptosis in small intestinal crypts, leading to intestine degeneration and increased mouse mortality. Consistently, deletion of Tnks or blockage of TNKS activity with the inhibitor XAV939 significantly inhibits the growth of intestinal organoids. We further showed that the Wnt signaling agonist CHIR99021 sustains the growth of DKO organoids, and XAV939 does not cause growth retardation of Apc-/- organoids. Consistent with the promoting function of TNKSs in Wnt signaling, Wnt/β-catenin signaling is significantly decreased with stabilized Axin in DKO crypts. Together, our findings unravel the essential role of TNKSs-mediated protein parsylation in small intestinal homeostasis by modulating Wnt/β-catenin signaling. Although tankyrases have been indicated to play important roles in telomere maintenance, mitosis and Wnt signaling regulation, little is known about their physiological function in intestinal epithelium. Using Villin-creERT2;Tnks1-/-;Tnks2fl/fl mice, which harbored conventional Tnks1 deletion and inducible intestinal epithelium-specific Tnks2 knockout, we show that tankyrases regulate adult intestinal Lgr5+ stem cells and epithelium homeostasis by preventing cell death and promoting cell proliferation.
Collapse
Affiliation(s)
- Pan Ye
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Y. Jeffrey Chiang
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhen Qi
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yehua Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xintong Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
27
|
Feng Y, Li Z, Lv L, Du A, Lin Z, Ye X, Lin Y, Lin X. Tankyrase regulates apoptosis by activating JNK signaling in Drosophila. Biochem Biophys Res Commun 2018; 503:2234-2239. [PMID: 29953853 DOI: 10.1016/j.bbrc.2018.06.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022]
Abstract
Programmed cell death (PCD), or apoptosis, plays essential roles in various cellular and developmental processes, and dysregulation of apoptosis causes many diseases. Thus, regulation of apoptotic process is very important. Drosophila tankyrase (DTNKS) is an evolutionarily conserved protein with poly(ADP-ribose) polymerase activity. In mammalian cells, tankyrases (TNKSs) have been reported to regulate cell death. To determine whether DTNKS plays function in inducing apoptosis in in vivo development, we used Drosophila as a model system and generated transgenic flies expressing DTNKS. We show that ectopic expression of DTNKS promotes caspase-dependent apoptosis and knockdown of DTNKS by RNAi dramatically alleviates apoptotic defect caused by ectopic expression of pro-apoptotic protein hid or rpr in the adult eye. Moreover, our result shows that ectopic expression of DTNKS triggers the activation of c-Jun N-terminal kinase (JNK) signaling, which is required for DTNKS-mediated apoptosis. Taken together, our finding identifies the role of DTNKS in regulating apoptosis by activating JNK signaling in Drosophila.
Collapse
Affiliation(s)
- Ying Feng
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Zhenzhen Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Lixiu Lv
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Anle Du
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Zhiqing Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xiaolei Ye
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Yi Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xinhua Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
28
|
Gammons M, Bienz M. Multiprotein complexes governing Wnt signal transduction. Curr Opin Cell Biol 2018; 51:42-49. [PMID: 29153704 DOI: 10.1016/j.ceb.2017.10.008] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022]
Abstract
Three multiprotein complexes have key roles in transducing Wnt signals from the plasma membrane to the cell nucleus - the β-catenin destruction complex, or Axin degradasome, which targets the Wnt effector β-catenin for proteasomal degradation in the absence of Wnt; the Wnt signalosome, assembled by polymerization of Dishevelled upon Wnt engaging its receptors, to inactivate the Axin degradasome, which allows β-catenin to accumulate; and the Wnt enhanceosome which enables β-catenin to gain access to target genes, to relieve their transcriptional repression by Groucho/TLE. This review focuses on recent advances that have highlighted mechanistic principles governing the assembly and function of these complexes.
Collapse
Affiliation(s)
- Melissa Gammons
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
29
|
Wingless/Wnt Signaling in Intestinal Development, Homeostasis, Regeneration and Tumorigenesis: A Drosophila Perspective. J Dev Biol 2018; 6:jdb6020008. [PMID: 29615557 PMCID: PMC6026893 DOI: 10.3390/jdb6020008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 02/06/2023] Open
Abstract
In mammals, the Wnt/β-catenin signal transduction pathway regulates intestinal stem cell maintenance and proliferation, whereas Wnt pathway hyperactivation, resulting primarily from the inactivation of the tumor suppressor Adenomatous polyposis coli (APC), triggers the development of the vast majority of colorectal cancers. The Drosophila adult gut has recently emerged as a powerful model to elucidate the mechanisms by which Wingless/Wnt signaling regulates intestinal development, homeostasis, regeneration, and tumorigenesis. Herein, we review recent insights on the roles of Wnt signaling in Drosophila intestinal physiology and pathology.
Collapse
|
30
|
Perochon J, Carroll LR, Cordero JB. Wnt Signalling in Intestinal Stem Cells: Lessons from Mice and Flies. Genes (Basel) 2018; 9:genes9030138. [PMID: 29498662 PMCID: PMC5867859 DOI: 10.3390/genes9030138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/17/2018] [Accepted: 02/21/2018] [Indexed: 12/12/2022] Open
Abstract
Adult stem cells play critical roles in the basal maintenance of tissue integrity, also known as homeostasis, and in tissue regeneration following damage. The highly conserved Wnt signalling pathway is a key regulator of stem cell fate. In the gastrointestinal tract, Wnt signalling activation drives homeostasis and damage-induced repair. Additionally, deregulated Wnt signalling is a common hallmark of age-associated tissue dysfunction and cancer. Studies using mouse and fruit fly models have greatly improved our understanding of the functional contribution of the Wnt signalling pathway in adult intestinal biology. Here, we summarize the latest knowledge acquired from mouse and Drosophila research regarding canonical Wnt signalling and its key functions during stem cell driven intestinal homeostasis, regeneration, ageing and cancer.
Collapse
Affiliation(s)
- Jessica Perochon
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.
| | - Lynsey R Carroll
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.
| | - Julia B Cordero
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.
- CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| |
Collapse
|
31
|
Tacchelly-Benites O, Wang Z, Yang E, Benchabane H, Tian A, Randall MP, Ahmed Y. Axin phosphorylation in both Wnt-off and Wnt-on states requires the tumor suppressor APC. PLoS Genet 2018; 14:e1007178. [PMID: 29408853 PMCID: PMC5800574 DOI: 10.1371/journal.pgen.1007178] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/30/2017] [Indexed: 12/24/2022] Open
Abstract
The aberrant activation of Wnt signal transduction initiates the development of 90% of colorectal cancers, the majority of which arise from inactivation of the tumor suppressor Adenomatous polyposis coli (APC). In the classical model for Wnt signaling, the primary role of APC is to act, together with the concentration-limiting scaffold protein Axin, in a “destruction complex” that directs the phosphorylation and consequent proteasomal degradation of the transcriptional activator β-catenin, thereby preventing signaling in the Wnt-off state. Following Wnt stimulation, Axin is recruited to a multiprotein “signalosome” required for pathway activation. Whereas it is well-documented that APC is essential in the destruction complex, APC’s role in this complex remains elusive. Here, we demonstrate in Drosophila that Axin exists in two distinct phosphorylation states in Wnt-off and Wnt-on conditions, respectively, that underlie its roles in the destruction complex and signalosome. These two Axin phosphorylation states are catalyzed by glycogen synthase kinase 3 (GSK3), and unexpectedly, completely dependent on APC in both unstimulated and Wnt-stimulated conditions. In a major revision of the classical model, we show that APC is essential not only in the destruction complex, but also for the rapid transition in Axin that occurs after Wnt stimulation and Axin’s subsequent association with the Wnt co-receptor LRP6/Arrow, one of the earliest steps in pathway activation. We propose that this novel requirement for APC in Axin regulation through phosphorylation both prevents signaling in the Wnt-off state and promotes signaling immediately following Wnt stimulation. The Wnt signal transduction pathway directs fundamental cellular processes during development and in homeostasis. Wnt signaling is deregulated in 90% of colorectal cancers, most of which are triggered by inactivation of the tumor suppressor Adenomatous polyposis coli (APC). In the classical model, APC’s sole role in Wnt signaling is to target the transcriptional coactivator β-catenin for phosphorylation and subsequent degradation, and thereby to inhibit signaling in the unstimulated state. However, the mechanisms by which APC functions remain unknown. Herein, we provide evidence in Drosophila that supports a major role for APC in the direct regulation of the scaffold protein Axin in both Wnt-on and Wnt-off conditions. Our results indicate that APC promotes Axin phosphorylation, which is required not only to inhibit signaling in the unstimulated state, but also to activate signaling following Wnt stimulation. These unanticipated findings support a more active and multifaceted role for APC in Wnt signaling than previously known, and force revision of the current model for APC function.
Collapse
Affiliation(s)
- Ofelia Tacchelly-Benites
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Zhenghan Wang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Eungi Yang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Ai Tian
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Michael P. Randall
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
- * E-mail:
| |
Collapse
|
32
|
Mariotti L, Pollock K, Guettler S. Regulation of Wnt/β-catenin signalling by tankyrase-dependent poly(ADP-ribosyl)ation and scaffolding. Br J Pharmacol 2017; 174:4611-4636. [PMID: 28910490 PMCID: PMC5727255 DOI: 10.1111/bph.14038] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022] Open
Abstract
The Wnt/β-catenin signalling pathway is pivotal for stem cell function and the control of cellular differentiation, both during embryonic development and tissue homeostasis in adults. Its activity is carefully controlled through the concerted interactions of concentration-limited pathway components and a wide range of post-translational modifications, including phosphorylation, ubiquitylation, sumoylation, poly(ADP-ribosyl)ation (PARylation) and acetylation. Regulation of Wnt/β-catenin signalling by PARylation was discovered relatively recently. The PARP tankyrase PARylates AXIN1/2, an essential central scaffolding protein in the β-catenin destruction complex, and targets it for degradation, thereby fine-tuning the responsiveness of cells to the Wnt signal. The past few years have not only seen much progress in our understanding of the molecular mechanisms by which PARylation controls the pathway but also witnessed the successful development of tankyrase inhibitors as tool compounds and promising agents for the therapy of Wnt-dependent dysfunctions, including colorectal cancer. Recent work has hinted at more complex roles of tankyrase in Wnt/β-catenin signalling as well as challenges and opportunities in the development of tankyrase inhibitors. Here we review some of the latest advances in our understanding of tankyrase function in the pathway and efforts to modulate tankyrase activity to re-tune Wnt/β-catenin signalling in colorectal cancer cells. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Laura Mariotti
- Division of Structural BiologyThe Institute of Cancer ResearchLondonUK
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| | - Katie Pollock
- Division of Structural BiologyThe Institute of Cancer ResearchLondonUK
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Division of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Sebastian Guettler
- Division of Structural BiologyThe Institute of Cancer ResearchLondonUK
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
33
|
Thorvaldsen TE. Targeting Tankyrase to Fight WNT-dependent Tumours. Basic Clin Pharmacol Toxicol 2017; 121:81-88. [PMID: 28371398 DOI: 10.1111/bcpt.12786] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
Aberrant WNT signalling activity is linked to various diseases due to the WNT dependency of fundamental processes during development and in adult tissue homeostasis. Mutations in components of the multi-protein β-catenin destruction complex promote excessive amounts of the main transcriptional activator β-catenin and are particularly common in colorectal cancer (CRC). The tankyrase enzymes were recently implicated as negative regulators of destruction complex activity by mediating degradation of the scaffolding protein AXIN. Indeed, tankyrase inhibitors (TNKSi) have emerged as promising therapeutics by restoring functional signal-limiting destruction complexes in CRCs. Furthermore, as TNKSi-induced destruction complexes (so-called degradasomes) can be visualized by microscopy, they have served as a valuable experimental model system to address unresolved aspects regarding the structure, function and composition of the β-catenin destruction complex. This MiniReview provides an overview of the current knowledge on the regulatory mechanisms and interactions that govern the β-catenin destruction complex activity. It further highlights the potential of TNKSi as anticancer drugs and as a novel research tool to dissect the WNT signalling pathway.
Collapse
Affiliation(s)
- Tor Espen Thorvaldsen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| |
Collapse
|
34
|
Thorvaldsen TE, Pedersen NM, Wenzel EM, Stenmark H. Differential Roles of AXIN1 and AXIN2 in Tankyrase Inhibitor-Induced Formation of Degradasomes and β-Catenin Degradation. PLoS One 2017; 12:e0170508. [PMID: 28107521 PMCID: PMC5249069 DOI: 10.1371/journal.pone.0170508] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/05/2017] [Indexed: 01/10/2023] Open
Abstract
Inhibition of the tankyrase enzymes (TNKS1 and TNKS2) has recently been shown to induce highly dynamic assemblies of β-catenin destruction complex components known as degradasomes, which promote degradation of β-catenin and reduced Wnt signaling activity in colorectal cancer cells. AXIN1 and AXIN2/Conductin, the rate-limiting factors for the stability and function of endogenous destruction complexes, are stabilized upon TNKS inhibition due to abrogated degradation of AXIN by the proteasome. Since the role of AXIN1 versus AXIN2 as scaffolding proteins in the Wnt signaling pathway still remains incompletely understood, we sought to elucidate their relative contribution in the formation of degradasomes, as these protein assemblies most likely represent the morphological and functional correlates of endogenous β-catenin destruction complexes. In SW480 colorectal cancer cells treated with the tankyrase inhibitor (TNKSi) G007-LK we found that AXIN1 was not required for degradasome formation. In contrast, the formation of degradasomes as well as their capacity to degrade β-catenin were considerably impaired in G007-LK-treated cells depleted of AXIN2. These findings give novel insights into differential functional roles of AXIN1 versus AXIN2 in the β-catenin destruction complex.
Collapse
Affiliation(s)
- Tor Espen Thorvaldsen
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nina Marie Pedersen
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eva Maria Wenzel
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- * E-mail: (EMW); (HS)
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- * E-mail: (EMW); (HS)
| |
Collapse
|
35
|
Wang Z, Tacchelly-Benites O, Yang E, Ahmed Y. Dual Roles for Membrane Association of Drosophila Axin in Wnt Signaling. PLoS Genet 2016; 12:e1006494. [PMID: 27959917 PMCID: PMC5154497 DOI: 10.1371/journal.pgen.1006494] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022] Open
Abstract
Deregulation of the Wnt signal transduction pathway underlies numerous congenital disorders and cancers. Axin, a concentration-limiting scaffold protein, facilitates assembly of a “destruction complex” that prevents signaling in the unstimulated state and a plasma membrane-associated “signalosome” that activates signaling following Wnt stimulation. In the classical model, Axin is cytoplasmic under basal conditions, but relocates to the cell membrane after Wnt exposure; however, due to the very low levels of endogenous Axin, this model is based largely on examination of Axin at supraphysiological levels. Here, we analyze the subcellular distribution of endogenous Drosophila Axin in vivo and find that a pool of Axin localizes to cell membrane proximal puncta even in the absence of Wnt stimulation. Axin localization in these puncta is dependent on the destruction complex component Adenomatous polyposis coli (Apc). In the unstimulated state, the membrane association of Axin increases its Tankyrase-dependent ADP-ribosylation and consequent proteasomal degradation to control its basal levels. Furthermore, Wnt stimulation does not result in a bulk redistribution of Axin from cytoplasmic to membrane pools, but causes an initial increase of Axin in both of these pools, with concomitant changes in two post-translational modifications, followed by Axin proteolysis hours later. Finally, the ADP-ribosylated Axin that increases rapidly following Wnt stimulation is membrane associated. We conclude that even in the unstimulated state, a pool of Axin forms membrane-proximal puncta that are dependent on Apc, and that membrane association regulates both Axin levels and Axin’s role in the rapid activation of signaling that follows Wnt exposure. Axin is a scaffold protein with essential roles in Wnt signal transduction. In the classical model, the transition from the unstimulated to stimulated state is thought to be achieved by recruitment of Axin from cytosol to plasma membrane. We find that a pool of endogenous Drosophila Axin is localized in puncta juxtaposed with the cell membrane even under basal conditions and is targeted for degradation by the ADP-ribose polymerase Tankyrase. Wnt stimulation initially results in increased Axin levels in both the cytosolic and membrane pools, which may enhance the robust activation of signaling.
Collapse
Affiliation(s)
- Zhenghan Wang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Ofelia Tacchelly-Benites
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Eungi Yang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
- * E-mail:
| |
Collapse
|
36
|
Wnt pathway activation by ADP-ribosylation. Nat Commun 2016; 7:11430. [PMID: 27138857 PMCID: PMC4857404 DOI: 10.1038/ncomms11430] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 03/23/2016] [Indexed: 01/12/2023] Open
Abstract
Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)--known to target Axin for proteolysis-regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly.
Collapse
|
37
|
Wnt/Wingless Pathway Activation Is Promoted by a Critical Threshold of Axin Maintained by the Tumor Suppressor APC and the ADP-Ribose Polymerase Tankyrase. Genetics 2016; 203:269-81. [PMID: 26975665 DOI: 10.1534/genetics.115.183244] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/18/2016] [Indexed: 01/20/2023] Open
Abstract
Wnt/β-catenin signal transduction directs metazoan development and is deregulated in numerous human congenital disorders and cancers. In the absence of Wnt stimulation, a multiprotein "destruction complex," assembled by the scaffold protein Axin, targets the key transcriptional activator β-catenin for proteolysis. Axin is maintained at very low levels that limit destruction complex activity, a property that is currently being exploited in the development of novel therapeutics for Wnt-driven cancers. Here, we use an in vivo approach in Drosophila to determine how tightly basal Axin levels must be controlled for Wnt/Wingless pathway activation, and how Axin stability is regulated. We find that for nearly all Wingless-driven developmental processes, a three- to fourfold increase in Axin is insufficient to inhibit signaling, setting a lower-limit for the threshold level of Axin in the majority of in vivo contexts. Further, we find that both the tumor suppressor adenomatous polyposis coli (APC) and the ADP-ribose polymerase Tankyrase (Tnks) have evolutionarily conserved roles in maintaining basal Axin levels below this in vivo threshold, and we define separable domains in Axin that are important for APC- or Tnks-dependent destabilization. Together, these findings reveal that both APC and Tnks maintain basal Axin levels below a critical in vivo threshold to promote robust pathway activation following Wnt stimulation.
Collapse
|