1
|
Chen R, Fan R, Bedzhov I. Protocol for induction, maintenance, and exit from embryo dormancy in mice. STAR Protoc 2025; 6:103813. [PMID: 40333191 DOI: 10.1016/j.xpro.2025.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
Embryonic dormancy (diapause) is a reproductive adaptation that allows some mammalian species to prolong pregnancy and delay birth by temporarily suspending embryonic development just before implantation. Here, we present a step-by-step protocol for inducing and maintaining embryonic diapause in mice by tamoxifen administration or ovariectomy. We describe steps for setting up mouse matings, the administration of pharmacological compounds, the surgical procedure for the removal of the ovaries, postoperative care, and the isolation of dormant embryos. We then describe procedures for triggering exit from diapause by administration of β-estradiol and the subsequent isolation of reactivated embryos. For complete details on the use and execution of this protocol, please refer to Chen et al.1.
Collapse
Affiliation(s)
- Rui Chen
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| | - Rui Fan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| |
Collapse
|
2
|
Azami T, Theeuwes B, Nu Ton ML, Mansfield W, Harland L, Kinoshita M, Gottgens B, Nichols J. STAT3 signaling enhances tissue expansion during postimplantation mouse development. Cell Rep 2025; 44:115506. [PMID: 40188437 DOI: 10.1016/j.celrep.2025.115506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 01/10/2025] [Accepted: 03/12/2025] [Indexed: 04/08/2025] Open
Abstract
Signal transducer and activator of transcription (STAT)3 signaling has been studied extensively using mouse embryonic stem cells. Zygotic deletion of Stat3 enables embryo implantation, but thereafter, mutants resemble non-affected littermates from the previous day until around mid-gestation. This probably results from the loss of serine-phosphorylated STAT3, the predominant form in early postimplantation embryonic tissues associated with mitochondrial activity. Bulk RNA sequencing of isolated mouse epiblasts confirmed developmental delay transcriptionally. Single-cell RNA sequencing revealed the exclusion of derivatives of Stat3 null embryonic stem cells exclusively from the erythroid lineage of mid-gestation chimeras. We show that Stat3 null embryonic stem cells can differentiate into erythroid and hematopoietic lineages in vitro but become outcompeted when mixed with wild-type cells. Our results implicate a role for STAT3 in the temporal control of embryonic progression, particularly in tissues requiring rapid cell division, such as postimplantation epiblast and hematopoietic lineages. Interestingly, mutations in STAT3 are associated with short stature in humans.
Collapse
Affiliation(s)
- Takuya Azami
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - Bart Theeuwes
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Mai-Linh Nu Ton
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - William Mansfield
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Luke Harland
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Masaki Kinoshita
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Berthold Gottgens
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Jennifer Nichols
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Smith A. Propagating pluripotency - The conundrum of self-renewal. Bioessays 2024; 46:e2400108. [PMID: 39180242 PMCID: PMC11589686 DOI: 10.1002/bies.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
The discovery of mouse embryonic stem cells in 1981 transformed research in mammalian developmental biology and functional genomics. The subsequent generation of human pluripotent stem cells (PSCs) and the development of molecular reprogramming have opened unheralded avenues for drug discovery and cell replacement therapy. Here, I review the history of PSCs from the perspective that long-term self-renewal is a product of the in vitro signaling environment, rather than an intrinsic feature of embryos. I discuss the relationship between pluripotent states captured in vitro to stages of epiblast in the embryo and suggest key considerations for evaluation of PSCs. A remaining fundamental challenge is to determine whether naïve pluripotency can be propagated from the broad range of mammals by exploiting common principles in gene regulatory architecture.
Collapse
Affiliation(s)
- Austin Smith
- Living Systems InstituteUniversity of ExeterExeterUK
| |
Collapse
|
4
|
Iyer DP, Khoei HH, van der Weijden VA, Kagawa H, Pradhan SJ, Novatchkova M, McCarthy A, Rayon T, Simon CS, Dunkel I, Wamaitha SE, Elder K, Snell P, Christie L, Schulz EG, Niakan KK, Rivron N, Bulut-Karslioğlu A. mTOR activity paces human blastocyst stage developmental progression. Cell 2024; 187:6566-6583.e22. [PMID: 39332412 PMCID: PMC7617234 DOI: 10.1016/j.cell.2024.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/24/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Many mammals can temporally uncouple conception from parturition by pacing down their development around the blastocyst stage. In mice, this dormant state is achieved by decreasing the activity of the growth-regulating mTOR signaling pathway. It is unknown whether this ability is conserved in mammals in general and in humans in particular. Here, we show that decreasing the activity of the mTOR signaling pathway induces human pluripotent stem cells (hPSCs) and blastoids to enter a dormant state with limited proliferation, developmental progression, and capacity to attach to endometrial cells. These in vitro assays show that, similar to other species, the ability to enter dormancy is active in human cells around the blastocyst stage and is reversible at both functional and molecular levels. The pacing of human blastocyst development has potential implications for reproductive therapies.
Collapse
Affiliation(s)
- Dhanur P Iyer
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heidar Heidari Khoei
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Vera A van der Weijden
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Harunobu Kagawa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Saurabh J Pradhan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Afshan McCarthy
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Teresa Rayon
- Epigenetics & Signalling Programmes, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Claire S Simon
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Ilona Dunkel
- Systems Epigenetics, Otto-Warburg-Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sissy E Wamaitha
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Edda G Schulz
- Systems Epigenetics, Otto-Warburg-Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Kathy K Niakan
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Aydan Bulut-Karslioğlu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
5
|
Stötzel M, Cheng CY, IIik IA, Kumar AS, Omgba PA, van der Weijden VA, Zhang Y, Vingron M, Meissner A, Aktaş T, Kretzmer H, Bulut-Karslioğlu A. TET activity safeguards pluripotency throughout embryonic dormancy. Nat Struct Mol Biol 2024; 31:1625-1639. [PMID: 38783076 PMCID: PMC11479945 DOI: 10.1038/s41594-024-01313-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Dormancy is an essential biological process for the propagation of many life forms through generations and stressful conditions. Early embryos of many mammals are preservable for weeks to months within the uterus in a dormant state called diapause, which can be induced in vitro through mTOR inhibition. Cellular strategies that safeguard original cell identity within the silent genomic landscape of dormancy are not known. Here we show that the protection of cis-regulatory elements from silencing is key to maintaining pluripotency in the dormant state. We reveal a TET-transcription factor axis, in which TET-mediated DNA demethylation and recruitment of methylation-sensitive transcription factor TFE3 drive transcriptionally inert chromatin adaptations during dormancy transition. Perturbation of TET activity compromises pluripotency and survival of mouse embryos under dormancy, whereas its enhancement improves survival rates. Our results reveal an essential mechanism for propagating the cellular identity of dormant cells, with implications for regeneration and disease.
Collapse
Affiliation(s)
- Maximilian Stötzel
- Stem Cell Chromatin Lab, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Chieh-Yu Cheng
- Stem Cell Chromatin Lab, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ibrahim A IIik
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Abhishek Sampath Kumar
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Persia Akbari Omgba
- Stem Cell Chromatin Lab, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | | | - Yufei Zhang
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Tuğçe Aktaş
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | |
Collapse
|
6
|
Özgüldez HÖ, Bulut-Karslioğlu A. Dormancy, Quiescence, and Diapause: Savings Accounts for Life. Annu Rev Cell Dev Biol 2024; 40:25-49. [PMID: 38985838 DOI: 10.1146/annurev-cellbio-112122-022528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Life on Earth has been through numerous challenges over eons and, one way or another, has always triumphed. From mass extinctions to more daily plights to find food, unpredictability is everywhere. The adaptability of life-forms to ever-changing environments is the key that confers life's robustness. Adaptability has become synonymous with Darwinian evolution mediated by heritable genetic changes. The extreme gene-centric view, while being of central significance, at times has clouded our appreciation of the cell as a self-regulating entity informed of, and informing, the genetic data. An essential element that powers adaptability is the ability to regulate cell growth. In this review, we provide an extensive overview of growth regulation spanning species, tissues, and regulatory mechanisms. We aim to highlight the commonalities, as well as differences, of these phenomena and their molecular regulators. Finally, we curate open questions and areas for further exploration.
Collapse
Affiliation(s)
- Hatice Özge Özgüldez
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| | - Aydan Bulut-Karslioğlu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| |
Collapse
|
7
|
Chen R, Fan R, Chen F, Govindasamy N, Brinkmann H, Stehling M, Adams RH, Jeong HW, Bedzhov I. Analyzing embryo dormancy at single-cell resolution reveals dynamic transcriptional responses and activation of integrin-Yap/Taz prosurvival signaling. Cell Stem Cell 2024; 31:1262-1279.e8. [PMID: 39047740 PMCID: PMC7617458 DOI: 10.1016/j.stem.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/03/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Embryonic diapause is a reproductive adaptation that enables some mammalian species to halt the otherwise continuous pace of embryonic development. In this dormant state, the embryo exploits poorly understood regulatory mechanisms to preserve its developmental potential for prolonged periods of time. Here, using mouse embryos and single-cell RNA sequencing, we molecularly defined embryonic diapause at single-cell resolution, revealing transcriptional dynamics while the embryo seemingly resides in a state of suspended animation. Additionally, we found that the dormant pluripotent cells rely on integrin receptors to sense their microenvironment and preserve their viability via Yap/Taz-mediated prosurvival signaling.
Collapse
Affiliation(s)
- Rui Chen
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Fei Chen
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Niraimathi Govindasamy
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Heike Brinkmann
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany; Single Cell Multi-Omics Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| |
Collapse
|
8
|
Linneberg-Agerholm M, Sell AC, Redó-Riveiro A, Perera M, Proks M, Knudsen TE, Barral A, Manzanares M, Brickman JM. The primitive endoderm supports lineage plasticity to enable regulative development. Cell 2024; 187:4010-4029.e16. [PMID: 38917790 PMCID: PMC11290322 DOI: 10.1016/j.cell.2024.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 02/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
Mammalian blastocyst formation involves the specification of the trophectoderm followed by the differentiation of the inner cell mass into embryonic epiblast and extra-embryonic primitive endoderm (PrE). During this time, the embryo maintains a window of plasticity and can redirect its cellular fate when challenged experimentally. In this context, we found that the PrE alone was sufficient to regenerate a complete blastocyst and continue post-implantation development. We identify an in vitro population similar to the early PrE in vivo that exhibits the same embryonic and extra-embryonic potency and can form complete stem cell-based embryo models, termed blastoids. Commitment in the PrE is suppressed by JAK/STAT signaling, collaborating with OCT4 and the sustained expression of a subset of pluripotency-related transcription factors that safeguard an enhancer landscape permissive for multi-lineage differentiation. Our observations support the notion that transcription factor persistence underlies plasticity in regulative development and highlight the importance of the PrE in perturbed development.
Collapse
Affiliation(s)
- Madeleine Linneberg-Agerholm
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Annika Charlotte Sell
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Alba Redó-Riveiro
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Marta Perera
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Martin Proks
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Teresa E Knudsen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Antonio Barral
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, 28049 Madrid, Spain
| | - Miguel Manzanares
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, 28049 Madrid, Spain
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
9
|
Fenelon JC. New insights into how to induce and maintain embryonic diapause in the blastocyst. Curr Opin Genet Dev 2024; 86:102192. [PMID: 38604005 DOI: 10.1016/j.gde.2024.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Embryonic diapause in mammals is a period of developmental pause of the embryo at the blastocyst stage. During diapause, the blastocyst has minimal cell proliferation, metabolic activity and gene expression. At reactivation, blastocyst development resumes, characterised by increases in cell number, biosynthesis and metabolism. Until recently, it has been unknown how diapause is maintained without any loss of blastocyst viability. This review focuses on recent progress in the identification of molecular pathways occurring in the blastocyst that can both cause and maintain the diapause state. A switch to lipid metabolism now appears essential to maintaining the diapause state and is induced by forkhead box protein O1. The forkhead box protein O transcription family is important for diapause in insects, nematodes and fish, but this is the first time a conclusive role has been established in mammals. Multiple epigenetic modifications are also essential to inducing and maintaining the diapause state, including both DNA and RNA methylation mechanisms. Finally, it now appears that diapause embryos, dormant stem cells and chemotherapeutic-resistant cancer cells may all share a universal system of quiescence.
Collapse
Affiliation(s)
- Jane C Fenelon
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia; Colossal Biosciences, Dallas, Texas, United States.
| |
Collapse
|
10
|
Dupont C. A comprehensive review: synergizing stem cell and embryonic development knowledge in mouse and human integrated stem cell-based embryo models. Front Cell Dev Biol 2024; 12:1386739. [PMID: 38715920 PMCID: PMC11074781 DOI: 10.3389/fcell.2024.1386739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mammalian stem cell-based embryo models have emerged as innovative tools for investigating early embryogenesis in both mice and primates. They not only reduce the need for sacrificing mice but also overcome ethical limitations associated with human embryo research. Furthermore, they provide a platform to address scientific questions that are otherwise challenging to explore in vivo. The usefulness of a stem cell-based embryo model depends on its fidelity in replicating development, efficiency and reproducibility; all essential for addressing biological queries in a quantitative manner, enabling statistical analysis. Achieving such fidelity and efficiency requires robust systems that demand extensive optimization efforts. A profound understanding of pre- and post-implantation development, cellular plasticity, lineage specification, and existing models is imperative for making informed decisions in constructing these models. This review aims to highlight essential differences in embryo development and stem cell biology between mice and humans, assess how these variances influence the formation of partially and fully integrated stem cell models, and identify critical challenges in the field.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
11
|
Choi JW, Kim SW, Kim HS, Kang MJ, Kim SA, Han JY, Kim H, Ku SY. Effects of Melatonin, GM-CSF, IGF-1, and LIF in Culture Media on Embryonic Development: Potential Benefits of Individualization. Int J Mol Sci 2024; 25:751. [PMID: 38255823 PMCID: PMC10815572 DOI: 10.3390/ijms25020751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The implantation of good-quality embryos to the receptive endometrium is essential for successful live birth through in vitro fertilization (IVF). The higher the quality of embryos, the higher the live birth rate per cycle, and so efforts have been made to obtain as many high-quality embryos as possible after fertilization. In addition to an effective controlled ovarian stimulation process to obtain high-quality embryos, the composition of the embryo culture medium in direct contact with embryos in vitro is also important. During embryonic development, under the control of female sex hormones, the fallopian tubes and endometrium create a microenvironment that supplies the nutrients and substances necessary for embryos at each stage. During this process, the development of the embryo is finely regulated by signaling molecules, such as growth factors and cytokines secreted from the epithelial cells of the fallopian tube and uterine endometrium. The development of embryo culture media has continued since the first successful human birth through IVF in 1978. However, there are still limitations to mimicking a microenvironment similar to the reproductive organs of women suitable for embryo development in vitro. Efforts have been made to overcome the harsh in vitro culture environment and obtain high-quality embryos by adding various supplements, such as antioxidants and growth factors, to the embryo culture medium. Recently, there has been an increase in the number of studies on the effect of supplementation in different clinical situations such as old age, recurrent implantation failure (RIF), and unexplained infertility; in addition, anticipation of the potential benefits from individuation is rising. This article reviews the effects of representative supplements in culture media on embryo development.
Collapse
Affiliation(s)
- Jung-Won Choi
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Sung-Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hee-Sun Kim
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Moon-Joo Kang
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Sung-Ah Kim
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Ji-Yeon Han
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
12
|
Khan T, Waseem R, Shahid M, Ansari J, Ahanger IA, Hassan I, Islam A. Recent advancement in therapeutic strategies for Alzheimer's disease: Insights from clinical trials. Ageing Res Rev 2023; 92:102113. [PMID: 37918760 DOI: 10.1016/j.arr.2023.102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by the presence of plaques of amyloid beta and Tau proteins. There is currently no permanent cure for AD; the only medications approved by the FDA for mild to moderate AD are cholinesterase inhibitors, NMDA receptor antagonists, and immunotherapies against core pathophysiology, that provide temporary relief only. Researchers worldwide have made significant attempts to find new targets and develop innovative therapeutic molecules to treat AD. The FDA-approved drugs are palliative and couldn't restore the damaged neuron cells of AD. Stem cells have self-differentiation properties, making them prospective therapeutics to treat AD. The promising results in pre-clinical studies of stem cell therapy for AD seek attention worldwide. Various stem cells, mainly mesenchymal stem cells, are currently in different phases of clinical trials and need more advancements to take this therapy to the translational level. Here, we review research from the past decade that has identified several hypotheses related to AD pathology. Moreover, this article also focuses on the recent advancement in therapeutic strategies for AD treatment including immunotherapy and stem cell therapy detailing the clinical trials that are currently undergoing development.
Collapse
Affiliation(s)
- Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Clinical Biochemistry, University of Kashmir,190006, India
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
13
|
Rüegg AB, Ulbrich SE. Review: Embryonic diapause in the European roe deer - slowed, but not stopped. Animal 2023; 17 Suppl 1:100829. [PMID: 37567662 DOI: 10.1016/j.animal.2023.100829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 08/13/2023] Open
Abstract
Embryonic diapause in mammals describes a transient reduction of proliferation and developmental progression occurring at the blastocyst stage. It was first described in the European roe deer (Capreolus capreolus) in the 19th century, and later found to occur in at least over 130 mammalian species across several taxa. Diapause is often displayed as an interruption, a halt, or an arrest of embryonic development. In this review, we explore reduced, but not stopped pace of growth, proliferation and developmental progression during embryonic diapause and revisit early embryonic proliferation and continued slow development as peculiar phenomenon in the roe deer.
Collapse
Affiliation(s)
- Anna B Rüegg
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092 Zurich, Switzerland.
| |
Collapse
|
14
|
Furlan G, Huyghe A, Combémorel N, Lavial F. Molecular versatility during pluripotency progression. Nat Commun 2023; 14:68. [PMID: 36604434 PMCID: PMC9814743 DOI: 10.1038/s41467-022-35775-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
A challenge during development is to ensure lineage segregation while preserving plasticity. Using pluripotency progression as a paradigm, we review how developmental transitions are coordinated by redeployments, rather than global resettings, of cellular components. We highlight how changes in response to extrinsic cues (FGF, WNT, Activin/Nodal, Netrin-1), context- and stoichiometry-dependent action of transcription factors (Oct4, Nanog) and reconfigurations of epigenetic regulators (enhancers, promoters, TrxG, PRC) may confer robustness to naïve to primed pluripotency transition. We propose the notion of Molecular Versatility to regroup mechanisms by which molecules are repurposed to exert different, sometimes opposite, functions in close stem cell configurations.
Collapse
Affiliation(s)
- Giacomo Furlan
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, ON, Canada
| | - Aurélia Huyghe
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Noémie Combémorel
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Fabrice Lavial
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France.
| |
Collapse
|
15
|
Kraunsoe S, Azami T, Pei Y, Martello G, Jones K, Boroviak T, Nichols J. Requirement for STAT3 and its target, TFCP2L1, in self-renewal of naïve pluripotent stem cells in vivo and in vitro. Biol Open 2023; 12:bio059650. [PMID: 36504370 PMCID: PMC9884119 DOI: 10.1242/bio.059650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated gradual loss of epiblast during diapause in embryos lacking components of the LIF/IL6 receptor. Here, we explore the requirement for the downstream signalling transducer andactivator of transcription STAT3 and its target, TFCP2L1, in maintenance of naïve pluripotency. Unlike conventional markers, such as NANOG, which remains high in epiblast until implantation, both STAT3 and TFCP2L1 proteins decline during blastocyst expansion, but intensify in the embryonic region after induction of diapause, as observed visually and confirmed using our image-analysis pipeline, consistent with our previous transcriptional expression data. Embryos lacking STAT3 or TFCP2L1 underwent catastrophic loss of most of the inner cell mass during the first few days of diapause, indicating involvement of signals in addition to LIF/IL6 for sustaining naïve pluripotency in vivo. By blocking MEK/ERK signalling from the morula stage, we could derive embryonic stem cells with high efficiency from STAT3 null embryos, but not those lacking TFCP2L1, suggesting a hitherto unknown additional role for this essential STAT3 target in transition from embryo to embryonic stem cells in vitro. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sophie Kraunsoe
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Department of Biology, University of Padua, Padova 35121, Italy
| | - Takuya Azami
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Yihan Pei
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | | | - Kenneth Jones
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thorsten Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Correia B, Sousa MI, Branco AF, Rodrigues AS, Ramalho-Santos J. Leucine and Arginine Availability Modulate Mouse Embryonic Stem Cell Proliferation and Metabolism. Int J Mol Sci 2022; 23:ijms232214286. [PMID: 36430764 PMCID: PMC9694364 DOI: 10.3390/ijms232214286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Amino acids are crucial nutrients involved in several cellular and physiological processes, including fertilization and early embryo development. In particular, Leucine and Arginine have been shown to stimulate implantation, as lack of both in a blastocyst culture system is able to induce a dormant state in embryos. The aim of this work was to evaluate the effects of Leucine and Arginine withdrawal on pluripotent mouse embryonic stem cell status, notably, their growth, self-renewal, as well as glycolytic and oxidative metabolism. Our results show that the absence of both Leucine and Arginine does not affect mouse embryonic stem cell pluripotency, while reducing cell proliferation through cell-cycle arrest. Importantly, these effects are not related to Leukemia Inhibitory Factor (LIF) and are reversible when both amino acids are reconstituted in the culture media. Moreover, a lack of these amino acids is related to a reduction in glycolytic and oxidative metabolism and decreased protein translation in mouse embryonic stem cells (mESCs), while maintaining their pluripotent status.
Collapse
Affiliation(s)
- Bibiana Correia
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - Maria Inês Sousa
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - Ana Filipa Branco
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - Ana Sofia Rodrigues
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - João Ramalho-Santos
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
17
|
Hussein AM, Balachandar N, Mathieu J, Ruohola-Baker H. Molecular Regulators of Embryonic Diapause and Cancer Diapause-like State. Cells 2022; 11:cells11192929. [PMID: 36230891 PMCID: PMC9562880 DOI: 10.3390/cells11192929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Embryonic diapause is an enigmatic state of dormancy that interrupts the normally tight connection between developmental stages and time. This reproductive strategy and state of suspended development occurs in mice, bears, roe deer, and over 130 other mammals and favors the survival of newborns. Diapause arrests the embryo at the blastocyst stage, delaying the post-implantation development of the embryo. This months-long quiescence is reversible, in contrast to senescence that occurs in aging stem cells. Recent studies have revealed critical regulators of diapause. These findings are important since defects in the diapause state can cause a lack of regeneration and control of normal growth. Controlling this state may also have therapeutic applications since recent findings suggest that radiation and chemotherapy may lead some cancer cells to a protective diapause-like, reversible state. Interestingly, recent studies have shown the metabolic regulation of epigenetic modifications and the role of microRNAs in embryonic diapause. In this review, we discuss the molecular mechanism of diapause induction.
Collapse
Affiliation(s)
- Abdiasis M. Hussein
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Nanditaa Balachandar
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai 603203, India
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Comparative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
18
|
Endoh M, Niwa H. Stepwise pluripotency transitions in mouse stem cells. EMBO Rep 2022; 23:e55010. [PMID: 35903955 PMCID: PMC9442314 DOI: 10.15252/embr.202255010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 07/31/2023] Open
Abstract
Pluripotent cells in mouse embryos, which first emerge in the inner cell mass of the blastocyst, undergo gradual transition marked by changes in gene expression, developmental potential, polarity, and morphology as they develop from the pre-implantation until post-implantation gastrula stage. Recent studies of cultured mouse pluripotent stem cells (PSCs) have clarified the presence of intermediate pluripotent stages between the naïve pluripotent state represented by embryonic stem cells (ESCs-equivalent to the pre-implantation epiblast) and the primed pluripotent state represented by epiblast stem cells (EpiSCs-equivalent to the late post-implantation gastrula epiblast). In this review, we discuss these recent findings in light of our knowledge on peri-implantation mouse development and consider the implications of these new PSCs to understand their temporal sequence and the feasibility of using them as model system for pluripotency.
Collapse
Affiliation(s)
- Mitsuhiro Endoh
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
19
|
Lewin TD, Fouladi-Nashta AA, Holland PWH. PRD-class homeobox genes in bovine early embryos: function, evolution and overlapping roles. Mol Biol Evol 2022; 39:6581424. [PMID: 35512670 PMCID: PMC9117796 DOI: 10.1093/molbev/msac098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Eutherian Totipotent Cell Homeobox (ETCHbox) genes are mammalian-specific PRD-class homeobox genes with conserved expression in the preimplantation embryo but fast-evolving and highly divergent sequences. Here, we exploit an ectopic expression approach to examine the role of bovine ETCHbox genes and show that ARGFX and LEUTX homeodomain proteins upregulate genes normally expressed in the blastocyst; the identities of the regulated genes suggest that, in vivo, the ETCHbox genes play a role in coordinating the physical formation of the blastocyst structure. Both genes also downregulate genes expressed earlier during development and genes associated with an undifferentiated cell state, possibly via the JAK/STAT pathway. We find evidence that bovine ARGFX and LEUTX have overlapping functions, in contrast to their antagonistic roles in humans. Finally, we characterize a mutant bovine ARGFX allele which eliminates the homeodomain and show that homozygous mutants are viable. These data support the hypothesis of functional overlap between ETCHbox genes within a species, roles for ETCHbox genes in blastocyst formation and the change of their functions over evolutionary time.
Collapse
Affiliation(s)
- Thomas D Lewin
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Ali A Fouladi-Nashta
- Comparative Biomedical Sciences Department, Royal Veterinary College, Hawkshead Campus, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Peter W H Holland
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
20
|
Wooldridge LK, Ealy AD. Leukemia Inhibitory Factor Stimulates Primitive Endoderm Expansion in the Bovine Inner Cell Mass. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.796489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous work determined that bovine interleukin-6 (IL6) increases inner cell mass (ICM), primitive endoderm (PE), and total cell number in in vitro produced (IVP) bovine blastocysts. Another IL6 family member, leukemia inhibitory factor (LIF), has the potential to produce the same effects of IL6 due to the presence of its receptor in bovine blastocysts. We compared the abilities of LIF and IL6 to increase ICM cell numbers in day 7, 8, and 9 IVP bovine blastocysts. Supplementation with 100 ng/ml LIF from day 5 onward improved blastocyst formation rates on days 7 and 8 similar to what was observed when supplementing 100 ng/ml IL6. However, LIF supplementation did not cause an increase in ICM numbers like was observed after supplementing IL6. On day 9, increases in PE cell numbers were detected after LIF supplementation, but 300 ng/ml LIF was required to achieve the same effect on PE numbers that was observed by providing 100 ng/ml IL6. Collectively, these results show that LIF can mimic at least some of the effects of IL6 in bovine blastocyst.
Collapse
|
21
|
Yeh CY, Huang WH, Chen HC, Meir YJJ. Capturing Pluripotency and Beyond. Cells 2021; 10:cells10123558. [PMID: 34944066 PMCID: PMC8700150 DOI: 10.3390/cells10123558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
During the development of a multicellular organism, the specification of different cell lineages originates in a small group of pluripotent cells, the epiblasts, formed in the preimplantation embryo. The pluripotent epiblast is protected from premature differentiation until exposure to inductive cues in strictly controlled spatially and temporally organized patterns guiding fetus formation. Epiblasts cultured in vitro are embryonic stem cells (ESCs), which recapitulate the self-renewal and lineage specification properties of their endogenous counterparts. The characteristics of totipotency, although less understood than pluripotency, are becoming clearer. Recent studies have shown that a minor ESC subpopulation exhibits expanded developmental potential beyond pluripotency, displaying a characteristic reminiscent of two-cell embryo blastomeres (2CLCs). In addition, reprogramming both mouse and human ESCs in defined media can produce expanded/extended pluripotent stem cells (EPSCs) similar to but different from 2CLCs. Further, the molecular roadmaps driving the transition of various potency states have been clarified. These recent key findings will allow us to understand eutherian mammalian development by comparing the underlying differences between potency network components during development. Using the mouse as a paradigm and recent progress in human PSCs, we review the epiblast's identity acquisition during embryogenesis and their ESC counterparts regarding their pluripotent fates and beyond.
Collapse
Affiliation(s)
- Chih-Yu Yeh
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
| | - Wei-Han Huang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
| | - Hung-Chi Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Correspondence: (H.-C.C.); (Y.-J.J.M.)
| | - Yaa-Jyuhn James Meir
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (H.-C.C.); (Y.-J.J.M.)
| |
Collapse
|
22
|
van der Weijden VA, Bulut-Karslioglu A. Molecular Regulation of Paused Pluripotency in Early Mammalian Embryos and Stem Cells. Front Cell Dev Biol 2021; 9:708318. [PMID: 34386497 PMCID: PMC8353277 DOI: 10.3389/fcell.2021.708318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
The energetically costly mammalian investment in gestation and lactation requires plentiful nutritional sources and thus links the environmental conditions to reproductive success. Flexibility in adjusting developmental timing enhances chances of survival in adverse conditions. Over 130 mammalian species can reversibly pause early embryonic development by switching to a near dormant state that can be sustained for months, a phenomenon called embryonic diapause. Lineage-specific cells are retained during diapause, and they proliferate and differentiate upon activation. Studying diapause thus reveals principles of pluripotency and dormancy and is not only relevant for development, but also for regeneration and cancer. In this review, we focus on the molecular regulation of diapause in early mammalian embryos and relate it to maintenance of potency in stem cells in vitro. Diapause is established and maintained by active rewiring of the embryonic metabolome, epigenome, and gene expression in communication with maternal tissues. Herein, we particularly discuss factors required at distinct stages of diapause to induce, maintain, and terminate dormancy.
Collapse
|
23
|
Oedekoven CA, Belmonte M, Bode D, Hamey FK, Shepherd MS, Che JLC, Boyd G, McDonald C, Belluschi S, Diamanti E, Bastos HP, Bridge KS, Göttgens B, Laurenti E, Kent DG. Hematopoietic stem cells retain functional potential and molecular identity in hibernation cultures. Stem Cell Reports 2021; 16:1614-1628. [PMID: 33961793 PMCID: PMC8190576 DOI: 10.1016/j.stemcr.2021.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Advances in the isolation and gene expression profiling of single hematopoietic stem cells (HSCs) have permitted in-depth resolution of their molecular program. However, long-term HSCs can only be isolated to near purity from adult mouse bone marrow, thereby precluding studies of their molecular program in different physiological states. Here, we describe a powerful 7-day HSC hibernation culture system that maintains HSCs as single cells in the absence of a physical niche. Single hibernating HSCs retain full functional potential compared with freshly isolated HSCs with respect to colony-forming capacity and transplantation into primary and secondary recipients. Comparison of hibernating HSC molecular profiles to their freshly isolated counterparts showed a striking degree of molecular similarity, further resolving the core molecular machinery of HSC self-renewal while also identifying key factors that are potentially dispensable for HSC function, including members of the AP1 complex (Jun, Fos, and Ncor2), Sult1a1 and Cish. Finally, we provide evidence that hibernating mouse HSCs can be transduced without compromising their self-renewal activity and demonstrate the applicability of hibernation cultures to human HSCs.
Collapse
Affiliation(s)
- Caroline A Oedekoven
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Daniel Bode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Fiona K Hamey
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Mairi S Shepherd
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - James Lok Chi Che
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Grace Boyd
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Craig McDonald
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Serena Belluschi
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Evangelia Diamanti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Hugo P Bastos
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Katherine S Bridge
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Berthold Göttgens
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Elisa Laurenti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - David G Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
24
|
Stirparo GG, Kurowski A, Yanagida A, Bates LE, Strawbridge SE, Hladkou S, Stuart HT, Boroviak TE, Silva JCR, Nichols J. OCT4 induces embryonic pluripotency via STAT3 signaling and metabolic mechanisms. Proc Natl Acad Sci U S A 2021; 118:e2008890118. [PMID: 33452132 PMCID: PMC7826362 DOI: 10.1073/pnas.2008890118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null blastocyst inner cell masses at two developmental stages. Surprisingly, activation of most pluripotency-associated transcription factors in the early mouse embryo occurs independently of OCT4, with the exception of the JAK/STAT signaling machinery. Concurrently, OCT4 null inner cell masses ectopically activate a subset of trophectoderm-associated genes. Inspection of metabolic pathways implicates the regulation of rate-limiting glycolytic enzymes by OCT4, consistent with a role in sustaining glycolysis. Furthermore, up-regulation of the lysosomal pathway was specifically detected in OCT4 null embryos. This finding implicates a requirement for OCT4 in the production of normal trophectoderm. Collectively, our findings uncover regulation of cellular metabolism and biophysical properties as mechanisms by which OCT4 instructs pluripotency.
Collapse
Affiliation(s)
- Giuliano G Stirparo
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom;
- Living Systems Institute, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Agata Kurowski
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ayaka Yanagida
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
- Living Systems Institute, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Lawrence E Bates
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, United Kingdom
| | - Stanley E Strawbridge
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
| | - Siarhei Hladkou
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, United Kingdom
| | - Hannah T Stuart
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EG Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, CB2 3EG Cambridge, United Kingdom
| | - Jose C R Silva
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, United Kingdom
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom;
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EG Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, CB2 3EG Cambridge, United Kingdom
| |
Collapse
|
25
|
van der Weijden VA, Rüegg AB, Bernal-Ulloa SM, Ulbrich SE. Embryonic diapause in mammals and dormancy in embryonic stem cells with the European roe deer as experimental model. Reprod Fertil Dev 2021; 33:76-81. [PMID: 38769673 DOI: 10.1071/rd20256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
In species displaying embryonic diapause, the developmental pace of the embryo is either temporarily and reversibly halted or largely reduced. Only limited knowledge on its regulation and the inhibition of cell proliferation extending pluripotency is available. In contrast with embryos from other diapausing species that reversibly halt during diapause, embryos of the roe deer Capreolus capreolus slowly proliferate over a period of 4-5 months to reach a diameter of approximately 4mm before elongation. The diapausing roe deer embryos present an interesting model species for research on preimplantation developmental progression. Based on our and other research, we summarise the available knowledge and indicate that the use of embryonic stem cells (ESCs) would help to increase our understanding of embryonic diapause. We report on known molecular mechanisms regulating embryonic diapause, as well as cellular dormancy of pluripotent cells. Further, we address the promising application of ESCs to study embryonic diapause, and highlight the current knowledge on the cellular microenvironment regulating embryonic diapause and cellular dormancy.
Collapse
Affiliation(s)
- Vera A van der Weijden
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Anna B Rüegg
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Sandra M Bernal-Ulloa
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland; and Corresponding author
| |
Collapse
|
26
|
Nakanoh S, Agata K. Evolutionary view of pluripotency seen from early development of non-mammalian amniotes. Dev Biol 2019; 452:95-103. [PMID: 31029690 DOI: 10.1016/j.ydbio.2019.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/22/2019] [Accepted: 04/24/2019] [Indexed: 11/24/2022]
Abstract
Early embryonic cells are capable of acquiring numerous developmental fates until they become irreversibly committed to specific lineages depending on intrinsic determinants and/or regional interactions. From fertilization to gastrulation, such pluripotent cells first increase in number and then turn to undergoing differentiation. Mechanisms regulating pluripotency in each species attract great interest in developmental biology. Also, outlining the evolutionary background of pluripotency can enhance our understanding of mammalian pluripotency and provide a broader view of early development of vertebrates. Here, we introduce integrative models of pluripotent states in amniotes (mammals, birds and reptiles) to offer a comprehensive overview of widely accepted knowledge about mammalian pluripotency and our recent findings in non-mammalian amniotes, such as chicken and gecko. In particular, we describe 1) the IL6/Stat3 signaling pathway as a positive regulator of naive pluripotency, 2) Fgf/Erk signaling as a process that prepares cells for differentiation, 3) the role of the interactions between these two signaling pathways during the transition from pluripotency to differentiation, and 4) functional diversification of two transcription factors, Class V POUs and Nanog. In the last section, we also briefly discuss possible relationships of unique cell cycle properties of early embryonic cells with signaling pathways and developmental potentials in the pluripotent cell states.
Collapse
Affiliation(s)
- Shota Nakanoh
- Division of Embryology, National Institute for Basic Biology, Okazaki 444-8787, Japan; Wellcome-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Kiyokazu Agata
- Graduate Course in Life Science, Gakushuin University, Toyoshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
27
|
Blastocyst activation engenders transcriptome reprogram affecting X-chromosome reactivation and inflammatory trigger of implantation. Proc Natl Acad Sci U S A 2019; 116:16621-16630. [PMID: 31346081 DOI: 10.1073/pnas.1900401116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Implantation of the blastocyst into the uterus is the gateway for further embryonic development in mammals. Programming of blastocyst to an implantation-competent state known as blastocyst activation is the determining factor for implantation into the receptive uterus. However, it remains largely unclear how the blastocyst is globally programmed for implantation. Employing a delayed implantation mouse model, we show here that the blastocyst undergoes extensive programming essential for implantation. By analyzing the transcriptional profile of blastocysts with different implantation competency, we reveal the dynamic change in the biosynthesis, metabolism, and proliferation during blastocyst reactivation from diapause. We also demonstrate that reactivation of the X chromosome, one of the most important events during periimplantation of female embryonic development, is not completed even in blastocysts under conditions of dormancy, despite long term suspension in the uterus. Moreover, the mural trophectoderm (TE), but not the polar TE, differentiates to be more invasive through the weakened cell-cell tight junctions and extracellular matrices (ECMs). By analyzing the differentially expressed profile of secretory proteins, we further demonstrate that the blastocyst functions as a proinflammatory body to secrete proinflammatory signals, such as TNFα and S100A9, thereby triggering embryo-uterine attachment reaction during implantation. Collectively, our data systematically and comprehensively disclose the programming of blastocyst reactivation from diapause for implantation and uncover previously undefined roles of blastocyst during implantation.
Collapse
|
28
|
Hassani SN, Moradi S, Taleahmad S, Braun T, Baharvand H. Transition of inner cell mass to embryonic stem cells: mechanisms, facts, and hypotheses. Cell Mol Life Sci 2019; 76:873-892. [PMID: 30420999 PMCID: PMC11105545 DOI: 10.1007/s00018-018-2965-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
Abstract
Embryonic stem cells (ESCs) are immortal stem cells that own multi-lineage differentiation potential. ESCs are commonly derived from the inner cell mass (ICM) of pre-implantation embryos. Due to their tremendous developmental capacity and unlimited self-renewal, ESCs have diverse biomedical applications. Different culture media have been developed to procure and maintain ESCs in a state of naïve pluripotency, and to preserve a stable genome and epigenome during serial passaging. Chromatin modifications such as DNA methylation and histone modifications along with microRNA activity and different signaling pathways dynamically contribute to the regulation of the ESC gene regulatory network (GRN). Such modifications undergo remarkable changes in different ESC media and determine the quality and developmental potential of ESCs. In this review, we discuss the current approaches for derivation and maintenance of ESCs, and examine how differences in culture media impact on the characteristics of pluripotency via modulation of GRN during the course of ICM outgrowth into ESCs. We also summarize the current hypotheses concerning the origin of ESCs and provide a perspective about the relationship of these cells to their in vivo counterparts (early embryonic cells around the time of implantation). Finally, we discuss generation of ESCs from human embryos and domesticated animals, and offer suggestions to further advance this fascinating field.
Collapse
Affiliation(s)
- Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Thomas Braun
- Department of Cardiac Development and Remodelling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
29
|
Kamemizu C, Fujimori T. Distinct dormancy progression depending on embryonic regions during mouse embryonic diapause†. Biol Reprod 2019; 100:1204-1214. [DOI: 10.1093/biolre/ioz017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract
Many mammalian species undergo embryonic diapause and suspend development at the blastocyst stage before implantation, which is also known as delayed implantation. We studied the process of how mouse embryos enter a dormancy status at a cellular level. Immunofluorescent analysis of differentiation markers for epiblast, primitive endoderm, and trophectoderm suggested that cell differentiation status was maintained during 7 days in diapause. To understand the progression of cellular dormancy during diapause, we examined the expression of a transgenic cell cycle marker Fucci2 and Ki67 by antibody staining, in addition to direct counting of nuclei in embryos. From these analyses, embryos during diapause were categorized into four stages by cell number and cell cycle. Cell cycle arrest occurred from the ab-embryonic region and from the trophectoderm to the ICM in the embryonic side. We also observed cell cycle transition by live imaging of Fucci2 embryos during the reactivation in culture from dormant status. Cell cycle was initially recovered from the embryonic side of embryos and eventually spread throughout the whole embryo. We also found that embryos in later stages of diapause required a longer period of time for reactivation. From these observations, it was shown that entrance into and exit from dormant status varied depending on cell types and location of cells in an embryo. These results suggest that embryonic diapause includes multiple steps and the mechanisms involved in cellular dormancy may be distinct between embryonic regions.
Collapse
Affiliation(s)
- Chizuru Kamemizu
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI, Okazaki, Aichi, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI, Okazaki, Aichi, Japan
| |
Collapse
|
30
|
Afanassieff M, Aksoy I, Beaujean N, Bourillot PY, Savatier P. [Fifty shades of pluripotency]. Med Sci (Paris) 2018; 34:944-953. [PMID: 30526839 DOI: 10.1051/medsci/2018240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since the derivation of the first pluripotent embryonic stem cell lines in mice in the early 1980s, a plethora of lines has been obtained from various mammalian species including rodents, lagomorphs and primates. These lines are distinguished by their molecular and functional characteristics and correspond to the different pluripotency states observed in the developing embryo between the "blastocyst" and "gastrula" stages. These cell lines are positioned along a gradient, or continuum of pluripotency, the ends of which are epitomized by the naïve and primed states, respectively. Conventional human pluripotent stem cells self-renew in the primed state of pluripotency (ie, at the bottom of the gradient), a position that is undoubtedly the cause of their natural instability. Recent studies aim to generate naive human pluripotent stem cells (at the top of the gradient). The importance of this research in the perspective of medical applications will be discussed.
Collapse
Affiliation(s)
- Marielle Afanassieff
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Irène Aksoy
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Nathalie Beaujean
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Pierre-Yves Bourillot
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Pierre Savatier
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| |
Collapse
|
31
|
Sutherland L, Ruhe M, Gattegno-Ho D, Mann K, Greaves J, Koscielniak M, Meek S, Lu Z, Waterfall M, Taylor R, Tsakiridis A, Brown H, Maciver SK, Joshi A, Clinton M, Chamberlain LH, Smith A, Burdon T. LIF-dependent survival of embryonic stem cells is regulated by a novel palmitoylated Gab1 signalling protein. J Cell Sci 2018; 131:jcs222257. [PMID: 30154213 PMCID: PMC6176924 DOI: 10.1242/jcs.222257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023] Open
Abstract
The cytokine leukaemia inhibitory factor (LIF) promotes self-renewal of mouse embryonic stem cells (ESCs) through activation of the transcription factor Stat3. However, the contribution of other ancillary pathways stimulated by LIF in ESCs, such as the MAPK and PI3K pathways, is less well understood. We show here that naive-type mouse ESCs express high levels of a novel effector of the MAPK and PI3K pathways. This effector is an isoform of the Gab1 (Grb2-associated binder protein 1) adaptor protein that lacks the N-terminal pleckstrin homology (PH) membrane-binding domain. Although not essential for rapid unrestricted growth of ESCs under optimal conditions, the novel Gab1 variant (Gab1β) is required for LIF-mediated cell survival under conditions of limited nutrient availability. This enhanced survival is absolutely dependent upon a latent palmitoylation site that targets Gab1β directly to ESC membranes. These results show that constitutive association of Gab1 with membranes through a novel mechanism promotes LIF-dependent survival of murine ESCs in nutrient-poor conditions.
Collapse
Affiliation(s)
- Linda Sutherland
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Madeleine Ruhe
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Daniela Gattegno-Ho
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Karanjit Mann
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Jennifer Greaves
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Magdalena Koscielniak
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Stephen Meek
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Zen Lu
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Martin Waterfall
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Ryan Taylor
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Anestis Tsakiridis
- Department of Biomedical Science, The University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Helen Brown
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Sutherland K Maciver
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Anagha Joshi
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Michael Clinton
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QT, UK
| | - Tom Burdon
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
32
|
Zhang Y, Wang D, Xu J, Wang Y, Ma F, Li Z, Liu N. Stat3 activation is critical for pluripotency maintenance. J Cell Physiol 2018; 234:1044-1051. [DOI: 10.1002/jcp.27241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/25/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Yan Zhang
- Department of Cell Biology School of Medicine, Nankai University Tianjin China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University Tianjin China
| | - Dan Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University Tianjin China
- Department of Genetics and Cell Biology College of Life Sciences, Nankai University Tianjin China
| | - Jia Xu
- Department of Cell Biology School of Medicine, Nankai University Tianjin China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University Tianjin China
| | - Yuebing Wang
- Department of Cell Biology School of Medicine, Nankai University Tianjin China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University Tianjin China
| | - Fengxia Ma
- State Key Lab of Experimental Hematology, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences Tianjin China
| | - Zongjin Li
- Department of Cell Biology School of Medicine, Nankai University Tianjin China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University Tianjin China
| | - Na Liu
- Department of Cell Biology School of Medicine, Nankai University Tianjin China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University Tianjin China
| |
Collapse
|
33
|
Jiapaer Z, Li G, Ye D, Bai M, Li J, Guo X, Du Y, Su D, Jia W, Chen W, Wang G, Yu Y, Zhu F, Wan X, Kang J. LincU Preserves Naïve Pluripotency by Restricting ERK Activity in Embryonic Stem Cells. Stem Cell Reports 2018; 11:395-409. [PMID: 30017820 PMCID: PMC6092693 DOI: 10.1016/j.stemcr.2018.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Although the functional roles of long noncoding RNAs (lncRNAs) have been increasingly identified, few lncRNAs that control the naïve state of embryonic stem cells (ESCs) are known. Here, we report a naïve-state-associated lncRNA, LincU, which is intrinsically activated by Nanog in mESCs. LincU-deficient mESCs exhibit a primed-like pluripotent state and potentiate the transition from the naïve state to the primed state, whereas ectopic LincU expression maintains mESCs in the naïve state. Mechanistically, we demonstrate that LincU binds and stabilizes the DUSP9 protein, an ERK-specific phosphatase, and then constitutively inhibits the ERK1/2 signaling pathway, which critically contributes to maintenance of the naïve state. Importantly, we reveal the functional role of LincU to be evolutionarily conserved in human. Therefore, our findings unveil LincU as a conserved lncRNA that intrinsically restricts MAPK/ERK activity and maintains the naïve state of ESCs. LincU is integral and sufficient to maintain the naïve state of mESCs LincU binds and stabilizes DUSP9 protein to inhibit the ERK1/2 phosphorylation LincU is a direct target of NANOG in naïve-state mESCs The functional role of LincU is conserved in human ESCs
Collapse
Affiliation(s)
- Zeyidan Jiapaer
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Guoping Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Mingliang Bai
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Institute of Regenerative Medicine, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yanhua Du
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Dingwen Su
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yangyang Yu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Fugui Zhu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
34
|
Ying QL, Smith A. The Art of Capturing Pluripotency: Creating the Right Culture. Stem Cell Reports 2018; 8:1457-1464. [PMID: 28591647 PMCID: PMC5470336 DOI: 10.1016/j.stemcr.2017.05.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) are a unique tool for genetic perturbation of mammalian cellular and organismal processes additionally in humans offer unprecedented opportunities for disease modeling and cell therapy. Furthermore, ESCs are a powerful system for exploring the fundamental biology of pluripotency. Indeed understanding the control of self-renewal and differentiation is key to realizing the potential of ESCs. Building on previous observations, we found that mouse ESCs can be derived and maintained with high efficiency through insulation from differentiation cues combined with consolidation of an innate cell proliferation program. This finding of a pluripotent ground state has led to conceptual and practical advances, including the establishment of germline-competent ESCs from recalcitrant mouse strains and for the first time from the rat. Here, we summarize historical and recent progress in defining the signaling environment that supports self-renewal. We compare the contrasting requirements of two types of pluripotent stem cell, naive ESCs and primed post-implantation epiblast stem cells (EpiSCs), and consider the outstanding challenge of generating naive pluripotent stem cells from different mammals.
Collapse
Affiliation(s)
- Qi-Long Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Austin Smith
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
35
|
He R, Xhabija B, Al-Qanber B, Kidder BL. OCT4 supports extended LIF-independent self-renewal and maintenance of transcriptional and epigenetic networks in embryonic stem cells. Sci Rep 2017; 7:16360. [PMID: 29180818 PMCID: PMC5703885 DOI: 10.1038/s41598-017-16611-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022] Open
Abstract
Embryonic stem (ES) cell pluripotency is governed by OCT4-centric transcriptional networks. Conventional ES cells can be derived and maintained in vitro with media containing the cytokine leukemia inhibitory factor (LIF), which propagates the pluripotent state by activating STAT3 signaling, and simultaneous inhibition of glycogen synthase kinase-3 (GSK3) and MAP kinase/ERK kinase signaling. However, it is unclear whether overexpression of OCT4 is sufficient to overcome LIF-dependence. Here, we show that inducible expression of OCT4 (iOCT4) supports long-term LIF-independent self-renewal of ES cells cultured in media containing fetal bovine serum (FBS) and a glycogen synthase kinase-3 (GSK3) inhibitor, and in serum-free media. Global expression analysis revealed that LIF-independent iOCT4 ES cells and control ES cells exhibit similar transcriptional programs relative to epiblast stem cells (EpiSCs) and differentiated cells. Epigenomic profiling also demonstrated similar patterns of histone modifications between LIF-independent iOCT4 and control ES cells. Moreover, LIF-independent iOCT4 ES cells retain the capacity to differentiate in vitro and in vivo upon downregulation of OCT4 expression. These findings indicate that OCT4 expression is sufficient to sustain intrinsic signaling in a LIF-independent manner to promote ES cell pluripotency and self-renewal.
Collapse
Affiliation(s)
- Runsheng He
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Besa Xhabija
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, MI, USA
| | - Batool Al-Qanber
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Benjamin L Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
36
|
Abstract
Embryonic diapause – a period of embryonic suspension at the blastocyst stage – is a fascinating phenomenon that occurs in over 130 species of mammals, ranging from bears and badgers to mice and marsupials. It might even occur in humans. During diapause, there is minimal cell division and greatly reduced metabolism, and development is put on hold. Yet there are no ill effects for the pregnancy when it eventually continues. Multiple factors can induce diapause, including seasonal supplies of food, temperature, photoperiod and lactation. The successful reactivation and continuation of pregnancy then requires a viable embryo, a receptive uterus and effective molecular communication between the two. But how do the blastocysts survive and remain viable during this period of time, which can be up to a year in some cases? And what are the signals that bring it out of suspended animation? Here, we provide an overview of the process of diapause and address these questions, focussing on recent molecular data.
Collapse
Affiliation(s)
- Marilyn B. Renfree
- School of BioSciences, The University of Melbourne, Victoria, Australia 3010
| | - Jane C. Fenelon
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H8L6
| |
Collapse
|
37
|
Rossant J, Tam PPL. New Insights into Early Human Development: Lessons for Stem Cell Derivation and Differentiation. Cell Stem Cell 2017; 20:18-28. [PMID: 28061351 DOI: 10.1016/j.stem.2016.12.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pathways underlying mouse embryonic development have always informed efforts to derive, maintain, and drive differentiation of human pluripotent stem cells. However, direct application of mouse embryology to the human system has not always been successful because of fundamental developmental differences between species. The naive pluripotent state of mouse embryonic stem cells (ESCs), in particular, has been difficult to capture in human ESCs, and appears to be transitory in the human embryo itself. Further studies of human and non-human primate embryo development are needed to untangle the complexities of pluripotency networks across mammalian species.
Collapse
Affiliation(s)
- Janet Rossant
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada.
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute and School of Medical Sciences, Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
38
|
Bates LE, Silva JC. Reprogramming human cells to naïve pluripotency: how close are we? Curr Opin Genet Dev 2017; 46:58-65. [PMID: 28668635 PMCID: PMC6112416 DOI: 10.1016/j.gde.2017.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/14/2017] [Accepted: 06/08/2017] [Indexed: 12/24/2022]
Abstract
Pluripotent stem cells (PSCs) have the potential to revolutionise biomedical science; however, while it is simple to reproducibly obtain comparable, stable cell lines in mouse, those produced from human material typically show significant variability both within and between cell lines. This is likely due to differences in the cell identity of conventional mouse and human PSCs. It is hoped that recently identified conditions to reprogram human cells to a naïve-like state will produce better PSCs resulting in reproducible experimental outcomes and more consistent differentiation protocols. In this review we discuss the latest literature on the discovery of human naïve-like stem cells and examine how similar they are to both mouse naïve cells and the preimplantation human epiblast.
Collapse
Affiliation(s)
- Lawrence E Bates
- Wellcome Trust Medical Research Council Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - José Cr Silva
- Wellcome Trust Medical Research Council Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
39
|
Morgani S, Nichols J, Hadjantonakis AK. The many faces of Pluripotency: in vitro adaptations of a continuum of in vivo states. BMC DEVELOPMENTAL BIOLOGY 2017; 17:7. [PMID: 28610558 PMCID: PMC5470286 DOI: 10.1186/s12861-017-0150-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022]
Abstract
Pluripotency defines the propensity of a cell to differentiate into, and generate, all somatic, as well as germ cells. The epiblast of the early mammalian embryo is the founder population of all germ layer derivatives and thus represents the bona fide in vivo pluripotent cell population. The so-called pluripotent state spans several days of development and is lost during gastrulation as epiblast cells make fate decisions towards a mesoderm, endoderm or ectoderm identity. It is now widely recognized that the features of the pluripotent population evolve as development proceeds from the pre- to post-implantation period, marked by distinct transcriptional and epigenetic signatures. During this period of time epiblast cells mature through a continuum of pluripotent states with unique properties. Aspects of this pluripotent continuum can be captured in vitro in the form of stable pluripotent stem cell types. In this review we discuss the continuum of pluripotency existing within the mammalian embryo, using the mouse as a model, and the cognate stem cell types that can be derived and propagated in vitro. Furthermore, we speculate on embryonic stage-specific characteristics that could be utilized to identify novel, developmentally relevant, pluripotent states.
Collapse
Affiliation(s)
- Sophie Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
40
|
Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: Slippery slope, terrace and cliff. Stem Cell Res 2017; 19:104-112. [DOI: 10.1016/j.scr.2017.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/01/2017] [Accepted: 01/13/2017] [Indexed: 12/14/2022] Open
|
41
|
Wu J, Izpisua Belmonte JC. Stem Cells: A Renaissance in Human Biology Research. Cell 2017; 165:1572-1585. [PMID: 27315475 DOI: 10.1016/j.cell.2016.05.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/18/2022]
Abstract
The understanding of human biology and how it relates to that of other species represents an ancient quest. Limited access to human material, particularly during early development, has restricted researchers to only scratching the surface of this inherently challenging subject. Recent technological innovations, such as single cell "omics" and human stem cell derivation, have now greatly accelerated our ability to gain insights into uniquely human biology. The opportunities afforded to delve molecularly into scarce material and to model human embryogenesis and pathophysiological processes are leading to new insights of human development and are changing our understanding of disease and choice of therapy options.
Collapse
Affiliation(s)
- Jun Wu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, 135, Guadalupe 30107, Murcia, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
42
|
Menchero S, Rayon T, Andreu MJ, Manzanares M. Signaling pathways in mammalian preimplantation development: Linking cellular phenotypes to lineage decisions. Dev Dyn 2016; 246:245-261. [DOI: 10.1002/dvdy.24471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Teresa Rayon
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Maria Jose Andreu
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| |
Collapse
|
43
|
Betschinger J. Charting Developmental Dissolution of Pluripotency. J Mol Biol 2016; 429:1441-1458. [PMID: 28013029 DOI: 10.1016/j.jmb.2016.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023]
Abstract
The formation of tissues and organs during metazoan development begs fundamental questions of cellular plasticity: How can the very same genome program have diverse cell types? How do cell identity programs unfold during development in space and time? How can defects in these mechanisms cause disease and also provide opportunities for therapeutic intervention? And ultimately, can developmental programs be exploited for bioengineering tissues and organs? Understanding principle designs of cellular identity and developmental progression is crucial for providing answers. Here, I will discuss how the capture of embryonic pluripotency in murine embryonic stem cells (ESCs) in vitro has allowed fundamental insights into the molecular underpinnings of a developmental cell state and how its ordered disassembly during differentiation prepares for lineage specification.
Collapse
Affiliation(s)
- Joerg Betschinger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
44
|
Heemskerk I, Warmflash A. Pluripotent stem cells as a model for embryonic patterning: From signaling dynamics to spatial organization in a dish. Dev Dyn 2016; 245:976-90. [PMID: 27404482 DOI: 10.1002/dvdy.24432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
In vivo studies have identified the signaling pathways and transcription factors involved in patterning the vertebrate embryo, but much remains unknown about how these are organized in space and time to orchestrate embryogenesis. Recently, embryonic stem cells have been established as a platform for studying spatial pattern formation and differentiation dynamics in the early mammalian embryo. The ease of observing and manipulating stem cell systems promises to fill gaps in our understanding of developmental dynamics and identify aspects that are uniquely human. Developmental Dynamics 245:976-990, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Idse Heemskerk
- Department of Biosciences, Rice University, Houston, Texas
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, Texas. .,Department of Bioengineering, Rice University, Houston, Texas.
| |
Collapse
|
45
|
Chung H, Lee BK, Uprety N, Shen W, Lee J, Kim J. Yap1 is dispensable for self-renewal but required for proper differentiation of mouse embryonic stem (ES) cells. EMBO Rep 2016; 17:519-29. [PMID: 26917425 DOI: 10.15252/embr.201540933] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/22/2016] [Indexed: 01/09/2023] Open
Abstract
Yap1 is a transcriptional co-activator of the Hippo pathway. The importance of Yap1 in early cell fate decision during embryogenesis has been well established, though its role in embryonic stem (ES) cells remains elusive. Here, we report that Yap1 plays crucial roles in normal differentiation rather than self-renewal of ES cells. Yap1-depleted ES cells maintain undifferentiated state with a typical colony morphology as well as robust alkaline phosphatase activity. These cells also retain comparable levels of the core pluripotent factors, such as Pou5f1 and Sox2, to the levels in wild-type ES cells without significant alteration of lineage-specific marker genes. Conversely, overexpression of Yap1 in ES cells promotes nuclear translocation of Yap1, resulting in disruption of self-renewal and triggering differentiation by up-regulating lineage-specific genes. Moreover, Yap1-deficient ES cells show impaired induction of lineage markers during differentiation. Collectively, our data demonstrate that Yap1 is a required factor for proper differentiation of mouse ES cells, while remaining dispensable for self-renewal.
Collapse
Affiliation(s)
- HaeWon Chung
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Bum-Kyu Lee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Nadima Uprety
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Wenwen Shen
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Jiwoon Lee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
46
|
Scognamiglio R, Cabezas-Wallscheid N, Thier MC, Altamura S, Reyes A, Prendergast ÁM, Baumgärtner D, Carnevalli LS, Atzberger A, Haas S, von Paleske L, Boroviak T, Wörsdörfer P, Essers MAG, Kloz U, Eisenman RN, Edenhofer F, Bertone P, Huber W, van der Hoeven F, Smith A, Trumpp A. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell 2016; 164:668-80. [PMID: 26871632 PMCID: PMC4752822 DOI: 10.1016/j.cell.2015.12.033] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 10/26/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state.
Collapse
Affiliation(s)
- Roberta Scognamiglio
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nina Cabezas-Wallscheid
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marc Christian Thier
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Alejandro Reyes
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Áine M Prendergast
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Daniel Baumgärtner
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Larissa S Carnevalli
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ann Atzberger
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lisa von Paleske
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Thorsten Boroviak
- Welcome Trust-Medical Research Council Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Philipp Wörsdörfer
- Stem Cell and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Koellikerstraße 6, 97070 Würzburg, Germany
| | - Marieke A G Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ulrich Kloz
- Transgenic Service, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Frank Edenhofer
- Stem Cell and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Koellikerstraße 6, 97070 Würzburg, Germany; Institute of Molecular Biology, Department of Genomics, Stem Cell Biology & Regenerative Medicine, Leopold-Franzens-Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Paul Bertone
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; Welcome Trust-Medical Research Council Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Franciscus van der Hoeven
- Transgenic Service, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Austin Smith
- Welcome Trust-Medical Research Council Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
47
|
Frankenberg SR, de Barros FR, Rossant J, Renfree MB. The mammalian blastocyst. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:210-32. [DOI: 10.1002/wdev.220] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 11/10/2022]
Affiliation(s)
| | - Flavia R.O. de Barros
- Program in Developmental and Stem Cell Biology; Peter Gilgan Centre for Research and Learning, Hospital for Sick Children; Toronto Canada
- Department of Molecular Genetics; University of Toronto; Toronto Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology; Peter Gilgan Centre for Research and Learning, Hospital for Sick Children; Toronto Canada
- Department of Molecular Genetics; University of Toronto; Toronto Canada
| | | |
Collapse
|
48
|
Boroviak T, Loos R, Lombard P, Okahara J, Behr R, Sasaki E, Nichols J, Smith A, Bertone P. Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis. Dev Cell 2015; 35:366-82. [PMID: 26555056 PMCID: PMC4643313 DOI: 10.1016/j.devcel.2015.10.011] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 09/01/2015] [Accepted: 10/14/2015] [Indexed: 12/11/2022]
Abstract
Naive pluripotency is manifest in the preimplantation mammalian embryo. Here we determine transcriptome dynamics of mouse development from the eight-cell stage to postimplantation using lineage-specific RNA sequencing. This method combines high sensitivity and reporter-based fate assignment to acquire the full spectrum of gene expression from discrete embryonic cell types. We define expression modules indicative of developmental state and temporal regulatory patterns marking the establishment and dissolution of naive pluripotency in vivo. Analysis of embryonic stem cells and diapaused embryos reveals near-complete conservation of the core transcriptional circuitry operative in the preimplantation epiblast. Comparison to inner cell masses of marmoset primate blastocysts identifies a similar complement of pluripotency factors but use of alternative signaling pathways. Embryo culture experiments further indicate that marmoset embryos utilize WNT signaling during early lineage segregation, unlike rodents. These findings support a conserved transcription factor foundation for naive pluripotency while revealing species-specific regulatory features of lineage segregation.
Collapse
Affiliation(s)
- Thorsten Boroviak
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Remco Loos
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Patrick Lombard
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Junko Okahara
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| | - Rüdiger Behr
- Deutsches Primatenzentrum (German Primate Center), Leibniz-Institut für Primatenforschung, Kellnerweg 4, 37077 Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan; Keio Advanced Research Center, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Paul Bertone
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK; Genome Biology and Developmental Biology Units, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
49
|
Abstract
Leukemia inhibitory factor (LIF) is the most pleiotropic member of the interleukin-6 family of cytokines. It utilises a receptor that consists of the LIF receptor β and gp130 and this receptor complex is also used by ciliary neurotrophic growth factor (CNTF), oncostatin M, cardiotrophin1 (CT1) and cardiotrophin-like cytokine (CLC). Despite common signal transduction mechanisms (JAK/STAT, MAPK and PI3K) LIF can have paradoxically opposite effects in different cell types including stimulating or inhibiting each of cell proliferation, differentiation and survival. While LIF can act on a wide range of cell types, LIF knockout mice have revealed that many of these actions are not apparent during ordinary development and that they may be the result of induced LIF expression during tissue damage or injury. Nevertheless LIF does appear to have non-redundant actions in maternal receptivity to blastocyst implantation, placental formation and in the development of the nervous system. LIF has also found practical use in the maintenance of self-renewal and totipotency of embryonic stem cells and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Royal Pde, Melbourne 3050, VIC, Australia.
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Royal Pde, Melbourne 3050, VIC, Australia
| |
Collapse
|
50
|
Abstract
Leukemia inhibitory factor (LIF) is a member of the interleukin-6 (IL-6) cytokine family. All members of this family activate signal transducer and activator of transcription 3 (STAT3), a transcription factor that influences stem and progenitor cell identity, proliferation and cytoprotection. The role of LIF in development was first identified when LIF was demonstrated to support the propagation of mouse embryonic stem cells. Subsequent studies of mice deficient for components of the LIF pathway have revealed important roles for LIF signaling during development and homeostasis. Here and in the accompanying poster, we provide a broad overview of JAK-STAT signaling during development, with a specific focus on LIF-mediated JAK-STAT3 activation.
Collapse
Affiliation(s)
- Kento Onishi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9 Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5 The Donnelly Centre, University of Toronto, 160 College St., Toronto, Ontario, Canada M5S 3E1 McEwen Centre for Regenerative Medicine, University Health Network, 101 College St., Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|