1
|
Lozano D, Chinarro A, Yanguas L, Morona R, Moreno N, López JM. Pax6 and Pax7 in the Central Nervous System of Cladistian Fishes: A Comprehensive Expression Analysis. J Comp Neurol 2025; 533:e70053. [PMID: 40275424 DOI: 10.1002/cne.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025]
Abstract
Among actinopterygian fishes, cladistians stand as the more basal extant species in the group, holding a key phylogenetic position close to the common ancestor of Osteichthyes. Despite the recent publication of studies regarding the neurochemical organization of their central nervous system (CNS), there is still a significant lack of genoarchitectonic data that may prove essential to fully understand the patterning of the brain of these fishes. The paired box genes Pax6 and Pax7 are known to determine several boundaries in the CNS and are indispensable, for instance, for the survival of neurons and the change from cell proliferation to cell differentiation. By means of immunohistofluorescence methods, we analyzed the expression patterns of the transcription factors Pax6 and Pax7 in the CNS of three representative species of cladistian fishes, with a particular focus on their evolutionary implications. Thus, conserved Pax6 immunoreactive cell groups were present in the olfactory bulb, subpallial areas, the prethalamus, the basal prosomere 3, the pretectum, the mesencephalic tegmentum, the cerebellum, the basal rhombencephalon, the spinal cord, and the retina. A number of exclusive features were identified, including the almost total absence of expression in the pallium, which was observed only in cladistians, and its absence in the hypothalamus, which is a primitive anamniote trait. Likewise, the Pax7 expression pattern was generally conserved, with traits like the absence of labeling in the telencephalon and the expression in the retromamillary hypothalamic domain, the basal prosomere 3, the pretectum, the optic tectum, and the alar part of the first rhombomere. Additionally, no Pax7 labeling was detected in the spinal cord, comprising a specific cladistian feature.
Collapse
Affiliation(s)
- Daniel Lozano
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | - Adrián Chinarro
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | - Lucía Yanguas
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| |
Collapse
|
2
|
Tamura M, Ishikawa R, Nakanishi Y, Pascual-Anaya J, Fukui M, Saitou T, Sugahara F, Rijli FM, Kuratani S, Suzuki DG, Murakami Y. Comparative analysis of Hmx expression and the distribution of neuronal somata in the trigeminal ganglion in lamprey and shark: insights into the homology of the trigeminal nerve branches and the evolutionary origin of the vertebrate jaw. ZOOLOGICAL LETTERS 2023; 9:23. [PMID: 38049907 PMCID: PMC10696661 DOI: 10.1186/s40851-023-00222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
The evolutionary origin of the jaw remains one of the most enigmatic events in vertebrate evolution. The trigeminal nerve is a key component for understanding jaw evolution, as it plays a crucial role as a sensorimotor interface for the effective manipulation of the jaw. This nerve is also found in the lamprey, an extant jawless vertebrate. The trigeminal nerve has three major branches in both the lamprey and jawed vertebrates. Although each of these branches was classically thought to be homologous between these two taxa, this homology is now in doubt. In the present study, we compared expression patterns of Hmx, a candidate genetic marker of the mandibular nerve (rV3, the third branch of the trigeminal nerve in jawed vertebrates), and the distribution of neuronal somata of trigeminal nerve branches in the trigeminal ganglion in lamprey and shark. We first confirmed the conserved expression pattern of Hmx1 in the shark rV3 neuronal somata, which are distributed in the caudal part of the trigeminal ganglion. By contrast, lamprey Hmx genes showed peculiar expression patterns, with expression in the ventrocaudal part of the trigeminal ganglion similar to Hmx1 expression in jawed vertebrates, which labeled the neuronal somata of the second branch. Based on these results, we propose two alternative hypotheses regarding the homology of the trigeminal nerve branches, providing new insights into the evolutionary origin of the vertebrate jaw.
Collapse
Affiliation(s)
- Motoki Tamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Ryota Ishikawa
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Yuki Nakanishi
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Juan Pascual-Anaya
- Department of Animal Biology, Faculty of Science, University of Málaga, Campus de Teatinos s/n, Málaga, 29071, Spain
| | - Makiko Fukui
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Takashi Saitou
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, 791-0295, Japan
| | - Fumiaki Sugahara
- Division of Biology, Hyogo Medical University, Nishinomiya, 663-8501, Hyogo, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047, Japan
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, 4058, Switzerland
- University of Basel, Basel, Switzerland
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047, Japan
| | - Daichi G Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan.
| |
Collapse
|
3
|
Takagi W, Sugahara F, Higuchi S, Kusakabe R, Pascual-Anaya J, Sato I, Oisi Y, Ogawa N, Miyanishi H, Adachi N, Hyodo S, Kuratani S. Thyroid and endostyle development in cyclostomes provides new insights into the evolutionary history of vertebrates. BMC Biol 2022; 20:76. [PMID: 35361194 PMCID: PMC8973611 DOI: 10.1186/s12915-022-01282-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background The endostyle is an epithelial exocrine gland found in non-vertebrate chordates (amphioxi and tunicates) and the larvae of modern lampreys. It is generally considered to be an evolutionary precursor of the thyroid gland of vertebrates. Transformation of the endostyle into the thyroid gland during the metamorphosis of lampreys is thus deemed to be a recapitulation of a past event in vertebrate evolution. In 1906, Stockard reported that the thyroid gland in hagfish, the sister cyclostome group of lampreys, develops through an endostyle-like primordium, strongly supporting the plesiomorphy of the lamprey endostyle. However, the findings in hagfish thyroid development were solely based on this single study, and these have not been confirmed by modern molecular, genetic, and morphological data pertaining to hagfish thyroid development over the last century. Results Here, we showed that the thyroid gland of hagfish undergoes direct development from the ventrorostral pharyngeal endoderm, where the previously described endostyle-like primordium was not found. The developmental pattern of the hagfish thyroid, including histological features and regulatory gene expression profiles, closely resembles that found in modern jawed vertebrates (gnathostomes). Meanwhile, as opposed to gnathostomes but similar to non-vertebrate chordates, lamprey and hagfish share a broad expression domain of Nkx2-1/2-4, a key regulatory gene, in the pharyngeal epithelium during early developmental stages. Conclusions Based on the direct development of the thyroid gland both in hagfish and gnathostomes, and the shared expression profile of thyroid-related transcription factors in the cyclostomes, we challenge the plesiomorphic status of the lamprey endostyle and propose an alternative hypothesis where the lamprey endostyle could be obtained secondarily in crown lampreys. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01282-7.
Collapse
Affiliation(s)
- Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan. .,Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, 650-0047, Japan.
| | - Fumiaki Sugahara
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, 650-0047, Japan.,Division of Biology, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan
| | - Shinnosuke Higuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan.,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Rie Kusakabe
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, 650-0047, Japan.,Present Address: Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Present Address: Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Iori Sato
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Yasuhiro Oisi
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako, 351-0198, Japan
| | - Nobuhiro Ogawa
- Laboratory Research Support Section, Center for Cooperative Research Promotion, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Hiroshi Miyanishi
- Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi, 889-2192, Japan
| | - Noritaka Adachi
- Aix-Marseille Université, IBDM, CNRS UMR 7288, Marseille, France.,Present address: Department of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8549, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, 650-0047, Japan. .,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan.
| |
Collapse
|
4
|
Medina L, Abellán A, Desfilis E. Evolving Views on the Pallium. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:181-199. [PMID: 34657034 DOI: 10.1159/000519260] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
The pallium is the largest part of the telencephalon in amniotes, and comparison of its subdivisions across species has been extremely difficult and controversial due to its high divergence. Comparative embryonic genoarchitecture studies have greatly contributed to propose models of pallial fundamental divisions, which can be compared across species and be used to extract general organizing principles as well as to ask more focused and insightful research questions. The use of these models is crucial to discern between conservation, convergence or divergence in the neural populations and networks found in the pallium. Here we provide a critical review of the models proposed using this approach, including tetrapartite, hexapartite and double-ring models, and compare them to other models. While recognizing the power of these models for understanding brain architecture, development and evolution, we also highlight limitations and comment on aspects that require attention for improvement. We also discuss on the use of transcriptomic data for understanding pallial evolution and advise for better contextualization of these data by discerning between gene regulatory networks involved in the generation of specific units and cell populations versus genes expressed later, many of which are activity dependent and their expression is more likely subjected to convergent evolution.
Collapse
Affiliation(s)
- Loreta Medina
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| |
Collapse
|
5
|
Suzuki DG. Consciousness in Jawless Fishes. Front Syst Neurosci 2021; 15:751876. [PMID: 34630051 PMCID: PMC8497754 DOI: 10.3389/fnsys.2021.751876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Jawless fishes were the first vertebrates to evolve. It is thus important to investigate them to determine whether consciousness was acquired in the common ancestor of all vertebrates. Most jawless fish lineages are extinct, and cyclostomes (lampreys and hagfish) are the sole survivors. Here, I review the empirical knowledge on the neurobiology of cyclostomes with special reference to recently proposed "markers" of primary, minimal consciousness. The adult lamprey appears to meet the neuroanatomical criteria but there is a practical limitation to behavioral examination of its learning ability. In addition, the consciousness-related neuroarchitecture of larvae and its reconstruction during metamorphosis remain largely uninvestigated. Even less is known of hagfish neurobiology. The hagfish forebrain forms the central prosencephalic complex, and the homology of its components to the brain regions of other vertebrates needs to be confirmed using modern techniques. Nevertheless, as behavioral responses to olfactory stimuli in aquariums have been reported, it is easier to investigate the learning ability of the hagfish than that of the lamprey. Based on these facts, I finally discuss the potential future directions of empirical studies for examining the existence of consciousness in jawless fishes.
Collapse
Affiliation(s)
- Daichi G Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
López JM, Jiménez S, Morona R, Lozano D, Moreno N. Analysis of Islet-1, Nkx2.1, Pax6, and Orthopedia in the forebrain of the sturgeon Acipenser ruthenus identifies conserved prosomeric characteristics. J Comp Neurol 2021; 530:834-855. [PMID: 34547112 DOI: 10.1002/cne.25249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022]
Abstract
The distribution patterns of a set of conserved brain developmental regulatory transcription factors were analyzed in the forebrain of the basal actinopterygian fish Acipenser ruthenus, consistent with the prosomeric model. In the telencephalon, the pallium was characterized by ventricular expression of Pax6. In the subpallium, the combined expression of Nkx2.1/Islet-1 (Isl1) allowed to propose ventral and dorsal areas, as the septo-pallidal (Nkx2.1/Isl1+) and striatal derivatives (Isl1+), respectively, and a dorsal portion of the striatal derivatives, ventricularly rich in Pax6 and devoid of Isl1 expression. Dispersed Orthopedia (Otp) cells were found in the supracommissural and posterior nuclei of the ventral telencephalon, related to the medial portion of the amygdaloid complex. The preoptic area was identified by the Nkx2.1/Isl1 expression. In the alar hypothalamus, an Otp-expressing territory, lacking Nkx2.1/Isl1, was identified as the paraventricular domain. The adjacent subparaventricular domain (Spa) was subdivided in a rostral territory expressing Nkx2.1 and an Isl1+ caudal one. In the basal hypothalamus, the tuberal region was defined by the Nkx2.1/Isl1 expression and a rostral Otp-expressing domain was identified. Moreover, the Otp/Nkx2.1 combination showed an additional zone lacking Isl1, tentatively identified as the mamillary area. In the diencephalon, both Pax6 and Isl1 defined the prethalamic domain, and within the basal prosomere 3, scattered Pax6- and Isl1-expressing cells were observed in the posterior tubercle. Finally, a small group of Pax6 cells was observed in the pretectal area. These results improve the understanding of the forebrain evolution and demonstrate that its basic bauplan is present very early in the vertebrate lineage.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| |
Collapse
|
7
|
Sugahara F, Murakami Y, Pascual-Anaya J, Kuratani S. Forebrain Architecture and Development in Cyclostomes, with Reference to the Early Morphology and Evolution of the Vertebrate Head. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:305-317. [PMID: 34537767 DOI: 10.1159/000519026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022]
Abstract
The vertebrate head and brain are characterized by highly complex morphological patterns. The forebrain, the most anterior division of the brain, is subdivided into the diencephalon, hypothalamus, and telencephalon from the neuromeric subdivision into prosomeres. Importantly, the telencephalon contains the cerebral cortex, which plays a key role in higher order cognitive functions in humans. To elucidate the evolution of the forebrain regionalization, comparative analyses of the brain development between extant jawed and jawless vertebrates are crucial. Cyclostomes - lampreys and hagfishes - are the only extant jawless vertebrates, and diverged from jawed vertebrates (gnathostomes) over 500 million years ago. Previous developmental studies on the cyclostome brain were conducted mainly in lampreys because hagfish embryos were rarely available. Although still scarce, the recent availability of hagfish embryos has propelled comparative studies of brain development and gene expression. By integrating findings with those of cyclostomes and fossil jawless vertebrates, we can depict the morphology, developmental mechanism, and even the evolutionary path of the brain of the last common ancestor of vertebrates. In this review, we summarize the development of the forebrain in cyclostomes and suggest what evolutionary changes each cyclostome lineage underwent during brain evolution. In addition, together with recent advances in the head morphology in fossil vertebrates revealed by CT scanning technology, we discuss how the evolution of craniofacial morphology and the changes of the developmental mechanism of the forebrain towards crown gnathostomes are causally related.
Collapse
Affiliation(s)
- Fumiaki Sugahara
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Japan.,Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.,Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
8
|
Sugahara F, Pascual-Anaya J, Kuraku S, Kuratani S, Murakami Y. Genetic Mechanism for the Cyclostome Cerebellar Neurons Reveals Early Evolution of the Vertebrate Cerebellum. Front Cell Dev Biol 2021; 9:700860. [PMID: 34485287 PMCID: PMC8416312 DOI: 10.3389/fcell.2021.700860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
The vertebrate cerebellum arises at the dorsal part of rhombomere 1, induced by signals from the isthmic organizer. Two major cerebellar neuronal subtypes, granule cells (excitatory) and Purkinje cells (inhibitory), are generated from the anterior rhombic lip and the ventricular zone, respectively. This regionalization and the way it develops are shared in all extant jawed vertebrates (gnathostomes). However, very little is known about early evolution of the cerebellum. The lamprey, an extant jawless vertebrate lineage or cyclostome, possesses an undifferentiated, plate-like cerebellum, whereas the hagfish, another cyclostome lineage, is thought to lack a cerebellum proper. In this study, we found that hagfish Atoh1 and Wnt1 genes are co-expressed in the rhombic lip, and Ptf1a is expressed ventrally to them, confirming the existence of r1's rhombic lip and the ventricular zone in cyclostomes. In later stages, lamprey Atoh1 is downregulated in the posterior r1, in which the NeuroD increases, similar to the differentiation process of cerebellar granule cells in gnathostomes. Also, a continuous Atoh1-positive domain in the rostral r1 is reminiscent of the primordium of valvula cerebelli of ray-finned fishes. Lastly, we detected a GAD-positive domain adjacent to the Ptf1a-positive ventricular zone in lampreys, suggesting that the Ptf1a-positive cells differentiate into some GABAergic inhibitory neurons such as Purkinje and other inhibitory neurons like in gnathostomes. Altogether, we conclude that the ancestral genetic programs for the formation of a distinct cerebellum were established in the last common ancestor of vertebrates.
Collapse
Affiliation(s)
- Fumiaki Sugahara
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Japan.,Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.,Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain.,Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
9
|
Gąsiorowski L, Børve A, Cherneva IA, Orús-Alcalde A, Hejnol A. Molecular and morphological analysis of the developing nemertean brain indicates convergent evolution of complex brains in Spiralia. BMC Biol 2021; 19:175. [PMID: 34452633 PMCID: PMC8400761 DOI: 10.1186/s12915-021-01113-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The brain anatomy in the clade Spiralia can vary from simple, commissural brains (e.g., gastrotrichs, rotifers) to rather complex, partitioned structures (e.g., in cephalopods and annelids). How often and in which lineages complex brains evolved still remains unclear. Nemerteans are a clade of worm-like spiralians, which possess a complex central nervous system (CNS) with a prominent brain, and elaborated chemosensory and neuroglandular cerebral organs, which have been previously suggested as homologs to the annelid mushroom bodies. To understand the developmental and evolutionary origins of the complex brain in nemerteans and spiralians in general, we investigated details of the neuroanatomy and gene expression in the brain and cerebral organs of the juveniles of nemertean Lineus ruber. RESULTS In the juveniles, the CNS is already composed of all major elements present in the adults, including the brain, paired longitudinal lateral nerve cords, and an unpaired dorsal nerve cord, which suggests that further neural development is mostly related with increase in the size but not in complexity. The ultrastructure of the juvenile cerebral organ revealed that it is composed of several distinct cell types present also in the adults. The 12 transcription factors commonly used as brain cell type markers in bilaterians show region-specific expression in the nemertean brain and divide the entire organ into several molecularly distinct areas, partially overlapping with the morphological compartments. Additionally, several of the mushroom body-specific genes are expressed in the developing cerebral organs. CONCLUSIONS The dissimilar expression of molecular brain markers between L. ruber and the annelid Platynereis dumerilii indicates that the complex brains present in those two species evolved convergently by independent expansions of non-homologous regions of a simpler brain present in their last common ancestor. Although the same genes are expressed in mushroom bodies and cerebral organs, their spatial expression within organs shows apparent differences between annelids and nemerteans, indicating convergent recruitment of the same genes into patterning of non-homologous organs or hint toward a more complicated evolutionary process, in which conserved and novel cell types contribute to the non-homologous structures.
Collapse
Affiliation(s)
| | - Aina Børve
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Irina A Cherneva
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Andreas Hejnol
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
10
|
Bayramov AV, Ermakova GV, Kuchryavyy AV, Zaraisky AG. Genome Duplications as the Basis of Vertebrates’ Evolutionary Success. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421030024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Ermakova GV, Kucheryavyy AV, Zaraisky AG, Bayramov AV. Comparative Analysis of Expression Patterns of the Noggin Gene Family Genes at the Early Development Stages of Head Structures in the European River Lamprey Lampetra fluviatilis. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Abstract
For centuries, the eye has fascinated scientists and philosophers alike, and as a result the visual system has always been at the forefront of integrating cutting-edge technology in research. We are again at a turning point at which technical advances have expanded the range of organisms we can study developmentally and deepened what we can learn. In this new era, we are finally able to understand eye development in animals across the phylogenetic tree. In this Review, we highlight six areas in comparative visual system development that address questions that are important for understanding the developmental basis of evolutionary change. We focus on the opportunities now available to biologists to study the developmental genetics, cell biology and morphogenesis that underlie the incredible variation of visual organs found across the Metazoa. Although decades of important work focused on gene expression has suggested homologies and potential evolutionary relationships between the eyes of diverse animals, it is time for developmental biologists to move away from this reductive approach. We now have the opportunity to celebrate the differences and diversity in visual organs found across animal development, and to learn what it can teach us about the fundamental principles of biological systems and how they are built.
Collapse
Affiliation(s)
- Kristen M Koenig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
13
|
Bayramov AV, Ermakova GV, Zaraisky AG. Genetic Mechanisms of the Early Development of the Telencephalon, a Unique Segment of the Vertebrate Central Nervous System, as Reflecting Its Emergence and Evolution. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420030054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
York JR, McCauley DW. Functional genetic analysis in a jawless vertebrate, the sea lamprey: insights into the developmental evolution of early vertebrates. J Exp Biol 2020; 223:223/Suppl_1/jeb206433. [DOI: 10.1242/jeb.206433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Lampreys and hagfishes are the only surviving relicts of an ancient but ecologically dominant group of jawless fishes that evolved in the seas of the Cambrian era over half a billion years ago. Because of their phylogenetic position as the sister group to all other vertebrates (jawed vertebrates), comparisons of embryonic development between jawless and jawed vertebrates offers researchers in the field of evolutionary developmental biology the unique opportunity to address fundamental questions related to the nature of our earliest vertebrate ancestors. Here, we describe how genetic analysis of embryogenesis in the sea lamprey (Petromyzon marinus) has provided insight into the origin and evolution of developmental-genetic programs in vertebrates. We focus on recent work involving CRISPR/Cas9-mediated genome editing to study gene regulatory mechanisms involved in the development and evolution of neural crest cells and new cell types in the vertebrate nervous system, and transient transgenic assays that have been instrumental in dissecting the evolution of cis-regulatory control of gene expression in vertebrates. Finally, we discuss the broad potential for these functional genomic tools to address previously unanswerable questions related to the evolution of genomic regulatory mechanisms as well as issues related to invasive sea lamprey population control.
Collapse
Affiliation(s)
- Joshua R. York
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - David W. McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
15
|
The expression of FoxG1 in the early development of the European river lamprey Lampetra fluviatilis demonstrates significant heterochrony with that in other vertebrates. Gene Expr Patterns 2019; 34:119073. [PMID: 31574305 DOI: 10.1016/j.gep.2019.119073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 01/11/2023]
Abstract
FoxG1, a member of the Fox/Forkhead family of winged helix transcription factors, plays key roles in the induction and spatial compartmentalization of the telencephalon in vertebrates. Loss- and gain-of-function experiments have established FoxG1 as a maintenance factor for neural progenitors and a crucial player in the specification of the ventral telencephalon (subpallium). For the first time in evolution, the telencephalon appeared in the ancestors of vertebrates, including cyclostomes. However, although FoxG1 homologues are present in cyclostomes (i.e., in lampreys and hagfishes), no systematic study of the spatial-temporal expression of FoxG1 during the embryonic development of these animals has been carried out. Given these findings, we have now studied FoxG1 spatial-temporal expression patterns in the early development of the European river lamprey Lampetra fluviatilis. We show that in contrast to other vertebrates, in which the expression of FoxG1 begins during neurulation, the expression of this gene in L. fluviatilis starts after neurulation, first at stage 21 (early head protrusion) in the area of the otic placodes and then, beginning from stage 22, in the telencephalon. Such heterochrony of FoxG1 expression in the lamprey may reflect the fact that in this basally divergent representative of vertebrates, telencephalon specification occurs relatively late. This heterochrony could be related to the evolutionary history of the telencephalon, with a recent appearance in vertebrates as an extension to more ancient anterior brain regions. Another peculiarity of FoxG1 expression in lamprey, compared to other vertebrates, is that it is not expressed in the lamprey optic structures.
Collapse
|
16
|
Klann M, Seaver EC. Functional role of pax6 during eye and nervous system development in the annelid Capitella teleta. Dev Biol 2019; 456:86-103. [PMID: 31445008 DOI: 10.1016/j.ydbio.2019.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022]
Abstract
The transcription factor Pax6 is an important regulator of early animal development. Loss of function mutations of pax6 in a range of animals result in a reduction or complete loss of the eye, a reduction of a subset of neurons, and defects in axon growth. There are no studies focusing on the role of pax6 during development of any lophotrochozoan representative, however, expression of pax6 in the developing eye and nervous system in a number of species suggest that pax6 plays a highly conserved role in eye and nervous system formation. We investigated the functional role of pax6 during development of the marine annelid Capitella teleta. Expression of pax6 transcripts in C. teleta larvae is similar to patterns found in other animals, with distinct subdomains in the brain and ventral nerve cord as well as in the larval and juvenile eye. To perturb pax6 function, two different splice-blocking morpholinos and a translation-blocking morpholino were used. Larvae resulting from microinjections with either splice-blocking morpholino show a reduction of the pax6 transcript. Development of both the larval eyes and the central nervous system architecture are highly disrupted following microinjection of each of the three morpholinos. The less severe phenotype observed when only the homeodomain is disrupted suggests that presence of the paired domain is sufficient for partial function of the Pax6 protein. Preliminary downstream target analysis confirms disruption in expression of some components of the retinal gene regulatory network, as well as disruption of genes involved in nervous system development. Results from this study, taken together with studies from other species, reveal an evolutionarily conserved role for pax6 in eye and neural specification and development.
Collapse
Affiliation(s)
- Marleen Klann
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, Fl, 32080, USA
| | - Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, Fl, 32080, USA.
| |
Collapse
|
17
|
López JM, Morona R, Moreno N, Lozano D, Jiménez S, González A. Pax6 expression highlights regional organization in the adult brain of lungfishes, the closest living relatives of land vertebrates. J Comp Neurol 2019; 528:135-159. [PMID: 31299095 DOI: 10.1002/cne.24744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022]
Abstract
The Pax6 gene encodes a regulatory transcription factor that is key in brain development. The molecular structure of Pax6, the roles it plays and its patterns of expression in the brain have been highly conserved during vertebrate evolution. As neurodevelopment proceeds, the Pax6 expression changes from the mitotic germinal zone in the ventricular zone to become distributed in cell groups in the adult brain. Studies in various vertebrates, from fish to mammals, found that the Pax6 expression is maintained in adults in most regions that express it during development. Specifically, in amphibians, Pax6 is widely expressed in the adult brain and its distribution pattern serves to highlight regional organization of the brain. In the present study, we analyzed the detailed distribution of Pax6 cells in the adult central nervous system of lungfishes, the closest living relatives of all tetrapods. Immunohistochemistry performed using double labeling techniques with several neuronal markers of known distribution patterns served to evaluate the actual location of Pax6 cells. Our results show that the Pax6 expression is maintained in the adult brain of lungfishes, in distinct regions of the telencephalon (pallium and subpallium), diencephalon, mesencephalon, hindbrain, spinal cord, and retina. The pattern of Pax6 expression is largely shared with amphibians and helps to understand the primitive condition that would have characterized the common ancestors to all sarcopterygians (lobe-finned fishes and tetrapods), in which Pax6 would be needed to maintain specific entities of subpopulations of neurons.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
18
|
Abstract
The dramatic evolutionary expansion of the neocortex, together with a proliferation of specialized cortical areas, is believed to underlie the emergence of human cognitive abilities. In a broader phylogenetic context, however, neocortex evolution in mammals, including humans, is remarkably conservative, characterized largely by size variations on a shared six-layered neuronal architecture. By contrast, the telencephalon in non-mammalian vertebrates, including reptiles, amphibians, bony and cartilaginous fishes, and cyclostomes, features a great variety of very different tissue structures. Our understanding of the evolutionary relationships of these telencephalic structures, especially those of basally branching vertebrates and invertebrate chordates, remains fragmentary and is impeded by conceptual obstacles. To make sense of highly divergent anatomies requires a hierarchical view of biological organization, one that permits the recognition of homologies at multiple levels beyond neuroanatomical structure. Here we review the origin and diversification of the telencephalon with a focus on key evolutionary innovations shaping the neocortex at multiple levels of organization.
Collapse
Affiliation(s)
- Steven D Briscoe
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Gonadal, Not Maternal, Acquisition of Duplicated pax6 Orthologs in Megalobrama Amblycephala. Int J Mol Sci 2019; 20:ijms20071710. [PMID: 30959850 PMCID: PMC6480603 DOI: 10.3390/ijms20071710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 01/12/2023] Open
Abstract
: The highly conserved transcription factor Pax6 is involved in the development of the eyes, brain, and pancreas in vertebrates and invertebrates, whereas the additional expression pattern in other organs is still elusive. In this study, we cloned and characterized two pax6 homologs in blunt snout bream (Megalobrama amblycephala), named Mapax6a and Mapax6b. The protein alignment and phylogenetic tree showed that Mapax6a and Mapax6b were highly conserved compared with their counterparts in other species. Genomic information analysis revealed that the synteny conservation of Wilms tumor, Aniridia, genitourinary abnormalities, and mental retardation loci was also maintained in this species. By reverse transcription polymerase chain reaction, the expression of Mapax6a was later than that of Mapax6b which was found in the blastula stage, while the expression of Mapax6a started from the somite stage, and both of them persisted in a subsequent stage during the embryonic development. By RNA and protein detection, Mapax6a and Mapax6b were detected in the eye and brain as canonic patterns, and most importantly, they were also enriched in germ cells of the testis and ovary. Therefore, our findings validate the duplication of pax6 in fish, confirm the classical expression patterns in the brain and eye, and, for the first time, present a new acquisition of Mapax6a and Mapax6b in gonadal germ cells in particular. Therefore, our results enrich the expression pattern and evolutionary relationship of pax6 by suggesting that duplicated Mapax6 is involved in gametogenesis in Megalobrama amblycephala.
Collapse
|
20
|
Bayramov AV, Ermakova GV, Kucheryavyy AV, Zaraisky AG. Lampreys, “Living Fossils,” in Research on Early Development and Regeneration in Vertebrates. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360418080015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Recent Advances in Hagfish Developmental Biology in a Historical Context: Implications for Understanding the Evolution of the Vertebral Elements. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-4-431-56609-0_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Moreno N, López JM, Morona R, Lozano D, Jiménez S, González A. Comparative Analysis of Nkx2.1 and Islet-1 Expression in Urodele Amphibians and Lungfishes Highlights the Pattern of Forebrain Organization in Early Tetrapods. Front Neuroanat 2018; 12:42. [PMID: 29867380 PMCID: PMC5968111 DOI: 10.3389/fnana.2018.00042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
Expression patterns of Nkx2.1 and Islet-1 (Isl1), which encode transcription factors that are key in the regionalization of the forebrain, were analyzed by combined immunohistochemical methods in young adult specimens of two lungfishes (Neoceratodus forsteri and Protopterus dolloi) and a urodele amphibian (Pleurodeles waltl). We aimed to get insights into the possible organization of the forebrain in the common ancestor of all tetrapods because of the pivotal phylogenetic significance of these two groups, being lungfishes the closest living relatives of tetrapods, and representing urodeles a model of simple brain organization with most shared features with amniotes. These transcription factors display regionally restricted expression domains in adult (juvenile) brains that are best interpreted according to the current prosomeric model. The regional patterns observed serve to identify regions and compare between the three species studied, and with previous data reported mainly for amniotes. We corroborate that Nkx2.1 and Isl1 expressions have very similar topologies in the forebrain. Common features in all sarcopterygians (lungfishes and tetrapods) have been observed, such as the Isl1 expression in most striatal neurons, whereas Nkx2.1 is restricted to migrated interneurons that reach the ventral pallium (VP). In the pallidal derivatives, the combination of both markers allows the identification of the boundaries between the ventral septum, the bed nucleus of the stria terminalis (BST) and the preoptic commissural region. In addition, the high Isl1 expression in the central amygdala (CeA), its boundary with the lateral amygdala (LA), and the scattered Nkx2.1 expression in the medial amygdala (MeA) are also shared features. The alar and basal hypothalamic territories, and the prethalamus and posterior tubercle (TP) in the diencephalon, have maintained a common pattern of expression. This regional distribution of Isl1 and Nkx2.1 observed in the forebrain of urodeles and lungfishes contributes further to our understanding of the first terrestrial vertebrates and their ancestors.
Collapse
Affiliation(s)
- Nerea Moreno
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
23
|
Santos-Durán GN, Ferreiro-Galve S, Menuet A, Mazan S, Rodríguez-Moldes I, Candal E. The Shark Basal Hypothalamus: Molecular Prosomeric Subdivisions and Evolutionary Trends. Front Neuroanat 2018; 12:17. [PMID: 29593505 PMCID: PMC5861214 DOI: 10.3389/fnana.2018.00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 02/21/2018] [Indexed: 11/30/2022] Open
Abstract
The hypothalamus is a key integrative center of the vertebrate brain. To better understand its ancestral morphological organization and evolution, we previously analyzed the segmental organization of alar subdivisions in the catshark Scyliorhinus canicula, a cartilaginous fish and thus a basal representative of gnathostomes (jawed vertebrates). With the same aim, we deepen here in the segmental organization of the catshark basal hypothalamus by revisiting previous data on ScOtp, ScDlx2/5, ScNkx2.1, ScShh expression and Shh immunoreactivity jointly with new data on ScLhx5, ScEmx2, ScLmx1b, ScPitx2, ScPitx3a, ScFoxa1, ScFoxa2 and ScNeurog2 expression and proliferating cell nuclear antigen (PCNA) immunoreactivity. Our study reveals a complex genoarchitecture for chondrichthyan basal hypothalamus on which a total of 21 microdomains were identified. Six belong to the basal acroterminal region, the rostral-most point of the basal neural tube; seven are described in the tuberal region (Tu/RTu); four in the perimamillar region (PM/PRM) and four in the mamillar one (MM/RM). Interestingly, the same set of genes does not necessarily describe the same microdomains in mice, which in part contributes to explain how forebrain diversity is achieved. This study stresses the importance of analyzing data from basal vertebrates to better understand forebrain diversity and hypothalamic evolution.
Collapse
Affiliation(s)
- Gabriel N Santos-Durán
- Grupo BRAINSHARK, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Susana Ferreiro-Galve
- Grupo BRAINSHARK, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Arnaud Menuet
- UMR7355, CNRS, University of Orleans, Orleans, France
| | - Sylvie Mazan
- CNRS, Sorbonne Université, Biologie Intégrative des Organismes Marins, UMR7232, Banyuls-sur-Mer, France
| | - Isabel Rodríguez-Moldes
- Grupo BRAINSHARK, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Candal
- Grupo BRAINSHARK, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
24
|
Suzuki DG, Grillner S. The stepwise development of the lamprey visual system and its evolutionary implications. Biol Rev Camb Philos Soc 2018; 93:1461-1477. [PMID: 29488315 DOI: 10.1111/brv.12403] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 01/11/2023]
Abstract
Lampreys, which represent the oldest group of living vertebrates (cyclostomes), show unique eye development. The lamprey larva has only eyespot-like immature eyes beneath a non-transparent skin, whereas after metamorphosis, the adult has well-developed image-forming camera eyes. To establish a functional visual system, well-organised visual centres as well as motor components (e.g. trunk muscles for locomotion) and interactions between them are needed. Here we review the available knowledge concerning the structure, function and development of the different parts of the lamprey visual system. The lamprey exhibits stepwise development of the visual system during its life cycle. In prolarvae and early larvae, the 'primary' retina does not have horizontal and amacrine cells, but does have photoreceptors, bipolar cells and ganglion cells. At this stage, the optic nerve projects mostly to the pretectum, where the dendrites of neurons in the nucleus of the medial longitudinal fasciculus (nMLF) appear to receive direct visual information and send motor outputs to the neck and trunk muscles. This simple neural circuit may generate negative phototaxis. Through the larval period, the lateral region of the retina grows again to form the 'secondary' retina and the topographic retinotectal projection of the optic nerve is formed, and at the same time, the extra-ocular muscles progressively develop. During metamorphosis, horizontal and amacrine cells differentiate for the first time, and the optic tectum expands and becomes laminated. The adult lamprey then has a sophisticated visual system for image-forming and visual decision-making. In the adult lamprey, the thalamic pathway (retina-thalamus-cortex/pallium) also transmits visual stimuli. Because the primary, simple light-detecting circuit in larval lamprey shares functional and developmental similarities with that of protochordates (amphioxus and tunicates), the visual development of the lamprey provides information regarding the evolutionary transition of the vertebrate visual system from the protochordate-type to the vertebrate-type.
Collapse
Affiliation(s)
- Daichi G Suzuki
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
25
|
Desfilis E, Abellán A, Sentandreu V, Medina L. Expression of regulatory genes in the embryonic brain of a lizard and implications for understanding pallial organization and evolution. J Comp Neurol 2017; 526:166-202. [PMID: 28891227 PMCID: PMC5765483 DOI: 10.1002/cne.24329] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/13/2017] [Accepted: 09/01/2017] [Indexed: 02/03/2023]
Abstract
The comparison of gene expression patterns in the embryonic brain of mouse and chicken is being essential for understanding pallial organization. However, the scarcity of gene expression data in reptiles, crucial for understanding evolution, makes it difficult to identify homologues of pallial divisions in different amniotes. We cloned and analyzed the expression of the genes Emx1, Lhx2, Lhx9, and Tbr1 in the embryonic telencephalon of the lacertid lizard Psammodromus algirus. The comparative expression patterns of these genes, critical for pallial development, are better understood when using a recently proposed six‐part model of pallial divisions. The lizard medial pallium, expressing all genes, includes the medial and dorsomedial cortices, and the majority of the dorsal cortex, except the region of the lateral cortical superposition. The latter is rich in Lhx9 expression, being excluded as a candidate of dorsal or lateral pallia, and may belong to a distinct dorsolateral pallium, which extends from rostral to caudal levels. Thus, the neocortex homolog cannot be found in the classical reptilian dorsal cortex, but perhaps in a small Emx1‐expressing/Lhx9‐negative area at the front of the telencephalon, resembling the avian hyperpallium. The ventral pallium, expressing Lhx9, but not Emx1, gives rise to the dorsal ventricular ridge and appears comparable to the avian nidopallium. We also identified a distinct ventrocaudal pallial sector comparable to the avian arcopallium and to part of the mammalian pallial amygdala. These data open new venues for understanding the organization and evolution of the pallium.
Collapse
Affiliation(s)
- Ester Desfilis
- Laboratory of Evolutionary and Developmental Neurobiology, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), 25198, Lleida, Spain
| | - Antonio Abellán
- Laboratory of Evolutionary and Developmental Neurobiology, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), 25198, Lleida, Spain
| | - Vicente Sentandreu
- Servicio Central de Apoyo a la Investigación Experimental (SCSIE), Sección de Genómica, University of València, 46100, València, Spain
| | - Loreta Medina
- Laboratory of Evolutionary and Developmental Neurobiology, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), 25198, Lleida, Spain
| |
Collapse
|
26
|
Lara-Ramírez R, Poncelet G, Patthey C, Shimeld SM. The structure, splicing, synteny and expression of lamprey COE genes and the evolution of the COE gene family in chordates. Dev Genes Evol 2017; 227:319-338. [PMID: 28871438 DOI: 10.1007/s00427-017-0591-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 08/20/2017] [Indexed: 10/18/2022]
Abstract
COE genes encode transcription factors that have been found in all metazoans examined to date. They possess a distinctive domain structure that includes a DNA-binding domain (DBD), an IPT/TIG domain and a helix-loop-helix (HLH) domain. An intriguing feature of the COE HLH domain is that in jawed vertebrates it is composed of three helices, compared to two in invertebrates. We report the isolation and expression of two COE genes from the brook lamprey Lampetra planeri and compare these to COE genes from the lampreys Lethenteron japonicum and Petromyzon marinus. Molecular phylogenetic analyses do not resolve the relationship of lamprey COE genes to jawed vertebrate paralogues, though synteny mapping shows that they all derive from duplication of a common ancestral genomic region. All lamprey genes encode conserved DBD, IPT/TIG and HLH domains; however, the HLH domain of lamprey COE-A genes encodes only two helices while COE-B encodes three helices. We also identified COE-B splice variants encoding either two or three helices in the HLH domain, along with other COE-A and COE-B splice variants affecting the DBD and C-terminal transactivation regions. In situ hybridisation revealed expression in the lamprey nervous system including the brain, spinal cord and cranial sensory ganglia. We also detected expression of both genes in mesenchyme in the pharyngeal arches and underlying the notochord. This allows us to establish the primitive vertebrate expression pattern for COE genes and compare this to that of invertebrate chordates and other animals to develop a model for COE gene evolution in chordates.
Collapse
Affiliation(s)
- Ricardo Lara-Ramírez
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
- Centro de Investigación en Ciencias Biológicas Aplicadas, Instituto Literario No. 100, Colonia Centro, CP 50000, Toluca, México
| | - Guillaume Poncelet
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Cédric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
27
|
Parker HJ, Krumlauf R. Segmental arithmetic: summing up the Hox gene regulatory network for hindbrain development in chordates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28771970 DOI: 10.1002/wdev.286] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022]
Abstract
Organization and development of the early vertebrate hindbrain are controlled by a cascade of regulatory interactions that govern the process of segmentation and patterning along the anterior-posterior axis via Hox genes. These interactions can be assembled into a gene regulatory network that provides a framework to interpret experimental data, generate hypotheses, and identify gaps in our understanding of the progressive process of hindbrain segmentation. The network can be broadly separated into a series of interconnected programs that govern early signaling, segmental subdivision, secondary signaling, segmentation, and ultimately specification of segmental identity. Hox genes play crucial roles in multiple programs within this network. Furthermore, the network reveals properties and principles that are likely to be general to other complex developmental systems. Data from vertebrate and invertebrate chordate models are shedding light on the origin and diversification of the network. Comprehensive cis-regulatory analyses of vertebrate Hox gene regulation have enabled powerful cross-species gene regulatory comparisons. Such an approach in the sea lamprey has revealed that the network mediating segmental Hox expression was present in ancestral vertebrates and has been maintained across diverse vertebrate lineages. Invertebrate chordates lack hindbrain segmentation but exhibit conservation of some aspects of the network, such as a role for retinoic acid in establishing nested Hox expression domains. These comparisons lead to a model in which early vertebrates underwent an elaboration of the network between anterior-posterior patterning and Hox gene expression, leading to the gene-regulatory programs for segmental subdivision and rhombomeric segmentation. WIREs Dev Biol 2017, 6:e286. doi: 10.1002/wdev.286 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
28
|
Bayramov AV, Ermakova GV, Eroshkin FM, Kucheryavyy AV, Martynova NY, Zaraisky AG. Presence of homeobox gene of Anf class in Pacific lamprey Lethenteron camtschaticum confirms the hypothesis about the importance of emergence of Anf genes for the origin of telencephalon in vertebrate evolution. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417040026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Hibi M, Matsuda K, Takeuchi M, Shimizu T, Murakami Y. Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum. Dev Growth Differ 2017; 59:228-243. [DOI: 10.1111/dgd.12349] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Masahiko Hibi
- Bioscience and Biotechnology Center; Nagoya University; Nagoya 464-8601 Japan
- Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Koji Matsuda
- Bioscience and Biotechnology Center; Nagoya University; Nagoya 464-8601 Japan
- Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Miki Takeuchi
- Bioscience and Biotechnology Center; Nagoya University; Nagoya 464-8601 Japan
| | - Takashi Shimizu
- Bioscience and Biotechnology Center; Nagoya University; Nagoya 464-8601 Japan
- Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering; Ehime University; Matsuyama 790-8577 Japan
| |
Collapse
|
30
|
Sugahara F, Murakami Y, Pascual-Anaya J, Kuratani S. Reconstructing the ancestral vertebrate brain. Dev Growth Differ 2017; 59:163-174. [DOI: 10.1111/dgd.12347] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Fumiaki Sugahara
- Division of Biology; Hyogo College of Medicine; Nishinomiya 663-8501 Japan
- Evolutionary Morphology Laboratory; RIKEN; Kobe 650-0047 Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering; Ehime University; Matsuyama 790-8577 Japan
| | | | | |
Collapse
|
31
|
Santos-Durán GN, Ferreiro-Galve S, Menuet A, Quintana-Urzainqui I, Mazan S, Rodríguez-Moldes I, Candal E. The Shark Alar Hypothalamus: Molecular Characterization of Prosomeric Subdivisions and Evolutionary Trends. Front Neuroanat 2016; 10:113. [PMID: 27932958 PMCID: PMC5121248 DOI: 10.3389/fnana.2016.00113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022] Open
Abstract
The hypothalamus is an important physiologic center of the vertebrate brain involved in the elaboration of individual and species survival responses. To better understand the ancestral organization of the alar hypothalamus we revisit previous data on ScOtp, ScDlx2/5, ScTbr1, ScNkx2.1 expression and Pax6 immunoreactivity jointly with new data on ScNeurog2, ScLhx9, ScLhx5, and ScNkx2.8 expression, in addition to immunoreactivity to serotonin (5-HT) and doublecortin (DCX) in the catshark Scyliorhinus canicula, a key species for this purpose since cartilaginous fishes are basal representatives of gnathostomes (jawed vertebrates). Our study revealed a complex genoarchitecture for the chondrichthyan alar hypothalamus. We identified terminal (rostral) and peduncular (caudal) subdivisions in the prosomeric paraventricular and subparaventricular areas (TPa/PPa and TSPa/PSPa, respectively) evidenced by the expression pattern of developmental genes like ScLhx5 (TPa) and immunoreactivity against Pax6 (PSPa) and 5-HT (PPa and PSPa). Dorso-ventral subdivisions were only evidenced in the SPa (SPaD, SPaV; respectively) by means of Pax6 and ScNkx2.8 (respectively). Interestingly, ScNkx2.8 expression overlaps over the alar-basal boundary, as Nkx2.2 does in other vertebrates. Our results reveal evidences for the existence of different groups of tangentially migrated cells expressing ScOtp, Pax6, and ScDlx2. The genoarchitectonic comparative analysis suggests alternative interpretations of the rostral-most alar plate in prosomeric terms and reveals a conserved molecular background for the vertebrate alar hypothalamus likely acquired before/during the agnathan-gnathostome transition, on which Otp, Pax6, Lhx5, and Neurog2 are expressed in the Pa while Dlx and Nkx2.2/Nkx2.8 are expressed in the SPa.
Collapse
Affiliation(s)
- Gabriel N Santos-Durán
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Susana Ferreiro-Galve
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Arnaud Menuet
- CNRS, UMR 7355, University of Orleans Orleans, France
| | - Idoia Quintana-Urzainqui
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de CompostelaSantiago de Compostela, Spain; Centre for Integrative Physiology, University of EdinburghEdinburgh, UK
| | - Sylvie Mazan
- Sorbonne Universités, UPMC, CNRS UMR7232 Biologie Intégrative des Organismes Marins, Observatoire Océanologique Banyuls sur Mer, France
| | - Isabel Rodríguez-Moldes
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Eva Candal
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| |
Collapse
|
32
|
Parker HJ, Bronner ME, Krumlauf R. The vertebrate Hox gene regulatory network for hindbrain segmentation: Evolution and diversification: Coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates. Bioessays 2016; 38:526-38. [PMID: 27027928 DOI: 10.1002/bies.201600010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hindbrain development is orchestrated by a vertebrate gene regulatory network that generates segmental patterning along the anterior-posterior axis via Hox genes. Here, we review analyses of vertebrate and invertebrate chordate models that inform upon the evolutionary origin and diversification of this network. Evidence from the sea lamprey reveals that the hindbrain regulatory network generates rhombomeric compartments with segmental Hox expression and an underlying Hox code. We infer that this basal feature was present in ancestral vertebrates and, as an evolutionarily constrained developmental state, is fundamentally important for patterning of the vertebrate hindbrain across diverse lineages. Despite the common ground plan, vertebrates exhibit neuroanatomical diversity in lineage-specific patterns, with different vertebrates revealing variations of Hox expression in the hindbrain that could underlie this diversification. Invertebrate chordates lack hindbrain segmentation but exhibit some conserved aspects of this network, with retinoic acid signaling playing a role in establishing nested domains of Hox expression.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, USA
| |
Collapse
|
33
|
The Conservative Evolution of the Vertebrate Basal Ganglia. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-12-802206-1.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Ware M, Dupé V, Schubert FR. Evolutionary Conservation of the Early Axon Scaffold in the Vertebrate Brain. Dev Dyn 2015; 244:1202-14. [PMID: 26228689 DOI: 10.1002/dvdy.24312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 11/11/2022] Open
Abstract
The early axon scaffold is the first axonal structure to appear in the rostral brain of vertebrates, paving the way for later, more complex connections. Several early axon scaffold components are conserved between all vertebrates; most notably two main ventral longitudinal tracts, the tract of the postoptic commissure and the medial longitudinal fascicle. While the overall structure is remarkably similar, differences both in the organization and the development of the early tracts are apparent. This review will bring together extensive data from the last 25 years in different vertebrates and for the first time, the timing and anatomy of these early tracts have been directly compared. Representatives of major vertebrate clades, including cat shark, Xenopus, chick, and mouse embryos, will be compared using immunohistochemistry staining based on previous results. There is still confusion over the nomenclature and homology of these tracts which this review will aim to address. The discussion here is relevant both for understanding the evolution of the early axon scaffold and for future studies into the molecular regulation of its formation.
Collapse
Affiliation(s)
- Michelle Ware
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom.,Institut de Génétique et Développement, CNRS UMR6290, Université de Rennes1, IFR140, GFAS, Faculté de Médecine, Rennes, France
| | - Valérie Dupé
- Institut de Génétique et Développement, CNRS UMR6290, Université de Rennes1, IFR140, GFAS, Faculté de Médecine, Rennes, France
| | - Frank R Schubert
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
35
|
Campo-Paysaa F, Jandzik D, Takio-Ogawa Y, Cattell MV, Neef HC, Langeland JA, Kuratani S, Medeiros DM, Mazan S, Kuraku S, Laudet V, Schubert M. Evolution of retinoic acid receptors in chordates: insights from three lamprey species, Lampetra fluviatilis, Petromyzon marinus, and Lethenteron japonicum. EvoDevo 2015; 6:18. [PMID: 25984292 PMCID: PMC4432984 DOI: 10.1186/s13227-015-0016-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/20/2015] [Indexed: 01/13/2023] Open
Abstract
Background Retinoic acid (RA) signaling controls many developmental processes in chordates, from early axis specification to late organogenesis. The functions of RA are chiefly mediated by a subfamily of nuclear hormone receptors, the retinoic acid receptors (RARs), that act as ligand-activated transcription factors. While RARs have been extensively studied in jawed vertebrates (that is, gnathostomes) and invertebrate chordates, very little is known about the repertoire and developmental roles of RARs in cyclostomes, which are extant jawless vertebrates. Here, we present the first extensive study of cyclostome RARs focusing on three different lamprey species: the European freshwater lamprey, Lampetra fluviatilis, the sea lamprey, Petromyzon marinus, and the Japanese lamprey, Lethenteron japonicum. Results We identified four rar paralogs (rar1, rar2, rar3, and rar4) in each of the three lamprey species, and phylogenetic analyses indicate a complex evolutionary history of lamprey rar genes including the origin of rar1 and rar4 by lineage-specific duplication after the lamprey-hagfish split. We further assessed their expression patterns during embryonic development by in situ hybridization. The results show that lamprey rar genes are generally characterized by dynamic and highly specific expression domains in different embryonic tissues. In particular, lamprey rar genes exhibit combinatorial expression domains in the anterior central nervous system (CNS) and the pharyngeal region. Conclusions Our results indicate that the genome of lampreys encodes at least four rar genes and suggest that the lamprey rar complement arose from vertebrate-specific whole genome duplications followed by a lamprey-specific duplication event. Moreover, we describe a combinatorial code of lamprey rar expression in both anterior CNS and pharynx resulting from dynamic and highly specific expression patterns during embryonic development. This ‘RAR code’ might function in regionalization and patterning of these two tissues by differentially modulating the expression of downstream effector genes during development. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0016-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florent Campo-Paysaa
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France ; MRC Centre for Developmental Neurobiology, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL UK
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Ramaley Biology, 1800 Colorado Avenue, Boulder, CO 80309 USA ; Department of Zoology, Comenius University in Bratislava, Mlynska Dolina B-1, 84215 Bratislava, Slovakia
| | - Yoko Takio-Ogawa
- Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Maria V Cattell
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Ramaley Biology, 1800 Colorado Avenue, Boulder, CO 80309 USA ; Department of Pediatrics, University of Colorado, Children's Hospital, 13065 East 17th Avenue, Aurora, CO 80045 USA
| | - Haley C Neef
- Department of Biology, Kalamazoo College, 1200 Academy Street, Kalamazoo, Michigan 49008 USA ; Division of Pediatric Gastroenterology, Department of Pediatrics and Communicable Diseases, University of Michigan, C.S. Mott Children's Hospital, 1540 East Hospital Drive SPC 4259, Ann Arbor, Michigan 48109 USA
| | - James A Langeland
- Department of Biology, Kalamazoo College, 1200 Academy Street, Kalamazoo, Michigan 49008 USA
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Ramaley Biology, 1800 Colorado Avenue, Boulder, CO 80309 USA
| | - Sylvie Mazan
- Sorbonne Universités, UPMC Université Paris 06, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France ; CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Shigehiro Kuraku
- Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan ; Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Vincent Laudet
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Michael Schubert
- Sorbonne Universités, UPMC Université Paris 06, UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France ; CNRS, UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
36
|
Lara-Ramírez R, Patthey C, Shimeld SM. Characterization of twoneurogeningenes from the brook lampreylampetra planeriand their expression in the lamprey nervous system. Dev Dyn 2015; 244:1096-1108. [DOI: 10.1002/dvdy.24273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/29/2015] [Accepted: 02/16/2015] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ricardo Lara-Ramírez
- Department of Zoology; The Tinbergen Building, University of Oxford; South Parks Road Oxford United Kingdom
| | - Cédric Patthey
- Department of Zoology; The Tinbergen Building, University of Oxford; South Parks Road Oxford United Kingdom
- Umeå Centre for Molecular Medicine, Umeå University; Umeå Sweden
| | - Sebastian M. Shimeld
- Department of Zoology; The Tinbergen Building, University of Oxford; South Parks Road Oxford United Kingdom
| |
Collapse
|
37
|
Developmental genetic bases behind the independent origin of the tympanic membrane in mammals and diapsids. Nat Commun 2015; 6:6853. [PMID: 25902370 PMCID: PMC4423235 DOI: 10.1038/ncomms7853] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 03/05/2015] [Indexed: 01/12/2023] Open
Abstract
The amniote middle ear is a classical example of the evolutionary novelty. Although paleontological evidence supports the view that mammals and diapsids (modern reptiles and birds) independently acquired the middle ear after divergence from their common ancestor, the developmental bases of these transformations remain unknown. Here we show that lower-to-upper jaw transformation induced by inactivation of the Endothelin1-Dlx5/6 cascade involving Goosecoid results in loss of the tympanic membrane in mouse, but causes duplication of the tympanic membrane in chicken. Detailed anatomical analysis indicates that the relative positions of the primary jaw joint and first pharyngeal pouch led to the coupling of tympanic membrane formation with the lower jaw in mammals, but with the upper jaw in diapsids. We propose that differences in connection and release by various pharyngeal skeletal elements resulted in structural diversity, leading to the acquisition of the tympanic membrane in two distinct manners during amniote evolution. The evolution of the amniote middle ear remains unclear. Here, the authors show that inactivation of the Edn1-Dlx5/6 cascade during development results in loss of the tympanic membrane in mouse and duplication in chicken, which suggests independent evolution of the tympanic membrane in different amniotes.
Collapse
|
38
|
Domínguez L, González A, Moreno N. Patterns of hypothalamic regionalization in amphibians and reptiles: common traits revealed by a genoarchitectonic approach. Front Neuroanat 2015; 9:3. [PMID: 25691860 PMCID: PMC4315040 DOI: 10.3389/fnana.2015.00003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/09/2015] [Indexed: 01/05/2023] Open
Abstract
Most studies in mammals and birds have demonstrated common patterns of hypothalamic development highlighted by the combination of developmental regulatory genes (genoarchitecture), supporting the notion of the hypothalamus as a component of the secondary prosencephalon, topologically rostral to the diencephalon. In our comparative analysis we have summarized the data on the expression patterns of different transcription factors and neuroactive substances, used as anatomical markers, in the developing hypothalamus of the amphibian Xenopus laevis and the juvenile turtle Pseudemys scripta. This analysis served to highlight the organization of the hypothalamus in the anamniote/amniotic transition. We have identified supraoptoparaventricular and the suprachiasmatic regions (SCs) in the alar part of the hypothalamus, and tuberal and mammillary regions in the basal hypothalamus. Shared features in the two species are: (1) The supraoptoparaventricular region (SPV) is defined by the expression of Otp and the lack of Nkx2.1/Isl1. It is subdivided into rostral, rich in Otp and Nkx2.2, and caudal, only Otp-positive, portions. (2) The suprachiasmatic area contains catecholaminergic cell groups and lacks Otp, and can be further divided into rostral (rich in Nkx2.1 and Nkx2.2) and a caudal (rich in Isl1 and devoid of Nkx2.1) portions. (3) Expression of Nkx2.1 and Isl1 define the tuberal hypothalamus and only the rostral portion expresses Otp. (4) Its caudal boundary is evident by the lack of Isl1 in the adjacent mammillary region, which expresses Nkx2.1 and Otp. Differences in the anamnio-amniote transition were noted since in the turtle, like in other amniotes, the boundary between the alar hypothalamus and the telencephalic preoptic area shows distinct Nkx2.2 and Otp expressions but not in the amphibian (anamniote), and the alar SPV is defined by the expression of Otp/Pax6, whereas in Xenopus only Otp is expressed.
Collapse
Affiliation(s)
- Laura Domínguez
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid Madrid, Spain
| | - Agustín González
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid Madrid, Spain
| | - Nerea Moreno
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid Madrid, Spain
| |
Collapse
|
39
|
Tada MN, Kuratani S. Evolutionary and developmental understanding of the spinal accessory nerve. ZOOLOGICAL LETTERS 2015; 1:4. [PMID: 26605049 PMCID: PMC4604108 DOI: 10.1186/s40851-014-0006-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/27/2014] [Indexed: 05/11/2023]
Abstract
The vertebrate spinal accessory nerve (SAN) innervates the cucullaris muscle, the major muscle of the neck, and is recognized as a synapomorphy that defines living jawed vertebrates. Morphologically, the cucullaris muscle exists between the branchiomeric series of muscles innervated by special visceral efferent neurons and the rostral somitic muscles innervated by general somatic efferent neurons. The category to which the SAN belongs to both developmentally and evolutionarily has long been controversial. To clarify this, we assessed the innervation and cytoarchitecture of the spinal nerve plexus in the lamprey and reviewed studies of SAN in various species of vertebrates and their embryos. We then reconstructed an evolutionary sequence in which phylogenetic changes in developmental neuronal patterning led towards the gnathostome-specific SAN. We hypothesize that the SAN arose as part of a lamprey-like spinal nerve plexus that innervates the cyclostome-type infraoptic muscle, a candidate cucullaris precursor.
Collapse
Affiliation(s)
- Motoki N Tada
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
40
|
Pose-Méndez S, Candal E, Mazan S, Rodríguez-Moldes I. Genoarchitecture of the rostral hindbrain of a shark: basis for understanding the emergence of the cerebellum at the agnathan–gnathostome transition. Brain Struct Funct 2015; 221:1321-35. [DOI: 10.1007/s00429-014-0973-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 12/17/2014] [Indexed: 12/14/2022]
|
41
|
Suzuki DG, Murakami Y, Escriva H, Wada H. A comparative examination of neural circuit and brain patterning between the lamprey and amphioxus reveals the evolutionary origin of the vertebrate visual center. J Comp Neurol 2014; 523:251-61. [DOI: 10.1002/cne.23679] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Daichi G. Suzuki
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Yasunori Murakami
- Department of Biology, Faculty of Science; Ehime University; Matsuyama Ehime 790-8577 Japan
| | - Hector Escriva
- CNRS, UMR 7232; BIOM, Université Pierre et Marie Curie Paris 06; Observatoire Océanologique, 66650, Banyuls-sur-Mer France
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| |
Collapse
|
42
|
Moreno N, Joven A, Morona R, Bandín S, López JM, González A. Conserved localization of Pax6 and Pax7 transcripts in the brain of representatives of sarcopterygian vertebrates during development supports homologous brain regionalization. Front Neuroanat 2014; 8:75. [PMID: 25147506 PMCID: PMC4123791 DOI: 10.3389/fnana.2014.00075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/21/2014] [Indexed: 11/20/2022] Open
Abstract
Many of the genes involved in brain patterning during development are highly conserved in vertebrates and similarities in their expression patterns help to recognize homologous cell types or brain regions. Among these genes, Pax6 and Pax7 are expressed in regionally restricted patterns in the brain and are essential for its development. In the present immunohistochemical study we analyzed the distribution of Pax6 and Pax7 cells in the brain of six representative species of tetrapods and lungfishes, the closest living relatives of tetrapods, at several developmental stages. The distribution patterns of these transcription factors were largely comparable across species. In all species only Pax6 was expressed in the telencephalon, including the olfactory bulbs, septum, striatum, and amygdaloid complex. In the diencephalon, Pax6 and Pax7 were distinct in the alar and basal parts, mainly in prosomeres 1 and 3. Pax7 specifically labeled cells in the optic tectum (superior colliculus) and Pax6, but not Pax7, cells were found in the tegmentum. Pax6 was found in most granule cells of the cerebellum and Pax7 labeling was detected in cells of the ventricular zone of the rostral alar plate and in migrated cells in the basal plate, including the griseum centrale and the interpeduncular nucleus. Caudally, Pax6 cells formed a column, whereas the ventricular zone of the alar plate expressed Pax7. Since the observed Pax6 and Pax7 expression patterns are largely conserved they can be used to identify subdivisions in the brain across vertebrates that are not clearly discernible with classical techniques.
Collapse
Affiliation(s)
- Nerea Moreno
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Alberto Joven
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Sandra Bandín
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| |
Collapse
|
43
|
Finger TE, Yamamoto N, Karten HJ, Hof PR. Evolution of the forebrain - revisiting the pallium. J Comp Neurol 2014; 521:3601-3. [PMID: 23893869 DOI: 10.1002/cne.23444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Immunohistochemical analysis of Pax6 and Pax7 expression in the CNS of adult Xenopus laevis. J Chem Neuroanat 2014; 57-58:24-41. [DOI: 10.1016/j.jchemneu.2014.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/22/2022]
|
45
|
Modrell MS, Hockman D, Uy B, Buckley D, Sauka-Spengler T, Bronner ME, Baker CVH. A fate-map for cranial sensory ganglia in the sea lamprey. Dev Biol 2014; 385:405-16. [PMID: 24513489 PMCID: PMC3928997 DOI: 10.1016/j.ydbio.2013.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 11/30/2022]
Abstract
Cranial neurogenic placodes and the neural crest make essential contributions to key adult characteristics of all vertebrates, including the paired peripheral sense organs and craniofacial skeleton. Neurogenic placode development has been extensively characterized in representative jawed vertebrates (gnathostomes) but not in jawless fishes (agnathans). Here, we use in vivo lineage tracing with DiI, together with neuronal differentiation markers, to establish the first detailed fate-map for placode-derived sensory neurons in a jawless fish, the sea lamprey Petromyzon marinus, and to confirm that neural crest cells in the lamprey contribute to the cranial sensory ganglia. We also show that a pan-Pax3/7 antibody labels ophthalmic trigeminal (opV, profundal) placode-derived but not maxillomandibular trigeminal (mmV) placode-derived neurons, mirroring the expression of gnathostome Pax3 and suggesting that Pax3 (and its single Pax3/7 lamprey ortholog) is a pan-vertebrate marker for opV placode-derived neurons. Unexpectedly, however, our data reveal that mmV neuron precursors are located in two separate domains at neurula stages, with opV neuron precursors sandwiched between them. The different branches of the mmV nerve are not comparable between lampreys and gnatho-stomes, and spatial segregation of mmV neuron precursor territories may be a derived feature of lampreys. Nevertheless, maxillary and mandibular neurons are spatially segregated within gnathostome mmV ganglia, suggesting that a more detailed investigation of gnathostome mmV placode development would be worthwhile. Overall, however, our results highlight the conservation of cranial peripheral sensory nervous system development across vertebrates, yielding insight into ancestral vertebrate traits. The first detailed fate-map for placode-derived sensory neurons in a jawless fish. Pax3 is a pan-vertebrate marker for ophthalmic trigeminal placode-derived neurons. Maxillomandibular trigeminal neuron precursors are located in two separate domains. Confirmation that lamprey neural crest cells contribute to cranial sensory ganglia. Results overall highlight conservation of cranial sensory nervous system development.
Collapse
|
46
|
Joven A, Morona R, González A, Moreno N. Expression patterns of Pax6 and Pax7 in the adult brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol 2013; 521:2088-124. [PMID: 23224769 DOI: 10.1002/cne.23276] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/21/2012] [Accepted: 11/27/2012] [Indexed: 01/04/2023]
Abstract
Expression patterns of Pax6, Pax7, and, to a lesser extent, Pax3 genes were analyzed by a combination of immunohistochemical techniques in the central nervous system of adult specimens of the urodele amphibian Pleurodeles waltl. Only Pax6 was found in the telencephalon, specifically the olfactory bulbs, striatum, septum, and lateral and central parts of the amygdala. In the diencephalon, Pax6 and Pax7 were distinct in the alar and basal parts, respectively, of prosomere 3. The distribution of Pax6, Pax7, and Pax3 cells correlated with the three pretectal domains. Pax7 specifically labeled cells in the dorsal mesencephalon, mainly in the optic tectum, and Pax6 cells were the only cells found in the tegmentum. Large populations of Pax7 cells occupied the rostral rhombencephalon, along with lower numbers of Pax6 and Pax3 cells. Pax6 was found in most granule cells of the cerebellum. Pax6 cells also formed a column of scattered neurons in the reticular formation and were found in the octavolateral area. The rhombencephalic ventricular zone of the alar plate expressed Pax7. Dorsal Pax7 cells and ventral Pax6 cells were found along the spinal cord. Our results show that the expression of Pax6 and Pax7 is widely maintained in the brains of adult urodeles, in contrast to the situation in other tetrapods. This discrepancy could be due to the generally pedomorphic features of urodele brains. Although the precise role of these transcription factors in adult brains remains to be determined, our findings support the idea that they may also function in adult urodeles.
Collapse
Affiliation(s)
- Alberto Joven
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
47
|
Paixão-Côrtes VR, Salzano FM, Bortolini MC. Evolutionary history of chordate PAX genes: dynamics of change in a complex gene family. PLoS One 2013; 8:e73560. [PMID: 24023886 PMCID: PMC3759438 DOI: 10.1371/journal.pone.0073560] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 07/23/2013] [Indexed: 12/22/2022] Open
Abstract
Paired box (PAX) genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory.
Collapse
Affiliation(s)
- Vanessa Rodrigues Paixão-Côrtes
- Departamento de Genética and Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
48
|
Lauter G, Söll I, Hauptmann G. Molecular characterization of prosomeric and intraprosomeric subdivisions of the embryonic zebrafish diencephalon. J Comp Neurol 2013; 521:1093-118. [PMID: 22949352 DOI: 10.1002/cne.23221] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 03/04/2012] [Accepted: 08/14/2012] [Indexed: 02/05/2023]
Abstract
During development of the early neural tube, positional information provided by signaling gradients is translated into a grid of transverse and longitudinal transcription factor expression domains. Transcription factor specification codes defining distinct histogenetic domains within this grid are evolutionarily conserved across vertebrates and may reflect an underlying common vertebrate bauplan. When compared to the rich body of comparative gene expression studies of tetrapods, there is considerably less comparative data available for teleost fish. We used sensitive multicolor fluorescent in situ hybridization to generate a detailed map of regulatory gene expression domains in the embryonic zebrafish diencephalon. The high resolution of this technique allowed us to resolve abutting and overlapping gene expression of different transcripts. We found that the relative topography of gene expression patterns in zebrafish was highly similar to those of orthologous genes in tetrapods and consistent with a three-prosomere organization of the alar and basal diencephalon. Our analysis further demonstrated a conservation of intraprosomeric subdivisions within prosomeres 1, 2, and 3 (p1, p2, and p3). A tripartition of zebrafish p1 was identified reminiscent of precommissural (PcP), juxtacommissural (JcP), and commissural (CoP) pretectal domains of tetrapods. The constructed detailed diencephalic transcription factor gene expression map further identified molecularly distinct thalamic and prethalamic rostral and caudal domains and a prethalamic eminence histogenetic domain in zebrafish. Our comparative gene expression analysis conformed with the idea of a common bauplan for the diencephalon of anamniote and amniote vertebrates from fish to mammals.
Collapse
Affiliation(s)
- Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | | | | |
Collapse
|
49
|
Sugahara F, Murakami Y, Adachi N, Kuratani S. Evolution of the regionalization and patterning of the vertebrate telencephalon: what can we learn from cyclostomes? Curr Opin Genet Dev 2013; 23:475-83. [PMID: 23499411 DOI: 10.1016/j.gde.2013.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/08/2013] [Accepted: 02/13/2013] [Indexed: 11/26/2022]
Abstract
The telencephalon, the most anterior part of the vertebrate central nervous system (CNS), is a highly diversified region of the vertebrate body. Its evolutionary origin remains elusive, especially with regard to the ancestral state of its architecture as well as the origin of telencephalon-specific neuron subtypes. Cyclostomes (lampreys and hagfish), the sister group of the gnathostomes (jawed vertebrates), serve as valuable models for studying the evolution of the vertebrate CNS. Here, we summarize recent studies on the development of the telencephalon in the lamprey. By comparing detailed developmental studies in mammals, we illustrate a possible ancestral developmental plan underlying the diversification of the vertebrate telencephalon and propose possible approaches for understanding the early evolution of the telencephalon.
Collapse
Affiliation(s)
- Fumiaki Sugahara
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minami, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
50
|
Manousaki T, Feiner N, Begemann G, Meyer A, Kuraku S. Co-orthology of Pax4 and Pax6 to the fly eyeless gene: molecular phylogenetic, comparative genomic, and embryological analyses. Evol Dev 2013; 13:448-59. [PMID: 23016906 DOI: 10.1111/j.1525-142x.2011.00502.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The functional equivalence of Pax6/eyeless genes across distantly related animal phyla has been one of central findings on which evo-devo studies is based. In this study, we show that Pax4, in addition to Pax6, is a vertebrate ortholog of the fly eyeless gene (and its duplicate, twin of eyeless [toy] gene, unique to Insecta). Molecular phylogenetic trees published to date placed the Pax4 gene outside the Pax6/eyeless subgroup as if the Pax4 gene originated from a gene duplication before the origin of bilaterians. However, Pax4 genes had only been reported for mammals. Our molecular phylogenetic analysis, including previously unidentified teleost fish pax4 genes, equally supported two scenarios: one with the Pax4-Pax6 duplication early in vertebrate evolution and the other with this duplication before the bilaterian radiation. We then investigated gene compositions in the genomic regions containing Pax4 and Pax6, and identified (1) conserved synteny between these two regions, suggesting that the Pax4-Pax6 split was caused by a large-scale duplication and (2) its timing within early vertebrate evolution based on the duplication timing of the members of neighboring gene families. Our results are consistent with the so-called two-round genome duplications in early vertebrates. Overall, the Pax6/eyeless ortholog is merely part of a 2:2 orthology relationship between vertebrates (with Pax4 and Pax6) and the fly (with eyeless and toy). In this context, evolution of transcriptional regulation associated with the Pax4-Pax6 split is also discussed in light of the zebrafish pax4 expression pattern that is analyzed here for the first time.
Collapse
Affiliation(s)
- Tereza Manousaki
- Laboratory for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | | | | | | | | |
Collapse
|