1
|
Klingler M, Bucher G. The red flour beetle T. castaneum: elaborate genetic toolkit and unbiased large scale RNAi screening to study insect biology and evolution. EvoDevo 2022; 13:14. [PMID: 35854352 PMCID: PMC9295526 DOI: 10.1186/s13227-022-00201-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The red flour beetle Tribolium castaneum has emerged as an important insect model system for a variety of topics. With respect to studying gene function, it is second only to the vinegar fly D. melanogaster. The RNAi response in T. castaneum is exceptionally strong and systemic, and it appears to target all cell types and processes. Uniquely for emerging model organisms, T. castaneum offers the opportunity of performing time- and cost-efficient large-scale RNAi screening, based on commercially available dsRNAs targeting all genes, which are simply injected into the body cavity. Well established transgenic and genome editing approaches are met by ease of husbandry and a relatively short generation time. Consequently, a number of transgenic tools like UAS/Gal4, Cre/Lox, imaging lines and enhancer trap lines are already available. T. castaneum has been a genetic experimental system for decades and now has become a workhorse for molecular and reverse genetics as well as in vivo imaging. Many aspects of development and general biology are more insect-typical in this beetle compared to D. melanogaster. Thus, studying beetle orthologs of well-described fly genes has allowed macro-evolutionary comparisons in developmental processes such as axis formation, body segmentation, and appendage, head and brain development. Transgenic approaches have opened new ways for in vivo imaging. Moreover, this emerging model system is the first choice for research on processes that are not represented in the fly, or are difficult to study there, e.g. extraembryonic tissues, cryptonephridial organs, stink gland function, or dsRNA-based pesticides.
Collapse
Affiliation(s)
- Martin Klingler
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 5, 91058, Erlangen, Germany.
| | - Gregor Bucher
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
2
|
Thümecke S, Schröder R. The odd-skipped related gene drumstick is required for leg development in the beetle Tribolium castaneum. Dev Dyn 2021; 251:1456-1471. [PMID: 33871128 DOI: 10.1002/dvdy.347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The evolutionarily conserved odd-skipped related genes odd-skipped (odd), drumstick (drm), sister of odd and bowel (sob), and brother-of-odd-with-entrails-limited (bwl) act downstream of the Notch pathway in various insect tissues including the appendages and the gut. While the function of some of these genes have been analyzed in the adult Tribolium beetle, the expression during and their requirement for embryonic development is not known. RESULTS We describe here the embryonic expression patterns of drm, sob, and bwl and analyze the RNAi knockdown phenotypes with emphasize on the appendages and the hindgut. We show that in Tribolium, drm acts independently of other odd-family members in the formation of legs, hindgut, and the dorsal epidermis. Moreover, we establish drm and sob as further markers for segment borders in the appendages that include the gnathobasic mandibles. CONCLUSIONS We conclude that the regulatory interrelationship among the odd genes differs between Tribolium and Drosophila, where odd and drm seem to act redundantly. In Tribolium, the genes drm and sob uncover the relict of a precoxal joint incorporated in the lateral body wall.
Collapse
Affiliation(s)
- Susanne Thümecke
- Institut für Insektenbiotechnologie, Universität Gießen, Gießen, Germany.,Institut für Biowissenschaften, Universität Rostock, Rostock, Germany
| | - Reinhard Schröder
- Institut für Biowissenschaften, Universität Rostock, Rostock, Germany
| |
Collapse
|
3
|
Nunes V, Souto P, Minelli A, Stanger-Hall K, Silveira L. Antennomere numbers in fireflies (Coleoptera: Lampyridae): unique patterns and tentative explanations. ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2020.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Tarazona OA, Lopez DH, Slota LA, Cohn MJ. Evolution of limb development in cephalopod mollusks. eLife 2019; 8:43828. [PMID: 31210127 PMCID: PMC6581508 DOI: 10.7554/elife.43828] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/08/2019] [Indexed: 11/13/2022] Open
Abstract
Cephalopod mollusks evolved numerous anatomical novelties, including arms and tentacles, but little is known about the developmental mechanisms underlying cephalopod limb evolution. Here we show that all three axes of cuttlefish limbs are patterned by the same signaling networks that act in vertebrates and arthropods, although they evolved limbs independently. In cuttlefish limb buds, Hedgehog is expressed anteriorly. Posterior transplantation of Hedgehog-expressing cells induced mirror-image limb duplications. Bmp and Wnt signals, which establish dorsoventral polarity in vertebrate and arthropod limbs, are similarly polarized in cuttlefish. Inhibition of Bmp2/4 dorsally caused ectopic expression of Notum, which marks the ventral sucker field, and ectopic sucker development. Cuttlefish also show proximodistal regionalization of Hth, Exd, Dll, Dac, Sp8/9, and Wnt expression, which delineates arm and tentacle sucker fields. These results suggest that cephalopod limbs evolved by parallel activation of a genetic program for appendage development that was present in the bilaterian common ancestor.
Collapse
Affiliation(s)
- Oscar A Tarazona
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, United States.,Department of Biology, UF Genetics Institute, University of Florida, Gainesville, United States
| | - Davys H Lopez
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, United States
| | - Leslie A Slota
- Department of Biology, UF Genetics Institute, University of Florida, Gainesville, United States
| | - Martin J Cohn
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, United States.,Department of Biology, UF Genetics Institute, University of Florida, Gainesville, United States
| |
Collapse
|
5
|
Sugime Y, Oguchi K, Gotoh H, Hayashi Y, Matsunami M, Shigenobu S, Koshikawa S, Miura T. Termite soldier mandibles are elongated by dachshund under hormonal and Hox gene controls. Development 2019; 146:dev.171942. [PMID: 30833380 DOI: 10.1242/dev.171942] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/12/2019] [Indexed: 11/20/2022]
Abstract
In social insects, interactions among colony members trigger caste differentiation with morphological modifications. In termite soldier differentiation, the mandible size considerably increases through two moltings (via the presoldier stage) under the control of juvenile hormone (JH). Regulatory genes are predicted to provide patterning information that induces the mandible-specific cell proliferation. To identify factors responsible for the mandibular enlargement, expression analyses of 18 candidate genes were carried out in the termite Hodotermopsis sjostedti Among those, dachshund (dac), which identifies the intermediate domain along the proximodistal appendage axis, showed mandible-specific upregulation prior to the molt into presoldiers, which can explain the pattern of cell proliferation for the mandibular elongation. Knockdown of dac by RNAi reduced the mandibular length and distorted its morphology. Furthermore, the epistatic relationships among Methoprene tolerant, Insulin receptor, Deformed (Dfd) and dac were revealed by combined RNAi and qRT-PCR analyses, suggesting that dac is regulated by Dfd, downstream of the JH and insulin signaling pathways. Thus, caste-specific morphogenesis is controlled by interactions between the factors that provide spatial information and physiological status.
Collapse
Affiliation(s)
- Yasuhiro Sugime
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Kohei Oguchi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Miura, Kanagawa, 238-0225, Japan
| | - Hiroki Gotoh
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoshinobu Hayashi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Department of Biology, Keio University, Yokohama, Kanagawa, 223-8521, Japan
| | - Masatoshi Matsunami
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, 903-0215, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Shigeyuki Koshikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Toru Miura
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan .,Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Miura, Kanagawa, 238-0225, Japan
| |
Collapse
|
6
|
Gerken AR, Scully ED, Campbell JF. Red Flour Beetle (Coleoptera: Tenebrionidae) Response to Volatile Cues Varies With Strain and Behavioral Assay. ENVIRONMENTAL ENTOMOLOGY 2018; 47:1252-1265. [PMID: 30010815 DOI: 10.1093/ee/nvy107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 06/08/2023]
Abstract
The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), is a major pest of facilities where grain is processed because of its ability to find and colonize food resource patches. Traps baited with pheromone and kairomone lures are commonly used to monitor for the presence of insects in warehouses or flour mills, for example. However, two nonmutually exclusive components, environment and genetics, could influence insect responsiveness to volatiles, impacting the efficacy of monitoring. Intraspecific variation in attraction behavior to food and mates is largely unexplored in stored-product insects, but tapping into natural genetic variation could provide a baseline for identifying genetic mechanisms associated with finding resources. Here, we assess eight strains of T. castaneum for variation in response to kairomone- and pheromone-based lures using three behavioral assays: paired choice with no forced air flow, upwind attraction with forced air flow, and movement pattern in an arena with a single odor source. We find strain-specific responses to kairomones and pheromones and evidence for heritability in behavioral responses. However, environmental coefficients for behavioral responses to both lures are high, suggesting that environment, and its potential interaction with genotype, strongly influences behavioral outcomes in these assays. Furthermore, despite the different environmental conditions among the different behavioral assays, we find a correlation for volatile preference among the assays. Our results provide a baseline assessment of natural variation for preference to kairomone and pheromone lures and suggest that careful consideration of behavioral assay is key to understanding the mechanisms of attraction in these stored-product pests.
Collapse
Affiliation(s)
- Alison R Gerken
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS
| | - Erin D Scully
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS
| | - James F Campbell
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS
| |
Collapse
|
7
|
Thümecke S, Schröder R. UTR-specific knockdown of Distal-less and Sp8 leads to new phenotypic variants in the flour beetle Tribolium. Dev Genes Evol 2018; 228:163-170. [PMID: 29855703 DOI: 10.1007/s00427-018-0614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/08/2018] [Indexed: 10/14/2022]
Abstract
RNA interference (RNAi)-mediated knockdown serves as an effective technique for the functional analysis of developmental genes that is well established in many organisms. In the beetle Tribolium castaneum, double-stranded RNA is applied by simple injection and distributes systemically within the tissue. Thus, systematic testing for RNAi specificity and efficiency is easily possible in this organism. Generally, the use of non-overlapping dsRNA fragments yielding qualitatively identical phenotypes is the method of choice to verify target-specific knockdown effects. Here, we show that UTR-specific RNAi results in different effects regarding quality, severity and penetrance when compared to RNAi fragments directed at the coding region. Furthermore, when using 3'UTR-specific dsRNA, we first describe the Distal-lessRNAi antenna-to-leg transformation phenotype in the Tribolium larva, which has only been observed in the adult beetle and Drosophila so far. In addition, we unexpectedly observed sterility effects caused by 3'UTR-specific knockdown of the Tribolium-Sp8 orthologue that is not seen when dsRNA targeted a sequence within the coding-region or the 5'UTR that itself led to early embryonic lethality. We conclude that targeting UTR sequences by region-specific RNAi can reveal unexpected new aspects of gene function applicable in basic research and crop protection.
Collapse
Affiliation(s)
- Susanne Thümecke
- Institut für Biowissenschaften, Universität Rostock, Albert-Einsteinstr. 3, 18059, Rostock, Germany
| | - Reinhard Schröder
- Institut für Biowissenschaften, Universität Rostock, Albert-Einsteinstr. 3, 18059, Rostock, Germany.
| |
Collapse
|
8
|
Hiruta C, Kakui K, Tollefsen KE, Iguchi T. Targeted gene disruption by use of CRISPR/Cas9 ribonucleoprotein complexes in the water fleaDaphnia pulex. Genes Cells 2018; 23:494-502. [DOI: 10.1111/gtc.12589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/30/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Chizue Hiruta
- Faculty of Science; Hokkaido University; Sapporo Japan
| | - Keiichi Kakui
- Faculty of Science; Hokkaido University; Sapporo Japan
| | - Knut E. Tollefsen
- Section of Ecotoxicology and Risk Assessment; Norwegian Institute for Water Research (NIVA); Oslo Norway
| | - Taisen Iguchi
- Graduate School of Nanobioscience; Yokohama City University; Yokohama Japan
- Department of Basic Biology; Faculty of Life Science; Okazaki Institute for Integrative Bioscience; National Institute for Basic Biology; National Institutes of Natural Sciences; SOKENDAI (Graduate University for Advanced Studies); Okazaki Japan
| |
Collapse
|
9
|
Dual evolutionary origin of insect wings supported by an investigation of the abdominal wing serial homologs in Tribolium. Proc Natl Acad Sci U S A 2018; 115:E658-E667. [PMID: 29317537 DOI: 10.1073/pnas.1711128115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The origin of insect wings is still a highly debated mystery in biology, despite the importance of this evolutionary innovation. There are currently two prominent, but contrasting wing origin hypotheses (the tergal origin hypothesis and the pleural origin hypothesis). Through studies in the Tribolium beetle, we have previously obtained functional evidence supporting a third hypothesis, the dual origin hypothesis. Although this hypothesis can potentially unify the two competing hypotheses, it requires further testing from various fields. Here, we investigated the genetic regulation of the tissues serially homologous to wings in the abdomen, outside of the appendage-bearing segments, in Tribolium We found that the formation of ectopic wings in the abdomen upon homeotic transformation relies not only on the previously identified abdominal wing serial homolog (gin-trap), but also on a secondary tissue in the pleural location. Using an enhancer trap line of nubbin (a wing lineage marker), we were able to visualize both of these two tissues (of tergal and pleural nature) contributing to form a complete wing. These results support the idea that the presence of two distinct sets of wing serial homologs per segment represents an ancestral state of the wing serial homologs, and can therefore further support a dual evolutionary origin of insect wings. Our analyses also uncovered detailed Hox regulation of abdominal wing serial homologs, which can be used as a foundation to elucidate the molecular mechanisms that have facilitated the evolution of bona fide insect wings, as well as the diversification of other wing serial homologs.
Collapse
|
10
|
Thümecke S, Beermann A, Klingler M, Schröder R. The flipflop orphan genes are required for limb bud eversion in the Tribolium embryo. Front Zool 2017; 14:48. [PMID: 29075305 PMCID: PMC5649079 DOI: 10.1186/s12983-017-0234-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022] Open
Abstract
Background Unlike Drosophila but similar to other arthropod and vertebrate embryos, the flour beetle Tribolium castaneum develops everted limb buds during embryogenesis. However, the molecular processes directing the evagination of epithelia are only poorly understood. Results Here we show that the newly discovered genes Tc-flipflop1 and Tc-flipflop2 are involved in regulating the directional budding of appendages. RNAi-knockdown of Tc-flipflop results in a variety of phenotypic traits. Most prominently, embryonic limb buds frequently grow inwards rather than out, leading to the development of inverted appendages inside the larval body. Moreover, affected embryos display dorsal closure defects. The Tc-flipflop genes are evolutionarily non-conserved, and their molecular function is not evident. We further found that Tc-RhoGEF2, a highly-conserved gene known to be involved in actomyosin-dependent cell movement and cell shape changes, shows a Tc-flipflop-like RNAi-phenotype. Conclusions The similarity of the inverted appendage phenotype in both the flipflop- and the RhoGEF2 RNAi gene knockdown led us to conclude that the Tc-flipflop orphan genes act in a Rho-dependent pathway that is essential for the early morphogenesis of polarised epithelial movements. Our work describes one of the few examples of an orphan gene playing a crucial role in an important developmental process. Electronic supplementary material The online version of this article (10.1186/s12983-017-0234-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne Thümecke
- Institut für Biowissenschaften, Universität Rostock, Albert-Einsteinstr 3, D-18059 Rostock, Germany
| | - Anke Beermann
- Universität Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Martin Klingler
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie Abt. Entwicklungsbiologie, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Reinhard Schröder
- Universität Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| |
Collapse
|
11
|
Jockusch EL. Developmental and Evolutionary Perspectives on the Origin and Diversification of Arthropod Appendages. Integr Comp Biol 2017; 57:533-545. [DOI: 10.1093/icb/icx063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
12
|
Ribeiro L, Tobias-Santos V, Santos D, Antunes F, Feltran G, de Souza Menezes J, Aravind L, Venancio TM, Nunes da Fonseca R. Evolution and multiple roles of the Pancrustacea specific transcription factor zelda in insects. PLoS Genet 2017; 13:e1006868. [PMID: 28671979 PMCID: PMC5515446 DOI: 10.1371/journal.pgen.1006868] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/18/2017] [Accepted: 06/14/2017] [Indexed: 01/09/2023] Open
Abstract
Gene regulatory networks (GRNs) evolve as a result of the coevolutionary processes acting on transcription factors (TFs) and the cis-regulatory modules they bind. The zinc-finger TF zelda (zld) is essential for the maternal-to-zygotic transition (MZT) in Drosophila melanogaster, where it directly binds over thousand cis-regulatory modules to regulate chromatin accessibility. D. melanogaster displays a long germ type of embryonic development, where all segments are simultaneously generated along the whole egg. However, it remains unclear if zld is also involved in the MZT of short-germ insects (including those from basal lineages) or in other biological processes. Here we show that zld is an innovation of the Pancrustacea lineage, being absent in more distant arthropods (e.g. chelicerates) and other organisms. To better understand zld´s ancestral function, we thoroughly investigated its roles in a short-germ beetle, Tribolium castaneum, using molecular biology and computational approaches. Our results demonstrate roles for zld not only during the MZT, but also in posterior segmentation and patterning of imaginal disc derived structures. Further, we also demonstrate that zld is critical for posterior segmentation in the hemipteran Rhodnius prolixus, indicating this function predates the origin of holometabolous insects and was subsequently lost in long-germ insects. Our results unveil new roles of zld in different biological contexts and suggest that changes in expression of zld (and probably other major TFs) are critical in the evolution of insect GRNs. Pioneer transcription factors (TFs) are considered the first regulators of chromatin accessibility in fruit flies and vertebrates, modulating the expression of a large number of target genes. In fruit flies, zelda resembles a pioneer TF, being essential during early embryogenesis. However, the evolutionary origins and ancestral functions of zelda remain largely unknown. Through a number of gene silencing, microscopy and evolutionary analysis, the present work shows that zelda is an innovation of the Pancrustacea lineage, governing not only the MZT in the short-germ insect Tribolium castaneum, but also posterior segmentation and post-embryonic patterning of imaginal disc derived structures such as wings, legs and antennae. Further, zelda regulation of posterior segmentation predates the origin of insects with complete metamorphosis (holometabolous), as supported by gene silencing experiments in the kissing bug Rhodnius prolixus. We hypothesize that the emergence of zelda contributed to the evolution of gene regulatory networks and new morphological structures of insects.
Collapse
Affiliation(s)
- Lupis Ribeiro
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, Brazil
| | - Vitória Tobias-Santos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
| | - Daniele Santos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
| | - Felipe Antunes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
| | - Geórgia Feltran
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
| | - Jackson de Souza Menezes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thiago M. Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, Brazil
- * E-mail: (TMV); (RNdF)
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus UFRJ Macaé, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Macaé, Brazil
- * E-mail: (TMV); (RNdF)
| |
Collapse
|
13
|
Wang H, Tong X, Liu M, Hu H, Li Z, Xiang Z, Dai F, Lu C. Fine Mapping of a Degenerated Abdominal Legs Mutant (Edl) in Silkworm, Bombyx mori. PLoS One 2017; 12:e0169224. [PMID: 28081147 PMCID: PMC5231277 DOI: 10.1371/journal.pone.0169224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/13/2016] [Indexed: 12/05/2022] Open
Abstract
In insects, abdominal appendages, also called prolegs, vary due to adaptive evolution. Mutations on prolegs within species provide insights to better understand the mechanisms underlying appendage development and diversity. In silkworm Bombyx mori, extra-crescents and degenerated abdominal legs (Edl) mutant, belonging to the E pseudoallele group, is a spontaneous mutation that adds crescents and degenerates prolegs on the third abdominal segment (A3). This mutation may be a homeotic transformation of A3 to A2. In this study, the Edl locus was mapped within approximately a 211 Kb region that is 10 Kb upstream of Bmabdominal-A (Bmabd-A). RT-quantitative PCR (RT-qPCR) and Western blot analysis of Bmabd-A expression showed a slight but significant decrease, while the expression of BmUltrabithorax (BmUbx) was up-regulated in the Edl mutant compared to wildtype (Dazao). Moreover, we also found that BmDistal-less (BmDll), which regulated the development of distal proleg structures, was missing at the tips of the A3 prolegs in the Edl mutant compared to BmDll expression in normally developed prolegs in both the wildtype and mutant. Collectively, we identified approximately a 211 Kb region in the Edl locus that regulates BmUbx and Bmabd-A expression and found that changes in BmUbx and Bmabd-A expression may lead to the loss of distal proleg structures in B. mori.
Collapse
Affiliation(s)
- Honglei Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Meijing Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Zhiquan Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
- * E-mail: (FD); (CL)
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
- * E-mail: (FD); (CL)
| |
Collapse
|
14
|
Gotoh H, Zinna RA, Ishikawa Y, Miyakawa H, Ishikawa A, Sugime Y, Emlen DJ, Lavine LC, Miura T. The function of appendage patterning genes in mandible development of the sexually dimorphic stag beetle. Dev Biol 2016; 422:24-32. [PMID: 27989519 DOI: 10.1016/j.ydbio.2016.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 11/30/2022]
Abstract
One of the defining features of the evolutionary success of insects is the morphological diversification of their appendages, especially mouthparts. Although most insects share a common mouthpart ground plan, there is remarkable diversity in the relative size and shapes of these appendages among different insect lineages. One of the most prominent examples of mouthpart modification can be found in the enlargement of mandibles in stag beetles (Coleoptera, Insecta). In order to understand the proximate mechanisms of mouthpart modification, we investigated the function of appendage-patterning genes in mandibular enlargement during extreme growth of the sexually dimorphic mandibles of the stag beetle Cyclommatus metallifer. Based on knowledge from Drosophila and Tribolium studies, we focused on seven appendage patterning genes (Distal-less (Dll), aristaless (al), dachshund (dac), homothorax (hth), Epidermal growth factor receptor (Egfr), escargot (esg), and Keren (Krn). In order to characterize the developmental function of these genes, we performed functional analyses by using RNA interference (RNAi). Importantly, we found that RNAi knockdown of dac resulted in a significant mandible size reduction in males but not in female mandibles. In addition to reducing the size of mandibles, dac knockdown also resulted in a loss of the serrate teeth structures on the mandibles of males and females. We found that al and hth play a significant role during morphogenesis of the large male-specific inner mandibular tooth. On the other hand, knockdown of the distal selector gene Dll did not affect mandible development, supporting the hypothesis that mandibles likely do not contain the distal-most region of the ancestral appendage and therefore co-option of Dll expression is unlikely to be involved in mandible enlargement in stag beetles. In addition to mandible development, we explored possible roles of these genes in controlling the divergent antennal morphology of Coleoptera.
Collapse
Affiliation(s)
- Hiroki Gotoh
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan; Department of Entomology, Washington State University, Pullman, WA 99164, USA; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Robert A Zinna
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Yuki Ishikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan; Graduate School of Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hitoshi Miyakawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan; Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Asano Ishikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan; Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yasuhiro Sugime
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Douglas J Emlen
- Division of Biological Sciences, University of Montana-Missoula, MT 59812, USA
| | - Laura C Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Toru Miura
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
15
|
Chen B, Piel WH, Monteiro A. Distal-less homeobox genes of insects and spiders: genomic organization, function, regulation and evolution. INSECT SCIENCE 2016; 23:335-352. [PMID: 26898323 DOI: 10.1111/1744-7917.12327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The Distal-less (Dll) genes are homeodomain transcription factors that are present in most Metazoa and in representatives of all investigated arthropod groups. In Drosophila, the best studied insect, Dll plays an essential role in forming the proximodistal axis of the legs, antennae and analia, and in specifying antennal identity. The initiation of Dll expression in clusters of cells in mid-lateral regions of the Drosophila embryo represents the earliest genetic marker of limbs. Dll genes are involved in the development of the peripheral nervous system and sensitive organs, and they also function as master regulators of black pigmentation in some insect lineages. Here we analyze the complete genomes of six insects, the nematode Caenorhabditis elegans and Homo sapiens, as well as multiple Dll sequences available in databases in order to examine the structure and protein features of these genes. We also review the function, expression, regulation and evolution of arthropod Dll genes with emphasis on insects and spiders.
Collapse
Affiliation(s)
- Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, P.R. China
| | - William H Piel
- Yale-NUS College, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Antónia Monteiro
- Yale-NUS College, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
16
|
Notch signaling induces cell proliferation in the labrum in a regulatory network different from the thoracic legs. Dev Biol 2015; 408:164-77. [DOI: 10.1016/j.ydbio.2015.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 11/18/2022]
|
17
|
Sharma R, Beer K, Iwanov K, Schmöhl F, Beckmann PI, Schröder R. The single fgf receptor gene in the beetle Tribolium castaneum codes for two isoforms that integrate FGF8- and Branchless-dependent signals. Dev Biol 2015; 402:264-75. [PMID: 25864412 DOI: 10.1016/j.ydbio.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/16/2022]
Abstract
The precise regulation of cell-cell communication by numerous signal-transduction pathways is fundamental for many different processes during embryonic development. One important signalling pathway is the evolutionary conserved fibroblast-growth-factor (FGF)-pathway that controls processes like cell migration, axis specification and mesoderm formation in vertebrate and invertebrate animals. In the model insect Drosophila, the FGF ligand / receptor combinations of FGF8 (Pyramus and Thisbe) / Heartless (Htl) and Branchless (Bnl) / Breathless (Btl) are required for the migration of mesodermal cells and for the formation of the tracheal network respectively with both the receptors functioning independently of each other. However, only a single fgf-receptor gene (Tc-fgfr) has been identified in the genome of the beetle Tribolium. We therefore asked whether both the ligands Fgf8 and Bnl could transduce their signal through a common FGF-receptor in Tribolium. Indeed, we found that the function of the single Tc-fgfr gene is essential for mesoderm differentiation as well as for the formation of the tracheal network during early development. Ligand specific RNAi for Tc-fgf8 and Tc-bnl resulted in two distinct non-overlapping phenotypes of impaired mesoderm differentiation and abnormal formation of the tracheal network in Tc-fgf8- and Tc-bnl(RNAi) embryos respectively. We further show that the single Tc-fgfr gene encodes at least two different receptor isoforms that are generated through alternative splicing. We in addition demonstrate through exon-specific RNAi their distinct tissue-specific functions. Finally, we discuss the structure of the fgf-receptor gene from an evolutionary perspective.
Collapse
Affiliation(s)
- Rahul Sharma
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Katharina Beer
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Katharina Iwanov
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Felix Schmöhl
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Paula Indigo Beckmann
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Reinhard Schröder
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany.
| |
Collapse
|
18
|
Smith FW, Angelini DR, Gaudio MS, Jockusch EL. Metamorphic labral axis patterning in the beetle Tribolium castaneum requires multiple upstream, but few downstream, genes in the appendage patterning network. Evol Dev 2014; 16:78-91. [PMID: 24617987 DOI: 10.1111/ede.12066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The arthropod labrum is an anterior appendage-like structure that forms the dorsal side of the preoral cavity. Conflicting interpretations of fossil, nervous system, and developmental data have led to a proliferation of scenarios for labral evolution. The best supported hypothesis is that the labrum is a novel structure that shares development with appendages as a result of co-option. Here, we use RNA interference in the red flour beetle Tribolium castaneum to compare metamorphic patterning of the labrum to previously published data on ventral appendage patterning. As expected under the co-option hypothesis, depletion of several genes resulted in similar defects in the labrum and ventral appendages. These include proximal deletions and proximal-to-distal transformations resulting from depletion of the leg gap genes homothorax and extradenticle, large-scale deletions resulting from depletion of the leg gap gene Distal-less, and smaller distal deletions resulting from knockdown of the EGF ligand Keren. However, depletion of dachshund and many of the genes that function downstream of the leg gap genes in the ventral appendages had either subtle or no effects on labral axis patterning. This pattern of partial similarity suggests that upstream genes act through different downstream targets in the labrum. We also discovered that many appendage axis patterning genes have roles in patterning the epipharyngeal sensillum array, suggesting that they have become integrated into a novel regulatory network. These genes include Notch, Delta, and decapentaplegic, and the transcription factors abrupt, bric à brac, homothorax, extradenticle and the paralogs apterous a and apterous b.
Collapse
Affiliation(s)
- Frank W Smith
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT, 06269-3043, USA
| | | | | | | |
Collapse
|
19
|
Hiruta C, Ogino Y, Sakuma T, Toyota K, Miyagawa S, Yamamoto T, Iguchi T. Targeted gene disruption by use of transcription activator-like effector nuclease (TALEN) in the water flea Daphnia pulex. BMC Biotechnol 2014; 14:95. [PMID: 25404042 PMCID: PMC4239399 DOI: 10.1186/s12896-014-0095-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cosmopolitan microcrustacean Daphnia pulex provides a model system for both human health research and monitoring ecosystem integrity. It is the first crustacean to have its complete genome sequenced, an unprecedented ca. 36% of which has no known homologs with any other species. Moreover, D. pulex is ideally suited for experimental manipulation because of its short reproductive cycle, large numbers of offspring, synchronization of oocyte maturation, and other life history characteristics. However, existing gene manipulation techniques are insufficient to accurately define gene functions. Although our previous investigations developed an RNA interference (RNAi) system in D. pulex, the possible time period of functional analysis was limited because the effectiveness of RNAi is transient. Thus, in this study, we developed a genome editing system for D. pulex by first microinjecting transcription activator-like effector nuclease (TALEN) mRNAs into early embryos and then evaluating TALEN activity and mutation phenotypes. RESULTS We assembled a TALEN construct specific to the Distal-less gene (Dll), which is a homeobox transcription factor essential for distal limb development in invertebrates and vertebrates, and evaluated its activity in vitro by single-strand annealing assay. Then, we injected TALEN mRNAs into eggs within 1 hour post-ovulation. Injected embryos presented with defects in the second antenna and altered appendage development, and indel mutations were detected in Dll loci, indicating that this technique successfully knocked out the target gene. CONCLUSIONS We succeeded, for the first time in D. pulex, in targeted mutagenesis by use of Platinum TALENs. This genome editing technique makes it possible to conduct reverse genetic analysis in D. pulex, making this species an even more appropriate model organism for environmental, evolutionary, and developmental genomics.
Collapse
Affiliation(s)
- Chizue Hiruta
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Yukiko Ogino
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Faculty of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan.
| | - Kenji Toyota
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Faculty of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Shinichi Miyagawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Faculty of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan.
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Faculty of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
20
|
Luan Q, Chen Q, Friedrich M. The Pax6 genes eyeless and twin of eyeless are required for global patterning of the ocular segment in the Tribolium embryo. Dev Biol 2014; 394:367-81. [PMID: 25149513 DOI: 10.1016/j.ydbio.2014.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 06/23/2014] [Accepted: 08/06/2014] [Indexed: 01/08/2023]
Abstract
The transcription factor gene Pax6 is widely considered a master regulator of eye development in bilaterian animals. However, the existence of visual organs that develop without Pax6 input and the considerable pleiotropy of Pax6 outside the visual system dictate further studies into defining ancestral functions of this important regulator. Previous work has shown that the combinatorial knockdown of the insect Pax6 orthologs eyeless (ey) and twin of eyeless (toy) perturbs the development of the visual system but also other areas of the larval head in the red flour beetle Tribolium castaneum. To elucidate the role of Pax6 during Tribolium head development in more detail, we studied head cuticle morphology, brain anatomy, embryonic head morphogenesis, and developmental marker gene expression in combinatorial ey and toy knockdown animals. Our experiments reveal that Pax6 is broadly required for patterning the anterior embryonic head. One of the earliest detectable roles is the formation of the embryonic head lobes, which originate from within the ocular segment and give rise to large parts of the supraesophageal brain including the mushroom body, a part of the posterior head capsule cuticle, and the visual system. We present further evidence that toy continues to be required for the development of the larval eyes after formation of the embryonic head lobes in cooperation with the eye developmental transcription factor dachshund (dac). The sum of our findings suggests that Pax6 functions as a competence factor throughout the development of the insect ocular segment. Comparative evidence identifies this function as an ancestral aspect of bilaterian head development.
Collapse
Affiliation(s)
- Qing Luan
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA; Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Qing Chen
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA; Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
21
|
Xu HJ, Chen T, Ma XF, Xue J, Pan PL, Zhang XC, Cheng JA, Zhang CX. Genome-wide screening for components of small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). INSECT MOLECULAR BIOLOGY 2013; 22:635-47. [PMID: 23937246 DOI: 10.1111/imb.12051] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The brown planthopper (BPH), Nilaparvata lugens, is a major rice pest in Asia, and accumulated evidence indicates that this species is susceptible to RNA interference (RNAi); however, the mechanism underlying RNAi and parental RNAi has not yet been determined. We comprehensively investigated the repertoire of core genes involved in small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the BPH by comparing its newly assembled transcriptome and genome with those of Drosophila melanogaster, Tribolium castaneum and Caenorhabditis elegans. Our analysis showed that the BPH possesses one drosha and two Dicer (dcr) genes, three dsRNA-binding motif protein genes, two Argonaute (ago) genes, two Eri-1-like genes (eri-1), and a Sid-1-like gene (sid-1). Additionally, we report for first time that parental RNAi might occur in this species, and siRNA pathway and Sid-1 were required for high efficiency of systemic RNAi triggered by exogenous dsRNA. Furthermore, our results also demonstrated that the miRNA pathway was involved in BPH metamorphosis as depletion of the ago1 or dcr1 gene severely impaired ecdysis. The BPH might be a good model system to study the molecular mechanism of systemic RNAi in hemimetabolous insects, and RNAi has potential to be developed to control this pest in agricultural settings.
Collapse
Affiliation(s)
- H-J Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hiruta C, Toyota K, Miyakawa H, Ogino Y, Miyagawa S, Tatarazako N, Shaw JR, Iguchi T. Development of a microinjection system for RNA interference in the water flea Daphnia pulex. BMC Biotechnol 2013; 13:96. [PMID: 24188141 PMCID: PMC4228505 DOI: 10.1186/1472-6750-13-96] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/31/2013] [Indexed: 11/25/2022] Open
Abstract
Background The ubiquitous, freshwater microcrustacean Daphnia pulex provides a model system for both human health research and monitoring ecosystem integrity. It is the first crustacean to have a well annotated, reference genome assembly that revealed an unusually high gene count highlighted by a large gene orphanage,-i.e., previously uncharacterized genes. Daphnia are capable of either clonal or sexual reproduction, making them ideally suited for genetic manipulation, but the establishment of gene manipulation techniques is needed to accurately define gene functions. Although previous investigations developed an RNA interference (RNAi) system for one congener D. magna, these methods are not appropriate for D. pulex because of the smaller size of their early embryos. In these studies, we develop RNAi techniques for D. pulex by first determining the optimum culture conditions of their isolated embryos and then applying these conditions to the development of microinjection techniques and proof-of-principle RNAi experiments. Results We found that isolated embryos were best cultured on a 2% agar plate bathed in 60 mM sucrose dissolved in M4 media, providing optimal conditions for microinjections. Then, we injected double-stranded (ds)RNA specific to the Distal-less gene (Dll), which is a homeobox transcription factor essential for limb development in invertebrates and vertebrates. Injected embryos presented with defects in the second antenna and appendage development, and dsRNA induced the degradation of Dll mRNAs, indicating that this technique successfully inhibited transcription of the target gene. Conclusions We developed a microinjection system for RNAi studies in D. pulex. These techniques add to the growing genomic toolbox and enhance the genetic tractability of this important model for environmental, evolutionary, and developmental genomics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
23
|
Lee AK, Sze CC, Kim ER, Suzuki Y. Developmental coupling of larval and adult stages in a complex life cycle: insights from limb regeneration in the flour beetle, Tribolium castaneum. EvoDevo 2013; 4:20. [PMID: 23826799 PMCID: PMC3711857 DOI: 10.1186/2041-9139-4-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/04/2013] [Indexed: 11/27/2022] Open
Abstract
Background A complex life cycle, such as complete metamorphosis, is a key innovation that can promote diversification of species. The evolution of a morphologically distinct larval stage is thought to have enabled insects to occupy broader ecological niches and become the most diverse metazoan taxon, yet the extent to which larval and adult morphologies can evolve independently remains unknown. Perturbation of larval limb regeneration allows us to generate larval legs and antennae with altered limb morphologies, which may be used to explore the developmental continuity that might exist between larval and adult appendages. In this study, we determined the roles of several appendage patterning transcription factors, abrupt (ab), dachshund (dac), Distal-less (Dll), and spineless (ss), in the red flour beetle, Tribolium castaneum, during larval appendage regeneration. The functions of these genes in regenerating and non-regenerating limbs were compared using RNA interference. Results During limb regeneration, dac and ss were necessary to re-pattern the same larval structures as those patterned during embryogenesis. Removal of these two genes led to larval appendage patterning defects that were carried over to the adult legs. Surprisingly, even though maternal knockdown of ab had minimal effects on limb allocation and patterning in the embryo, it was necessary for blastema growth, an earlier phase of regeneration. Finally, knockdown of Dll prevented the blastema-like bumps from re-differentiating into appendages. Conclusions Our results suggest that, similar to vertebrates, the re-patterning phase of Tribolium larval limb regeneration relies on the same genes that are used during embryonic limb patterning. Thus, the re-patterning phase of regeneration is likely to be regulated by taxon-specific patterning mechanisms. Furthermore, Ab and Dll appear to play important roles during blastema proliferation and re-differentiation, respectively. Finally, our results show that continuity exists between larval and adult limb patterning, and that larval and adult leg morphologies may be developmentally coupled. Thus, the evolution of imaginal discs may have been a key step towards completely removing any developmental constraints that existed between larval and adult phenotypes.
Collapse
Affiliation(s)
- Alison K Lee
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, USA
| | - Christie C Sze
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, USA
| | - Elaine R Kim
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, USA
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, USA
| |
Collapse
|
24
|
Sharma PP, Schwager EE, Giribet G, Jockusch EL, Extavour CG. Distal-lessanddachshundpattern both plesiomorphic and apomorphic structures in chelicerates: RNA interference in the harvestmanPhalangium opilio(Opiliones). Evol Dev 2013; 15:228-42. [DOI: 10.1111/ede.12029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Evelyn E. Schwager
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street, Cambridge, MA 02138; USA
| | | | - Elizabeth L. Jockusch
- Department of Ecology and Evolutionary Biology; University of Connecticut; 75 N. Eagleville Road, Storrs, CT 06269; USA
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street, Cambridge, MA 02138; USA
| |
Collapse
|
25
|
RNAi phenotypes are influenced by the genetic background of the injected strain. BMC Genomics 2013; 14:5. [PMID: 23324472 PMCID: PMC3574008 DOI: 10.1186/1471-2164-14-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/19/2012] [Indexed: 12/22/2022] Open
Abstract
Background RNA interference (RNAi) is a powerful tool to study gene function in organisms that are not amenable to classical forward genetics. Hence, together with the ease of comprehensively identifying genes by new generation sequencing, RNAi is expanding the scope of animal species and questions that can be addressed in terms of gene function. In the case of genetic mutants, the genetic background of the strains used is known to influence the phenotype while this has not been described for RNAi experiments. Results Here we show in the red flour beetle Tribolium castaneum that RNAi against Tc-importin α1 leads to different phenotypes depending on the injected strain. We rule out off target effects and show that sequence divergence does not account for this difference. By quantitatively comparing phenotypes elicited by RNAi knockdown of four different genes we show that there is no general difference in RNAi sensitivity between these strains. Finally, we show that in case of Tc-importin α1 the difference depends on the maternal genotype. Conclusions These results show that in RNAi experiments strain specific differences have to be considered and that a proper documentation of the injected strain is required. This is especially important for the increasing number of emerging model organisms that are being functionally investigated using RNAi. In addition, our work shows that RNAi is suitable to systematically identify the differences in the gene regulatory networks present in populations of the same species, which will allow novel insights into the evolution of animal diversity.
Collapse
|
26
|
Grossmann D, Prpic NM. Egfr signaling regulates distal as well as medial fate in the embryonic leg of Tribolium castaneum. Dev Biol 2012; 370:264-72. [DOI: 10.1016/j.ydbio.2012.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 07/18/2012] [Accepted: 08/10/2012] [Indexed: 11/30/2022]
|
27
|
The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Sci Rep 2012; 2:570. [PMID: 22880161 PMCID: PMC3414864 DOI: 10.1038/srep00570] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/24/2012] [Indexed: 11/08/2022] Open
Abstract
The collapse of the Fukushima Dai-ichi Nuclear Power Plant caused a massive release of radioactive materials to the environment. A prompt and reliable system for evaluating the biological impacts of this accident on animals has not been available. Here we show that the accident caused physiological and genetic damage to the pale grass blue Zizeeria maha, a common lycaenid butterfly in Japan. We collected the first-voltine adults in the Fukushima area in May 2011, some of which showed relatively mild abnormalities. The F₁ offspring from the first-voltine females showed more severe abnormalities, which were inherited by the F₂ generation. Adult butterflies collected in September 2011 showed more severe abnormalities than those collected in May. Similar abnormalities were experimentally reproduced in individuals from a non-contaminated area by external and internal low-dose exposures. We conclude that artificial radionuclides from the Fukushima Nuclear Power Plant caused physiological and genetic damage to this species.
Collapse
|
28
|
Khila A, Abouheif E, Rowe L. Function, developmental genetics, and fitness consequences of a sexually antagonistic trait. Science 2012; 336:585-9. [PMID: 22556252 DOI: 10.1126/science.1217258] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sexual conflict is thought to be a potent force driving the evolution of sexually dimorphic traits. In the water strider Rheumatobates rileyi, we show that elaborated traits on male antennae function to grasp resistant females during premating struggles. Using RNA interference, we uncovered novel roles of the gene distal-less (dll) in generating these male-specific traits. Furthermore, graded reduction of the grasping traits resulted in a graded reduction of mating success in males, thus demonstrating both selection for elaboration of the traits and the role of dll in their evolution. By establishing developmental genetic tools in model systems where sexual selection and conflict are understood, we can begin to reveal how selection can exploit ancient developmental genes to enable the evolution of sexually dimorphic traits.
Collapse
Affiliation(s)
- Abderrahman Khila
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | | | | |
Collapse
|
29
|
Extent With Modification: Leg Patterning in the Beetle Tribolium castaneum and the Evolution of Serial Homologs. G3-GENES GENOMES GENETICS 2012; 2:235-48. [PMID: 22384402 PMCID: PMC3284331 DOI: 10.1534/g3.111.001537] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/01/2011] [Indexed: 01/17/2023]
Abstract
Serial homologs are similar structures that develop at different positions within a body plan. These structures share some, but not all, aspects of developmental patterning, and their evolution is thought to be constrained by shared, pleiotropic gene functions. Here we describe the functions of 17 developmental genes during metamorphic development of the legs in the red flour beetle, Tribolium castaneum. This study provides informative comparisons between appendage development in Drosophila melanogaster and T. castaneum, between embryonic and adult development in T. castaneum, and between the development of serially homologous appendages. The leg gap genes Distal-less and dachshund are conserved in function. Notch signaling, the zinc-finger transcription factors related to odd-skipped, and bric-à-brac have conserved functions in promoting joint development. homothorax knockdown alters the identity of proximal leg segments but does not reduce growth. Lim1 is required for intermediate leg development but not distal tarsus and pretarsus development as in D. melanogaster. Development of the tarsus requires decapentaplegic, rotund, spineless, abrupt, and bric-à-brac and the EGF ligand encoded by Keren. Metathoracic legs of T. castaneum have four tarsomeres, whereas other legs have five. Patterns of gene activity in the tarsus suggest that patterning in the middle of the tarsal region, not the proximal- or distal-most areas, is responsible for this difference in segment number. Through comparisons with other recent studies of T. castaneum appendage development, we test hypotheses for the modularity or interdependence of development during evolution of serial homologs.
Collapse
|
30
|
Aspiras AC, Smith FW, Angelini DR. Sex-specific gene interactions in the patterning of insect genitalia. Dev Biol 2011; 360:369-80. [DOI: 10.1016/j.ydbio.2011.09.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/23/2011] [Accepted: 09/25/2011] [Indexed: 01/26/2023]
|
31
|
Patterning of the adult mandibulate mouthparts in the red flour beetle, Tribolium castaneum. Genetics 2011; 190:639-54. [PMID: 22135350 DOI: 10.1534/genetics.111.134296] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Specialized insect mouthparts, such as those of Drosophila, are derived from an ancestral mandibulate state, but little is known about the developmental genetics of mandibulate mouthparts. Here, we study the metamorphic patterning of mandibulate mouthparts of the beetle Tribolium castaneum, using RNA interference to deplete the expression of 13 genes involved in mouthpart patterning. These data were used to test three hypotheses related to mouthpart development and evolution. First, we tested the prediction that maxillary and labial palps are patterned using conserved components of the leg-patterning network. This hypothesis was strongly supported: depletion of Distal-less and dachshund led to distal and intermediate deletions of these structures while depletion of homothorax led to homeotic transformation of the proximal maxilla and labium, joint formation required the action of Notch signaling components and odd-skipped paralogs, and distal growth and patterning required epidermal growth factor (EGF) signaling. Additionally, depletion of abrupt or pdm/nubbin caused fusions of palp segments. Second, we tested hypotheses for how adult endites, the inner branches of the maxillary and labial appendages, are formed at metamorphosis. Our data reveal that Distal-less, Notch signaling components, and odd-skipped paralogs, but not dachshund, are required for metamorphosis of the maxillary endites. Endite development thus requires components of the limb proximal-distal axis patterning and joint segmentation networks. Finally, adult mandible development is considered in light of the gnathobasic hypothesis. Interestingly, while EGF activity is required for distal, but not proximal, patterning of other appendages, it is required for normal metamorphic growth of the mandibles.
Collapse
|
32
|
Turchyn N, Chesebro J, Hrycaj S, Couso JP, Popadić A. Evolution of nubbin function in hemimetabolous and holometabolous insect appendages. Dev Biol 2011; 357:83-95. [PMID: 21708143 PMCID: PMC3178182 DOI: 10.1016/j.ydbio.2011.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 06/10/2011] [Accepted: 06/11/2011] [Indexed: 10/18/2022]
Abstract
Insects display a whole spectrum of morphological diversity, which is especially noticeable in the organization of their appendages. A recent study in a hemipteran, Oncopeltus fasciatus (milkweed bug), showed that nubbin (nub) affects antenna morphogenesis, labial patterning, the length of the femoral segment in legs, and the formation of a limbless abdomen. To further determine the role of this gene in the evolution of insect morphology, we analyzed its functions in two additional hemimetabolous species, Acheta domesticus (house cricket) and Periplaneta americana (cockroach), and re-examined its role in Drosophila melanogaster (fruit fly). While both Acheta and Periplaneta nub-RNAi first nymphs develop crooked antennae, no visible changes are observed in the morphologies of their mouthparts and abdomen. Instead, the main effect is seen in legs. The joint between the tibia and first tarsomere (Ta-1) is lost in Acheta, which in turn, causes a fusion of these two segments and creates a chimeric nub-RNAi tibia-tarsus that retains a tibial identity in its proximal half and acquires a Ta-1 identity in its distal half. Similarly, our re-analysis of nub function in Drosophila reveals that legs lack all true joints and the fly tibia also exhibits a fused tibia and tarsus. Finally, we observe a similar phenotype in Periplaneta except that it encompasses different joints (coxa-trochanter and femur-tibia), and in this species we also show that nub expression in the legs is regulated by Notch signaling, as had previously been reported in flies and spiders. Overall, we propose that nub acts downstream of Notch on the distal part of insect leg segments to promote their development and growth, which in turn is required for joint formation. Our data represent the first functional evidence defining a role for nub in leg segmentation and highlight the varying degrees of its involvement in this process across insects.
Collapse
Affiliation(s)
- Nataliya Turchyn
- Department of Biological Sciences; Wayne State University; Detroit, MI 48202; USA
| | | | - Steven Hrycaj
- Department of Biological Sciences; Wayne State University; Detroit, MI 48202; USA
| | | | - Aleksandar Popadić
- Department of Biological Sciences; Wayne State University; Detroit, MI 48202; USA
| |
Collapse
|
33
|
Simonnet F, Moczek AP. Conservation and diversification of gene function during mouthpart development in Onthophagus beetles. Evol Dev 2011; 13:280-9. [DOI: 10.1111/j.1525-142x.2011.00479.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Kato Y, Shiga Y, Kobayashi K, Tokishita SI, Yamagata H, Iguchi T, Watanabe H. Development of an RNA interference method in the cladoceran crustacean Daphnia magna. Dev Genes Evol 2011; 220:337-45. [PMID: 21327957 DOI: 10.1007/s00427-011-0353-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/02/2011] [Indexed: 10/18/2022]
Abstract
Daphnids are small crustaceans ubiquitous in fresh water; they have been a subject of study in ecology, evolution, and environmental sciences for decades. To understand data accumulated in daphnid biology at the molecular level, expressed sequence tags and a genome sequence have been determined. However, these discoveries lead to the problem of how to understand the functions of newly discovered genes. Double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) is a useful tool to achieve specific gene silencing in nontransformable species. Hence, we established a technique to inject exogenous materials into ovulated eggs and developed a dsRNA-based RNAi method for Daphnia magna. Eggs were collected just after ovulation and injected with dsRNA specific to the Distal-less (Dll) gene, which functions in appendage development in invertebrates and vertebrates. We found that the dsRNA successfully triggered the degradation of Dll mRNAs, which induced the truncation of the second antenna in a dose-dependent manner. This effect was sequence specific in that: (1) an unrelated dsRNA did not induce any morphological abnormalities and (2) two non-overlapping Dll dsRNAs generated the same phenotype. This is the first report of an RNAi technique in D. magna and, together with the emerging genome sequences, will be useful for advancing knowledge of the molecular biology of daphnids.
Collapse
Affiliation(s)
- Yasuhiko Kato
- Okazaki Institute for Integrative Bioscience, Myodaiji, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Posnien N, Koniszewski N, Bucher G. Insect Tc-six4 marks a unit with similarity to vertebrate placodes. Dev Biol 2010; 350:208-16. [PMID: 21034730 DOI: 10.1016/j.ydbio.2010.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 11/20/2022]
Abstract
Cranial placodes are specialized ectodermal regions in the developing vertebrate head that give rise to both neural and non-neural cell types of the neuroendocrine system and the sense organs of the visual, olfactory and acoustic systems. The cranial placodes develop from a panplacodal region which is specifically marked by genes of the eyes absent/eya and two "six homeobox" family members (sine oculis/six1 and six4). It had been believed that cranial placodes are evolutionary novelties of vertebrates. However, data from non-vertebrate chordates suggest that placode-like structures evolved in the chordate ancestor already. Here, we identify a morphological structure in the embryonic head of the beetle Tribolium castaneum with placode-like features. It is marked by the orthologs of the panplacodal markers Tc-six4, Tc-eya and Tc-sine oculis/six1 (Tc-six1) and expresses several genes known to be involved in adenohypophyseal placode development in vertebrates. Moreover, it contributes to both epidermal and neural tissues. We identify Tc-six4 as a specific marker for this structure that we term the insect head placode. Finally, we reveal the regulatory gene network of the panplacodal genes Tc-six4, Tc-eya and Tc-six1 and identify them as head epidermis patterning genes. Our finding of a placode-like structure in an insect suggests that a placode precursor was already present in the last common ancestor of bilaterian animals.
Collapse
Affiliation(s)
- Nico Posnien
- Center of Molecular Brain Physiology, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
36
|
Lynch VJ, Wagner GP. Revisiting a classic example of transcription factor functional equivalence: are Eyeless and Pax6 functionally equivalent or divergent? JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 316B:93-8. [DOI: 10.1002/jez.b.21373] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 11/07/2022]
|
37
|
Insertional mutagenesis screening identifies the zinc finger homeodomain 2 (zfh2) gene as a novel factor required for embryonic leg development in Tribolium castaneum. Dev Genes Evol 2009; 219:399-407. [PMID: 19760181 PMCID: PMC2773040 DOI: 10.1007/s00427-009-0303-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/30/2009] [Indexed: 11/18/2022]
Abstract
The genetic control of leg development is well characterized in the fly Drosophila melanogaster. These control mechanisms, however, must differ to some degree between different insect species to account for the morphological diversity of thoracic legs in the insects. The legs of the flour beetle Tribolium castaneum differ from the Drosophila legs in their developmental mode as well as in their specific morphology especially at the larval stage. In order to identify genes involved in the morphogenesis of the Tribolium larval legs, we have analyzed EGFP enhancer trap lines of Tribolium. We have identified the zfh2 gene as a novel factor required for normal leg development in Tribolium. RNA interference with zfh2 function leads to two alternative classes of leg phenotype. The loss of a leg segment boundary and the generation of ectopic outgrowths in one class of phenotype suggest a role in leg segmentation and segment growth. The malformation of the pretarsal claw in the second class of phenotype suggests a role in distal development and the morphogenesis of the claw-shaped morphology of the pretarsus. This suggests that zfh2 is involved in the regulation of an unidentified target gene in a concentration-dependent manner. Our results demonstrate that enhancer trap screens in T. castaneum have the potential to identify novel gene functions regulating specific developmental processes.
Collapse
|
38
|
Yang X, Weber M, ZarinKamar N, Posnien N, Friedrich F, Wigand B, Beutel R, Damen WG, Bucher G, Klingler M, Friedrich M. Probing the Drosophila retinal determination gene network in Tribolium (II): The Pax6 genes eyeless and twin of eyeless. Dev Biol 2009; 333:215-27. [DOI: 10.1016/j.ydbio.2009.06.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/18/2009] [Accepted: 06/07/2009] [Indexed: 11/15/2022]
|
39
|
Yang X, ZarinKamar N, Bao R, Friedrich M. Probing the Drosophila retinal determination gene network in Tribolium (I): The early retinal genes dachshund, eyes absent and sine oculis. Dev Biol 2009; 333:202-14. [DOI: 10.1016/j.ydbio.2009.02.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 12/24/2022]
|
40
|
Posnien N, Bashasab F, Bucher G. The insect upper lip (labrum) is a nonsegmental appendage-like structure. Evol Dev 2009; 11:480-8. [DOI: 10.1111/j.1525-142x.2009.00356.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology. Proc Natl Acad Sci U S A 2009; 106:13892-6. [PMID: 19666517 DOI: 10.1073/pnas.0903105106] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crustaceans possess remarkably diverse appendages, both between segments of a single individual as well as between species. Previous studies in a wide range of crustaceans have demonstrated a correlation between the anterior expression boundary of the homeotic (Hox) gene Ultrabithorax (Ubx) and the location and number of specialized thoracic feeding appendages, called maxillipeds. Given that Hox genes regulate regional identity in organisms as diverse as mice and flies, these observations in crustaceans led to the hypothesis that Ubx expression regulates the number of maxillipeds and that evolutionary changes in Ubx expression have generated various aspects of crustacean appendage diversity. Specifically, evolutionary changes in the expression boundary of Ubx have resulted in crustacean species with either 0, 1, 2, or 3 pairs of thoracic maxillipeds. Here we test this hypothesis by altering the expression of Ubx in Parhyale hawaiensis, a crustacean that normally possesses a single pair of maxillipeds. By reducing Ubx expression, we can generate Parhyale with additional maxillipeds in a pattern reminiscent of that seen in other crustacean species, and these morphological alterations are maintained as the animals molt and mature. These results provide critical evidence supporting the proposition that changes in Ubx expression have played a role in generating crustacean appendage diversity and lend general insights into the mechanisms of morphological evolution.
Collapse
|
42
|
Differential recruitment of limb patterning genes during development and diversification of beetle horns. Proc Natl Acad Sci U S A 2009; 106:8992-7. [PMID: 19451631 DOI: 10.1073/pnas.0809668106] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The origins of novel complex phenotypes represent one of the most fundamental, yet largely unresolved, issues in evolutionary biology. Here we explore the developmental genetic regulation of beetle horns, a class of traits that lacks obvious homology to traits in other insects. Furthermore, beetle horns are remarkably diverse in their expression, including sexual dimorphisms, male dimorphisms, and interspecific differences in location of horn expression. At the same time, beetle horns share aspects of their development with that of more traditional appendages. We used larval RNA interference-mediated gene function analysis of 3 cardinal insect appendage patterning genes, dachshund, homothorax, and Distal-less, to investigate their role in development and diversification of beetle horns within and between species. Transcript depletion of all 3 patterning genes generated phenotypic effects very similar to those documented in previous studies that focused on general insect development. In addition, we found that Distal-less and homothorax, but not dachshund, regulate horn expression in a species-, sex-, body region-, and body size-dependent manner. Our results demonstrate differential co-option of appendage patterning genes during the evolution and radiation of beetle horns. Furthermore, our results illustrate that regulatory genes whose functions are otherwise highly conserved nevertheless retain the capacity to acquire additional functions, and that little phylogenetic distance appears necessary for the evolution of sex- and species-specific differences in these functions.
Collapse
|
43
|
Lommen STE, Saenko SV, Tomoyasu Y, Brakefield PM. Development of a wingless morph in the ladybird beetle,Adalia bipunctata. Evol Dev 2009; 11:278-89. [DOI: 10.1111/j.1525-142x.2009.00330.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Appendage patterning in the South American bird spider Acanthoscurria geniculata (Araneae: Mygalomorphae). Dev Genes Evol 2009; 219:189-98. [DOI: 10.1007/s00427-009-0279-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 02/19/2009] [Indexed: 01/08/2023]
|
45
|
Angelini DR, Kikuchi M, Jockusch EL. Genetic patterning in the adult capitate antenna of the beetle Tribolium castaneum. Dev Biol 2009; 327:240-51. [DOI: 10.1016/j.ydbio.2008.10.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 10/30/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
|
46
|
Suzuki Y, Squires DC, Riddiford LM. Larval leg integrity is maintained by Distal-less and is required for proper timing of metamorphosis in the flour beetle, Tribolium castaneum. Dev Biol 2009; 326:60-7. [PMID: 19022238 PMCID: PMC2762819 DOI: 10.1016/j.ydbio.2008.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/19/2008] [Accepted: 10/21/2008] [Indexed: 11/20/2022]
Abstract
The dramatic transformation from a larva to an adult must be accompanied by a coordinated activity of genes and hormones that enable an orchestrated transformation from larval to pupal/adult tissues. The maintenance of larval appendages and their subsequent transformation to appendages in holometabolous insects remains elusive at the developmental genetic level. Here the role of a key appendage patterning gene Distal-less (Dll) was examined in mid- to late-larval stages of the flour beetle, Tribolium castaneum. During late larval development, Dll was expressed in appendages in a similar manner as previously reported for the tobacco hornworm, Manduca sexta. Removal of this late Dll expression resulted in disruption of adult appendage patterning. Intriguingly, earlier removal resulted in dramatic loss of structural integrity and identity of larval appendages. A large amount of variability in appendage morphology was observed following Dll dsRNA injection, unlike larvae injected with dachshund dsRNA. These Dll dsRNA-injected larvae underwent numerous supernumerary molts, which could be terminated with injection of either JH methyltransferase or Methoprene-tolerant dsRNA. Apparently, the partial dedifferentiation of the appendages in these larvae acts to maintain high JH and, hence, prevents metamorphosis.
Collapse
Affiliation(s)
- Yuichiro Suzuki
- Corresponding author: Yuichiro Suzuki, Department of Biological Sciences, Wellesley College, Wellesley, MA 02481; email ; telephone 781-283-3100
| | - Diego C. Squires
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800
| | | |
Collapse
|
47
|
Moczek AP. Chapter 6. The origin and diversification of complex traits through micro- and macroevolution of development: insights from horned beetles. Curr Top Dev Biol 2009; 86:135-62. [PMID: 19361692 DOI: 10.1016/s0070-2153(09)01006-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Understanding how development and ecology shape organismal evolution is a central goal of evolutionary developmental biology. This chapter highlights a class of traits and organisms that are emerging as new models in evo-devo and eco-devo research: beetle horns and horned beetles. Horned beetles are morphologically diverse, ecologically rich, and developmentally and genetically increasingly accessible. Recent studies have begun to take advantage of these attributes and are starting to link the microevolution of horned beetle development to the macroevolution of novel features, and to identify the genetic, developmental, and ecological mechanisms, and the interactions between them, that mediate organismal innovation and diversification in natural populations. Here, I review the most significant recent findings and their contributions to current frontiers in evolutionary developmental biology.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
48
|
Toegel JP, Wimmer EA, Prpic NM. Loss of spineless function transforms the Tribolium antenna into a thoracic leg with pretarsal, tibiotarsal, and femoral identity. Dev Genes Evol 2008; 219:53-8. [PMID: 19030876 DOI: 10.1007/s00427-008-0265-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 10/29/2008] [Indexed: 12/01/2022]
Abstract
The Drosophila spineless (ss) gene is regulated downstream of the appendage gene Distal-less (Dll) and is involved in leg and antenna development. Specifically, loss of ss leads to the homeotic transformation of the arista, the distalmost antennal segment, into tarsal identity, and the loss or fusion of distal leg segments. Here we show that the ss homolog from the red flour beetle Tribolium castaneum also homeotically transforms the beetle antenna into leg, but the extent of the transformation is significantly larger than in Drosophila, as the entire antenna (except for the basal antennifer) is transformed into pretarsal, tibiotarsal, and femoral identity; i.e., the transformation comprises the Dll positive area in both appendages. We interpret the antennal phenotype in Tribolium as evidence for a more exclusive role of ss in antennal determination downstream of Dll in the beetle. By contrast, the fact that, in Drosophila ss mutants, only a small portion of the Dll positive area in the antenna is homeotically transformed indicates that Dll uses additional targets to govern the development of the other antennal segments in the fly.
Collapse
Affiliation(s)
- Jane Patricia Toegel
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Department of Developmental Biology, Georg-August-University Goettingen, GZMB, Goettingen, Germany.
| | | | | |
Collapse
|
49
|
Hrycaj S, Mihajlovic M, Mahfooz N, Couso JP, Popadić A. RNAi analysis of nubbin embryonic functions in a hemimetabolous insect, Oncopeltus fasciatus. Evol Dev 2008; 10:705-16. [DOI: 10.1111/j.1525-142x.2008.00284.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
Abstract
Beetles are reckoned to make up about one quarter of animal species. Now, the first genome of a beetle--the red flour beetle Tribolium castaneum, a pest and developmental model system alike--has been sequenced.
Collapse
|