1
|
Sheloukhova L, Watanabe H. Evolution of glial cells: a non-bilaterian perspective. Neural Dev 2024; 19:10. [PMID: 38907299 PMCID: PMC11193209 DOI: 10.1186/s13064-024-00184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Nervous systems of bilaterian animals generally consist of two cell types: neurons and glial cells. Despite accumulating data about the many important functions glial cells serve in bilaterian nervous systems, the evolutionary origin of this abundant cell type remains unclear. Current hypotheses regarding glial evolution are mostly based on data from model bilaterians. Non-bilaterian animals have been largely overlooked in glial studies and have been subjected only to morphological analysis. Here, we provide a comprehensive overview of conservation of the bilateral gliogenic genetic repertoire of non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera). We overview molecular and functional features of bilaterian glial cell types and discuss their possible evolutionary history. We then examine which glial features are present in non-bilaterians. Of these, cnidarians show the highest degree of gliogenic program conservation and may therefore be crucial to answer questions about glial evolution.
Collapse
Affiliation(s)
- Larisa Sheloukhova
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| |
Collapse
|
2
|
Early Neurogenesis and Gliogenesis in Drosophila. Neurogenetics 2023. [DOI: 10.1007/978-3-031-07793-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
The color pattern inducing gene wingless is expressed in specific cell types of campaniform sensilla of a polka-dotted fruit fly, Drosophila guttifera. Dev Genes Evol 2021; 231:85-93. [PMID: 33774724 DOI: 10.1007/s00427-021-00674-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
A polka-dotted fruit fly, Drosophila guttifera, has a unique pigmentation pattern on its wings and is used as a model for evo-devo studies exploring the mechanism of evolutionary gain of novel traits. In this species, a morphogen-encoding gene, wingless, is expressed in species-specific positions and induces a unique pigmentation pattern. To produce some of the pigmentation spots on wing veins, wingless is thought to be expressed in developing campaniform sensillum cells, but it was unknown which of the four cell types there express(es) wingless. Here we show that two of the cell types, dome cells and socket cells, express wingless, as indicated by in situ hybridization together with immunohistochemistry. This is a unique case in which non-neuronal SOP (sensory organ precursor) progeny cells produce Wingless as an inducer of pigmentation pattern formation. Our finding opens a path to clarifying the mechanism of evolutionary gain of a unique wingless expression pattern by analyzing gene regulation in dome cells and socket cells.
Collapse
|
4
|
Ren Q, Awasaki T, Wang YC, Huang YF, Lee T. Lineage-guided Notch-dependent gliogenesis by Drosophila multi-potent progenitors. Development 2018; 145:dev.160127. [PMID: 29764857 DOI: 10.1242/dev.160127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/08/2018] [Indexed: 12/27/2022]
Abstract
Macroglial cells in the central nervous system exhibit regional specialization and carry out region-specific functions. Diverse glial cells arise from specific progenitors in specific spatiotemporal patterns. This raises an interesting possibility that glial precursors with distinct developmental fates exist that govern region-specific gliogenesis. Here, we have mapped the glial progeny produced by the Drosophila type II neuroblasts, which, like vertebrate radial glia cells, yield both neurons and glia via intermediate neural progenitors (INPs). Distinct type II neuroblasts produce different characteristic sets of glia. A single INP can make both astrocyte-like and ensheathing glia, which co-occupy a relatively restrictive subdomain. Blocking apoptosis uncovers further lineage distinctions in the specification, proliferation and survival of glial precursors. Both the switch from neurogenesis to gliogenesis and the subsequent glial expansion depend on Notch signaling. Taken together, lineage origins preconfigure the development of individual glial precursors with involvement of serial Notch actions in promoting gliogenesis.
Collapse
Affiliation(s)
- Qingzhong Ren
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Takeshi Awasaki
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Yu-Chun Wang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Yu-Fen Huang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
5
|
Abstract
The developmental morphogen Sonic hedgehog (Shh) may continue to play a sustaining role in adult motor neurons, of potential relevance to motor neuron diseases including amyotrophic lateral sclerosis. The Shh signaling pathway is incompletely understood and interactions with other signaling pathways are possible. We focus here on Notch, and first show that there is an almost linear reduction in light output from a Gli reporter in Shh Light II cells in the presence of increasing concentrations of the Notch inhibitor DAPT (r2=0.982). Second, in the spinal cord of mutant superoxide dismutase mice, but not control mice, a key marker of Notch signaling changes with age. Before the onset of clinical signs, the Notch intracellular domain is expressed predominantly in motor neurons, but by 125 days of age, Notch intracellular domain expression is markedly reduced in motor neurons and increased in neighboring astroglia. Third, there is a parallel reduction in Gli protein expression in mutant superoxide dismutase mouse spinal motor neurons, consistent with the observed reduction in Notch signaling and also a redistribution of Gli away from the nucleus. Thus, there is a reduction in motor neuronal Notch signaling and associated changes in Shh signaling, occurring coincidentally with disease expression, that may contribute toward the dysfunction and death of motor neurons in amyotrophic lateral sclerosis.
Collapse
|
6
|
An evolutionary conserved interaction between the Gcm transcription factor and the SF1 nuclear receptor in the female reproductive system. Sci Rep 2016; 6:37792. [PMID: 27886257 PMCID: PMC5122895 DOI: 10.1038/srep37792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023] Open
Abstract
NR5A1 is essential for the development and for the function of steroid producing glands of the reproductive system. Moreover, its misregulation is associated with endometriosis, which is the first cause of infertility in women. Hr39, the Drosophila ortholog of NR5A1, is expressed and required in the secretory cells of the spermatheca, the female exocrine gland that ensures fertility by secreting substances that attract and capacitate the spermatozoids. We here identify a direct regulator of Hr39 in the spermatheca: the Gcm transcription factor. Furthermore, lack of Gcm prevents the production of the secretory cells and leads to female sterility in Drosophila. Hr39 regulation by Gcm seems conserved in mammals and involves the modification of the DNA methylation profile of mNr5a1. This study identifies a new molecular pathway in female reproductive system development and suggests a role for hGCM in the progression of reproductive tract diseases in humans.
Collapse
|
7
|
Cattenoz PB, Giangrande A. Revisiting the role of the Gcm transcription factor, from master regulator to Swiss army knife. Fly (Austin) 2016; 10:210-8. [PMID: 27434165 DOI: 10.1080/19336934.2016.1212793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Master genes are known to induce the differentiation of a multipotent cell into a specific cell type. These molecules are often transcription factors that switch on the regulatory cascade that triggers cell specification. Gcm was first described as the master gene of the glial fate in Drosophila as it induces the differentiation of neuroblasts into glia in the developing nervous system. Later on, Gcm was also shown to regulate the differentiation of blood, tendon and peritracheal cells as well as that of neuronal subsets. Thus, the glial master gene is used in at least 4 additional systems to promote differentiation. To understand the numerous roles of Gcm, we recently reported a genome-wide screen of Gcm direct targets in the Drosophila embryo. This screen provided new insight into the role and mode of action of this powerful transcription factor, notably on the interactions between Gcm and major differentiation pathways such as the Hedgehog, Notch and JAK/STAT. Here, we discuss the mode of action of Gcm in the different systems, we present new tissues that require Gcm and we revise the concept of 'master gene'.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- a Department of Functional Genomics and Cancer , Institut de Génétique et de Biologie Moléculaire et Cellulaire , Illkirch , France
| | - Angela Giangrande
- a Department of Functional Genomics and Cancer , Institut de Génétique et de Biologie Moléculaire et Cellulaire , Illkirch , France
| |
Collapse
|
8
|
A Unique Class of Neural Progenitors in the Drosophila Optic Lobe Generates Both Migrating Neurons and Glia. Cell Rep 2016; 15:774-786. [PMID: 27149843 PMCID: PMC5154769 DOI: 10.1016/j.celrep.2016.03.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/25/2016] [Accepted: 03/15/2016] [Indexed: 02/04/2023] Open
Abstract
How neuronal and glial fates are specified from neural precursor cells is an important question for developmental neurobiologists. We address this question in the Drosophila optic lobe, composed of the lamina, medulla, and lobula complex. We show that two gliogenic regions posterior to the prospective lamina also produce lamina wide-field (Lawf) neurons, which share common progenitors with lamina glia. These progenitors express neither canonical neuroblast nor lamina precursor cell markers. They bifurcate into two sub-lineages in response to Notch signaling, generating lamina glia or Lawf neurons, respectively. The newly born glia and Lawfs then migrate tangentially over substantial distances to reach their target tissue. Thus, Lawf neurogenesis, which includes a common origin with glia, as well as neuronal migration, resembles several aspects of vertebrate neurogenesis.
Collapse
|
9
|
Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila. Genetics 2015; 202:191-219. [PMID: 26567182 PMCID: PMC4701085 DOI: 10.1534/genetics.115.182154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022] Open
Abstract
High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain-containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades.
Collapse
|
10
|
Cattenoz PB, Giangrande A. Lineage specification in the fly nervous system and evolutionary implications. Cell Cycle 2013; 12:2753-9. [PMID: 23966161 DOI: 10.4161/cc.25918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over the last decades, it has become clear that glia are multifunctional and plastic cells endowed with key regulatory roles. They control the response to developmental and/or pathological signals, thereby affecting neural proliferation, remodeling, survival, and regeneration. It is, therefore, important to understand the biology of these cells and the molecular mechanisms controlling their development/activity. The fly community has made major breakthroughs by characterizing the bases of gliogenesis and function. Here we describe the regulation and the role of the fly glial determinant. Then, we discuss the impact of the determinant in cell plasticity and differentiation. Finally, we address the conservation of this pathway across evolution.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; IGBMC/CNRS/INSERM/UDS; Strasbourg, France
| | | |
Collapse
|
11
|
Notch Signaling and the Generation of Cell Diversity in Drosophila Neuroblast Lineages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:47-60. [DOI: 10.1007/978-1-4614-0899-4_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Abstract
The ensheathment of neurons and their axons creates an ion-sensitive microenvironment that allows rapid conduction of nerve impulses. One of the fundamental questions about axonal ensheathment is how insulating glial cells wrap around axons. The mechanisms that underlie insulation of axons in invertebrates and vertebrates are not fully understood. In the present article we address cellular aspects of axonal ensheathment in Drosophila by taking advantage of glial mutants that illustrate a range of phenotypic defects including ensheathment of axons. From the findings of these mutant studies, we summarize that loss of glial cells, defects in glial membrane wrapping, failure of glial migration, and loss of specialized ladderlike septate junctions between ensheathing glial membranes result in axon-glial functional defects. These studies provide a broad perspective on glial ensheathment of axons in Drosophila and key insights into the anatomical and cellular aspects of axonal insulation. Given the powerful genetic approaches available in Drosophila, the axonal ensheathment process can be dissected in great detail to reveal the fundamental principles of ensheathment. These observations will be relevant to understanding the very similar processes in vertebrates, where defects in glial cell functions lead to devastating neurological diseases.
Collapse
Affiliation(s)
- Swati Banerjee
- Department of Cell and Molecular Physiology, Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7545, USA
| | | |
Collapse
|
13
|
Abstract
Drosophila neuroblasts are similar to mammalian neural stem cells in their ability to self-renew and to produce many different types of neurons and glial cells. In the past two decades, great advances have been made in understanding the molecular mechanisms underlying embryonic neuroblast formation, the establishment of cell polarity and the temporal regulation of cell fate. It is now a challenge to connect, at the molecular level, the different cell biological events underlying the transition from neural stem cell maintenance to differentiation. Progress has also been made in understanding the later stages of development, when neuroblasts become mitotically inactive, or quiescent, and are then reactivated postembryonically to generate the neurons that make up the adult nervous system. The ability to manipulate the steps leading from quiescence to proliferation and from proliferation to differentiation will have a major impact on the treatment of neurological injury and neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Andrea H Brand
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of CambridgeTennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
14
|
Hamada Y, Hiroe T, Suzuki Y, Oda M, Tsujimoto Y, Coleman JR, Tanaka S. Notch2 is required for formation of the placental circulatory system, but not for cell-type specification in the developing mouse placenta. Differentiation 2007; 75:268-78. [PMID: 17359302 DOI: 10.1111/j.1432-0436.2006.00137.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have previously reported that a mutation in the ankyrin repeats of mouse Notch2 results in embryonic lethality by embryonic day 11.5 (E11.5), showing developmental retardation at E10.5. This indicated that Notch2 plays an essential role in postimplantation development in mice. Here, we demonstrate that whole embryo culture can circumvent developmental retardation of Notch2 mutant embryos for up to 1 day, suggesting that the lethality was primarily caused by extraembryonic defects. Histological examinations revealed delayed entry of maternal blood into the mutant placenta and poor blood sinus formation at later stages. Notch2-expressing cells appeared around maternal blood sinuses. Specification of trophoblast subtypes appeared not to be drastically disturbed and expression of presumptive downstream genes of Notch2 signaling was not altered by the Notch2 mutation. Thus, in the developing mouse placenta, Notch2 is unlikely to be involved in cell fate decisions, but rather participates in formation of maternal blood sinuses. In aggregation chimeras with wild-type tetraploid embryos, the mutant embryos developed normally until E12.5, but died before E13.5. The chimeric placentas showed a restored maternal blood sinus formation when compared with the mutant placentas, but not at the level of wild-type diploid placentas. Therefore, it was concluded that the mutant suffers from defects in maternal blood sinus formation. Thus, Notch2 is not cell autonomously required for the early cell fate determination of subtypes of trophoblast cells, but plays an indispensable role in the formation of maternal blood sinuses in the developing mouse placenta.
Collapse
Affiliation(s)
- Yoshio Hamada
- National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Doroquez DB, Rebay I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit Rev Biochem Mol Biol 2007; 41:339-85. [PMID: 17092823 DOI: 10.1080/10409230600914344] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metazoan development relies on a highly regulated network of interactions between conserved signal transduction pathways to coordinate all aspects of cell fate specification, differentiation, and growth. In this review, we discuss the intricate interplay between the epidermal growth factor receptor (EGFR; Drosophila EGFR/DER) and the Notch signaling pathways as a paradigm for signal integration during development. First, we describe the current state of understanding of the molecular architecture of the EGFR and Notch signaling pathways that has resulted from synergistic studies in vertebrate, invertebrate, and cultured cell model systems. Then, focusing specifically on the Drosophila eye, we discuss how cooperative, sequential, and antagonistic relationships between these pathways mediate the spatially and temporally regulated processes that generate this sensory organ. The common themes underlying the coordination of the EGFR and Notch pathways appear to be broadly conserved and should, therefore, be directly applicable to elucidating mechanisms of information integration and signaling specificity in vertebrate systems.
Collapse
Affiliation(s)
- David B Doroquez
- Department of Biology, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
16
|
Edenfeld G, Altenhein B, Zierau A, Cleppien D, Krukkert K, Technau G, Klämbt C. Notch and Numb are required for normal migration of peripheral glia in Drosophila. Dev Biol 2006; 301:27-37. [PMID: 17157832 DOI: 10.1016/j.ydbio.2006.11.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 10/20/2006] [Accepted: 11/01/2006] [Indexed: 01/30/2023]
Abstract
A prominent feature of glial cells is their ability to migrate along axons to finally wrap and insulate them. In the embryonic Drosophila PNS, most glial cells are born in the CNS and have to migrate to reach their final destinations. To understand how migration of the peripheral glia is regulated, we have conducted a genetic screen looking for mutants that disrupt the normal glial pattern. Here we present an analysis of two of these mutants: Notch and numb. Complete loss of Notch function leads to an increase in the number of glial cells. Embryos hemizygous for the weak Notch(B-8X) allele display an irregular migration phenotype and mutant glial cells show an increased formation of filopodia-like structures. A similar phenotype occurs in embryos carrying the Notch(ts1) allele when shifted to the restrictive temperature during the glial cell migration phase, suggesting that Notch must be activated during glial migration. This is corroborated by the fact that cell-specific reduction of Notch activity in glial cells by directed numb expression also results in similar migration phenotypes. Since the glial migration phenotypes of Notch and numb mutants resemble each other, our data support a model where the precise temporal and quantitative regulation of Numb and Notch activity is not only required during fate decisions but also later during glial differentiation and migration.
Collapse
Affiliation(s)
- Gundula Edenfeld
- Institut für Neurobiologie, Universität Münster, Badestr. 9, D-48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Notch signaling regulates cell fate determination and many developmental processes. Here we report that lateral inhibition, a major mechanism for Notch activity, is modulated by Hairy, a bHLH-WRPW protein. In Xenopus, Notch can have from inhibitory, permissive to enhancing roles in muscle or neural differentiation. These cell context-dependent effects correlate with Hairy expression levels from high to low, respectively, in the cells. Moreover, Notch effects can be altered upon manipulation of Hairy expression. We propose that Hairy provides a cell context in which a cell can interpret Notch and other extrinsic signals by controlling responsiveness of its target genes; this mode of Hairy-Notch interaction may apply in other systems.
Collapse
Affiliation(s)
- Yanzhen Cui
- Department of Environmental and Biomolecular Systems, Oregon Graduate Institute School of Science and Engineering, Oregon Health and Science University, 20000 NW Walker Road, Beaverton, OR 97006, USA.
| |
Collapse
|
18
|
Jones BW. Transcriptional control of glial cell development in Drosophila. Dev Biol 2005; 278:265-73. [PMID: 15680348 DOI: 10.1016/j.ydbio.2004.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 11/15/2004] [Accepted: 11/16/2004] [Indexed: 10/26/2022]
Abstract
Neurons and glia are generated from multipotent neural progenitors. In Drosophila, the transcriptional regulation of glial vs. neuronal fates is controlled by the expression of the transcription factor encoded by the glial cells missing gene (gcm) in multiple neural lineages. The cis-regulatory control of gcm transcription serves as a nodal point to translate a complex array of spatially and temporally regulated transcription factors in distinct neural lineages into glial-specific expression. Gcm acts synergistically with several downstream transcription factors to initiate and maintain glial-specific gene expression. The identification of a large set of glial-specific genes through the application of computational and whole genome tools provides the opportunity to analyze the transcriptional regulation of glial cell development at the genomic level in a relatively simple genetic model system.
Collapse
Affiliation(s)
- Bradley W Jones
- Department of Biology, The University of Mississippi, 122 Shoemaker Hall, University, MS 38677, USA.
| |
Collapse
|
19
|
Lai EC, Orgogozo V. A hidden program in Drosophila peripheral neurogenesis revealed: fundamental principles underlying sensory organ diversity. Dev Biol 2004; 269:1-17. [PMID: 15081353 DOI: 10.1016/j.ydbio.2004.01.032] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 01/22/2004] [Accepted: 01/26/2004] [Indexed: 11/19/2022]
Abstract
How is cell fate diversity reliably achieved during development? Insect sensory organs have been a favorable model system for investigating this question for over 100 years. They are constructed using defined cell lineages that generate a maximum of cell diversity with a minimum number of cell divisions, and display tremendous variety in their morphologies, constituent cell types, and functions. An unexpected realization of the past 5 years is that very diverse sensory organs in Drosophila are produced by astonishingly similar cell lineages, and that their diversity can be largely attributed to only a small repertoire of developmental processes. These include changes in terminal cell differentiation, cell death, cell proliferation, cell recruitment, cell-cell interactions, and asymmetric segregation of cell fate determinants during mitosis. We propose that most Drosophila sensory organs are built from an archetypal lineage, and we speculate about how this stereotyped pattern of cell divisions may have been built during evolution.
Collapse
Affiliation(s)
- Eric C Lai
- Howard Hughes Medical Institute, 545 Life Sciences Addition, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
20
|
Moore AW, Roegiers F, Jan LY, Jan YN. Conversion of neurons and glia to external-cell fates in the external sensory organs of Drosophila hamlet mutants by a cousin-cousin cell-type respecification. Genes Dev 2004; 18:623-8. [PMID: 15075290 PMCID: PMC387238 DOI: 10.1101/gad.1170904] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Drosophila external sensory organ forms in a lineage elaborating from a single precursor cell via a stereotypical series of asymmetric divisions. HAMLET transcription factor expression demarcates the lineage branch that generates two internal cell types, the external sensory neuron and thecogen. In HAMLET mutant organs, these internal cells are converted to external cells via an unprecedented cousin-cousin cell-fate respecification event. Conversely, ectopic HAMLET expression in the external cell branch leads to internal cell production. The fate-determining signals NOTCH and PAX2 act at multiple stages of lineage elaboration and HAMLET acts to modulate their activity in a branch-specific manner.
Collapse
Affiliation(s)
- Adrian W Moore
- Howard Hughes Medical Institute, Department of Physiology, University of California at San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
21
|
Jones BW, Abeysekera M, Galinska J, Jolicoeur EM. Transcriptional control of glial and blood cell development in Drosophila: cis-regulatory elements of glial cells missing. Dev Biol 2004; 266:374-87. [PMID: 14738884 DOI: 10.1016/j.ydbio.2003.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In Drosophila, glial cell differentiation requires the expression of glial cells missing (gcm) in multiple neural cell lineages, where gcm acts as a binary switch for glial vs. neuronal fate. Thus, the primary event controlling gliogenesis in neural progenitors is the transcription of gcm. In addition, gcm is also required for the differentiation of macrophages, and is expressed in the hemocyte lineage. This dual role of gcm in glial cell and blood cell development underscores the need for the precise temporal and spatial regulation of gcm transcription. To understand how gcm transcription is regulated, we have undertaken an analysis of the cis-regulatory DNA elements of gcm using lacZ reporter activity in transgenic embryos, testing the activity of approximately 35 kilobases of DNA from the gcm locus. We have identified several distinct DNA regions that promote most of the elements of gcm expression. These include elements for general neural expression, gcm-independent and gcm-dependent glial-specific expression, as well as early and late hemocyte expression. We show that expression of an abdominal glial-specific element is dependent on the homeotic gene abdominal-A. Our results indicate that gcm transcription is controlled by a combination of general and lineage-specific elements, positive autoregulation, and neuronal repression.
Collapse
Affiliation(s)
- Bradley W Jones
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, and Department of Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | |
Collapse
|
22
|
Sen A, Reddy GV, Rodrigues V. Combinatorial expression of Prospero, Seven-up, and Elav identifies progenitor cell types during sense-organ differentiation in the Drosophila antenna. Dev Biol 2003; 254:79-92. [PMID: 12606283 DOI: 10.1016/s0012-1606(02)00021-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Drosophila antenna has a diversity of chemosensory organs within a single epidermal field. We have some idea from recent studies of how the three broad categories of sense-organs are specified at the level of progenitor choice. However, little is known about how cell fates within single sense-organs are specified. Selection of individual primary olfactory progenitors is followed by organization of groups of secondary progenitors, which divide in a specific order to form a differentiated sensillum. The combinatorial expression of Prospero Elav, and Seven-up allows us to distinguish three secondary progenitor fates. The lineages of these cells have been established by clonal analysis and marker distribution following mitosis. High Notch signaling and the exclusion of these markers identifies PIIa; this cell gives rise to the shaft and socket. The sheath/neuron lineage progenitor PIIb, expresses all three markers; upon division, Prospero asymmetrically segregates to the sheath cell. In the coeloconica, PIIb undergoes an additional division to produce glia. PIIc is present in multiinnervated sense-organs and divides to form neurons. An understanding of the lineage and development of olfactory sense-organs provides a handle for the analysis of how olfactory neurons acquire distinct terminal fates.
Collapse
Affiliation(s)
- Anindya Sen
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Rd, Mumbai 400005, India
| | | | | |
Collapse
|
23
|
Abstract
The Notch signaling pathway has long been known to influence cell fate in the developing nervous system. However, this pathway has generally been thought to inhibit the specification of certain cell types in favor of others, or to simply maintain a progenitor pool. Recently, this view has been challenged by numerous studies suggesting that Notch may play an instructive role in promoting glial development. This work has inspired a new look at the role of Notch signaling in specifying cell fate. It has also prompted further consideration of the emerging view that in some contexts glia may be multipotent progenitors. This review examines the role of Notch during gliogenesis in both fruit flies and vertebrates, as well as evidence in vertebrates that some glia may be stem cells.
Collapse
Affiliation(s)
- Nicholas Gaiano
- Developmental Genetics Program, and Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, NY 10016, USA.
| | | |
Collapse
|
24
|
De Bellard ME, Ching W, Gossler A, Bronner-Fraser M. Disruption of segmental neural crest migration and ephrin expression in delta-1 null mice. Dev Biol 2002; 249:121-30. [PMID: 12217323 DOI: 10.1006/dbio.2002.0756] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neural crest cells migrate segmentally through the rostral half of each trunk somite due to inhibitory influences of ephrins and other molecules present in the caudal-half of somites. To examine the potential role of Notch/Delta signaling in establishing the segmental distribution of ephrins, we examined neural crest migration and ephrin expression in Delta-1 mutant mice. Using Sox-10 as a marker, we noted that neural crest cells moved through both rostral and caudal halves of the somites in mutants, consistent with the finding that ephrinB2 levels are significantly reduced in the caudal-half somites. Later, mutant embryos had aberrantly fused and/or reduced dorsal root and sympathetic ganglia, with a marked diminution in peripheral glia. These results show that Delta-1 is essential for proper migration and differentiation of neural crest cells. Interestingly, absence of Delta-1 leads to diminution of both neurons and glia in peripheral ganglia, suggesting a general depletion of the ganglion precursor pool in mutant mice.
Collapse
Affiliation(s)
- Maria Elena De Bellard
- Institut für Molekularbiologie OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625, Hannover, Germany
| | | | | | | |
Collapse
|
25
|
Bonner J, Auld V, O'Connor T. Migrating mesoderm establish a uniform distribution of laminin in the developing grasshopper embryo. Dev Biol 2002; 249:57-73. [PMID: 12217318 DOI: 10.1006/dbio.2002.0750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The basal lamina is composed of molecules which physically interact to form a network that serves as a migrational scaffold for many cell types. In the developing peripheral nervous system of the grasshopper, neuronal growth cones are intimately associated with the basal lamina as they migrate. Laminin is a major component of the basal lamina and is a potent promoter of neurite outgrowth in vitro. However, it is unclear what the source of laminin is or how the distribution of laminin within the basal lamina is established. To address this question, grasshopper laminin subunit genes were cloned. As expected, laminin was found within the basal lamina throughout the embryo, in particular in the limb bud, where its expression is coincident with the outgrowth and guidance of the Tibial (Til) pioneer neurons. Surprisingly, the synthesis of beta and gamma chains of laminin was restricted to migratory mesodermal cells, while in other nonmigratory tissues, such as epithelium and presumptive muscle, beta and gamma chains of laminin were not detected. In spite of this, laminin immunoreactivity in the basal lamina appears uniform and is available as a substrate for axonal outgrowth.
Collapse
Affiliation(s)
- Jennifer Bonner
- Department of Anatomy, University of British Columbia, 2177 Westbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | | | | |
Collapse
|
26
|
Abstract
Neurons and glia are generated by multipotent precursors. Recent studies indicate that the choice between the two fates depends on the combined activity of extracellular influences and factors that respond to precise spatial and temporal cues. Drosophila provides a simple genetic model to study the cellular and molecular mechanisms controlling fate choice, mode of precursor division and generation of cell diversity. Moreover, all glial precursors and glial-promoting activities have been identified in Drosophila, which provides us with a unique opportunity to dissect regulatory pathways controlling glial differentiation and specification.
Collapse
Affiliation(s)
- Véronique Van De Bor
- Institut de Génétique et Biologie Moléculaire et Cellulaire, IGBMC/CNRS/ULP/INSERM - BP 163 67404 ILLKIRCH, c.u. de Strasbourg, France
| | | |
Collapse
|
27
|
Van De Bor V, Heitzler P, Leger S, Plessy C, Giangrande A. Precocious expression of the Glide/Gcm glial-promoting factor in Drosophila induces neurogenesis. Genetics 2002; 160:1095-106. [PMID: 11901125 PMCID: PMC1462002 DOI: 10.1093/genetics/160.3.1095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurons and glial cells depend on similar developmental pathways and often originate from common precursors; however, the differentiation of one or the other cell type depends on the activation of cell-specific pathways. In Drosophila, the differentiation of glial cells depends on a transcription factor, Glide/Gcm. This glial-promoting factor is both necessary and sufficient to induce the central and peripheral glial fates at the expense of the neuronal fate. In a screen for mutations affecting the adult peripheral nervous system, we have found a dominant mutation inducing supernumerary sensory organs. Surprisingly, this mutation is allelic to glide/gcm and induces precocious glide/gcm expression, which, in turn, activates the proneural genes. As a consequence, sensory organs are induced. Thus, temporal misregulation of the Glide/Gcm glial-promoting factor reveals a novel potential for this cell fate determinant. At the molecular level, this implies unpredicted features of the glide/gcm pathway. These findings also emphasize the requirement for both spatial and temporal glide/gcm regulation to achieve proper cell specification within the nervous system.
Collapse
Affiliation(s)
- Véronique Van De Bor
- Institut de Génétique et Biologie Moléculaire et Cellulaire IGBMC/CNRS/ULP/INSERM-BP 163 67404 Illkirch, c.u. de Strasbourg, France
| | | | | | | | | |
Collapse
|
28
|
Abstract
Notch signaling allows cells in contact to adopt different fates. Regulation of the Notch pathway allows for the same signaling mechanism to be used in a wide variety of contexts during development. Intracellular activities of the E3 ubiquitin ligases Sel-10 and Neuralized involve proteasome-dependent degradation in the regulation of Notch pathway activity. Extracellular manipulations of Notch by Fringe and Scabrous regulate the pathway by changing Notch interactions outside the cell. These regulatory mechanisms, along with many others, affect how Notch signaling activity influences cell fate determination.
Collapse
Affiliation(s)
- Nicholas J Justice
- Department of Physiology and Biochemistry, Howard Hughes Medical Institute, Box 0725, UCSF, San Francisco, California 94143-0725, USA.
| | | |
Collapse
|
29
|
Abstract
Glial cells play a central role in the development and function of complex nervous systems. Drosophila is an excellent model organism for the study of mechanisms underlying neural development, and recent attention has been focused on the differentiation and function of glial cells. We now have a nearly complete description of glial cell organization in the embryo, which enables a systematic genetic analysis of glial cell development. Most glia arise from neural stem cells that originate in the neurogenic ectoderm. The bifurcation of glial and neuronal fates is under the control of the glial promoting factor glial cells missing. Differentiation is propagated through the regulation of several transcription factors. Genes have been discovered affecting the terminal differentiation of glia, including the promotion glial-neuronal interactions and the formation of the blood-nerve barrier. Other roles of glia are being explored, including their requirement for axon guidance, neuronal survival, and signaling.
Collapse
Affiliation(s)
- B W Jones
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, and Department of Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
30
|
Abstract
The detailed descriptions of cellular lineages in the Drosophila nervous system have provided the foundations for an in-depth genetic analysis of the mechanisms that regulate fate decisions at every cell cycle.
Collapse
Affiliation(s)
- Y Bellaïche
- Ecole Normale Supérieure, UMR 8544, 46, rue d'Ulm, 75230 Cedex 05, Paris, France.
| | | |
Collapse
|
31
|
Imai K, Harada S, Kawanishi Y, Tachikawa H, Okubo T, Suzuki T. The (CTG)n polymorphism in the NOTCH4 gene is not associated with schizophrenia in Japanese individuals. BMC Psychiatry 2001; 1:1. [PMID: 11407996 PMCID: PMC32311 DOI: 10.1186/1471-244x-1-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2001] [Accepted: 06/04/2001] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The human NOTCH4 gene is a candidate gene for schizophrenia due to its chromosomal location and neurobiological roles. In a British linkage study, NOTCH4 gene polymorphisms were highly associated with schizophrenia. In a Japanese case-control association study, however, these polymorphisms did not show significant associations with schizophrenia. We conducted a case-control study with Japanese subjects to explore an association between the triplet repeat polymorphism in the NOTCH4 gene and schizophrenia, including subtypes of schizophrenia, longitudinal disease course characteristics, and a positive family history for psychoses. METHODS We examined the (CTG)n repeat polymorphism in the NOTCH4 gene among 100 healthy Japanese individuals and 102 patients with schizophrenia (22 paranoid, 38 disorganized, 29 residual, 64 episodic, 31 continuous, 42 with prominent negative symptoms, and 46 with positive family histories) using a polymerase chain reaction-based, single-strand conformational polymorphism analysis. RESULTS Five different alleles consisting of 6, 9, 10, 11, and 13 repeats of CTG (Leu) in patients with schizophrenia, and 4 alleles consisting of 6, 9, 10, and 11 repeats in controls were found. No significant differences in genotype or allele frequencies of repeat numbers were found between controls and patients. In addition, there were no associations between the polymorphism and schizophrenia subtypes, longitudinal disease course characteristics, or positive family history of the patients. CONCLUSIONS Our data suggest a lack of association between the NOTCH4 gene triplet repeat polymorphism and schizophrenia in Japanese individuals.
Collapse
Affiliation(s)
- Koubun Imai
- Department of Psychiatry, Institute of Clinical Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Shoji Harada
- Institute of Community Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki 305-8575, Japan
| | - Yoichi Kawanishi
- Department of Psychiatry, Institute of Clinical Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Hirokazu Tachikawa
- Department of Psychiatry, Institute of Clinical Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Takehito Okubo
- Institute of Community Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki 305-8575, Japan
| | - Toshihito Suzuki
- Department of Psychiatry, Institute of Clinical Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| |
Collapse
|