1
|
Dominguez EM, Moreno-Irusta A, Scott RL, Iqbal K, Soares MJ. TFAP2C is a key regulator of intrauterine trophoblast cell invasion and deep hemochorial placentation. JCI Insight 2024; 10:e186471. [PMID: 39625795 PMCID: PMC11790029 DOI: 10.1172/jci.insight.186471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/26/2024] [Indexed: 12/11/2024] Open
Abstract
Transcription factor AP-2 gamma (TFAP2C) has been identified as a key regulator of the trophoblast cell lineage and hemochorial placentation. The rat possesses deep placentation characterized by extensive intrauterine trophoblast cell invasion, which resembles human placentation. Tfap2c is expressed in multiple trophoblast cell lineages, including invasive trophoblast cells situated within the uterine-placental interface of the rat placentation site. Global genome editing was used to explore the biology of Tfap2c in rat placenta development. Homozygous global disruption of Tfap2c resulted in prenatal lethality. Heterozygous global disruption of Tfap2c was associated with diminished invasive trophoblast cell infiltration into the uterus. The role of TFAP2C in the invasive trophoblast cell lineage was explored using Cre-lox conditional mutagenesis. Invasive trophoblast cell-specific disruption of Tfap2c resulted in inhibition of intrauterine trophoblast cell invasion and intrauterine and postnatal growth restriction. The invasive trophoblast cell lineage was not impaired following conditional monoallelic disruption of Tfap2c. In summary, TFAP2C contributes to the progression of distinct stages of placental development. TFAP2C is a driver of early events in trophoblast cell development and reappears later in gestation as an essential regulator of the invasive trophoblast cell lineage. A subset of TFAP2C actions on trophoblast cells are dependent on gene dosage.
Collapse
Affiliation(s)
- Esteban M. Dominguez
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
| | - Ayelen Moreno-Irusta
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
| | - Regan L. Scott
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, Missouri, USA
| |
Collapse
|
2
|
Dominguez EM, Moreno-Irusta A, Scott RL, Iqbal K, Soares MJ. TFAP2C is a key regulator of intrauterine trophoblast cell invasion and deep hemochorial placentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621324. [PMID: 39554130 PMCID: PMC11565979 DOI: 10.1101/2024.10.31.621324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Transcription factor AP-2 gamma ( TFAP2C ) has been identified as a key regulator of the trophoblast cell lineage and hemochorial placentation. The rat possesses deep placentation characterized by extensive intrauterine trophoblast cell invasion, which resembles human placentation. Tfap2c is expressed in multiple trophoblast cell lineages, including invasive trophoblast cells situated within the uterine-placental interface of the rat placentation site. Global genome-editing was used to explore the biology of Tfap2c in rat placenta development. Homozygous global disruption of Tfap2c resulted in prenatal lethality. Heterozygous global disruption of Tfap2c was associated with diminished invasive trophoblast cell infiltration into the uterus. The role of TFAP2C in the invasive trophoblast cell lineage was explored using Cre-lox conditional mutagenesis. Invasive trophoblast cell-specific disruption of Tfap2c resulted in inhibition of intrauterine trophoblast cell invasion and intrauterine and postnatal growth restriction. The invasive trophoblast cell lineage was not impaired following conditional monoallelic disruption of Tfap2c . In summary, TFAP2C contributes to the progression of distinct stages of placental development. TFAP2C is a driver of early events in trophoblast cell development and reappears later in gestation as an essential regulator of the invasive trophoblast cell lineage. A subset of TFAP2C actions on trophoblast cells are dependent on gene dosage.
Collapse
|
3
|
Kuna M, Soares MJ. Cited2 is a key regulator of placental development and plasticity. Bioessays 2024; 46:e2300118. [PMID: 38922923 PMCID: PMC11331489 DOI: 10.1002/bies.202300118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The biology of trophoblast cell lineage development and placentation is characterized by the involvement of several known transcription factors. Central to the action of a subset of these transcriptional regulators is CBP-p300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2). CITED2 acts as a coregulator modulating transcription factor activities and affecting placental development and adaptations to physiological stressors. These actions of CITED2 on the trophoblast cell lineage and placentation are conserved across the mouse, rat, and human. Thus, aspects of CITED2 biology in hemochorial placentation can be effectively modeled in the mouse and rat. In this review, we present information on the conserved role of CITED2 in the biology of placentation and discuss the use of CITED2 as a tool to discover new insights into regulatory mechanisms controlling placental development.
Collapse
Affiliation(s)
- Marija Kuna
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO
| |
Collapse
|
4
|
Lopez-Tello J, Sferruzzi-Perri AN. Characterization of placental endocrine function and fetal brain development in a mouse model of small for gestational age. Front Endocrinol (Lausanne) 2023; 14:1116770. [PMID: 36843585 PMCID: PMC9950515 DOI: 10.3389/fendo.2023.1116770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Conditions such as small for gestational age (SGA), which is defined as birthweight less than 10th percentile for gestational age can predispose to neurodevelopmental abnormalities compared to babies with normal birthweight. Fetal growth and birthweight depend on placental function, as this organ transports substrates to the developing fetus and it acts as a source of endocrine factors, including steroids and prolactins that are required for fetal development and pregnancy maintenance. To advance our knowledge on the aetiology of fetal growth disorders, the vast majority of the research has been focused on studying the transport function of the placenta, leaving practically unexplored the contribution of placental hormones in the regulation of fetal growth. Here, using mice and natural variability in fetal growth within the litter, we compared fetuses that fell on or below the 10th percentile (classified as SGA) with those that had adequate weight for their gestational age (AGA). In particular, we compared placental endocrine metabolism and hormone production, as well as fetal brain weight and expression of developmental, growth and metabolic genes between SGA and AGA fetuses. We found that compared to AGA fetuses, SGA fetuses had lower placental efficiency and reduced capacity for placental production of hormones (e.g. steroidogenic gene Cyp17a1, prolactin Prl3a1, and pregnancy-specific glycoproteins Psg21). Brain weight was reduced in SGA fetuses, although this was proportional to the reduction in overall fetal size. The expression of glucose transporter 3 (Slc2a3) was reduced despite the abundance of AKT, FOXO and ERK proteins were similar. Developmental (Sv2b and Gabrg1) and microglia genes (Ier3), as well as the pregnancy-specific glycoprotein receptor (Cd9) were lower in the brain of SGA versus AGA fetuses. In this mouse model of SGA, our results therefore demonstrate that placental endocrine dysfunction is associated with changes in fetal growth and fetal brain development.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Centre for Trophoblast Research – Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research – Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Kozai K, Moreno-Irusta A, Iqbal K, Winchester ML, Scott RL, Simon ME, Muto M, Parrish MR, Soares MJ. The AKT1-FOXO4 axis reciprocally regulates hemochorial placentation. Development 2023; 150:dev201095. [PMID: 36607602 PMCID: PMC10110493 DOI: 10.1242/dev.201095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
Hemochorial placentation involves the differentiation of invasive trophoblast cells, specialized cells that possess the capacity to exit the placenta and invade into the uterus where they restructure the vasculature. Invasive trophoblast cells arise from a well-defined compartment within the placenta, referred to as the junctional zone in rat and the extravillous trophoblast cell column in human. In this study, we investigated roles for AKT1, a serine/threonine kinase, in placental development using a genome-edited/loss-of-function rat model. Disruption of AKT1 resulted in placental, fetal and postnatal growth restriction. Forkhead box O4 (Foxo4), which encodes a transcription factor and known AKT substrate, was abundantly expressed in the junctional zone and in invasive trophoblast cells of the rat placentation site. Foxo4 gene disruption using genome editing resulted in placentomegaly, including an enlarged junctional zone. AKT1 and FOXO4 regulate the expression of many of the same transcripts expressed by trophoblast cells, but in opposite directions. In summary, we have identified AKT1 and FOXO4 as part of a regulatory network that reciprocally controls critical indices of hemochorial placenta development.
Collapse
Affiliation(s)
- Keisuke Kozai
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ayelen Moreno-Irusta
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mae-Lan Winchester
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Regan L. Scott
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mikaela E. Simon
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Masanaga Muto
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Marc R. Parrish
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy, Kansas City, MO 64108, USA
| |
Collapse
|
6
|
Zhang H, Ren C, Liu Q, Wang Q, Wang D. TFAP2C exacerbates psoriasis-like inflammation by promoting Th17 and Th1 cells activation through regulating TEAD4 transcription. Allergol Immunopathol (Madr) 2023; 51:124-134. [PMID: 37169570 DOI: 10.15586/aei.v51i3.854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Psoriasis is one of the chronic and autoimmune skin diseases. It is important to uncover the mechanisms underlying the psoriasis. Transcription factor activator protein (TFAP-2) gamma, also known as AP2-gamma, is a protein encoded by the TFAP2C gene. Immune-mediated pathophysiological processes could be linked to psoriasis, but the mechanism is still unclear. Therefore, to date the cause of psoriasis has not been understood completely. MATERIALS AND METHODS Psoriasis is a complex disease triggered by genetic, immunological, and environmental stimuli. Keratinocytes play an important role in both initiation and maintenance phases of psoriasis. A psoriatic keratinocyte model was established by stimulating high sensitivity of human epidermal keratinocytes (HaCaT) to topoisomerase inhibitor cell lines using the accumulation of M5 cytokines comprising interleukin (IL)-17A, IL-22, oncostatin M, IL-1α, and tumor necrosis factor-α (TNF-α). The TFAP2C and transcriptional enhanced associate domain 4 (TEAD4) genes expression was evaluated by reverse transcription-quantitative polymerase chain reaction. Western blot analysis was used to examine protein expression. Cell viability (quantitative) of keratinocytes, including cytotoxicity, proliferation, and cell activation, was evaluated by the MTT assay. The relative percentage values of interleukin (IL)-17a, interferon gamma, and IL-4+ cells were measured by flow cytometry. Accordingly, chromatin immunoprecipitation and luciferase reporter assays were applied to evaluate the binding affinity of TFAP2C and TEAD4 promoter. RESULTS Level of the TFAP2C gene was elevated in the lesional skin of psoriasis patients. On the other hand, silencing of the TFAP2C gene suppressed the proliferation and inflammatory response in M5-induced keratinocytes. In addition, inhibition of TFAP2C alleviated imiquimod (IMQ)-induced skin injury in mice model. We also observed that suppression of TFAP2C inhibited the activation of T-helper 17 (Th17) and Th1 cells in IMQ-induced mice model. Mechanically, TFAP2C promoted TEAD4 transcriptional activation. CONCLUSION TFAP2C exacerbated psoriasis-like inflammation by increasing the activation of Th17 and Th1 cells by regulating TEAD4 transcription. This finding clearly indicated that TFAP2C could be considered a valuable biomarker for the prevention and treatment for psoriasis.
Collapse
Affiliation(s)
- Huanhuan Zhang
- Department of Dermatology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Cuimin Ren
- Department of Dermatology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiang Liu
- Department of Dermatology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing Wang
- Department of Dermatology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dahu Wang
- Department of Dermatology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China;
| |
Collapse
|
7
|
Sung DC, Chen X, Chen M, Yang J, Schultz S, Babu A, Xu Y, Gao S, Keller TCS, Mericko-Ishizuka P, Lee M, Yang Y, Scallan JP, Kahn ML. VE-cadherin enables trophoblast endovascular invasion and spiral artery remodeling during placental development. eLife 2022; 11:e77241. [PMID: 35486098 PMCID: PMC9106330 DOI: 10.7554/elife.77241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
During formation of the mammalian placenta, trophoblasts invade the maternal decidua and remodel spiral arteries to bring maternal blood into the placenta. This process, known as endovascular invasion, is thought to involve the adoption of functional characteristics of vascular endothelial cells (ECs) by trophoblasts. The genetic and molecular basis of endovascular invasion remains poorly defined, however, and whether trophoblasts utilize specialized endothelial proteins in an analogous manner to create vascular channels remains untested. Vascular endothelial (VE-)cadherin is a homotypic adhesion protein that is expressed selectively by ECs in which it enables formation of tight vessels and regulation of EC junctions. VE-cadherin is also expressed in invasive trophoblasts and is a prime candidate for a molecular mechanism of endovascular invasion by those cells. Here, we show that VE-cadherin is required for trophoblast migration and endovascular invasion into the maternal decidua in the mouse. VE-cadherin deficiency results in loss of spiral artery remodeling that leads to decreased flow of maternal blood into the placenta, fetal growth restriction, and death. These studies identify a non-endothelial role for VE-cadherin in trophoblasts during placental development and suggest that endothelial proteins may play functionally unique roles in trophoblasts that do not simply mimic those in ECs.
Collapse
Affiliation(s)
- Derek C Sung
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xiaowen Chen
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Mei Chen
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jisheng Yang
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Susan Schultz
- Department of Radiology, Hospital of the University of PennsylvaniaPhiladelphiaUnited States
| | - Apoorva Babu
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yitian Xu
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Siqi Gao
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - TC Stevenson Keller
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Patricia Mericko-Ishizuka
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Michelle Lee
- University Laboratory Animal Resources, University of PennsylvaniaPhiladelphiaUnited States
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, University of South FloridaTampaUnited States
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, University of South FloridaTampaUnited States
| | - Mark L Kahn
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
8
|
Aykroyd BRL, Tunster SJ, Sferruzzi-Perri AN. Loss of imprinting of the Igf2-H19 ICR1 enhances placental endocrine capacity via sex-specific alterations in signalling pathways in the mouse. Development 2022; 149:dev199811. [PMID: 34982814 PMCID: PMC8783045 DOI: 10.1242/dev.199811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Imprinting control region (ICR1) controls the expression of the Igf2 and H19 genes in a parent-of-origin specific manner. Appropriate expression of the Igf2-H19 locus is fundamental for normal fetal development, yet the importance of ICR1 in the placental production of hormones that promote maternal nutrient allocation to the fetus is unknown. To address this, we used a novel mouse model to selectively delete ICR1 in the endocrine junctional zone (Jz) of the mouse placenta (Jz-ΔICR1). The Jz-ΔICR1 mice exhibit increased Igf2 and decreased H19 expression specifically in the Jz. This was accompanied by an expansion of Jz endocrine cell types due to enhanced rates of proliferation and increased expression of pregnancy-specific glycoprotein 23 in the placenta of both fetal sexes. However, changes in the endocrine phenotype of the placenta were related to sexually-dimorphic alterations to the abundance of Igf2 receptors and downstream signalling pathways (Pi3k-Akt and Mapk). There was no effect of Jz-ΔICR1 on the expression of targets of the H19-embedded miR-675 or on fetal weight. Our results demonstrate that ICR1 controls placental endocrine capacity via sex-dependent changes in signalling.
Collapse
Affiliation(s)
| | | | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
9
|
Functional Analysis of p21 Cip1/CDKN1A and Its Family Members in Trophoblastic Cells of the Placenta and Its Roles in Preeclampsia. Cells 2021; 10:cells10092214. [PMID: 34571867 PMCID: PMC8465116 DOI: 10.3390/cells10092214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
Preeclampsia (PE), a gestational hypertensive disease originating from the placenta, is characterized by an imbalance of various cellular processes. The cell cycle regulator p21Cip1/CDKN1A (p21) and its family members p27 and p57 regulate signaling pathways fundamental to placental development. The aim of the present study was to enlighten the individual roles of these cell cycle regulators in placental development and their molecular involvement in the pathogenesis of PE. The expression and localization of p21, phospho-p21 (Thr-145), p27, and p57 was immunohistochemically analyzed in placental tissues from patients with early-onset PE, early-onset PE complicated by the HELLP (hemolysis, elevated liver enzymes and low platelet count) syndrome as well as late-onset PE compared to their corresponding control tissues from well-matched women undergoing caesarean sections. The gene level was evaluated using real-time quantitative PCR. We demonstrate that the delivery mode strongly influenced placental gene expression, especially for CDKN1A (p21) and CDKN1B (p27), which were significantly upregulated in response to labor. Cell cycle regulators were highly expressed in first trimester placentas and impacted by hypoxic conditions. In support of these observations, p21 protein was abundant in trophoblast organoids and hypoxia reduced its gene expression. Microarray analysis of the trophoblastic BeWo cell line depleted of p21 revealed various interesting candidate genes and signaling pathways for the fusion process. The level of p21 was reduced in fusing cytotrophoblasts in early-onset PE placentas and depletion of p21 led to reduced expression of fusion-related genes such as syncytin-2 and human chorionic gonadotropin (β-hCG), which adversely affected the fusion capability of trophoblastic cells. These data highlight that cell cycle regulators are important for the development of the placenta. Interfering with p21 influences multiple pathways related to the pathogenesis of PE.
Collapse
|
10
|
Tobi EW, Almqvist C, Hedman A, Andolf E, Holte J, Olofsson JI, Wramsby H, Wramsby M, Pershagen G, Heijmans BT, Iliadou AN. DNA methylation differences at birth after conception through ART. Hum Reprod 2021; 36:248-259. [PMID: 33227132 PMCID: PMC7801794 DOI: 10.1093/humrep/deaa253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/21/2020] [Indexed: 12/25/2022] Open
Abstract
STUDY QUESTION Is there a relation between ART and DNA methylation (DNAm) patterns in cord blood, including any differences between IVF and ICSI? SUMMARY ANSWER DNAm at 19 CpGs was associated with conception via ART, with no difference found between IVF and ICSI. WHAT IS KNOWN ALREADY Prior studies on either IVF or ICSI show conflicting outcomes, as both widespread effects on DNAm and highly localized associations have been reported. No study on both IVF and ICSI and genome-wide neonatal DNAm has been performed. STUDY DESIGN, SIZE, DURATION This was a cross-sectional study comprising 87 infants conceived with IVF or ICSI and 70 conceived following medically unassisted conception. The requirement for inclusion in the study was an understanding of the Swedish language and exclusion was the use of donor gametes. PARTICIPANTS/MATERIALS, SETTING, METHODS Participants were from the UppstART study, which was recruited from fertility and reproductive health clinics, and the Born into Life cohort, which is recruited from the larger LifeGene study. We measured DNAm from DNA extracted from cord blood collected at birth using a micro-array (450k array). Group differences in DNAm at individual CpG dinucleotides (CpGs) were determined using robust linear models and post-hoc Tukey’s tests. MAIN RESULTS AND THE ROLE OF CHANCE We found no association of ART conception with global methylation levels, imprinted loci and meta-stable epialleles. In contrast, we identify 19 CpGs at which DNAm was associated with being conceived via ART (effect estimates: 0.5–4.9%, PFDR < 0.05), but no difference was found between IVF and ICSI. The associated CpGs map to genes related to brain function/development or genes connected to the plethora of conditions linked to subfertility, but functional annotation did not point to any likely functional consequences. LIMITATIONS, REASONS FOR CAUTION We measured DNAm in cord blood and not at later ages or in other tissues. Given the number of tests performed, our study power is limited and the findings need to be replicated in an independent study. WIDER IMPLICATIONS OF THE FINDINGS We find that ART is associated with DNAm differences in cord blood when compared to non-ART samples, but these differences are limited in number and effect size and have unknown functional consequences in adult blood. We did not find indications of differences between IVF and ICSI. STUDY FUNDING/COMPETING INTEREST(S) E.W.T. was supported by a VENI grant from the Netherlands Organization for Scientific Research (91617128) and JPI-H2020 Joint Programming Initiative a Healthy Diet for a Healthy Life (JPI HDHL) under proposal number 655 (PREcisE Project) through ZonMw (529051023). Financial support was provided from the European Union’s Seventh Framework Program IDEAL (259679), the Swedish Research Council (K2011-69X-21871-01-6, 2011-3060, 2015-02434 and 2018-02640) and the Strategic Research Program in Epidemiology Young Scholar Awards, Karolinska Institute (to A.N.I.) and through the Swedish Initiative for Research on Microdata in the Social And Medical Sciences (SIMSAM) framework grant no 340-2013-5867, grants provided by the Stockholm County Council (ALF-projects), the Strategic Research Program in Epidemiology at Karolinska Institutet and the Swedish Heart-Lung Foundation and Danderyd University Hospital (Stockholm, Sweden). The funders had no role in study design, data collection, analysis, decision to publish or preparation of the manuscript. The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Elmar W Tobi
- Periconceptional Epidemiology, Department of Obstetrics and Gynaecology, University Medical Center Rotterdam, 3015 MC GE Rotterdam, The Netherlands.,Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden 2300RC, The Netherlands
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 171 77, Sweden.,Pediatric Allergy and Pulmonology Unit, Astrid Lindgren Children's Hospital, Stockholm 171 76, Sweden
| | - Anna Hedman
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm 182 88, Sweden
| | - Ellika Andolf
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm 182 88, Sweden
| | - Jan Holte
- Carl von Linné Clinic, Uppsala, Sweden.,Department of Women's and Children's Health, Uppsala University, Uppsala 751 85, Sweden.,Center for Reproductive Biology in Uppsala, University of Agricultural Sciences and Uppsala University, Uppsala, Sweden
| | - Jan I Olofsson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Håkan Wramsby
- S:t Görans Sjukhus, Livio Fertilitetscentrum Kungsholmen, Stockholm 112 81, Sweden
| | - Margaretha Wramsby
- Livio Fertilitetscentrum Gärdet Storängsvägen 10, Stockholm 115 42, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden 2300RC, The Netherlands
| | - Anastasia N Iliadou
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
11
|
TFAP2C facilitates somatic cell reprogramming by inhibiting c-Myc-dependent apoptosis and promoting mesenchymal-to-epithelial transition. Cell Death Dis 2020; 11:482. [PMID: 32587258 PMCID: PMC7316975 DOI: 10.1038/s41419-020-2684-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 02/05/2023]
Abstract
Transcription factors are known to mediate the conversion of somatic cells to induced pluripotent stem cells (iPSCs). Transcription factor TFAP2C plays important roles in the regulation of embryonic development and carcinogenesis; however, the roles of Tfap2c in regulating somatic cell reprogramming are not well understood. Here we demonstrate Tfap2c is induced during the generation of iPSCs from mouse fibroblasts and acts as a facilitator for iPSCs formation. Mechanistically, the c-Myc-dependent apoptosis, which is a roadblock to reprogramming, can be significantly mitigated by Tfap2c overexpression. Meanwhile, Tfap2c can greatly promote mesenchymal-to-epithelial transition (MET) at initiation stage of OSKM-induced reprogramming. Further analysis of gene expression and targets of Tfap2c during reprogramming by RNA-sequencing (RNA-seq) and ChIP-qPCR indicates that TFAP2C can promote epithelial gene expression by binding to their promoters directly. Finally, knockdown of E-cadherin (Cdh1), an important downstream target of TFAP2C and a critical regulator of MET antagonizes Tfap2c-mediated reprogramming. Taken together, we conclude that Tfap2c serves as a strong activator for somatic cell reprogramming through promoting the MET and inhibiting c-Myc-dependent apoptosis.
Collapse
|
12
|
Zybina TG, Zybina EV. Role of cell cycling and polyploidy in placental trophoblast of different mammalian species. Reprod Domest Anim 2020; 55:895-904. [DOI: 10.1111/rda.13732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Tatiana G. Zybina
- Laboratory of Cell Morphology Institute of Cytology RAS St.‐Petersburg Russia
| | - Eugenia V. Zybina
- Laboratory of Cell Morphology Institute of Cytology RAS St.‐Petersburg Russia
| |
Collapse
|
13
|
Wu L, Xiao P, Li Q, Zhang Z, Wang H, Jiang Q, Li L. Altered expression of AKT1 and P38A in the colons of patients with Hirschsprung's disease. Pediatr Surg Int 2020; 36:719-725. [PMID: 32236665 DOI: 10.1007/s00383-020-04653-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Hirschsprung's disease (HSCR) is a functional obstruction of the gastrointestinal tract due to the congenital absence of enteric ganglion cells. The proto-oncogene RET is one of the primary genes implicated in the aetiology of HSCR. We designed this study to investigate the expression of 10 RET regulatory network genes in the colons of patients with HSCR. METHODS HSCR tissue specimens (n = 28) were collected at the time of pull-through surgery. qPCR analysis was applied to compare the expression levels of 10 genes in the RET regulatory network. Western blot analysis was performed to quantify the protein expression. Immunohistochemistry was performed to determine the localization of AKT1 and P38A in HSCR colon tissue. RESULTS AKT1 (p = 0.015) and P38A (p = 0.039) were both significantly downregulated in the aganglionic segment compared to those in the ganglionic segment in HSCR patients (n = 28). Western blot analysis revealed the decreasing protein expression of AKT1 and P38A in the aganglionic segment compared to ganglionic segment and control colon tissues (p < 0.05). Immunohistochemistry staining revealed that both AKT1 and P38A were localized in the colonic mucosa and were significantly decreased in the aganglionic segment. CONCLUSION To our knowledge, we report for the first time the expression of RET regulatory network genes in the colons of patients with HSCR. The markedly decreased expression of AKT1 and P38A suggested a possible role in HSCR pathogenesis.
Collapse
Affiliation(s)
- Lihua Wu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ping Xiao
- Department of Pathology, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, 100020, China
| | - Qi Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China
| | - Zhen Zhang
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China
| | - Hui Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
14
|
Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. Nat Med 2019; 25:1894-1904. [DOI: 10.1038/s41591-019-0666-1] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
|
15
|
A molecular mechanism of mouse placental spongiotrophoblast differentiation regulated by prolyl oligopeptidase. ZYGOTE 2019; 27:49-53. [PMID: 30714556 DOI: 10.1017/s0967199418000655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryIn eutherian mammals, the placenta plays a critical role in embryo development by supplying nutrients and hormones and mediating interaction with the mother. To establish the fine connection between mother and embryo, the placenta needs to be formed normally, but the mechanism of placental differentiation is not fully understood. We previously revealed that mouse prolyl oligopeptidase (POP) plays a role in trophoblast stem cell (TSC) differentiation into two placental cell types, spongiotrophoblasts (SpT) and trophoblast giant cells. Here, we focused on SpT differentiation and attempted to elucidate a molecular mechanism. For Ascl2, Arnt, and Egfr genes that are indispensable for SpT formation, we found that a POP-specific inhibitor, SUAM-14746, significantly decreased Ascl2 expression, which was consistent with a significant decrease in expression of Flt1, a gene downstream of Ascl2. Although this downregulation was unlikely to be mediated by the PI3K-Akt pathway, our results indicated that POP controls TSC differentiation into SpT by regulating the Ascl2 gene.
Collapse
|
16
|
Suzuki D, Morimoto H, Yoshimura K, Kono T, Ogawa H. The Differentiation Potency of Trophoblast Stem Cells from Mouse Androgenetic Embryos. Stem Cells Dev 2019; 28:290-302. [PMID: 30526365 DOI: 10.1089/scd.2018.0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In mice, trophoblast stem (TS) cells are derived from the polar trophectoderm of blastocysts. TS cells cultured in the presence of fibroblast growth factor 4 (Fgf4) are in an undifferentiated state and express undifferentiated marker genes such as Cdx2. After removing Fgf4 from the culture medium, TS cells drastically reduce the expression of undifferentiated marker genes, stop cell proliferation, and differentiate into all trophoblast cell subtypes. To clarify the roles of the parental genomes in placentation, we previously established TS cells from androgenetic embryos (AGTS cells). AGTS cells are in the undifferentiated state when cultured with Fgf4 and express undifferentiated marker genes. After removing Fgf4, AGTS cells differentiate into trophoblast giant cells (TGCs), but not into spongiotrophoblast cells, and some of the AGTS cells continue to proliferate. In this study, we investigated the differentiation potency of AGTS cells by analyzing the expression of undifferentiated marker genes and all trophoblast cell subtype-specific genes. After removing Fgf4, some undifferentiated marker genes (Cdx2, Eomes and Elf5) continued to be expressed. Interestingly, TGCs differentiated from AGTS cells also expressed Cdx2, but not Prl3d1. Moreover, the expression of Gcm1 and Synb was induced after the differentiation, indicating that AGTS cells preferentially differentiated into labyrinth progenitor cells. Cdx2 knockdown resulted in increased Prl3d1 expression, suggesting that Fgf4-independent Cdx2 expression inhibited the functional TGCs. Moreover, Fgf4-independent Cdx2 expression was activated by Gab1, one of the paternally expressed imprinted genes via the mitogen-activated protein kinase kinase (MEK)-extracellular signal regulated protein kinase (ERK) pathway. These results suggested that the paternal genome activates the MEK-ERK pathway without the Fgf4 signal, accelerates the differentiation into labyrinth progenitor cells and controls the function of TGCs.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiromu Morimoto
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kaoru Yoshimura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hidehiko Ogawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
17
|
Boroviak T, Stirparo GG, Dietmann S, Hernando-Herraez I, Mohammed H, Reik W, Smith A, Sasaki E, Nichols J, Bertone P. Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development. Development 2018; 145:145/21/dev167833. [PMID: 30413530 PMCID: PMC6240320 DOI: 10.1242/dev.167833] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022]
Abstract
The mouse embryo is the canonical model for mammalian preimplantation development. Recent advances in single cell profiling allow detailed analysis of embryogenesis in other eutherian species, including human, to distinguish conserved from divergent regulatory programs and signalling pathways in the rodent paradigm. Here, we identify and compare transcriptional features of human, marmoset and mouse embryos by single cell RNA-seq. Zygotic genome activation correlates with the presence of polycomb repressive complexes in all three species, while ribosome biogenesis emerges as a predominant attribute in primate embryos, supporting prolonged translation of maternally deposited RNAs. We find that transposable element expression signatures are species, stage and lineage specific. The pluripotency network in the primate epiblast lacks certain regulators that are operative in mouse, but encompasses WNT components and genes associated with trophoblast specification. Sequential activation of GATA6, SOX17 and GATA4 markers of primitive endoderm identity is conserved in primates. Unexpectedly, OTX2 is also associated with primitive endoderm specification in human and non-human primate blastocysts. Our cross-species analysis demarcates both conserved and primate-specific features of preimplantation development, and underscores the molecular adaptability of early mammalian embryogenesis. Highlighted Article: Analysis of stage-matched, single-cell gene expression data from three mammalian species reveals conserved and primate-specific regulation of early embryogenesis and lineage specification.
Collapse
Affiliation(s)
- Thorsten Boroviak
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | - Giuliano G Stirparo
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Sabine Dietmann
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | - Hisham Mohammed
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Austin Smith
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Erika Sasaki
- Central Institute for Experimental Animals, Department of Applied Developmental Biology, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | - Paul Bertone
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
18
|
Stojanovska V, Sharma N, Dijkstra DJ, Scherjon SA, Jäger A, Schorle H, Plösch T. Placental insufficiency contributes to fatty acid metabolism alterations in aged female mouse offspring. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1107-R1114. [PMID: 30207754 DOI: 10.1152/ajpregu.00420.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Intrauterine growth restriction (IUGR) is an accepted risk factor for metabolic disorders in later life, including obesity and type 2 diabetes. The level of metabolic dysregulation can vary between subjects and is dependent on the severity and the type of IUGR insult. Classical IUGR animal models involve nutritional deprivation of the mother or uterine artery ligation. The latter aims to mimic a placental insufficiency, which is the most frequent cause of IUGR. In this study, we investigated whether IUGR attributable to placental insufficiency impacts the glucose and lipid homeostasis at advanced age. Placental insufficiency was achieved by deletion of the transcription factor AP-2y ( Tfap2c), which serves as one of the major trophoblast differentiation regulators. TdelT-IUGR mice were obtained by crossing mice with a floxed Tfap2c allele and mice with Cre recombinase under the control of the Tpbpa promoter. In advanced adulthood (9-12 mo), female and male IUGR mice are respectively 20% and 12% leaner compared with controls. At this age, IUGR mice have unaffected glucose clearance and lipid parameters (cholesterol, triglycerides, and phospholipids) in the liver. However, female IUGR mice have increased plasma free fatty acids (+87%) compared with controls. This is accompanied by increased mRNA levels of fatty acid synthase and endoplasmic reticulum stress markers in white adipose tissue. Taken together, our results suggest that IUGR by placental insufficiency may lead to higher lipogenesis in female mice in advanced adulthood, at least indicated by greater Fasn expression. This effect was sex specific for the aged IUGR females.
Collapse
Affiliation(s)
- Violeta Stojanovska
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Neha Sharma
- Department of Developmental Pathology, Institute of Pathology, Bonn University Medical School , Bonn , Germany
| | - Dorieke J Dijkstra
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Sicco A Scherjon
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Andrea Jäger
- Department of Developmental Pathology, Institute of Pathology, Bonn University Medical School , Bonn , Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, Bonn University Medical School , Bonn , Germany
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
19
|
Parks JC, McCallie BR, Patton AL, Al-Safi ZA, Polotsky AJ, Griffin DK, Schoolcraft WB, Katz-Jaffe MG. The impact of infertility diagnosis on embryo-endometrial dialogue. Reproduction 2018; 155:543-552. [PMID: 29636406 DOI: 10.1530/rep-17-0566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/10/2018] [Indexed: 12/24/2022]
Abstract
Initial stages of implantation involve bi-directional molecular crosstalk between the blastocyst and endometrium. This study investigated an association between infertility etiologies, specifically advanced maternal age (AMA) and endometriosis, on the embryo-endometrial molecular dialogue prior to implantation. Co-culture experiments were performed with endometrial epithelial cells (EEC) and cryopreserved day 5 blastocysts (n = 41 ≥ Grade 3BB) donated from patients presenting with AMA or endometriosis, compared to fertile donor oocyte controls. Extracellular vesicles isolated from co-culture supernatant were analyzed for miRNA expression and revealed significant alterations correlating to AMA or endometriosis. Specifically, AMA resulted in 16 miRNAs with increased expression (P ≤ 0.05) and strong evidence for negative regulation toward 206 target genes. VEGFA, a known activator of cell adhesion, displayed decreased expression (P ≤ 0.05), validating negative regulation by 4 of these increased miRNAs: miR-126; 150; 29a; 29b (P ≤ 0.05). In endometriosis patients, a total of 10 significantly altered miRNAs displayed increased expression compared to controls (miR-7b; 9; 24; 34b; 106a; 191; 200b; 200c; 342-3p; 484) (P ≤ 0.05), targeting 1014 strong evidence-based genes. Three target genes of miR-106a (CDKN1A, E2F1 and RUNX1) were independently validated. Functional annotation analysis of miRNA-target genes revealed enriched pathways for both infertility etiologies, including disrupted cell cycle regulation and proliferation (P ≤ 0.05). These extracellular vesicle-bound secreted miRNAs are key transcriptional regulators in embryo-endometrial dialogue and may be prospective biomarkers of implantation success. One of the limitations of this study is that it was a stimulated, in vitro model and therefore may not accurately reflect the in-vivo environment.
Collapse
Affiliation(s)
- Jason C Parks
- Colorado Center for Reproductive MedicineLone Tree, Colorado, USA .,University of KentCanterbury, UK
| | - Blair R McCallie
- Colorado Center for Reproductive MedicineLone Tree, Colorado, USA.,University of KentCanterbury, UK
| | - Alyssa L Patton
- Colorado Center for Reproductive MedicineLone Tree, Colorado, USA
| | - Zain A Al-Safi
- Department of Obstetrics and GynecologyUniversity of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alex J Polotsky
- Department of Obstetrics and GynecologyUniversity of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
20
|
Nelson AC, Mould AW, Bikoff EK, Robertson EJ. Mapping the chromatin landscape and Blimp1 transcriptional targets that regulate trophoblast differentiation. Sci Rep 2017; 7:6793. [PMID: 28754907 PMCID: PMC5533796 DOI: 10.1038/s41598-017-06859-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
Trophoblast stem cells (TSCs) give rise to specialized cell types within the placenta. However, the regulatory mechanisms that guide trophoblast cell fate decisions during placenta development remain ill defined. Here we exploited ATAC-seq and transcriptional profiling strategies to describe dynamic changes in gene expression and chromatin accessibility during TSC differentiation. We detect significantly increased chromatin accessibility at key genes upregulated as TSCs exit from the stem cell state. However, downregulated gene expression is not simply due to the loss of chromatin accessibility in proximal regions. Additionally, transcriptional targets recognized by the zinc finger transcriptional repressor Prdm1/Blimp1, an essential regulator of placenta development, were identified in ChIP-seq experiments. Comparisons with previously reported ChIP-seq datasets for primordial germ cell-like cells and E18.5 small intestine, combined with functional annotation analysis revealed that Blimp1 has broadly shared as well as cell type-specific functional activities unique to the trophoblast lineage. Importantly, Blimp1 not only silences TSC gene expression but also prevents aberrant activation of divergent developmental programmes. Overall the present study provides new insights into the chromatin landscape and Blimp1-dependent regulatory networks governing trophoblast gene expression.
Collapse
Affiliation(s)
- Andrew C Nelson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.,School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Arne W Mould
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Elizabeth K Bikoff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Elizabeth J Robertson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
21
|
Liu C, Liang X, Wang J, Zheng Q, Zhao Y, Khan MN, Liu S, Yan Q. Protein O-fucosyltransferase 1 promotes trophoblast cell proliferation through activation of MAPK and PI3K/Akt signaling pathways. Biomed Pharmacother 2017; 88:95-101. [PMID: 28103512 DOI: 10.1016/j.biopha.2017.01.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
Protein O-fucosylation is an important glycosylation modification and plays an important role in embryonic development. Protein O-fucosyltransferase 1 (poFUT1) is an essential enzyme that catalyzes the synthesis of protein O-fucosylation. Our previous studies showed that poFUT1 promoted trophoblast cell migration and invasion at the fetal-maternal interface, but the role of poFUT1 in trophoblast cells proliferation remains unclear. Here, immunohistochemistry data showed that poFUT1 and PCNA levels were decreased in abortion patient's trophoblasts compared with women with normal pregnancies. Our results also showed that poFUT1 promoted trophoblast cell proliferation by CCK-8 assay and cell cycle analysis. PoFUT1 increased the phosphorylation of ERK1/2, p38 MAPK, and PI3K/Akt, while inhibitors of ERK1/2(PD98059), p38 MAPK(SB203580), and PI3K (LY294002) prevented ERK1/2, p38 MAPK, and Akt phosphorylation. Moreover, poFUT1 stimulation of trophoblast cells proliferation correlated with increased cell cycle progression by promoting cells into S-phase. The underlying mechanism involved increased cyclin D1, cyclin E, CDK 2, CDK 4, and pRb expression and decreased levels of the cyclin-dependent kinase inhibitors p21 and p27, which were blocked by inhibitors of the upstream signaling molecules MAPK and PI3K/Akt. In conclusion, poFUT1 promotes trophoblast cell proliferation by activating MAPK and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Anaesthesia, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China; Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, People's Republic of China
| | - Xiaohua Liang
- Dalian Blood Center, Dalian 116001, People's Republic of China
| | - Jiao Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, People's Republic of China
| | - Qin Zheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, People's Republic of China
| | - Yue Zhao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, People's Republic of China
| | - Muhammad Noman Khan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, People's Republic of China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, People's Republic of China.
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, People's Republic of China
| |
Collapse
|