1
|
Desmarquet-Trin Dinh C, Manceau M. Structure, function and formation of the amniote skin pattern. Dev Biol 2025; 517:203-216. [PMID: 39326486 DOI: 10.1016/j.ydbio.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
From feather and hair dotted arrays to pigmented stripes and spots, the spatial distribution of skin appendages and colouration often forms visible ornaments crucial for fitness in the coat of birds and mammals. These geometrical motifs are extremely diverse in nature. Yet, phenotypic surveys evidenced common themes in variation: the orientation, appendage-specificity or pigmentation of a given region may be conserved across groups or species. Here, we review naturalist observations of natural variation in the anatomy and ecological function of the skin pattern in amniotes. We then describe several decades of genetics, mathematical modelling and experimental embryology work aiming at understanding the molecular and morphogenetic mechanisms responsible for pattern formation. We discuss how these studies provided evidence that the morphological trends and differences representative of the phenotypic landscape of skin patterns in wild amniote species is rooted in the mechanisms controlling the production of distinct compartments in the embryonic skin.
Collapse
Affiliation(s)
| | - Marie Manceau
- Centre for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, France.
| |
Collapse
|
2
|
Dhouailly D. The avian ectodermal default competence to make feathers. Dev Biol 2024; 508:64-76. [PMID: 38190932 DOI: 10.1016/j.ydbio.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Feathers originate as protofeathers before birds, in pterosaurs and basal dinosaurs. What characterizes a feather is not only its outgrowth, but its barb cells differentiation and a set of beta-corneous proteins. Reticula appear concomitantly with feathers, as small bumps on plantar skin, made only of keratins. Avian scales, with their own set of beta-corneous proteins, appear more recently than feathers on the shank, and only in some species. In the chick embryo, when feather placodes form, all the non-feather areas of the integument are already specified. Among them, midventral apterium, cornea, reticula, and scale morphogenesis appear to be driven by negative regulatory mechanisms, which modulate the inherited capacity of the avian ectoderm to form feathers. Successive dermal/epidermal interactions, initiated by the Wnt/β-catenin pathway, and involving principally Eda/Edar, BMP, FGF20 and Shh signaling, are responsible for the formation not only of feather, but also of scale placodes and reticula, with notable differences in the level of Shh, and probably FGF20 expressions. This sequence is a dynamic and labile process, the turning point being the FGF20 expression by the placode. This epidermal signal endows its associated dermis with the memory to aggregate and to stimulate the morphogenesis that follows, involving even a re-initiation of the placode.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, University Grenoble-Alpes, Institute for Advanced Biosciences, 38700, La Tronche, France.
| |
Collapse
|
3
|
Dhouailly D. Evo Devo of the Vertebrates Integument. J Dev Biol 2023; 11:25. [PMID: 37367479 DOI: 10.3390/jdb11020025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
All living jawed vertebrates possess teeth or did so ancestrally. Integumental surface also includes the cornea. Conversely, no other anatomical feature differentiates the clades so readily as skin appendages do, multicellular glands in amphibians, hair follicle/gland complexes in mammals, feathers in birds, and the different types of scales. Tooth-like scales are characteristic of chondrichthyans, while mineralized dermal scales are characteristic of bony fishes. Corneous epidermal scales might have appeared twice, in squamates, and on feet in avian lineages, but posteriorly to feathers. In contrast to the other skin appendages, the origin of multicellular glands of amphibians has never been addressed. In the seventies, pioneering dermal-epidermal recombination between chick, mouse and lizard embryos showed that: (1) the clade type of the appendage is determined by the epidermis; (2) their morphogenesis requires two groups of dermal messages, first for primordia formation, second for appendage final architecture; (3) the early messages were conserved during amniotes evolution. Molecular biology studies that have identified the involved pathways, extending those data to teeth and dermal scales, suggest that the different vertebrate skin appendages evolved in parallel from a shared placode/dermal cells unit, present in a common toothed ancestor, c.a. 420 mya.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, Institute for Advanced Biosciences, University Grenoble-Alpes, 38700 La Tronche, France
| |
Collapse
|
4
|
Hidalgo M, Curantz C, Quenech’Du N, Neguer J, Beck S, Mohammad A, Manceau M. A conserved molecular template underlies color pattern diversity in estrildid finches. SCIENCE ADVANCES 2022; 8:eabm5800. [PMID: 36044564 PMCID: PMC9432839 DOI: 10.1126/sciadv.abm5800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/13/2022] [Indexed: 05/05/2023]
Abstract
The color patterns that adorn animals' coats not only exhibit extensive diversity linked to various ecological functions but also display recurrences in geometry, orientation, or body location. How processes of pattern formation shape such phenotypic trends remains a mystery. Here, we surveyed plumage color patterns in passerine finches displaying extreme apparent variation and identified a conserved set of color domains. We linked these domains to putative embryonic skin regions instructed by early developmental tissues and outlined by the combinatory expression of few genetic markers. We found that this embryonic prepattern is largely conserved in birds displaying drastic color differences in the adult, interspecies variation resulting from the masking or display of each domain depending on their coloration. This work showed that a simple molecular landscape serves as common spatial template to extensive color pattern variation in finches, revealing that early conserved landmarks and molecular pathways are a major cause of phenotypic trends.
Collapse
Affiliation(s)
- Magdalena Hidalgo
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Camille Curantz
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Sorbonne University, UPMC Paris VI, Paris, France
| | - Nicole Quenech’Du
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Julia Neguer
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Samantha Beck
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Ammara Mohammad
- Genomic Facility, Institute of Biology of the Ecole Normale Supérieure, CNRS, INSERM Paris, France
| | - Marie Manceau
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
5
|
Jacob T, Chakravarty A, Panchal A, Patil M, Ghodadra G, Sudhakaran J, Nuesslein-Volhard C. Zebrafish twist2/dermo1 regulates scale shape and scale organization during skin development and regeneration. Cells Dev 2021; 166:203684. [PMID: 33994357 DOI: 10.1016/j.cdev.2021.203684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/22/2020] [Accepted: 04/26/2021] [Indexed: 01/01/2023]
Abstract
Scales are skin appendages in fishes that evolutionarily predate feathers in birds and hair in mammals. Zebrafish scales are dermal in origin and develop during metamorphosis. Understanding regulation of scale development in zebrafish offers an exciting possibility of unraveling how the mechanisms of skin appendage formation evolved in lower vertebrates and whether these mechanisms remained conserved in birds and mammals. Here we have investigated the expression and function of twist 2/dermo1 gene - known for its function in feather and hair formation - in scale development and regeneration. We show that of the four zebrafish twist paralogues, twist2/dermo1 and twist3 are expressed in the scale forming cells during scale development. Their expression is also upregulated during scale regeneration. Our knockout analysis reveals that twist2/dermo1 gene functions in the maintenance of the scale shape and organization during development as well as regeneration. We further show that the expression of twist2/dermo1 and twist3 is regulated by Wnt signaling. Our results demonstrate that the function of twist2/dermo1 in skin appendage formation, presumably under regulation of Wnt signaling, originated during evolution of basal vertebrates.
Collapse
Affiliation(s)
- Tressa Jacob
- Department of Biology, Indian Institute of Science Education and Research-Pune (IISER-Pune), Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Antara Chakravarty
- Department of Biology, Indian Institute of Science Education and Research-Pune (IISER-Pune), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Ankita Panchal
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat, India
| | - Manjiri Patil
- Department of Biology, Indian Institute of Science Education and Research-Pune (IISER-Pune), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Gautami Ghodadra
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat, India
| | - Jyotish Sudhakaran
- Department of Biology, Indian Institute of Science Education and Research-Pune (IISER-Pune), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | | |
Collapse
|
6
|
Masyuk M, Brand-Saberi B. Recruitment of skeletal muscle progenitors to secondary sites: a role for CXCR4/SDF-1 signalling in skeletal muscle development. Results Probl Cell Differ 2015; 56:1-23. [PMID: 25344664 DOI: 10.1007/978-3-662-44608-9_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During embryonic development, myogenesis occurs in different functional muscle groups at different time points depending on the availability of their final destinations. Primary trunk muscle consists of the intrinsic dorsal (M. erector spinae) and ventral (cervical, thoracic, abdominal) muscles. In contrast, secondary trunk muscles are established from progenitor cells that have migrated initially from the somites into the limb buds and thereafter returned to the trunk. Furthermore, craniofacial muscle constitutes a group that originates from four different sources and employs a different set of regulatory molecules. Development of muscle groups at a distance from their origins involves the maintenance of a pool of progenitor cells capable of proliferation and directed cell migration. We review here the data concerning somite-derived progenitor cell migration to the limbs and subsequent retrograde migration in the establishment of secondary trunk muscle in chicken and mouse. We review the function of SDF-1 and CXCR4 in the control of this process referring to our previous work in shoulder muscle and cloacal/perineal muscle development. Some human anatomical variations and malformations of secondary trunk muscles are discussed.
Collapse
Affiliation(s)
- Maryna Masyuk
- Department of Anatomy and Molecular Embryology, Ruhr-Universität Bochum, Universitätsstraße 150, MA 5/161, 44801, Bochum, Germany,
| | | |
Collapse
|
7
|
Abstract
This review will focus on the use of the chicken and quail as model systems to analyze myogenesis and as such will emphasize the experimental approaches that are strongest in these systems-the amenability of the avian embryo to manipulation and in ovo observation. During somite differentiation, a wide spectrum of developmental processes occur such as cellular differentiation, migration, and fusion. Cell lineage studies combined with recent advancements in cell imaging allow these biological phenomena to be readily observed and hypotheses tested extremely rapidly-a strength that is restricted to the avian system. A clear weakness of the chicken in the past has been genetic approaches to modulate gene function. Recent advances in the electroporation of expression vectors, siRNA constructs, and use of tissue specific reporters have opened the door to increasingly sophisticated experiments that address questions of interest not only to the somite/muscle field in particular but also fundamental to biology in general. Importantly, an ever-growing body of evidence indicates that somite differentiation in birds is indistinguishable to that of mammals; therefore, these avian studies complement the complex genetic models of the mouse.
Collapse
Affiliation(s)
- Claire E Hirst
- EMBL Australia, Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, 3800, Australia,
| | | |
Collapse
|
8
|
Retrograde migration of pectoral girdle muscle precursors depends on CXCR4/SDF-1 signaling. Histochem Cell Biol 2014; 142:473-88. [PMID: 24972797 DOI: 10.1007/s00418-014-1237-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 01/26/2023]
Abstract
In vertebrates, muscles of the pectoral girdle connect the forelimbs with the thorax. During development, the myogenic precursor cells migrate from the somites into the limb buds. Whereas most of the myogenic precursors remain in the limb bud to form the forelimb muscles, several cells migrate back toward the trunk to give rise to the superficial pectoral girdle muscles, such as the large pectoral muscle, the latissimus dorsi and the deltoid. Recently, this developing mode has been referred to as the "In-Out" mechanism. The present study focuses on the mechanisms of the "In-Out" migration during formation of the pectoral girdle muscles. Combining in ovo electroporation, tissue slice-cultures and confocal laser scanning microscopy, we visualize live in detail the retrograde migration of myogenic precursors from the forelimb bud into the trunk region by live imaging. Furthermore, we present for the first time evidence for the involvement of the chemokine receptor CXCR4 and its ligand SDF-1 during these processes. After microsurgical implantations of CXCR4 inhibitor beads in the proximal forelimb region of chicken embryos, we demonstrate with the aid of in situ hybridization and live-cell imaging that CXCR4/SDF-1 signaling is crucial for the retrograde migration of pectoral girdle muscle precursors. Moreover, we analyzed the MyoD expression in CXCR4-mutant mouse embryos and observed a considerable decrease in pectoral girdle musculature. We thus demonstrate the importance of the CXCR4/SDF-1 axis for the pectoral girdle muscle formation in avians and mammals.
Collapse
|
9
|
Morosan-Puopolo G, Balakrishnan-Renuka A, Yusuf F, Chen J, Dai F, Zoidl G, Lüdtke THW, Kispert A, Theiss C, Abdelsabour-Khalaf M, Brand-Saberi B. Wnt11 is required for oriented migration of dermogenic progenitor cells from the dorsomedial lip of the avian dermomyotome. PLoS One 2014; 9:e92679. [PMID: 24671096 PMCID: PMC3966816 DOI: 10.1371/journal.pone.0092679] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/24/2014] [Indexed: 12/23/2022] Open
Abstract
The embryonic origin of the dermis in vertebrates can be traced back to the dermomyotome of the somites, the lateral plate mesoderm and the neural crest. The dermal precursors directly overlying the neural tube display a unique dense arrangement and are the first to induce skin appendage formation in vertebrate embryos. These dermal precursor cells have been shown to derive from the dorsomedial lip of the dermomyotome (DML). Based on its expression pattern in the DML, Wnt11 is a candidate regulator of dorsal dermis formation. Using EGFP-based cell labelling and time-lapse imaging, we show that the Wnt11 expressing DML is the source of the dense dorsal dermis. Loss-of-function studies in chicken embryos show that Wnt11 is indeed essential for the formation of dense dermis competent to support cutaneous appendage formation. Our findings show that dermogenic progenitors cannot leave the DML to form dense dorsal dermis following Wnt11 silencing. No alterations were noticeable in the patterning or in the epithelial state of the dermomyotome including the DML. Furthermore, we show that Wnt11 expression is regulated in a manner similar to the previously described early dermal marker cDermo-1. The analysis of Wnt11 mutant mice exhibits an underdeveloped dorsal dermis and strongly supports our gene silencing data in chicken embryos. We conclude that Wnt11 is required for dense dermis and subsequent cutaneous appendage formation, by influencing the cell fate decision of the cells in the DML.
Collapse
Affiliation(s)
- Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
- Department of Molecular Embryology, Freiburg University, Freiburg, Germany
- Faculty of Biology, Freiburg University, Freiburg, Germany
| | - Ajeesh Balakrishnan-Renuka
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
- Department of Molecular Embryology, Freiburg University, Freiburg, Germany
- Faculty of Biology, Freiburg University, Freiburg, Germany
| | - Faisal Yusuf
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Jingchen Chen
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Fangping Dai
- Department of Molecular Embryology, Freiburg University, Freiburg, Germany
| | - Georg Zoidl
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Timo H.-W. Lüdtke
- Institute for Molecular Biology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Kispert
- Institute for Molecular Biology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Carsten Theiss
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Mohammed Abdelsabour-Khalaf
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
- Faculty of Biology, Freiburg University, Freiburg, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs University, Freiburg, Germany
| |
Collapse
|
10
|
Juuri E, Saito K, Lefebvre S, Michon F. Establishment of crown-root domain borders in mouse incisor. Gene Expr Patterns 2013; 13:255-64. [PMID: 23684768 DOI: 10.1016/j.gep.2013.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/27/2013] [Accepted: 05/05/2013] [Indexed: 12/24/2022]
Abstract
Teeth are composed of two domains, the enamel-covered crown and the enamel-free root. The understanding of the initiation and regulation of crown and root domain formation is important for the development of bioengineered teeth. In most teeth the crown develops before the root, and erupts to the oral cavity whereas the root anchors the tooth to the jawbone. However, in the continuously growing mouse incisor the crown and root domains form simultaneously, the crown domain forming the labial and the root domain the lingual part of the tooth. While the crown-root border on the incisor distal side supports the distal enamel extent, reflecting an evolutionary diet adaptation, on the incisor mesial side the root-like surface is necessary for the attachment of the interdental ligament between the two incisors. Therefore, the mouse incisor exhibits a functional distal-mesial asymmetry. Here, we used the mouse incisor as a model to understand the mechanisms involved in the crown-root border formation. We analyzed the cellular origins and gene expression patterns leading to the development of the mesial and distal crown-root borders. We discovered that Barx2, En1, Wnt11, and Runx3 were exclusively expressed on the mesial crown-root border. In addition, the distal border of the crown-root domain might be established by cells from a different origin and by an early Follistatin expression, factor known to be involved in the root domain formation. The use of different mechanisms to establish domain borders gives indications of the incisor functional asymmetry.
Collapse
Affiliation(s)
- Emma Juuri
- Institute of Biotechnology, Developmental Biology Program, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|
11
|
Kawanishi T, Kaneko T, Moriyama Y, Kinoshita M, Yokoi H, Suzuki T, Shimada A, Takeda H. Modular development of the teleost trunk along the dorsoventral axis and zic1/zic4 as selector genes in the dorsal module. Development 2013; 140:1486-96. [PMID: 23462471 DOI: 10.1242/dev.088567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Teleost fish exhibit remarkable diversity in morphology, such as fins and coloration, particularly on the dorsal side. These structures are evolutionary adaptive because their back is highly visible to other individuals. However, owing to the late phenotypic appearance (from larva to adult) and lack of appropriate mutants, the genetic mechanisms that regulate these dorsoventrally asymmetric external patterns are largely unknown. To address this, we have analyzed the spontaneous medaka mutant Double anal fin (Da), which exhibits a mirror-image duplication of the ventral half across the lateral midline from larva to adult. Da is an enhancer mutant for zic1 and zic4 in which their expression in dorsal somites is lost. We show that the dorsoventral polarity in Da somites is lost and then demonstrate using transplantation techniques that somites and their derived tissues globally determine the multiple dorsal-specific characteristics of the body (fin morphology and pigmentation) from embryo to adult. Intriguingly, the zic1/zic4 expression in the wild type persists throughout life in the dorsal parts of somite derivatives, i.e. the myotome, dermis and vertebrae, forming a broad dorsal domain in the trunk. Comparative analysis further implies a central role for zic1/zic4 in morphological diversification of the teleost body. Taken together, we propose that the teleost trunk consists of dorsal/ventral developmental modules and that zic1/zic4 in somites function as selector genes in the dorsal module to regulate multiple dorsal morphologies.
Collapse
Affiliation(s)
- Toru Kawanishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Rinkevich Y, Mori T, Sahoo D, Xu PX, Bermingham JR, Weissman IL. Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature. Nat Cell Biol 2012; 14:1251-60. [PMID: 23143399 DOI: 10.1038/ncb2610] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 10/02/2012] [Indexed: 01/14/2023]
Abstract
Fibroblasts and smooth muscle cells (FSMCs) are principal cell types of connective and adventitial tissues that participate in the development, physiology and pathology of internal organs, with incompletely defined cellular origins. Here, we identify and prospectively isolate from the mesothelium a mouse cell lineage that is committed to FSMCs. The mesothelium is an epithelial monolayer covering the vertebrate thoracic and abdominal cavities and internal organs. Time-lapse imaging and transplantation experiments reveal robust generation of FSMCs from the mesothelium. By targeting mesothelin (MSLN), a surface marker expressed on mesothelial cells, we identify and isolate precursors capable of clonally generating FSMCs. Using a genetic lineage tracing approach, we show that embryonic and adult mesothelium represents a common lineage to trunk FSMCs, and trunk vasculature, with minimal contributions from neural crest, or circulating cells. The isolation of FSMC precursors enables the examination of multiple aspects of smooth muscle and fibroblast biology as well as the prospective isolation of these precursors for potential regenerative medicine purposes.
Collapse
Affiliation(s)
- Yuval Rinkevich
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Yusuf F, Brand-Saberi B. Myogenesis and muscle regeneration. Histochem Cell Biol 2012; 138:187-99. [DOI: 10.1007/s00418-012-0972-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2012] [Indexed: 12/27/2022]
|
14
|
Abstract
In zoology it is well known that birds are characterized by the presence of feathers, and mammals by hairs. Another common point of view is that avian scales are directly related to reptilian scales. As a skin embryologist, I have been fascinated by the problem of regionalization of skin appendages in amniotes throughout my scientific life. Here I have collected the arguments that result from classical experimental embryology, from the modern molecular biology era, and from the recent discovery of new fossils. These arguments shape my view that avian ectoderm is primarily programmed toward forming feathers, and mammalian ectoderm toward forming hairs. The other ectoderm derivatives - scales in birds, glands in mammals, or cornea in both classes - can become feathers or hairs through metaplastic process, and appear to have a negative regulatory mechanism over this basic program. How this program is altered remains, in most part, to be determined. However, it is clear that the regulation of the Wnt/beta-catenin pathway is a critical hub. The level of beta-catenin is crucial for feather and hair formation, as its down-regulation appears to be linked with the formation of avian scales in chick, and cutaneous glands in mice. Furthermore, its inhibition leads to the formation of nude skin and is required for that of corneal epithelium. Here I propose a new theory, to be further considered and tested when we have new information from genomic studies. With this theory, I suggest that the alpha-keratinized hairs from living synapsids may have evolved from the hypothetical glandular integument of the first amniotes, which may have presented similarities with common day terrestrial amphibians. Concerning feathers, they may have evolved independently of squamate scales, each originating from the hypothetical roughened beta-keratinized integument of the first sauropsids. The avian overlapping scales, which cover the feet in some bird species, may have developed later in evolution, being secondarily derived from feathers.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Equipe Ontogenèse et Cellules Souches du Tégument, Centre de Recherche INSERM UJF - U, Institut Albert Bonniot, Site Santé- La Tronche, Grenoble, France.
| |
Collapse
|
15
|
Formation and Differentiation of Avian Somite Derivatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 638:1-41. [DOI: 10.1007/978-0-387-09606-3_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Ben-Yair R, Kalcheim C. Notch and bone morphogenetic protein differentially act on dermomyotome cells to generate endothelium, smooth, and striated muscle. ACTA ACUST UNITED AC 2008; 180:607-18. [PMID: 18268106 PMCID: PMC2234248 DOI: 10.1083/jcb.200707206] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We address the mechanisms underlying generation of skeletal muscle, smooth muscle, and endothelium from epithelial progenitors in the dermomyotome. Lineage analysis shows that of all epithelial domains, the lateral region is the most prolific producer of smooth muscle and endothelium. Importantly, individual labeled lateral somitic cells give rise to only endothelial or mural cells (not both), and endothelial and mural cell differentiation is driven by distinct signaling systems. Notch activity is necessary for smooth muscle production while inhibiting striated muscle differentiation, yet it does not affect initial development of endothelial cells. On the other hand, bone morphogenetic protein signaling is required for endothelial cell differentiation and/or migration but inhibits striated muscle differentiation and fails to impact smooth muscle cell production. Hence, although different mechanisms are responsible for smooth muscle and endothelium generation, the choice to become smooth versus striated muscle depends on a single signaling system. Altogether, these findings underscore the spatial and temporal complexity of lineage diversification in an apparently homogeneous epithelium.
Collapse
Affiliation(s)
- Raz Ben-Yair
- Department of Anatomy and Cell Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | |
Collapse
|
17
|
Moustakas JE. Development of the carapacial ridge: implications for the evolution of genetic networks in turtle shell development. Evol Dev 2008; 10:29-36. [DOI: 10.1111/j.1525-142x.2007.00210.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Michon F, Charveron M, Dhouailly D. Dermal condensation formation in the chick embryo: requirement for integrin engagement and subsequent stabilization by a possible notch/integrin interaction. Dev Dyn 2007; 236:755-68. [PMID: 17279577 DOI: 10.1002/dvdy.21080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During embryonic development, feathers appear first as primordia consisting of an epidermal placode associated with a dermal condensation. When 7-day chick embryo dorsal skin fragments showing three rows of feather primordia are cultured, they undergo a complete reorganization, which involves the down-regulation of morphogenetic genes and dispersal of dermal fibroblasts, leading to the disappearance of primordia. This loss of organisation is followed by de novo differentiation events. We have used this model to study potential factors involved in the formation of dermal condensations. Activation of Integrins by extracellular Manganese or intracellular Calcium prevents the initial disappearance of the dermal condensations. New primordia formation occurs even after inhibition of the Notch pathway albeit with some fusion between primordia. In conclusion, dermal fibroblast migration requires beta1-Integrin whereas the stability of dermal condensations could depend on Notch/Integrin interaction.
Collapse
Affiliation(s)
- Frederic Michon
- Centre de Recherche INSERM-Institut Albert Bonniot U823, Ontogenesis and Stem Cell of the Tegument Team, Grenoble, France
| | | | | |
Collapse
|
19
|
Garriock RJ, Krieg PA. Wnt11-R signaling regulates a calcium sensitive EMT event essential for dorsal fin development of Xenopus. Dev Biol 2006; 304:127-40. [PMID: 17240368 PMCID: PMC1905145 DOI: 10.1016/j.ydbio.2006.12.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 11/23/2006] [Accepted: 12/11/2006] [Indexed: 11/17/2022]
Abstract
In the frog embryo, a sub-population of trunk neural crest (NC) cells undergoes a dorsal route of migration to contribute to the mesenchyme in the core of the dorsal fin. Here we show that a second population of cells, originally located in the dorsomedial region of the somite, also contributes to the fin mesenchyme. We find that the frog orthologue of Wnt11 (Wnt11-R) is expressed in both the NC and somite cell populations that migrate into the fin matrix. Wnt11-R is expressed prior to migration and persists in the mesenchymal cells after they have distributed throughout the fin. Loss of function studies demonstrate that Wnt11-R activity is required for an epithelial to mesenchymal transformation (EMT) event that precedes migration of cells into the fin matrix. In Wnt11-R depleted embryos, the absence of fin core cells leads to defective dorsal fin development and to collapse of the fin structure. Experiments using small molecule inhibitors indicate that dorsal migration of fin core cells depends on calcium signaling through calcium/calmodulin-dependent kinase II (CaMKII). In Wnt11-R depleted embryos, normal migration of NC cells and dorsal somite cells into the fin and normal fin development can be rescued by stimulation of calcium release. These studies are consistent with a model in which Wnt11-R signaling, via a downstream calcium pathway, regulates fin cell migration and, more generally, indicates a role for non-canonical Wnt signaling in regulation of EMT.
Collapse
Affiliation(s)
| | - Paul A. Krieg
- *Address correspondence to: Paul A. Krieg, Telephone: 520-626-9370, Fax: 520-626-2097, e-mail:
| |
Collapse
|
20
|
Lin CM, Jiang TX, Widelitz RB, Chuong CM. Molecular signaling in feather morphogenesis. Curr Opin Cell Biol 2006; 18:730-41. [PMID: 17049829 PMCID: PMC4406286 DOI: 10.1016/j.ceb.2006.10.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/05/2006] [Indexed: 12/17/2022]
Abstract
The development and regeneration of feathers have gained much attention recently because of progress in the following areas. First, pattern formation. The exquisite spatial arrangement provides a simple model for decoding the rules of morphogenesis. Second, stem cell biology. In every molting, a few stem cells have to rebuild the entire epithelial organ, providing much to learn on how to regenerate an organ physiologically. Third, evolution and development ('Evo-Devo'). The discovery of feathered dinosaur fossils in China prompted enthusiastic inquiries about the origin and evolution of feathers. Progress has been made in elucidating feather morphogenesis in five successive phases: macro-patterning, micro-patterning, intra-bud morphogenesis, follicle morphogenesis and regenerative cycling.
Collapse
Affiliation(s)
- Chih-Min Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
21
|
Yusuf F, Brand-Saberi B. The eventful somite: patterning, fate determination and cell division in the somite. ACTA ACUST UNITED AC 2006; 211 Suppl 1:21-30. [PMID: 17024302 DOI: 10.1007/s00429-006-0119-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 08/18/2006] [Indexed: 11/29/2022]
Abstract
The segmental somites not only determine the vertebrate body plan, but also represent turntables of cell fates. The somite is initially naive in terms of its fate restriction as shown by grafting and rotation experiments whereby ectopically grafted or rotated tissue of newly formed somites yielded the same pattern of normal derivatives. Somitic derivatives are determined by local signalling between adjacent embryonic tissues, in particular the neural tube, notochord, surface ectoderm and the somitic compartments themselves. The correct spatio-temporal specification of the deriving tissues, skeletal muscle, cartilage, endothelia and connective tissue is achieved by a sequence of morphogenetic changes of the paraxial mesoderm, eventually leading to the three transitory somitic compartments: dermomyotome, myotome and sclerotome. These structures are specified along a double gradient from dorsal to ventral and from medial to lateral. The establishment and controlled disruption of the epithelial state of the somitic compartments are crucial for development. In this article, we give a synopsis of some of the most important signalling events involved in somite patterning and cell fate decisions. Particular emphasis has been laid on the issue of epithelio-mesenchymal transition and different types of cell division in the somite.
Collapse
Affiliation(s)
- Faisal Yusuf
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Albertstrasse 17, 79104, Freiburg, Germany.
| | | |
Collapse
|
22
|
Viewpoint 4. Exp Dermatol 2006. [DOI: 10.1111/j.1600-0625.2006.00448_5.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Paus R, Chuong CM, Dhouailly D, Gilmore S, Forest L, Shelley WB, Stenn KS, Maini P, Michon F, Parimoo S, Cadau S, Demongeot J, Zheng Y, Paus R, Happle R. What is the biological basis of pattern formation of skin lesions? Exp Dermatol 2006. [DOI: 10.1111/j.1600-0625.2006.00448.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Atit R, Sgaier SK, Mohamed OA, Taketo MM, Dufort D, Joyner AL, Niswander L, Conlon RA. Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 2006; 296:164-76. [PMID: 16730693 DOI: 10.1016/j.ydbio.2006.04.449] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 04/03/2006] [Accepted: 04/10/2006] [Indexed: 11/22/2022]
Abstract
Dorsal dermis and epaxial muscle have been shown to arise from the central dermomyotome in the chick. En1 is a homeobox transcription factor gene expressed in the central dermomyotome. We show by genetic fate mapping in the mouse that En1-expressing cells of the central dermomyotome give rise to dorsal dermis and epaxial muscle and, unexpectedly, to interscapular brown fat. Thus, the En1-expressing central dermomyotome normally gives rise to three distinct fates in mice. Wnt signals are important in early stages of dermomyotome development, but the signal that acts to specify the dermal fate has not been identified. Using a reporter transgene for Wnt signal transduction, we show that the En1-expressing cells directly underneath the surface ectoderm transduce Wnt signals. When the essential Wnt transducer beta-catenin is mutated in En1 cells, it results in the loss of Dermo1-expressing dorsal dermal progenitors and dermis. Conversely, when beta-catenin was activated in En1 cells, it induces Dermo1 expression in all cells of the En1 domain and disrupts muscle gene expression. Our results indicate that the mouse central dermomyotome gives rise to dermis, muscle, and brown fat, and that Wnt signalling normally instructs cells to select the dorsal dermal fate.
Collapse
Affiliation(s)
- Radhika Atit
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sun Rhodes LS, Merzdorf CS. The zic1 gene is expressed in chick somites but not in migratory neural crest. Gene Expr Patterns 2006; 6:539-45. [PMID: 16451832 DOI: 10.1016/j.modgep.2005.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 10/18/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
Zic transcription factors regulate the expression of neural and neural crest-specific genes and are expressed in the cells of the dorsal neural tube and the premigratory neural crest. Here we characterize zic1 expression in the chick embryo during somite formation and neural crest migration. zic1 is expressed in the dorsomedial portion of epithelial somites and subsequently in the dorsomedial lip of the dermomyotome. Although zic1 is expressed in cells of the nascent myotome, it is absent from differentiated myotome cells that express myosin. As the dorsal root ganglia form, zic1 is expressed at high levels in the dorsal sclerotome and zic1 expression is more pronounced in the caudal regions of the somites. Double-label experiments showed that cells expressing zic1 are not labeled by the HNK-1 antibody specific for migratory neural crest cells. Thus, migrating neural crest cells do not express zic1.
Collapse
Affiliation(s)
- Lisa S Sun Rhodes
- Department of Cell Biology and Neuroscience, Montana State University, 513 Leon Johnson Hall, Bozeman, MT 59717, USA
| | | |
Collapse
|
26
|
Ahmed MU, Cheng L, Dietrich S. Establishment of the epaxial–hypaxial boundary in the avian myotome. Dev Dyn 2006; 235:1884-94. [PMID: 16680727 DOI: 10.1002/dvdy.20832] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trunk skeletal muscles are segregated into dorsomedial epaxial and ventrolateral hypaxial muscles, separated by a myoseptum. In amniotes, they are generated from a transient structure, the dermomyotome, which lays down muscle, namely the myotome underneath. However, the dermomyotome and myotome are dorsoventrally continuous, with no morphologically defined epaxial-hypaxial boundary. The transcription factors En1 and Sim1 have been shown to molecularly subdivide the amniote dermomyotome, with En1 labeling the epaxial dermomyotome and Sim1 the hypaxial counterpart. Here, we demonstrate that En1 and Sim1 expression persists in cells leaving the dermomyotome, superimposing the expression boundary onto muscle and skin. En1-expressing cells colonize the myotome initially from the rostral and caudal lips, and slightly later, directly from the de-epithelializing dermomyotomal center. En1 expression in the myotome is concomitant with the appearance of Fgfr4/Pax7-expressing mitotically active myoblasts. This finding suggests that Fgfr4+/Pax7+/En1+ cells carry their expression with them when entering the myotome. Furthermore, it suggests that the epaxial-hypaxial boundary of the myotome is established through the late arising, mitotically active myoblasts.
Collapse
Affiliation(s)
- Mohi U Ahmed
- Department of Craniofacial Development, King's College London, Guy's Hospital, London Bridge, London, United Kingdom
| | | | | |
Collapse
|
27
|
Hornik C, Krishan K, Yusuf F, Scaal M, Brand-Saberi B. cDermo-1 misexpression induces dense dermis, feathers, and scales. Dev Biol 2005; 277:42-50. [PMID: 15572138 DOI: 10.1016/j.ydbio.2004.08.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 08/26/2004] [Accepted: 08/26/2004] [Indexed: 11/24/2022]
Abstract
Reciprocal epithelio-mesenchymal interactions between the prospective epidermis and the underlying dermis are the major driving forces in the development of skin appendages. Feather development is initiated by a still unknown signal from the dermis in feather-forming skin. The morphological response of the ectoderm to this signal is the formation of an epidermal placode, which signals back to the mesenchyme to induce dermal condensations. Together, epidermal and dermal components constitute the outgrowing feather bud. The bHLH transcription factor cDermo-1 is expressed in developing dermis and is the earliest known marker of prospective feather tracts. To test its function during feather development, we forced cDermo-1 expression in embryonic chicken dermis using a retroviral expression vector. In featherless (apteric) regions, cDermo-1 misexpression induced dense, thickened dermis normally observed in feathered skin (pterylae), and leads to the development of regularly spaced and normally shaped ectopic feather buds. In pterylae, cDermo-1 misexpression enhanced feather growth. In hindlimb skin, according to the local skin identity, misexpression of cDermo-1 induced ectopic scale formation. Thus, we show that forced cDermo-1 expression in developing dermis is sufficient to launch the developmental program leading to skin appendage formation. We propose a role of cDermo-1 at the initial stages of feather induction upstream of FGF10.
Collapse
Affiliation(s)
- Christoph Hornik
- Institute of Anatomy and Cell Biology II, Albert-Ludwigs-Universität, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Chang CH, Jiang TX, Lin CM, Burrus LW, Chuong CM, Widelitz R. Distinct Wnt members regulate the hierarchical morphogenesis of skin regions (spinal tract) and individual feathers. Mech Dev 2004; 121:157-71. [PMID: 15037317 PMCID: PMC4376312 DOI: 10.1016/j.mod.2003.12.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 11/27/2003] [Accepted: 12/19/2003] [Indexed: 10/26/2022]
Abstract
Skin morphogenesis occurs in successive stages. First, the skin forms distinct regions (macropatterning). Then skin appendages with particular shapes and sizes form within each region (micropatterning). Ectopic DKK expression inhibited dermis formation in feather tracts and individual buds, implying the importance of Wnts, and prompted the assessment of individual Wnt functions at different morphogenetic levels using the feather model. Wnt 1, 3a, 5a and 11 initially were expressed moderately throughout the feather tract then were up-regulated in restricted regions following two modes: Wnt 1 and 3a became restricted to the placodal epithelium, then to the elongated distal bud epidermis; Wnt 5a and 11 intensified in the inter-tract region and interprimordia epidermis or dermis, respectively, then appeared in the elongated distal bud dermis. Their role in feather tract formation was determined using RCAS mediated misexpression in ovo at E2/E3. Their function in periodic feather patterning was examined by misexpression in vitro using reconstituted E7 skin explant cultures. Wnt 1 reduced spinal tract size, but enhanced feather primordia size. Wnt 3a increased dermal thickness, expanded the spinal tract size, reduced interbud domain spacing, and produced non-tapering "giant buds". Wnt 11 and dominant negative Wnt 1 enhanced interbud spacing, and generated thinner buds. In cultured dermal fibroblasts, Wnt 1 and 3a stimulated cell proliferation and activated the canonical beta-catenin pathway. Wnt 11 inhibited proliferation but stimulated migration. Wnt 5a and 11 triggered the JNK pathway. Thus distinctive Wnts have positive and negative roles in forming the dermis, tracts, interbud spacing and the growth and shaping of individual buds.
Collapse
Affiliation(s)
- Chung-Hsing Chang
- Department of Pathology, Keck School of Medicine, University of Southern California, HMR 305D, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
- Department of Dermatology, Tzu-Chi Medical Center, Tzu-Chi University, Hualien, Taiwan, ROC
- Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, HMR 305D, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Chih-Min Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, HMR 305D, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Laura W. Burrus
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, HMR 305D, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Randall Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, HMR 305D, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
- Corresponding author. Tel.: +323-442-1158, fax: +323-442-3049
| |
Collapse
|
29
|
Cheng L, Alvares LE, Ahmed MU, El-Hanfy AS, Dietrich S. The epaxial–hypaxial subdivision of the avian somite. Dev Biol 2004; 274:348-69. [PMID: 15385164 DOI: 10.1016/j.ydbio.2004.07.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Revised: 07/06/2004] [Accepted: 07/07/2004] [Indexed: 01/29/2023]
Abstract
In all jaw-bearing vertebrates, three-dimensional mobility relies on segregated, separately innervated epaxial and hypaxial skeletal muscles. In amniotes, these muscles form from the morphologically continuous dermomyotome and myotome, whose epaxial-hypaxial subdivision and hence the formation of distinct epaxial-hypaxial muscles is not understood. Here we show that En1 expression labels a central subdomain of the avian dermomyotome, medially abutting the expression domain of the lead-lateral or hypaxial marker Sim1. En1 expression is maintained when cells from the En1-positive dermomyotome enter the myotome and dermatome, thereby superimposing the En1-Sim1 expression boundary onto the developing musculature and dermis. En1 cells originate from the dorsomedial edge of the somite. Their development is under positive control by notochord and floor plate (Shh), dorsal neural tube (Wnt1) and surface ectoderm (Wnt1-like signalling activity) but negatively regulated by the lateral plate mesoderm (BMP4). This dependence on epaxial signals and suppression by hypaxial signals places En1 into the epaxial somitic programme. Consequently, the En1-Sim1 expression boundary marks the epaxial-hypaxial dermomyotomal or myotomal boundary. In cell aggregation assays, En1- and Sim1-expressing cells sort out, suggesting that the En1-Sim1 expression boundary may represent a true compartment boundary, foreshadowing the epaxial-hypaxial segregation of muscle.
Collapse
Affiliation(s)
- Louise Cheng
- Department of Craniofacial Development, King's College London, London Bridge, London SE1 9RT, UK
| | | | | | | | | |
Collapse
|
30
|
Abstract
All ectodermal organs, e.g. hair, teeth, and many exocrine glands, originate from two adjacent tissue layers: the epithelium and the mesenchyme. Similar sequential and reciprocal interactions between the epithelium and mesenchyme regulate the early steps of development in all ectodermal organs. Generally, the mesenchyme provides the first instructive signal, which is followed by the formation of the epithelial placode, an early signaling center. The placode buds into or out of the mesenchyme, and subsequent proliferation, cell movements, and differentiation of the epithelium and mesenchyme contribute to morphogenesis. The molecular signals regulating organogenesis, such as molecules in the FGF, TGFbeta, Wnt, and hedgehog families, regulate the development of all ectodermal appendages repeatedly during advancing morphogenesis and differentiation. In addition, signaling by ectodysplasin, a recently identified member of the TNF family, and its receptor Edar is required for ectodermal organ development across vertebrate species. Here the current knowledge on the molecular regulation of the initiation, placode formation, and morphogenesis of ectodermal organs is discussed with emphasis on feathers, hair, and teeth.
Collapse
Affiliation(s)
- Johanna Pispa
- Developmental Biology Programme, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, 00014, Helsinki, Finland
| | | |
Collapse
|
31
|
WIDELITZ RANDALLB, JIANG TINGXIN, YU MINGKE, SHEN TED, SHEN JENYEE, WU PING, YU ZHICAO, CHUONG CHENGMING. Molecular biology of feather morphogenesis: a testable model for evo-devo research. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 298:109-22. [PMID: 12949772 PMCID: PMC4382008 DOI: 10.1002/jez.b.29] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Darwin's theory describes the principles that are responsible for evolutionary change of organisms and their attributes. The actual mechanisms, however, need to be studied for each species and each organ separately. Here we have investigated the mechanisms underlying these principles in the avian feather. Feathers comprise one of the most complex and diverse epidermal organs as demonstrated by their shape, size, patterned arrangement and pigmentation. Variations can occur at several steps along each level of organization, leading to highly diverse forms and functions. Feathers develop gradually during ontogeny through a series of steps that may correspond to the evolutionary steps that were taken during the phylogeny from a reptilian ancestor to birds. These developmental steps include 1) the formation of feather tract fields on the skin surfaces; 2) periodic patterning of the individual feather primordia within the feather tract fields; 3) feather bud morphogenesis establishing anterio-posterior (along the cranio-caudal axis) and proximo-distal axes; 4) branching morphogenesis to create the rachis, barbs and barbules within a feather bud; and 5) gradual modulations of these basic morphological parameters within a single feather or across a feather tract. Thus, possibilities for variation in form and function of feathers occur at every developmental step. In this paper, principles guiding feather tract formation, distributions of individual feathers within the tracts and variations in feather forms are discussed at a cellular and molecular level.
Collapse
Affiliation(s)
- RANDALL B. WIDELITZ
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - TING XIN JIANG
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - MINGKE YU
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - TED SHEN
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - JEN-YEE SHEN
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - PING WU
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - ZHICAO YU
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - CHENG-MING CHUONG
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
32
|
Abstract
The musculoskeletal system of vertebrates is derived from the embryonic mesoderm. Its structures are categorized as epaxial or hypaxial based on their adult position and innervation. The epaxial/hypaxial terminology is also used to describe regions of the embryonic somites based on fate mapping of somitic derivatives. However, the adult, functional distinctions are not fully consistent with the changing embryonic environments of mesodermal populations during morphogenesis, and the traditional terminology loses accuracy when used to describe certain mutant phenotypes. Here we describe a new terminology naming two mesodermal environments defined by the lineage of the included cells. We discuss how mutant phenotypes may be better explained by consideration of the embryonic context in which genes take their effect and argue that the recognition of these embryonic territories clarifies description and discussion of the morphogenesis and patterning of the musculoskeletal system.
Collapse
Affiliation(s)
- A C Burke
- Wesleyan University, Middletown, CT 06459, USA.
| | | |
Collapse
|