1
|
Santoni M, Meneau F, Sekhsoukh N, Castella S, Le T, Miot M, Daldello EM. Unraveling the interplay between PKA inhibition and Cdk1 activation during oocyte meiotic maturation. Cell Rep 2024; 43:113782. [PMID: 38358892 DOI: 10.1016/j.celrep.2024.113782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Oocytes are arrested in prophase I. In vertebrates, meiotic resumption is triggered by hormonal stimulation that results in cAMP-dependent protein kinase (PKA) downregulation leading to Cdk1 activation. Yet the pathways connecting PKA to Cdk1 remain unclear. Here, we identify molecular events triggered by PKA downregulation occurring upstream of Cdk1 activation. We describe a two-step regulation controlling cyclin B1 and Mos accumulation, which depends on both translation and stabilization. Cyclin B1 accumulation is triggered by PKA inhibition upstream of Cdk1 activation, while its translation requires Cdk1 activity. Conversely, Mos translation initiates in response to the hormone, but the protein accumulates only downstream of Cdk1. Furthermore, two successive translation waves take place, the first controlled by PKA inhibition and the second by Cdk1 activation. Notably, Arpp19, an essential PKA effector, does not regulate the early PKA-dependent events. This study elucidates how PKA downregulation orchestrates multiple pathways that converge toward Cdk1 activation and induce the oocyte G2/M transition.
Collapse
Affiliation(s)
- Martina Santoni
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Ferdinand Meneau
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Nabil Sekhsoukh
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Sandrine Castella
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Tran Le
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Marika Miot
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Enrico Maria Daldello
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France.
| |
Collapse
|
2
|
Heim A, Niedermeier ML, Stengel F, Mayer TU. The translation regulator Zar1l controls timing of meiosis in Xenopus oocytes. Development 2022; 149:278465. [DOI: 10.1242/dev.200900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Oocyte maturation and early embryo development occur in vertebrates in the near absence of transcription. Thus, sexual reproduction of vertebrates critically depends on the timely translation of mRNAs already stockpiled in the oocyte. Yet how translational activation of specific mRNAs is temporally coordinated is still incompletely understood. Here, we elucidate the function of Zar1l, a yet uncharacterized member of the Zar RNA-binding protein family, in Xenopus oocytes. Employing TRIM-Away, we demonstrate that loss of Zar1l accelerates hormone-induced meiotic resumption of Xenopus oocytes due to premature accumulation of the M-phase-promoting kinase cMos. We show that Zar1l is a constituent of a large ribonucleoparticle containing the translation repressor 4E-T and the central polyadenylation regulator CPEB1, and that it binds directly to the cMos mRNA. Partial, hormone-induced degradation of Zar1l liberates 4E-T from CPEB1, which weakens translational repression of mRNAs encoding cMos and likely additional M-phase-promoting factors. Thus, our study provides fundamental insights into the mechanisms that ensure temporally regulated translation of key cell cycle regulators during oocyte maturation, which is essential for sexual reproductivity.
Collapse
Affiliation(s)
- Andreas Heim
- University of Konstanz 1 Department of Biology , , 78457 Konstanz , Germany
| | - Marie L. Niedermeier
- University of Konstanz 1 Department of Biology , , 78457 Konstanz , Germany
- Konstanz Research School Chemical Biology, University of Konstanz 2 , 78457 Konstanz , Germany
| | - Florian Stengel
- University of Konstanz 1 Department of Biology , , 78457 Konstanz , Germany
- Konstanz Research School Chemical Biology, University of Konstanz 2 , 78457 Konstanz , Germany
| | - Thomas U. Mayer
- University of Konstanz 1 Department of Biology , , 78457 Konstanz , Germany
- Konstanz Research School Chemical Biology, University of Konstanz 2 , 78457 Konstanz , Germany
| |
Collapse
|
3
|
Das D, Arur S. Regulation of oocyte maturation: Role of conserved ERK signaling. Mol Reprod Dev 2022; 89:353-374. [PMID: 35908193 PMCID: PMC9492652 DOI: 10.1002/mrd.23637] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Abstract
During oogenesis, oocytes arrest at meiotic prophase I to acquire competencies for resuming meiosis, fertilization, and early embryonic development. Following this arrested period, oocytes resume meiosis in response to species-specific hormones, a process known as oocyte maturation, that precedes ovulation and fertilization. Involvement of endocrine and autocrine/paracrine factors and signaling events during maintenance of prophase I arrest, and resumption of meiosis is an area of active research. Studies in vertebrate and invertebrate model organisms have delineated the molecular determinants and signaling pathways that regulate oocyte maturation. Cell cycle regulators, such as cyclin-dependent kinase (CDK1), polo-like kinase (PLK1), Wee1/Myt1 kinase, and the phosphatase CDC25 play conserved roles during meiotic resumption. Extracellular signal-regulated kinase (ERK), on the other hand, while activated during oocyte maturation in all species, regulates both species-specific, as well as conserved events among different organisms. In this review, we synthesize the general signaling mechanisms and focus on conserved and distinct functions of ERK signaling pathway during oocyte maturation in mammals, non-mammalian vertebrates, and invertebrates such as Drosophila and Caenorhabditis elegans.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Lemonnier T, Dupré A, Jessus C. The G2-to-M transition from a phosphatase perspective: a new vision of the meiotic division. Cell Div 2020; 15:9. [PMID: 32508972 PMCID: PMC7249327 DOI: 10.1186/s13008-020-00065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Cell division is orchestrated by the phosphorylation and dephosphorylation of thousands of proteins. These post-translational modifications underlie the molecular cascades converging to the activation of the universal mitotic kinase, Cdk1, and entry into cell division. They also govern the structural events that sustain the mechanics of cell division. While the role of protein kinases in mitosis has been well documented by decades of investigations, little was known regarding the control of protein phosphatases until the recent years. However, the regulation of phosphatase activities is as essential as kinases in controlling the activation of Cdk1 to enter M-phase. The regulation and the function of phosphatases result from post-translational modifications but also from the combinatorial association between conserved catalytic subunits and regulatory subunits that drive their substrate specificity, their cellular localization and their activity. It now appears that sequential dephosphorylations orchestrated by a network of phosphatase activities trigger Cdk1 activation and then order the structural events necessary for the timely execution of cell division. This review discusses a series of recent works describing the important roles played by protein phosphatases for the proper regulation of meiotic division. Many breakthroughs in the field of cell cycle research came from studies on oocyte meiotic divisions. Indeed, the meiotic division shares most of the molecular regulators with mitosis. The natural arrests of oocytes in G2 and in M-phase, the giant size of these cells, the variety of model species allowing either biochemical or imaging as well as genetics approaches explain why the process of meiosis has served as an historical model to decipher signalling pathways involved in the G2-to-M transition. The review especially highlights how the phosphatase PP2A-B55δ critically orchestrates the timing of meiosis resumption in amphibian oocytes. By opposing the kinase PKA, PP2A-B55δ controls the release of the G2 arrest through the dephosphorylation of their substrate, Arpp19. Few hours later, the inhibition of PP2A-B55δ by Arpp19 releases its opposing kinase, Cdk1, and triggers M-phase. In coordination with a variety of phosphatases and kinases, the PP2A-B55δ/Arpp19 duo therefore emerges as the key effector of the G2-to-M transition.
Collapse
Affiliation(s)
- Tom Lemonnier
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Aude Dupré
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Catherine Jessus
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
5
|
In Vitro Reconstruction of Xenopus Oocyte Ovulation. Int J Mol Sci 2019; 20:ijms20194766. [PMID: 31561408 PMCID: PMC6801927 DOI: 10.3390/ijms20194766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 11/17/2022] Open
Abstract
Progesterone is widely used to induce maturation of isolated fully grown oocytes of the African clawed frog, Xenopus laevis. However, the hormone fails to release oocytes from the layer of surrounding follicle cells. Here, we report that maturation and follicle rupture can be recapitulated in vitro by treating isolated follicular oocytes with progesterone and low doses of the matrix metalloproteinase (MMP), collagenase, which are ineffective in the absence of the steroid. Using this in vitro ovulation model, we demonstrate that germinal vesicle breakdown (GVBD) and oocyte liberation from ovarian follicles occur synchronously during ovulation. Inhibition of the MAPK pathway in these experimental settings suppresses both GVBD and follicular rupture, whereas inhibition of MMP activity delays follicular rupture without affecting GVBD. These results highlight importance of MAPK and MMP activities in the ovulation process and provide the first evidence for their involvement in the release of oocytes from ovarian follicles in frogs. The in vitro ovulation model developed in our study can be employed for further dissection of ovulation.
Collapse
|
6
|
Nath P, Das D, Pal S, Maitra S. Nitric oxide (NO) inhibition of meiotic G2-M1 transition in Anabas testudineus oocytes: Participation of cAMP-dependent protein kinase (PKA) in regulation of intra-oocyte signaling events. Mol Cell Endocrinol 2018; 460:162-169. [PMID: 28743518 DOI: 10.1016/j.mce.2017.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Nitric oxide (NO) regulation of ovarian function in mammals has been studied extensively. However, relatively less information is available on NO action on meiotic G2-M1 transition in teleost oocytes. In the present study using follicle-enclosed oocytes of Anabas testudineus, NO regulation of intra-oocyte signaling events during meiotic G2-M1 transition were examined. Priming with NO donor, sodium nitroprusside (SNP) prevented 17α,20β-dihydroxy-4-pregenen-3-one (17,20β-P)-induced germinal vesicle break down (GVBD) in dose- and duration-dependent manner. Impaired GVBD response in SNP-treated groups corroborated well with reduced p34Cdc2 (Thr161) phosphorylation. Immunoblot analysis revealed that congruent with elevated cAMP-dependent protein kinase (PKA) phosphorylation (activation), NO inhibition of meiotic maturation involves down regulation of Cdc25 activation, Mos synthesis and MAPK3/1 (ERK1/2) phosphorylation. However, priming with PKA inhibitor (H89) could reverse SNP attenuation of oocyte GVBD significantly. Collectively our results indicate that negative influence of NO on meiotic G2-M1 transition in perch oocytes might involve PKA activation.
Collapse
Affiliation(s)
- Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Debabrata Das
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Soumojit Pal
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
7
|
Abstract
Sesquiterpene lactones (STLs) are a large and structurally diverse group of plant metabolites generally found in the Asteraceae family. STLs exhibit a wide spectrum of biological activities and it is generally accepted that their major mechanism of action is the alkylation of the thiol groups of biological molecules. The guaianolides is one of various groups of STLs. Anti-tumour and anti-migraine effects, an allergenic agent, an inhibitor of smooth muscle cells and of meristematic cell proliferation are only a few of the most commonly reported activities of STLs. In amphibians, fully grown ovarian oocytes are arrested at the beginning of meiosis I. Under stimulus with progesterone, this meiotic arrest is released and meiosis progresses to metaphase II, a process known as oocyte maturation. There are previous records of the inhibitory effect of dehydroleucodin (DhL), a guaianolide lactone, on the progression of meiosis. It has been also shown that DhL and its 11,13-dihydroderivative (2H-DhL; a mixture of epimers at C-11) act as blockers of the resumption of meiosis in fully grown ovarian oocytes from the amphibian Rhinella arenarum (formerly classified as Bufo arenarum). The aim of this study was to analyze the effect of four closely related guaianolides, i.e., DhL, achillin, desacetoxymatricarin and estafietin as possible inhibitors of meiosis in oocytes of amphibians in vitro and discuss some structure-activity relationships. It was found that the inhibitory effect on meiosis resumption is greater when the lactone has two potentially reactive centres, either a α,β-α',β'-diunsaturated cyclopentanone moiety or an epoxide group plus an exo-methylene-γ-lactone function.
Collapse
|
8
|
Qi ST, Ma JY, Wang ZB, Guo L, Hou Y, Sun QY. N6-Methyladenosine Sequencing Highlights the Involvement of mRNA Methylation in Oocyte Meiotic Maturation and Embryo Development by Regulating Translation in Xenopus laevis. J Biol Chem 2016; 291:23020-23026. [PMID: 27613873 DOI: 10.1074/jbc.m116.748889] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Indexed: 11/06/2022] Open
Abstract
During the oogenesis of Xenopus laevis, oocytes accumulate maternal materials for early embryo development. As the transcription activity of the oocyte is silenced at the fully grown stage and the global genome is reactivated only by the mid-blastula embryo stage, the translation of maternal mRNAs accumulated during oocyte growth should be accurately regulated. Previous evidence has illustrated that the poly(A) tail length and RNA binding elements mediate RNA translation regulation in the oocyte. Recently, RNA methylation has been found to exist in various systems. In this study, we sequenced the N6-methyladenosine (m6A) modified mRNAs in fully grown germinal vesicle-stage and metaphase II-stage oocytes. As a result, we identified 4207 mRNAs with m6A peaks in germinal vesicle-stage or metaphase II-stage oocytes. When we integrated the mRNA methylation data with transcriptome and proteome data, we found that the highly methylated mRNAs showed significantly lower protein levels than those of the hypomethylated mRNAs, although the RNA levels showed no significant difference. We also found that the hypomethylated mRNAs were mainly enriched in the cell cycle and translation pathways, whereas the highly methylated mRNAs were mainly associated with protein phosphorylation. Our results suggest that oocyte mRNA methylation can regulate cellular translation and cell division during oocyte meiotic maturation and early embryo development.
Collapse
Affiliation(s)
- Shu-Tao Qi
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China and
| | - Jun-Yu Ma
- the College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhen-Bo Wang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China and
| | - Lei Guo
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China and
| | - Yi Hou
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China and
| | - Qing-Yuan Sun
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China and .,the College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
9
|
Dupré A, Daldello EM, Nairn AC, Jessus C, Haccard O. Phosphorylation of ARPP19 by protein kinase A prevents meiosis resumption in Xenopus oocytes. Nat Commun 2015; 5:3318. [PMID: 24525567 PMCID: PMC4014304 DOI: 10.1038/ncomms4318] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/24/2014] [Indexed: 11/13/2022] Open
Abstract
During oogenesis, oocytes are arrested in prophase and resume meiosis by activating the kinase Cdk1 upon hormonal stimulation. In all vertebrates, release from prophase arrest relies on protein kinase A (PKA) downregulation and on the dephosphorylation of a long-sought but still unidentified substrate. Here we show that ARPP19 is the PKA substrate whose phosphorylation at serine 109 is necessary and sufficient for maintaining Xenopus oocytes arrested in prophase. By downregulating PKA, progesterone, the meiotic inducer in Xenopus, promotes partial dephosphorylation of ARPP19 that is required for the formation of a threshold level of active Cdk1. Active Cdk1 then initiates MPF autoamplification loop that occurs independently of both PKA and ARPP19 phosphorylation at serine 109 but requires the Greatwall-dependent phosphorylation of ARPP19 at serine 67. Therefore, ARPP19 stands at a crossroads in the meiotic M-phase control network by integrating differential effects of PKA and Greatwall, two essential kinases for meiosis resumption.
Collapse
Affiliation(s)
- Aude Dupré
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris F-75005, France [2] CNRS, UMR7622-Biologie du Développement, Paris F-75005, France [3]
| | - Enrico M Daldello
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris F-75005, France [2] CNRS, UMR7622-Biologie du Développement, Paris F-75005, France [3] Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, cedex 05, Paris 75252, France [4]
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, USA
| | - Catherine Jessus
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris F-75005, France [2] CNRS, UMR7622-Biologie du Développement, Paris F-75005, France
| | - Olivier Haccard
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris F-75005, France [2] CNRS, UMR7622-Biologie du Développement, Paris F-75005, France
| |
Collapse
|
10
|
Barakat IA, Khalil WK, Al-Himaidi AR. Moringa oleifera extract modulates the expression of fertility related genes and elevation of calcium ions in sheep oocytes. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Dupré A, Buffin E, Roustan C, Nairn AC, Jessus C, Haccard O. The phosphorylation of ARPP19 by Greatwall renders the auto-amplification of MPF independently of PKA in Xenopus oocytes. J Cell Sci 2013; 126:3916-26. [PMID: 23781026 DOI: 10.1242/jcs.126599] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entry into mitosis or meiosis relies on the coordinated action of kinases and phosphatases that ultimately leads to the activation of Cyclin-B-Cdk1, also known as MPF for M-phase promoting factor. Vertebrate oocytes are blocked in prophase of the first meiotic division, an arrest that is tightly controlled by high PKA activity. Re-entry into meiosis depends on activation of Cdk1, which obeys a two-step mechanism: a catalytic amount of Cdk1 is generated in a PKA and protein-synthesis-dependent manner; then a regulatory network known as the MPF auto-amplification loop is initiated. This second step is independent of PKA and protein synthesis. However, none of the molecular components of the auto-amplification loop identified so far act independently of PKA. Therefore, the protein rendering this process independent of PKA in oocytes remains unknown. Using a physiologically intact cell system, the Xenopus oocyte, we show that the phosphorylation of ARPP19 at S67 by the Greatwall kinase promotes its binding to the PP2A-B55δ phosphatase, thus inhibiting its activity. This process is controlled by Cdk1 and has an essential role within the Cdk1 auto-amplification loop for entry into the first meiotic division. Moreover, once phosphorylated by Greatwall, ARPP19 escapes the negative regulation exerted by PKA. It also promotes activation of MPF independently of protein synthesis, provided that a small amount of Mos is present. Taken together, these findings reveal that PP2A-B55δ, Greatwall and ARPP19 are not only required for entry into meiotic divisions, but are also pivotal effectors within the Cdk1 auto-regulatory loop responsible for its independence with respect to the PKA-negative control.
Collapse
Affiliation(s)
- Aude Dupré
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005, Paris, France
| | | | | | | | | | | |
Collapse
|
12
|
Khan PP, Maitra S. Participation of cAMP-dependent protein kinase and MAP kinase pathways during Anabas testudineus oocyte maturation. Gen Comp Endocrinol 2013; 181:88-97. [PMID: 23174698 DOI: 10.1016/j.ygcen.2012.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 11/17/2022]
Abstract
Possible involvement of cyclic nucleotide dependent protein kinase (PKA) and MAP kinase (MAPK) pathways during oocyte maturation in Anabas testudineus was investigated. Pre-incubation with phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylxanthine (IBMX), inhibited 17α, 20β-DHP-induced GVBD dose dependently. PKA inhibitor, H89 could induce resumption of meiosis independent of 17α, 20β-DHP, in dose and duration dependent manner. The maximum response was obtained with the dose of 10 μM of H89 and 95% of cells underwent GVBD within 18 h. Moreover, stimulation with 17α, 20β-DHP inhibited endogenous PKA activity significantly within first hour and this effect was attenuated by PDE inhibitor IBMX at all time points. The pattern of PKA inhibition corresponded well with kinetics of histone H1 kinase activation and p34cdc2 phosphorylation. These results suggest physiological relevance of cAMP/PKA signaling in perch oocytes undergoing G2/M transition. MAPK was demonstrated as two distinct isoforms (ERK1 and ERK2) which resolved in the range of 42-44 kDa in immunoblot. Though total protein content did not show significant variation, H89 stimulation was able to stimulate phosphorylation of ERK1/2 from 5h onwards and the strongest response was observed between 10 and 18 h. MEK inhibitor, U0126 completely blocked PKA inhibition induced MAPK activation and GVBD. In addition, inhibition of endogenous PKA by a more selective peptide inhibitor [PKI-(6-22)-amide] was sufficient to resume GVBD and MAPK activation in intact perch oocytes. Also, significant ERK1/2 phosphorylation could be stimulated in cell-free extracts of perch oocytes supplemented with PKI-(6-22)-amide. The results suggest an interaction between cAMP/PKA and MAPK pathways in mediating meiosis resumption in perch oocyte.
Collapse
Affiliation(s)
- P P Khan
- Department of Zoology, Visva-Bharati University, Santiniketan, India
| | | |
Collapse
|
13
|
Control of oocyte growth and meiotic maturation in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:277-320. [PMID: 22872481 DOI: 10.1007/978-1-4614-4015-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. Caenorhabditis elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gα(s)-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition.
Collapse
|
14
|
Pfeuty B, Bodart JF, Blossey R, Lefranc M. A dynamical model of oocyte maturation unveils precisely orchestrated meiotic decisions. PLoS Comput Biol 2012; 8:e1002329. [PMID: 22238511 PMCID: PMC3252271 DOI: 10.1371/journal.pcbi.1002329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/11/2011] [Indexed: 12/04/2022] Open
Abstract
Maturation of vertebrate oocytes into haploid gametes relies on two consecutive meioses without intervening DNA replication. The temporal sequence of cellular transitions driving eggs from G2 arrest to meiosis I (MI) and then to meiosis II (MII) is controlled by the interplay between cyclin-dependent and mitogen-activated protein kinases. In this paper, we propose a dynamical model of the molecular network that orchestrates maturation of Xenopus laevis oocytes. Our model reproduces the core features of maturation progression, including the characteristic non-monotonous time course of cyclin-Cdks, and unveils the network design principles underlying a precise sequence of meiotic decisions, as captured by bifurcation and sensitivity analyses. Firstly, a coherent and sharp meiotic resumption is triggered by the concerted action of positive feedback loops post-translationally activating cyclin-Cdks. Secondly, meiotic transition is driven by the dynamic antagonism between positive and negative feedback loops controlling cyclin turnover. Our findings reveal a highly modular network in which the coordination of distinct regulatory schemes ensures both reliable and flexible cell-cycle decisions. In the life cycle of sexual organisms, a specialized cell division -meiosis- reduces the number of chromosomes in gametes or spores while fertilization or mating restores the original number. The essential feature that distinguishes meiosis from mitosis (the usual division) is the succession of two rounds of division following a single DNA replication, as well as the arrest at the second division in the case of oocyte maturation. The fact that meiosis and mitosis are similar but different raises several interesting questions: What is the meiosis-specific dynamics of cell-cycle regulators? Are there mechanisms which guarantee the occurence of two and only two rounds of division despite the presence of intrinsic and extrinsic noises ? The study of a model of the molecular network that underlies the meiotic maturation process in Xenopus oocytes provides unexpected answers to these questions. On the one hand, the modular organization of this network ensures separate controls of the first and second divisions. On the other hand, regulatory synergies ensure that these two stages are precisely and reliably sequenced during meiosis. We conclude that cells have evolved a sophisticated regulatory network to achieve a robust, albeit flexible, meiotic dynamics.
Collapse
Affiliation(s)
- Benjamin Pfeuty
- Laboratoire de Physique des Lasers, Atomes, et Molécules, CNRS, UMR8523, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France.
| | | | | | | |
Collapse
|
15
|
Gaffré M, Martoriati A, Belhachemi N, Chambon JP, Houliston E, Jessus C, Karaiskou A. A critical balance between Cyclin B synthesis and Myt1 activity controls meiosis entry in Xenopus oocytes. Development 2011; 138:3735-44. [DOI: 10.1242/dev.063974] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In fully grown oocytes, meiosis is arrested at first prophase until species-specific initiation signals trigger maturation. Meiotic resumption universally involves early activation of M phase-promoting factor (Cdc2 kinase-Cyclin B complex, MPF) by dephosphorylation of the inhibitory Thr14/Tyr15 sites of Cdc2. However, underlying mechanisms vary. In Xenopus oocytes, deciphering the intervening chain of events has been hampered by a sensitive amplification loop involving Cdc2-Cyclin B, the inhibitory kinase Myt1 and the activating phosphatase Cdc25. In this study we provide evidence that the critical event in meiotic resumption is a change in the balance between inhibitory Myt1 activity and Cyclin B neosynthesis. First, we show that in fully grown oocytes Myt1 is essential for maintaining prophase I arrest. Second, we demonstrate that, upon upregulation of Cyclin B synthesis in response to progesterone, rapid inactivating phosphorylation of Myt1 occurs, mediated by Cdc2 and without any significant contribution of Mos/MAPK or Plx1. We propose a model in which the appearance of active MPF complexes following increased Cyclin B synthesis causes Myt1 inhibition, upstream of the MPF/Cdc25 amplification loop.
Collapse
Affiliation(s)
- Melina Gaffré
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Alain Martoriati
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Naima Belhachemi
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Jean-Philippe Chambon
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Evelyn Houliston
- UPMC Université Paris 06, UMR7009-Biologie du Développement, 06230 Villefranche sur mer, France
- CNRS, UMR7009-Biologie du Développement, 06230 Villefranche sur mer, France
| | - Catherine Jessus
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Anthi Karaiskou
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
16
|
Gotoh T, Villa LM, Capelluto DGS, Finkielstein CV. Regulatory pathways coordinating cell cycle progression in early Xenopus development. Results Probl Cell Differ 2011; 53:171-99. [PMID: 21630146 DOI: 10.1007/978-3-642-19065-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The African clawed frog, Xenopus laevis, is used extensively as a model organism for studying both cell development and cell cycle regulation. For over 20 years now, this model organism has contributed to answering fundamental questions concerning the mechanisms that underlie cell cycle transitions--the cellular components that synthesize, modify, repair, and degrade nucleic acids and proteins, the signaling pathways that allow cells to communicate, and the regulatory pathways that lead to selective expression of subsets of genes. In addition, the remarkable simplicity of the Xenopus early cell cycle allows for tractable manipulation and dissection of the basic components driving each transition. In this organism, early cell divisions are characterized by rapid cycles alternating phases of DNA synthesis and division. The post-blastula stages incorporate gap phases, lengthening progression, and allowing more time for DNA repair. Various cyclin/Cdk complexes are differentially expressed during the early cycles with orderly progression being driven by both the combined action of cyclin synthesis and degradation and the appropriate selection of specific substrates by their Cdk components. Like other multicellular organisms, chief developmental events in early Xenopus embryogenesis coincide with profound remodeling of the cell cycle, suggesting that cell proliferation and differentiation events are linked and coordinated through crosstalk mechanisms acting on signaling pathways involving the expression of cell cycle control genes.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
17
|
Mos in the oocyte: how to use MAPK independently of growth factors and transcription to control meiotic divisions. JOURNAL OF SIGNAL TRANSDUCTION 2010; 2011:350412. [PMID: 21637374 PMCID: PMC3101788 DOI: 10.1155/2011/350412] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/01/2010] [Indexed: 01/12/2023]
Abstract
In many cell types, the mitogen-activated protein kinase (MAPK) also named extracellular signal-regulated kinase (ERK) is activated in response to a variety of extracellular growth factor-receptor interactions and leads to the transcriptional activation of immediate early genes, hereby influencing a number of tissue-specific biological activities, as cell proliferation, survival and differentiation. In one specific cell type however, the female germ cell, MAPK does not follow this canonical scheme. In oocytes, MAPK is activated independently of growth factors and tyrosine kinase receptors, acts independently of transcriptional regulation, plays a crucial role in controlling meiotic divisions, and is under the control of a peculiar upstream regulator, the kinase Mos. Mos was originally identified as the transforming gene of Moloney murine sarcoma virus and its cellular homologue was the first proto-oncogene to be molecularly cloned. What could be the specific roles of Mos that render it necessary for meiosis? Which unique functions could explain the evolutionary cost to have selected one gene to only serve for few hours in one very specific cell type? This review discusses the original features of MAPK activation by Mos and the roles of this module in oocytes.
Collapse
|
18
|
Wu YG, Zhou P, Lan GC, Gao D, Li Q, Wei DL, Wang HL, Tan JH. MPF governs the assembly and contraction of actomyosin rings by activating RhoA and MAPK during chemical-induced cytokinesis of goat oocytes. PLoS One 2010; 5:e12706. [PMID: 20856880 PMCID: PMC2938347 DOI: 10.1371/journal.pone.0012706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/19/2010] [Indexed: 01/09/2023] Open
Abstract
The interplay between maturation-promoting factor (MPF), mitogen-activated protein kinase (MAPK) and Rho GTPase during actin-myosin interactions has yet to be determined. The mechanism by which microtubule disrupters induce the formation of ooplasmic protrusion during chemical-assisted enucleation of mammalian oocytes is unknown. Moreover, a suitable model is urgently needed for the study of cytokinesis. We have established a model of chemical-induced cytokinesis and have studied the signaling events leading to cytokinesis using this model. The results suggested that microtubule inhibitors activated MPF, which induced actomyosin assembly (formation of ooplasmic protrusion) by activating RhoA and thus MAPK. While MAPK controlled actin recruitment on its own, MPF promoted myosin enrichment by activating RhoA and MAPK. A further chemical treatment of oocytes with protrusions induced constriction of the actomyosin ring by inactivating MPF while activating RhoA. In conclusion, the present data suggested that the assembly and contraction of the actomyosin ring were two separable steps: while an increase in MPF activity promoted the assembly through RhoA-mediated activation of MAPK, a decrease in MPF activity triggered contraction of the ring by activating RhoA.
Collapse
Affiliation(s)
- Yan-Guang Wu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| | - Ping Zhou
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| | - Guo-Cheng Lan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| | - Da Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| | - Qing Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| | - De-Li Wei
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| | - Hui-Li Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| |
Collapse
|
19
|
Ruiz EJ, Vilar M, Nebreda AR. A two-step inactivation mechanism of Myt1 ensures CDK1/cyclin B activation and meiosis I entry. Curr Biol 2010; 20:717-23. [PMID: 20362450 DOI: 10.1016/j.cub.2010.02.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 11/26/2022]
Abstract
Activation of CDK1 is essential for M-phase entry both in mitosis and meiosis. G2-arrested oocytes contain a pool of CDK1/cyclin B complexes that are maintained inactive because of the phosphorylation of CDK1 on Thr14 and Tyr15 by the Wee1 family protein kinase Myt1, whose inhibition suffices to induce meiosis I entry [1-5]. CDK1/XRINGO and p90Rsk can both phosphorylate and downregulate Myt1 activity in vitro [6, 7]. Here we identify five p90Rsk phosphorylation sites on Myt1 that are different from the CDK1/XRINGO sites, and we show how both kinases synergize during oocyte maturation to inhibit Myt1, ensuring meiotic progression. We found that phosphorylation of Myt1 by CDK1/XRINGO early during oocyte maturation not only downregulates Myt1 kinase activity but also facilitates the recruitment of p90Rsk and further phosphorylation of Myt1. Mutation of the five p90Rsk residues to alanine impairs Myt1 hyperphosphorylation during oocyte maturation and makes Myt1 resistant to the inhibition by p90Rsk. Importantly, Myt1 phosphorylated by p90Rsk does not interact with CDK1/cyclin B, ensuring that the inhibitory phosphorylations of CDK1 cannot take place after meiosis I entry and contributing to the all-or-none meiotic response.
Collapse
Affiliation(s)
- E Josué Ruiz
- Spanish National Cancer Center, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | | | | |
Collapse
|
20
|
Involvement of the dehydroleucodine alpha-methylene-gamma-lactone function in GVBD inhibition inBufo arenarumoocytes. ZYGOTE 2009; 18:41-9. [DOI: 10.1017/s0967199409990086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryDehydroleucodine (DhL), a sesquiterpenic lactone, was isolated and purified from aerial parts ofArtemisia douglasianaBesser, a medicinal herb used in Argentina. DhL is an alpha-methylene butyro-gamma-lactone ring connected to a seven-membered ring fused to an exocyclic alpha,beta-unsaturated cyclopentenone ringIt has been previously shown that DhL selectively induces a dose-dependent transient arrest in G2of both meristematic cells and vascular smooth muscle cells. Treatment with DhL induces an inhibition of spontaneous and progesterone-induced maturation in a dose-dependent manner inBufo arenarumfully grown oocytes arrested at G2, at the beginning of meiosis I. However, the nature of the mechanisms involved in the process is still unknown.The aim of this work was to analyse whether DhL's alpha-methylene-gamma-lactone function is responsible for the inhibition effect on meiosis reinitiation ofBufo arenarumoocytes as well as some of the transduction pathways that could be involved in this effect using a derivative of DhL inactivated for alpha-methylenelactone, the 11,13-dihydro-dehydroleucodine (2H-DhL).The use of 2H-DhL in the maturation promoting factor (MPF) amplification experiments by injection of both cytoplasm with active MPF and of germinal vesicle content showed results similar to the ones obtained with DhL, suggesting that the hydrogenated derivative would act in a similar way to DhL.Pretreatment with DhL or 2H-DhL did not affect the percentage of germinal vesicle breakdown (GVBD) induced by H89, a protein kinase A (PKA) inhibitor, which suggests that these lactones would act on another step of the signalling pathway that induces MPF activation. The fact that both DhL and 2H-Dhl inhibit GVBD induced by okadaic acid microinjection suggests that they could act on the activity of the Myt1 kinase. This idea is supported by the experiments of injection of GV contents in which an inhibitory effect of these lactones on GVBD was also observed.Our results indicate that the inhibitory effect on meiosis progression of DhL does not depend only on the activity of the alpha-methylenelactone function, as its hydrogenated derivative, 2H-DhL, in which this function has been inactivated, causes similar effects on amphibian oocytes. However, 2H-DhL was less active than DhL as higher doses were required to obtain a significant inhibition. On the other hand, the analysis of the participation of certain mediators in some of the signalling pathways leading to MPF activation suggests that the Myt1 kinase could be a target of these lactones, while cdc25 phosphatase would not be affected. Besides, the PKA inhibition assays indicate that these lactones would act earlier in the signalling pathways.
Collapse
|
21
|
Yoon SJ, Kim EY, Kim YS, Lee HS, Kim KH, Bae J, Lee KA. Role of Bcl2-like 10 (Bcl2l10) in Regulating Mouse Oocyte Maturation. Biol Reprod 2009; 81:497-506. [PMID: 19439730 DOI: 10.1095/biolreprod.108.073759] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Previously, we have shown that Bcl2l10 is highly expressed in metaphase II (MII)-stage oocytes. The objective of this study was to characterize Bcl2l10 expression in ovaries and to examine the function of Bcl2l10 in oocyte maturation using RNA interference. Bcl2l10 transcript expression was ovary and oocyte specific. Bcl2l10 was highly expressed in oocytes and pronuclear-stage embryos; however, its expression decreased at the two-cell stage and dramatically disappeared thereafter. Microinjection of Bcl2l10 double-stranded RNA into the cytoplasm of germinal vesicle oocytes resulted in a marked decrease in Bcl2l10 mRNA and protein and metaphase I (MI) arrest (78.9%). Most MI-arrested oocytes exhibited abnormalities in their spindles and chromosome configurations. Bcl2l10 RNA interference had an obvious effect on the activity of maturation-promoting factor but not on that of mitogen-activated protein kinase. We concluded that the role of Bcl2l10 is strongly associated with oocyte maturation, especially at the MI-MII transition.
Collapse
Affiliation(s)
- Se-Jin Yoon
- Graduate School of Life Science and Biotechnology, Pochon CHA University College of Medicine, Seoul 135-081, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Priyadarshini A, Basu D, Navneet A, Bhattacharya A, Bhattacharya S, Maitra S, Bhattacharya S. Activation of both Mos and Cdc25 is required for G2-M transition in perch oocyte. Mol Reprod Dev 2009; 76:289-300. [DOI: 10.1002/mrd.20952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
c-Jun N-terminal kinase 1 phosphorylates Myt1 to prevent UVA-induced skin cancer. Mol Cell Biol 2009; 29:2168-80. [PMID: 19204086 DOI: 10.1128/mcb.01508-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK) signaling pathway is known to mediate both survival and apoptosis of tumor cells. Although JNK1 and JNK2 have been shown to differentially regulate the development of skin cancer, the underlying mechanistic basis remains unclear. Here, we demonstrate that JNK1, but not JNK2, interacts with and phosphorylates Myt1 ex vivo and in vitro. UVA induces substantial apoptosis in JNK wild-type (JNK(+/+)) or JNK2-deficient (JNK2(-/-)) mouse embryonic fibroblasts but has no effect on JNK1-deficient (JNK1(-/-)) cells. In addition, UVA-induced caspase-3 cleavage and DNA fragmentation were suppressed by the knockdown of human Myt1 in skin cancer cells. JNK1 deficiency results in suppressed Myt1 phosphorylation and caspase-3 cleavage in skin exposed to UVA irradiation. In contrast, the absence of JNK2 induces Myt1 phosphorylation and caspase-3 cleavage in skin exposed to UVA. The overexpression of JNK1 with Myt1 promotes cellular apoptosis during the early embryonic development of Xenopus laevis, whereas the presence of JNK2 reduces the phenotype of Myt1-induced apoptotic cell death. Most importantly, JNK1(-/-) mice developed more UVA-induced papillomas than either JNK(+/+) or JNK2(-/-) mice, which was associated with suppressed Myt1 phosphorylation and decreased caspase-3 cleavage. Taken together, these data provide mechanistic insights into the distinct roles of the different JNK isoforms, specifically suggesting that the JNK1-mediated phosphorylation of Myt1 plays an important role in UVA-induced apoptosis and the prevention of skin carcinogenesis.
Collapse
|
24
|
Zhang L, Hou SY, Wang D, Wu K, Xia L. Effects of thioglycolic acid on progesterone-induced maturation of Xenopus oocytes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:1123-1131. [PMID: 20077179 DOI: 10.1080/15287390902953519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In order to examine the effects of thioglycolic acid (TGA) on reproduction, Xenopus oocytes were treated with different concentrations of TGA. During culture, frequencies of germinal vesicle breakdown (GVBD) and MI-MII transition were determined. Samples collected at indicated times were subjected to immunoblotting. Data indicated that TGA accelerated the frequency of GVBD, but inhibited polar body extrusion and formation of MII-arrested eggs in a concentration-dependent manner. At 4 h after progesterone addition, phosphorylation of extracellular signal-regulated kinase (ERK) and p90 ribosomal S6 kinase, two members of the mitogen-activated protein kinase (MAPK) pathway, was upregulated in TGA-treated oocytes. The regulatory subunit of M-phase promoting factor (MPF)-cyclin B was also upregulated by TGA, while phospho-Cdc2 was downregulated. At 8 h, Cdc2 dephosphorylation and cyclin B1 were downregulated by TGA treatment. However, TGA exerted no effect on Mos, an MAPKKK (MAPK kinase kinase). In conclusion, TGA has the potential to inhibit in vitro maturation of Xenopus oocyte with increased GVBD frequency accompanied by alterations in protein expression and phosphorylation involved in MPF and MAPK pathways. Since egg formation is essential to maintain appropriate reproductive capacity, our findings may have certain toxicological implications.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Nutrition and Food Hygiene, Harbin Medical University, Heilongjiang, China
| | | | | | | | | |
Collapse
|
25
|
NISHIMURA T, SHIMAOKA T, KANO K, NAITO K. Insufficient Amount of Cdc2 and Continuous Activation of Wee1 B are the Cause of Meiotic Failure in Porcine Growing Oocytes. J Reprod Dev 2009; 55:553-7. [DOI: 10.1262/jrd.09-072a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Takanori NISHIMURA
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Sciences, The University of Tokyo
| | - Takuma SHIMAOKA
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Sciences, The University of Tokyo
| | - Kiyoshi KANO
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Sciences, The University of Tokyo
| | - Kunihiko NAITO
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Sciences, The University of Tokyo
| |
Collapse
|
26
|
Sun SC, Xiong B, Lu SS, Sun QY. MEK1/2 is a critical regulator of microtubule assembly and spindle organization during rat oocyte meiotic maturation. Mol Reprod Dev 2008; 75:1542-8. [PMID: 18270979 DOI: 10.1002/mrd.20891] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MEK (MAPK kinase) is an upstream protein kinase of MAPK in the MOS/MEK/MAPK/p90rsk signaling pathway. We previously reported the function and regulation of MAPK during rat oocyte maturation. In this study, we further investigated the localization and possible roles of MEK1/2. First, immunofluorescent staining revealed that p-MEK1/2 was restricted to the germinal vesicle (GV). After germinal vesicle breakdown (GVBD), p-MEK1/2 condensed in the vicinity of chromosomes and then translocated to the spindle poles at metaphase I, while spindle microtubules stained faintly. When the oocyte went through anaphase I and telophase I, p-MEK1/2 disappeared from spindle poles and became associated with the midbody. By metaphase II, p-MEK1/2 was again localized to the spindle poles. Second, p-MEK1/2 was localized to the centers of cytoplasmic microtubule asters induced by taxol. Third, p-MEK1/2 co-localized with gamma-tubulin in microtubule-organizing centers (MTOCs). Forth, treatment with U0126, a non-competitive MEK1/2 inhibitor, did not affect germinal vesicle breakdown, but caused chromosome mis-alignment in all MI oocytes examined and abnormal spindle organization as well as small cytoplasmic spindle-like structure formation in MII oocytes. Finally, U0126 reduced the number of cytoplasmic asters induced by taxol. Our data suggest that MEK1/2 has regulatory functions in microtubule assembly and spindle organization during rat oocyte meiotic maturation.
Collapse
Affiliation(s)
- Shao-Chen Sun
- Animal Reproduction Institute, Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, Nanning, China
| | | | | | | |
Collapse
|
27
|
Drosophila myt1 is the major cdk1 inhibitory kinase for wing imaginal disc development. Genetics 2008; 180:2123-33. [PMID: 18940789 DOI: 10.1534/genetics.108.093195] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitosis is triggered by activation of Cdk1, a cyclin-dependent kinase. Conserved checkpoint mechanisms normally inhibit Cdk1 by inhibitory phosphorylation during interphase, ensuring that DNA replication and repair is completed before cells begin mitosis. In metazoans, this regulatory mechanism is also used to coordinate cell division with critical developmental processes, such as cell invagination. Two types of Cdk1 inhibitory kinases have been found in metazoans. They differ in subcellular localization and Cdk1 target-site specificity: one (Wee1) being nuclear and the other (Myt1), membrane-associated and cytoplasmic. Drosophila has one representative of each: dMyt1 and dWee1. Although dWee1 and dMyt1 are not essential for zygotic viability, loss of both resulted in synthetic lethality, indicating that they are partially functionally redundant. Bristle defects in myt1 mutant adult flies prompted a phenotypic analysis that revealed cell-cycle defects, ectopic apoptosis, and abnormal responses to ionizing radiation in the myt1 mutant imaginal wing discs that give rise to these mechanosensory organs. Cdk1 inhibitory phosphorylation was also aberrant in these myt1 mutant imaginal wing discs, indicating that dMyt1 serves Cdk1 regulatory functions that are important both for normal cell-cycle progression and for coordinating mitosis with critical developmental processes.
Collapse
|
28
|
Song PM, Zhang Y, He YF, Bao HM, Luo JH, Liu YK, Yang PY, Chen X. Bioinformatics analysis of metastasis-related proteins in hepatocellular carcinoma. World J Gastroenterol 2008; 14:5816-22. [PMID: 18855979 PMCID: PMC2751890 DOI: 10.3748/wjg.14.5816] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To analyze the metastasis-related proteins in hepatocellular carcinoma (HCC) and discover the biomarker candidates for diagnosis and therapeutic intervention of HCC metastasis with bioinformatics tools.
METHODS: Metastasis-related proteins were determined by stable isotope labeling and MS analysis and analyzed with bioinformatics resources, including Phobius, Kyoto encyclopedia of genes and genomes (KEGG), online mendelian inheritance in man (OMIM) and human protein reference database (HPRD).
RESULTS: All the metastasis-related proteins were linked to 83 pathways in KEGG, including MAPK and p53 signal pathways. Protein-protein interaction network showed that all the metastasis-related proteins were categorized into 19 function groups, including cell cycle, apoptosis and signal transduction. OMIM analysis linked these proteins to 186 OMIM entries.
CONCLUSION: Metastasis-related proteins provide HCC cells with biological advantages in cell proliferation, migration and angiogenesis, and facilitate metastasis of HCC cells. The bird’s eye view can reveal a global characteristic of metastasis-related proteins and many differentially expressed proteins can be identified as candidates for diagnosis and treatment of HCC.
Collapse
|
29
|
Ruiz EJ, Hunt T, Nebreda AR. Meiotic Inactivation of Xenopus Myt1 by CDK/XRINGO, but Not CDK/Cyclin, via Site-Specific Phosphorylation. Mol Cell 2008; 32:210-20. [DOI: 10.1016/j.molcel.2008.08.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/11/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
|
30
|
Tang W, Wu JQ, Guo Y, Hansen DV, Perry JA, Freel CD, Nutt L, Jackson PK, Kornbluth S. Cdc2 and Mos regulate Emi2 stability to promote the meiosis I-meiosis II transition. Mol Biol Cell 2008; 19:3536-43. [PMID: 18550795 DOI: 10.1091/mbc.e08-04-0417] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transition of oocytes from meiosis I (MI) to meiosis II (MII) requires partial cyclin B degradation to allow MI exit without S phase entry. Rapid reaccumulation of cyclin B allows direct progression into MII, producing a cytostatic factor (CSF)-arrested egg. It has been reported that dampened translation of the anaphase-promoting complex (APC) inhibitor Emi2 at MI allows partial APC activation and MI exit. We have detected active Emi2 translation at MI and show that Emi2 levels in MI are mainly controlled by regulated degradation. Emi2 degradation in MI depends not on Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), but on Cdc2-mediated phosphorylation of multiple sites within Emi2. As in MII, this phosphorylation is antagonized by Mos-mediated recruitment of PP2A to Emi2. Higher Cdc2 kinase activity in MI than MII allows sufficient Emi2 phosphorylation to destabilize Emi2 in MI. At MI anaphase, APC-mediated degradation of cyclin B decreases Cdc2 activity, enabling Cdc2-mediated Emi2 phosphorylation to be successfully antagonized by Mos-mediated PP2A recruitment. These data suggest a model of APC autoinhibition mediated by stabilization of Emi2; Emi2 proteins accumulate at MI exit and inhibit APC activity sufficiently to prevent complete degradation of cyclin B, allowing MI exit while preventing interphase before MII entry.
Collapse
Affiliation(s)
- Wanli Tang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pelech S, Jelinkova L, Susor A, Zhang H, Shi X, Pavlok A, Kubelka M, Kovarova H. Antibody Microarray Analyses of Signal Transduction Protein Expression and Phosphorylation during Porcine Oocyte Maturation. J Proteome Res 2008; 7:2860-71. [DOI: 10.1021/pr800082a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steven Pelech
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Lucie Jelinkova
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Andrej Susor
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Hong Zhang
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Xiaoqing Shi
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Antonin Pavlok
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Michal Kubelka
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Hana Kovarova
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| |
Collapse
|
32
|
Liu Y, Li GP, White KL, Rickords LF, Sessions BR, Aston KI, Bunch TD. Nicotine alters bovine oocyte meiosis and affects subsequent embryonic development. Mol Reprod Dev 2007; 74:1473-82. [PMID: 17440977 DOI: 10.1002/mrd.20717] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effects of nicotine on nuclear maturation and meiotic spindle dynamics of bovine oocytes and subsequent embryonic development were investigated. Maturation rates (85%-94%) derived from nicotine treatments at 0.01 to 1.0 mM were similar to the control (86%), but significantly decreased at 2.0 to 6.0 mM. Haploid complements of metaphase II oocytes in 0.01 to 1.0 mM nicotine (approximately 90%) were similar to the control, while lower (ranged from 63% to 76%, P < 0.05 or P < 0.01) haploid oocytes were observed in the 2.0 to 6.0 mM nicotine groups. The majority of the PB1-free oocytes derived from 3.0 to 6.0 mM nicotine treatments were diploidy (2n = 60). Spindle microtubules changed from characteristically being asymmetrical in the controls to being equally distributed into two separate chromosome groups in the nicotine treatments. Nicotine disorganized the microfilament organization and inhibited the movement of anaphase or telophase chromosomes to the cortical area. The inhibited two chromosome groups became two spindles that either moved close in proximity or merged entirely together resulting in diploidy within the affected oocyte. Nicotine treatment significantly reduced the rate of cleavage and blastocyst development after parthenogenetic activation. Diploidy and cell number were drastically reduced in the resultant blastocysts. In conclusion, nicotine can alter the normal process of bovine oocyte meiosis and affects subsequent embryonic development.
Collapse
Affiliation(s)
- Ying Liu
- Department of Animal, Dairy and Veterinary Sciences, and Center for Integrated Biosystems, Utah State University, Logan, Utah 84322-4815, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Liang CG, Su YQ, Fan HY, Schatten H, Sun QY. Mechanisms Regulating Oocyte Meiotic Resumption: Roles of Mitogen-Activated Protein Kinase. Mol Endocrinol 2007; 21:2037-55. [PMID: 17536005 DOI: 10.1210/me.2006-0408] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AbstractOocyte meiotic maturation is one of the important physiological requirements for species survival. However, little is known about the detailed events occurring during this process. A number of studies have demonstrated that MAPK plays a pivotal role in the regulation of meiotic cell cycle progression in oocytes, but controversial findings have been reported in both lower vertebrates and mammals. In this review, we summarized the roles of MAPK cascade and related signal pathways in oocyte meiotic reinitiation in both lower vertebrates and mammals. We also tried to reconcile the paradoxical results and highlight the new findings concerning the function of MAPK in both oocytes and the surrounding follicular somatic cells. The unresolved questions and future research directions regarding the role of MAPK in meiotic resumption are addressed.
Collapse
Affiliation(s)
- Cheng-Guang Liang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang Beijing 100101, China
| | | | | | | | | |
Collapse
|
34
|
Yu J, Zhao Y, Li Z, Galas S, Goldberg ML. Greatwall Kinase Participates in the Cdc2 Autoregulatory Loop in Xenopus Egg Extracts. Mol Cell 2006; 22:83-91. [PMID: 16600872 DOI: 10.1016/j.molcel.2006.02.022] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/22/2005] [Accepted: 02/10/2006] [Indexed: 11/21/2022]
Abstract
Mutations in the Drosophila gene encoding the serine-threonine protein kinase Greatwall have previously been shown to disrupt mitotic progression. To investigate Greatwall's mitotic function, we examined its behavior in Xenopus egg extracts. Greatwall is activated during mitosis by phosphorylation; in vitro evidence indicates that maturation promoting factor (MPF) is an upstream kinase. Conversely, depletion of Greatwall from mitotic extracts rapidly lowers MPF activity due to the accumulation of inhibitory phosphorylations on Cdc2 kinase. Greatwall depletion similarly prevents cycling extracts from entering M phase. The effects of Greatwall depletion can be rescued by the addition of either wild-type (wt) Greatwall or a noninhibitable form of Cdc2 kinase. These results demonstrate that Greatwall participates in an autoregulatory loop that generates and maintains sufficiently high MPF activity levels to support mitosis.
Collapse
Affiliation(s)
- Jiangtao Yu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
35
|
Haccard O, Jessus C. Redundant pathways for Cdc2 activation in Xenopus oocyte: either cyclin B or Mos synthesis. EMBO Rep 2005; 7:321-5. [PMID: 16374506 PMCID: PMC1456883 DOI: 10.1038/sj.embor.7400611] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 11/15/2005] [Accepted: 11/15/2005] [Indexed: 11/09/2022] Open
Abstract
Xenopus oocytes are arrested in meiotic prophase I. Progesterone induces the resumption of meiotic maturation, which requires continuous protein synthesis to bring about Cdc2 activation. The identification of the newly synthesized proteins has long been a goal. Two plausible candidates have received extensive study. The synthesis of cyclin B and of c-Mos, a kinase that activates the mitogen-activated protein kinase pathway in oocytes, is clearly upregulated by translational control in response to progesterone. Recent studies suggest that ablation of either c-Mos or cyclin B synthesis by antisense oligonucleotides does not block meiotic maturation. Here, however, we show that when both pathways are simultaneously inhibited, progesterone no longer triggers maturation; adding back either c-Mos or cyclin B restores meiotic maturation. We conclude that the specific synthesis of either B-type cyclins or c-Mos, induced by progesterone, is required to induce meiotic maturation. The two pathways seem to be functionally redundant.
Collapse
Affiliation(s)
- Olivier Haccard
- Laboratoire de Biologie du Développement, UMR CNRS 7622, UPMC, case 24, 9 quai Saint-Bernard, 75005 Paris, France
| | - Catherine Jessus
- Laboratoire de Biologie du Développement, UMR CNRS 7622, UPMC, case 24, 9 quai Saint-Bernard, 75005 Paris, France
- Tel: +33 1442 72642; Fax: +33 1442 73472; E-mail:
| |
Collapse
|
36
|
Bodart JFL, Baert FY, Sellier C, Duesbery NS, Flament S, Vilain JP. Differential roles of p39Mos-Xp42Mpk1 cascade proteins on Raf1 phosphorylation and spindle morphogenesis in Xenopus oocytes. Dev Biol 2005; 283:373-83. [PMID: 15913594 DOI: 10.1016/j.ydbio.2005.04.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 04/12/2005] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
Fully-grown G2-arrested Xenopus oocytes resume meiosis upon hormonal stimulation. Resumption of meiosis is characterized by germinal vesicle breakdown, chromosome condensation, and organization of a bipolar spindle. These cytological events are accompanied by activation of MPF and the p39(Mos)-MEK1-Xp42(Mpk1)-p90(Rsk) pathways. The latter cascade is activated upon p39(Mos) accumulation. Using U0126, a MEK1 inhibitor, and p39(Mos) antisense morpholino and phosphorothioate oligonucleotides, we have investigated the role of the members of the p39(Mos)-MEK1-Xp42(Mpk1)-p90(Rsk) in spindle morphogenesis. First, we have observed at a molecular level that prevention of p39(Mos) accumulation always led to MEK1 phosphorylation defects, even when meiosis was stimulated through the insulin Ras-dependent pathway. Moreover, we have observed that Raf1 phosphorylation that occurs during meiosis resumption was dependent upon the activity of MEK1 or Xp42(Mpk1) but not p90(Rsk). Second, inhibition of either p39(Mos) accumulation or MEK1 inhibition led to the formation of a cytoplasmic aster-like structure that was associated with condensed chromosomes. Spindle morphogenesis rescue experiments using constitutively active Rsk and purified murine Mos protein suggested that p39(Mos) or p90(Rsk) alone failed to promote meiotic spindle organization. Our results indicate that activation of the p39(Mos)-MEK1-Xp42(Mpk1)-p90(Rsk) pathway is required for bipolar organization of the meiotic spindle at the cortex.
Collapse
Affiliation(s)
- J-F L Bodart
- Laboratoire de Biologie du Développement, UPRES EA 1033, Université des Sciences et Technologies de Lille, SN3, Villeneuve d'Ascq, France.
| | | | | | | | | | | |
Collapse
|
37
|
Li GP, Liu Y, Bunch TD, White KL, Aston KI. Asymmetric division of spindle microtubules and microfilaments during bovine meiosis from metaphase I to metaphase III. Mol Reprod Dev 2005; 71:220-6. [PMID: 15791589 DOI: 10.1002/mrd.20255] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The kinetics of spindle and chromosomes during bovine oocyte meiosis from meiosis I to meiosis III is described. The results of this study showed that (1) oocytes began to extrude the first polar body (Pb1) at the early anaphase I stage and the Pb1 totally separated from the mother cell only when oocytes reach the MII stage; (2) the morphology of the spindle changed from barrel-shaped at the metaphase stage to cylinder-shaped at early anaphase, and then to a thin, long triangle-shaped cone at late anaphase and telophase stages; (3) chromosome morphology went from an individual visible stage at metaphase to a less defined chromatin state during anaphase and telophase stages, and then back to visible individual chromosomes at the next metaphase; (4) chromatin that connected with the floor of the cone became the polar bodies and expelled, and almost all of the microtubules (MTs) and microfilaments (MFs) composing the spindles moved towards and contributed to the polar bodies; and (5) the size of the metaphase I (MI) spindle was larger than the metaphase II (MII) and metaphase III (MIII) spindles. The MII spindle, however, is more barrel-shaped than the MI spindle. This study suggests that spindle MTs and MFs during bovine oocyte meiosis are asymmetrically divided into the polar bodies.
Collapse
Affiliation(s)
- Guang-Peng Li
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84321, USA.
| | | | | | | | | |
Collapse
|
38
|
Takakura I, Naito K, Iwamori N, Yamashita M, Kume S, Tojo H. Inhibition of mitogen activated protein kinase activity induces parthenogenetic activation and increases cyclin B accumulation during porcine oocyte maturation. J Reprod Dev 2005; 51:617-26. [PMID: 16034193 DOI: 10.1262/jrd.17034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inhibition of mitogen activated protein kinase (MAPK) activation during porcine oocyte maturation leads to decreased maturation promoting factor (MPF) activity and to the induction of parthenogenetic activation. In the present study, in order to analyze the mechanism underlying the suppression of MPF activity in MAPK-inhibited porcine oocytes, we injected mRNA of SASA-MEK, a dominant negative MAPK kinase, or antisense RNA of c-mos, a MAPK kinase kinase, into immature porcine oocyte cytoplasm. The injection of SASA-MEK mRNA or c-mos antisense RNA inhibited the MAPK activity partially or completely, respectively, decreased the MPF activity slightly or significantly, respectively, and induced parthenogenetic activation in 17.1% or 96.6% of mature oocytes, respectively, although no parthenogenetic activation was observed in the control oocytes. Immunoblotting experiments revealed that cyclin B accumulation in these MAPK-suppressed porcine oocytes was increased significantly after 50 h of culture and that a considerable amount of MPF was converted into inactive pre-MPF by hyperphosphorylation. These results indicate that the inhibition of MAPK activity in porcine oocytes did not promote cyclin B degradation but rather suppressed it; also the decrease in MPF activity in MAPK-suppressed porcine oocytes correlated with the conversion of active MPF into inactive pre-MPF.
Collapse
Affiliation(s)
- Ikuko Takakura
- Department of Applied Genetics, Graduate School of Agriculture and Life Science University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Pascreau G, Delcros JG, Cremet JY, Prigent C, Arlot-Bonnemains Y. Phosphorylation of Maskin by Aurora-A Participates in the Control of Sequential Protein Synthesis during Xenopus laevis Oocyte Maturation. J Biol Chem 2005; 280:13415-23. [PMID: 15687499 DOI: 10.1074/jbc.m410584200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At the end of oogenesis, Xenopus laevis stage VI oocytes are arrested at the G2/M transition (prophase) waiting for progesterone to release the block and begin maturation. Progesterone triggers a cascade of phosphorylation events such as a decrease of pK(a) and an increase of maturating-promoting factor activity. Progression through meiosis was controlled by the sequential synthesis of several proteins. For instance, the MAPK kinase kinase c-Mos is the very first protein to be produced, whereas cyclin B1 appears only after meiosis I. After the meiotic cycles, the oocyte arrests at metaphase of meiosis II with an elevated c-Mos kinase activity (cytostatic factor). By using a two-hybrid screen, we have identified maskin, a protein involved in the control of mRNA sequential translation, as a binding partner of Aurora-A, a protein kinase necessary for oocyte maturation. Here we showed that, in vitro, Aurora-A directly binds to maskin and that both proteins can be co-immunoprecipitated from oocyte extracts, suggesting that they do associate in vivo. We also demonstrated that Aurora-A phosphorylates maskin on a Ser residue conserved in transforming acidic coiled coil proteins from Drosophila to human. When the phosphorylation of this Ser was inhibited in vivo by microinjection of synthetic peptides that mimic the maskin-phosphorylated sequence, we observed a premature maturation. Under these conditions, proteins such as cyclin B1 and Cdc6, which are normally detected only in meiosis II, were massively produced in meiosis I before the occurrence of the nuclear envelope breakdown. This result strongly suggests that phosphorylation of maskin by Aurora-A prevents meiosis II proteins from being produced during meiosis I.
Collapse
Affiliation(s)
- Gaetan Pascreau
- Groupe Cycle Cellulaire, UMR6061 Génétique et Développement, CNRS, Université de Rennes 1, IFR97 Génomique Fonctionnelle, Faculté de Médecine, 2 Av du Pr Léon Bernard, 35043 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
40
|
Islam A, Sakamoto Y, Kosaka K, Yoshitome S, Sugimoto I, Yamada K, Shibuya E, Vande Woude GF, Hashimoto E. The distinct stage-specific effects of 2-(p-amylcinnamoyl)amino-4-chlorobenzoic acid on the activation of MAP kinase and Cdc2 kinase in Xenopus oocyte maturation. Cell Signal 2005; 17:507-23. [PMID: 15601628 DOI: 10.1016/j.cellsig.2004.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 09/10/2004] [Accepted: 09/10/2004] [Indexed: 11/27/2022]
Abstract
2-(p-amylcinnamoyl)amino-4-chlorobenzoic acid (PACA), pharmacological inhibitor of phospholipase A(2) (PLA(2)), inhibits epinephrine-stimulated thromboxane production in human platelets. In this study, we investigated the effect of PACA on meiotic maturation individually in stages V and VI oocytes. PACA prevented the maturation in stage V but merely delayed the process in stage VI oocytes. This was associated with the strong inhibition of Mos synthesis at both stages. Besides, PACA-induced inhibition of MAPK activation was evident in stage V but not in stage VI oocytes. PACA also inhibited the activation of Cdc2 kinase (Cdc2) in stage V but merely delayed the process in stage VI oocytes. Furthermore, 5 microM and higher concentrations of PACA completely inhibited the activation of MAPK and Cdc2 only in stage V, not in stage VI, oocytes. Moreover, we propose PACA as a new tool for the study of Xenopus oocyte maturation, which can also play a unique role for the studies of the stage-specific activation of MAPK and Cdc2.
Collapse
Affiliation(s)
- Azharul Islam
- Division of Pathological Biochemistry, Department of Biomedical Sciences, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago 683-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Inoue D, Sagata N. The Polo-like kinase Plx1 interacts with and inhibits Myt1 after fertilization of Xenopus eggs. EMBO J 2005; 24:1057-67. [PMID: 15692562 PMCID: PMC554120 DOI: 10.1038/sj.emboj.7600567] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 01/05/2005] [Indexed: 11/08/2022] Open
Abstract
During the meiotic cell cycle in Xenopus oocytes, p90(rsk), the downstream kinase of the Mos-MAPK pathway, interacts with and inhibits the Cdc2 inhibitory kinase Myt1. However, p90(rsk) is inactivated after fertilization due to the degradation of Mos. Here we show that the Polo-like kinase Plx1, instead of p90(rsk), interacts with and inhibits Myt1 after fertilization of Xenopus eggs. At the M phase of the embryonic cell cycle, Cdc2 phosphorylates Myt1 on Thr478 and thereby creates a docking site for Plx1. Plx1 can phosphorylate Myt1 and inhibit its kinase activity both in vitro and in vivo. The interaction between Myt1 and Plx1 is required, at least in part, for normal embryonic cell divisions. Finally, and interestingly, Myt1 is phosphorylated on Thr478 even during the meiotic cell cycle, but its interaction with Plx1 is largely inhibited by p90(rsk)-mediated phosphorylation. These results indicate a switchover in the Myt1 inhibition mechanism at fertilization of Xenopus eggs, and strongly suggest that Plx1 acts as a direct inhibitory kinase of Myt1 in the mitotic cell cycles in Xenopus.
Collapse
Affiliation(s)
- Daigo Inoue
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Noriyuki Sagata
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki, Fukuoka, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan. Tel./Fax: +81 92 642 2617; E-mail:
| |
Collapse
|
42
|
Karaiskou A, Leprêtre AC, Pahlavan G, Du Pasquier D, Ozon R, Jessus C. Polo-like kinase confers MPF autoamplification competence to growing Xenopus oocytes. Development 2004; 131:1543-52. [PMID: 14985258 DOI: 10.1242/dev.01050] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During oogenesis, the Xenopus oocyte is blocked in prophase of meiosis I. It becomes competent to resume meiosis in response to progesterone at the end of its growing period (stage VI of oogenesis). Stage IV oocytes contain a store of inactive pre-MPF (Tyr15-phosphorylated Cdc2 bound to cyclin B2); the Cdc25 phosphatase that catalyzes Tyr15 dephosphorylation of Cdc2 is also present. However, the positive feedback loop that allows MPF autoamplification is not functional at this stage of oocyte growth. We report that when cyclin B is overexpressed in stage IV oocytes, MPF autoamplification does not occur and the newly formed cyclin B-Cdc2 complexes are inactivated by Tyr15 phosphorylation, indicating that Myt1 kinase remains active and that Cdc25 is prevented to be activated. Plx1 kinase (or polo-like kinase), which is required for Cdc25 activation and MPF autoamplification in full grown oocytes is not expressed at the protein level in small stage IV oocytes. In order to determine if Plx1 could be the missing regulator that prevents MPF autoamplification, polo kinase was overexpressed in stage IV oocytes. Under these conditions, the MPF-positive feedback loop was restored. Moreover, we show that acquisition of autoamplification competence does not require the Mos/MAPK pathway.
Collapse
Affiliation(s)
- Anthi Karaiskou
- Laboratoire de Biologie du Développement, UMR-CNRS 7622, Equipe 'Biologie de l'ovocyte', Université Pierre et Marie Curie, boîte 24, 4 place Jussieu, 75252 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
43
|
Baert F, Bodart JF, Bocquet-Muchembled B, Lescuyer-Rousseau A, Vilain JP. Xp42(Mpk1) activation is not required for germinal vesicle breakdown but for Raf complete phosphorylation in insulin-stimulated Xenopus oocytes. J Biol Chem 2003; 278:49714-20. [PMID: 14507918 DOI: 10.1074/jbc.m308067200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fully grown G2-arrested Xenopus oocytes resume meiosis in vitro upon exposure to hormonal stimulation. Progesterone triggers oocyte meiosis resumption through a Ras-independent pathway that involves a p39Mos-dependent activation of the mitogen-activated protein (MAP) kinases. Insulin also triggers meiosis resumption through a tyrosine kinase receptor that activates a Ras-dependent pathway leading to the MAP kinases activation. Antisense phosphorothioate oligonucleotides were used to prevent p39Mos accumulation and Erk-like Xp42(Mpk1) activation during insulin-induced Xenopus oocytes maturation. In contrast to previous works, prevention of p39Mos-induced activation of Xp42(Mpk1) in insulin-treated oocytes did not inhibit but delayed meiotic resumption, like in progesterone-stimulated oocytes. Activations of Xp42(Mpk1), the unique Erk of the oocyte, and of its downstream target p90Rsk, were impaired and phosphorylation of the MAPKK kinase Raf was partially inhibited. Similarly, oocytes treated with the MEK inhibitor U0126, stimulated by insulin exhibited delayed germinal vesicle breakdown, absence of Xp42(Mpk1) activation, and partial phosphorylation of Raf. To summarize, whereas p39Mos-induced activation of MEK/MAPK pathway is dispensable for insulin-induced germinal vesicle breakdown, Xp42(Mpk1) activation induced by insulin is dependent upon p39Mos synthesis. Raf complete phosphorylation appears to require the MEK/MAPK pathway activation both in progesterone and insulin-stimulated oocytes.
Collapse
Affiliation(s)
- Frédéric Baert
- Laboratoire de Biologie du Développement UPRES-EA1033, Bâtiment SN3, IFR118, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
44
|
Stanford JS, Lieberman SL, Wong VL, Ruderman JV. Regulation of the G2/M transition in oocytes of xenopus tropicalis. Dev Biol 2003; 260:438-48. [PMID: 12921744 DOI: 10.1016/s0012-1606(03)00259-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular events regulating hormone-induced oocyte activation and meiotic maturation are probably best understood in Xenopus laevis. In X. laevis, progesterone activates the G2-arrested oocyte, induces entry into M phase of meiosis I (MI) and resumption of the meiotic cell cycles, and leads to the formation of a mature, fertilizable egg. Oocytes of Xenopus tropicalis offer several practical advantages over those of X. laevis, including faster and more synchronous meiotic cell cycle progression, less seasonal variability, and the availability of transgenic approaches. Previous work found several similarities in the pathways regulating oocyte maturation in the two species. Here, we report several additional ones that are conserved in X. tropicalis. (1). Injection of Mos mRNA into G2-arrested oocytes activates the MAP kinase cascade and induces the G2/MI transition. (2). Injection of the beta subunit of the kinase CK2 (a negative regulator of Mos and oocyte activation) delays the G2/MI transition. (3). Elevating PKA activity blocks progesterone-induced maturation; repressing PKA activity induces entry into MI in the absence of progesterone. (4). LF (anthrax lethal factor), which cleaves certain MAP kinase kinases, strongly reduces both the rate and extent of entry into MI. In contrast to the one previously reported major difference between oocytes of the two species, we find that injection of egg cytoplasm ("MPF activity") into G2-arrested X. tropicalis oocytes induces entry into meiosis I even when protein synthesis is blocked, just as it does in oocytes of X. laevis. These results indicate that much of what we have learned from studies of X. laevis oocytes holds for those of X. tropicalis, and suggest that X. tropicalis oocytes offer a good experimental system for investigating certain questions that require a rapid, synchronous progression through the G2/meiosis I transition.
Collapse
|
45
|
Nakahata S, Kotani T, Mita K, Kawasaki T, Katsu Y, Nagahama Y, Yamashita M. Involvement of Xenopus Pumilio in the translational regulation that is specific to cyclin B1 mRNA during oocyte maturation. Mech Dev 2003; 120:865-80. [PMID: 12963108 DOI: 10.1016/s0925-4773(03)00160-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein synthesis of cyclin B by translational activation of the dormant mRNA stored in oocytes is required for normal progression of maturation. In this study, we investigated the involvement of Xenopus Pumilio (XPum), a cyclin B1 mRNA-binding protein, in the mRNA-specific translational activation. XPum exhibits high homology to mammalian counterparts, with amino acid identity close to 90%, even if the conserved RNA-binding domain is excluded. XPum is bound to cytoplasmic polyadenylation element (CPE)-binding protein (CPEB) through the RNA-binding domain but not to its phosphorylated form in mature oocytes. In addition to the CPE, the XPum-binding sequence of cyclin B1 mRNA acts as a cis-element for translational repression. Injection of anti-XPum antibody accelerated oocyte maturation and synthesis of cyclin B1, and, conversely, over-expression of XPum retarded oocyte maturation and translation of cyclin B1 mRNA, which was accompanied by inhibition of poly(A) tail elongation. The injection of antibody and the over-expression of XPum, however, had no effect on translation of Mos mRNA, which also contains the CPE. These findings provide the first evidence that XPum is a translational repressor specific to cyclin B1 in vertebrates. We propose that in cooperation with the CPEB-maskin complex, the master regulator common to the CPE-containing mRNAs, XPum acts as a specific regulator that determines the timing of translational activation of cyclin B1 mRNA by its release from phosphorylated CPEB during oocyte maturation.
Collapse
Affiliation(s)
- Shingo Nakahata
- Laboratory of Molecular and Cellular Interactions, Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Tunquist BJ, Maller JL. Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev 2003; 17:683-710. [PMID: 12651887 DOI: 10.1101/gad.1071303] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Brian J Tunquist
- The Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | |
Collapse
|
47
|
Ma C, Cummings C, Liu XJ. Biphasic activation of Aurora-A kinase during the meiosis I- meiosis II transition in Xenopus oocytes. Mol Cell Biol 2003; 23:1703-16. [PMID: 12588989 PMCID: PMC151708 DOI: 10.1128/mcb.23.5.1703-1716.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus Aurora-A (also known as Eg2) is a member of the Aurora family of mitotic serine/threonine kinases. In Xenopus oocytes, Aurora-A phosphorylates and activates a cytoplasmic mRNA polyadenylation factor (CPEB) and therefore plays a pivotal role in MOS translation. However, hyperphosphorylation and activation of Aurora-A appear to be dependent on maturation-promoting factor (MPF) activation. To resolve this apparent paradox, we generated a constitutively activated Aurora-A by engineering a myristylation signal at its N terminus. Injection of Myr-Aurora-A mRNA induced germinal vesicle breakdown (GVBD) with the concomitant activation of MOS, mitogen-activated protein kinase, and MPF. Myr-Aurora-A-injected oocytes, however, appeared to arrest in meiosis I with high MPF activity and highly condensed, metaphase-like chromosomes but no organized microtubule spindles. No degradation of CPEB or cyclin B2 was observed following GVBD in Myr-Aurora-A-injected oocytes. In the presence of progesterone, the endogenous Aurora-A became hyperphosphorylated and activated at the time of MPF activation. Following GVBD, Aurora-A was gradually dephosphorylated and inactivated before it was hyperphosphorylated and activated again. This biphasic pattern of Aurora-A activation mirrored that of MPF activation and hence may explain meiosis I arrest by the constitutively activated Myr-Aurora-A.
Collapse
Affiliation(s)
- Chunqi Ma
- Ottawa Health Research Institute, Ottawa Hospital Civic Campus, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
48
|
Ohashi S, Naito K, Sugiura K, Iwamori N, Goto S, Naruoka H, Tojo H. Analyses of mitogen-activated protein kinase function in the maturation of porcine oocytes. Biol Reprod 2003; 68:604-9. [PMID: 12533425 DOI: 10.1095/biolreprod.102.008334] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The function of mitogen-activated protein kinase (MAPK) during porcine oocyte maturation was examined by injecting oocytes with either mRNA or antisense RNA of porcine c-mos protein, an upstream kinase of MAPK. The RNAs were injected into the cytoplasm of porcine immature oocytes immediately after collection from ovaries, then the oocytes were cultured for maturation up to 48 h. The phosphorylation and activation of MAPK were observed at 6 h after injection of the c-mos mRNA injected-oocytes, whereas in control oocytes, MAPK activation was detected at 24 h of culture. The germinal vesicle breakdown (GVBD) rate at 24 h of culture was significantly higher in c-mos mRNA-injected oocytes than in control oocytes. In contrast, although injection of c-mos antisense RNA completely inhibited phosphorylation and activation of MAPK throughout the maturation period, the GVBD rate and its time course were the same in noninjected oocytes. The degree of maturation-promoting factor (MPF) activation was, however, very low in oocytes in the absence of MAPK activation. Most of those oocytes had both abnormal morphology and decondensed chromosomes at 48 h of culture. These results suggest that MAPK activation is not required for GVBD induction in porcine oocytes and that the major roles of MAPK during porcine oocyte maturation are to promote GVBD by increasing MPF activity and to arrest oocytes at the second metaphase.
Collapse
Affiliation(s)
- Satoshi Ohashi
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Many regulatory systems operate in the early mammalian embryo. This brief overview surveys several systems and their integration including polarities and axes, left-right differentiation, timers in cells, tissues and in gene expression, and imprinting. Polarities are essential from the very earliest stages of oocyte formation, and maintain their significance until blastocyst stages and beyond. They determine cleavage axes and the distribution of maternal proteins in the oocyte, distinct distributions being identified at the animal pole especially. Left-right axes are no doubt expressed from the earliest embryonic stages, and perhaps even in determining slight differences in the axes of cleavage and of maternal protein distribution. Timers, equally fundamental, have been demonstrated to control many functions in oocytes and embryos. Many fundamental processes in early mammalian oocytes and embryos are closely timed. They are classified into circadian rhythms, hourglass timers, clocks regulating major aspects of development including transcription, longevity via telomere clocks and long-range systems. Imprinting and methylation, increasingly important in establishing stable phenotypes in early embryos, might develop abnormally under some circumstances including intracytoplasmic sperm injection and cloning. A general summary briefly describes some other aspects of regulation, especially chromosomal anomalies in human embryos.
Collapse
Affiliation(s)
- R G Edwards
- Reproductive BioMedicine Online, Duck End Farm, Dry Drayton, Cambridge CB3 8DB, UK.
| |
Collapse
|
50
|
Duckworth BC, Weaver JS, Ruderman JV. G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A. Proc Natl Acad Sci U S A 2002; 99:16794-9. [PMID: 12477927 PMCID: PMC139223 DOI: 10.1073/pnas.222661299] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Xenopus oocytes, which are arrested in G(2) of meiosis I, contain complexes of cyclin B-cdc2 (M phase-promoting factor) that are kept repressed by inhibitory phosphorylations on cdc2 at Thr-14 and Tyr-15. Progesterone induces a cytoplasmic signaling pathway that leads to activation of cdc25, the phosphatase that removes these phosphorylations, catalyzing entry into M phase. It has been known for 25 years that high levels of cAMP and protein kinase A (PKA) are required to maintain the G(2) arrest and that a drop in PKA activity is required for M phase-promoting factor activation, but no physiological targets of PKA have been identified. We present evidence that cdc25 is a critical target of PKA. (i) In vitro, cdc25 Ser-287 serves as a major site of phosphorylation by PKA, resulting in sequestration by 14-3-3. (ii) Endogenous cdc25 is phosphorylated on Ser-287 in oocytes and dephosphorylated in response to progesterone just before cdc2 dephosphorylation and M-phase entry. (iii) High PKA activity maintains phosphorylation of Ser-287 in vivo, whereas inhibition of PKA by its heat-stable inhibitor (PKI) induces dephosphorylation of Ser-287. (iv) Overexpression of mutant cdc25 (S287A) bypasses the ability of PKA to maintain oocytes in G(2) arrest. These findings argue that cdc25 is a physiologically relevant target of PKA in oocytes. In the early embryonic cell cycles, Ser-287 is phosphorylated during interphase and dephosphorylated just before cdc2 activation and mitotic entry. Thus, in addition to its role in checkpoint arrest, cdc25 Ser-287 serves as a site for regulation during normal, unperturbed cell cycles.
Collapse
Affiliation(s)
- Brian C Duckworth
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|