1
|
Stooke-Vaughan GA, Kim S, Yen ST, Son K, Banavar SP, Giammona J, Kimelman D, Campàs O. The physical roles of different posterior tissues in zebrafish axis elongation. Nat Commun 2025; 16:1839. [PMID: 39984461 PMCID: PMC11845790 DOI: 10.1038/s41467-025-56334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/16/2025] [Indexed: 02/23/2025] Open
Abstract
Shaping embryonic tissues requires spatiotemporal changes in genetic and signaling activity as well as in tissue mechanics. Studies linking specific molecular perturbations to changes in the tissue physical state remain sparse. Here we study how specific genetic perturbations affecting different posterior tissues during zebrafish body axis elongation change their physical state, the resulting large-scale tissue flows, and posterior elongation. Using a custom analysis software to reveal spatiotemporal variations in tissue fluidity, we show that dorsal tissues are most fluid at the posterior end, rigidify anterior of this region, and become more fluid again yet further anteriorly. In the absence of notochord (noto mutants) or when the presomitic mesoderm is substantially reduced (tbx16 mutants), dorsal tissues elongate normally. Perturbations of posterior-directed morphogenetic flows in dorsal tissues (vangl2 mutants) strongly affect the speed of elongation, highlighting the essential role of dorsal cell flows in delivering the necessary material to elongate the axis.
Collapse
Affiliation(s)
| | - Sangwoo Kim
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Shuo-Ting Yen
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Kevin Son
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Samhita P Banavar
- Department of Physics, University of California, Santa Barbara, CA, USA
- Department of Chemical and Biological Engineering, Princeton University, New Jersey, NJ, USA
| | - James Giammona
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Morabito RD, Tatarakis D, Swick R, Stettnisch S, Schilling TF, Horsfield JA, Martin BL. The ratio of Wnt signaling activity to Sox2 transcription factor levels predicts neuromesodermal fate potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633481. [PMID: 39868081 PMCID: PMC11761523 DOI: 10.1101/2025.01.16.633481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Neuromesodermal progenitors (NMPs) are a vertebrate cell type that contribute descendants to both the spinal cord and the mesoderm. The undifferentiated bipotential NMP state is maintained when both Wnt signaling is active and Sox2 is present. We used transgenic reporter lines to live-image both Wnt activity and Sox2 levels in NMPs and observed a unique cellular ratio in NMPs compared to NMP-derived mesoderm or neural tissue. We used this unique signature to identify the previously unknown anatomical position of a progenitor population that gives rise to the midline tissues of the floor plate of the spinal cord and the mesodermal notochord. Thus, quantification of the active Wnt signaling to Sox2 ratio can be used to predict and identify cells with neuromesodermal potential. We also developed the auxin inducible degron 2 system for use in zebrafish to test the temporal role that Sox2 plays during midline formation. We found ectopic Sox2 in the presence of Wnt activity holds cells in the undifferentiated floor plate/notochord progenitor state, and that degradation of the ectopic Sox2 is required for cells to adopt a notochord fate.
Collapse
Affiliation(s)
- Robert D. Morabito
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11733, USA
| | - David Tatarakis
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Ryan Swick
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11733, USA
| | - Samantha Stettnisch
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11733, USA
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Julia A. Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- The Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin, New Zealand
| | - Benjamin L. Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11733, USA
| |
Collapse
|
3
|
Labudina AA, Meier M, Gimenez G, Tatarakis D, Ketharnathan S, Mackie B, Schilling TF, Antony J, Horsfield JA. Cohesin composition and dosage independently affect early development in zebrafish. Development 2024; 151:dev202593. [PMID: 38975838 DOI: 10.1242/dev.202593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Cohesin, a chromatin-associated protein complex with four core subunits (Smc1a, Smc3, Rad21 and either Stag1 or 2), has a central role in cell proliferation and gene expression in metazoans. Human developmental disorders termed 'cohesinopathies' are characterized by germline variants of cohesin or its regulators that do not entirely eliminate cohesin function. However, it is not clear whether mutations in individual cohesin subunits have independent developmental consequences. Here, we show that zebrafish rad21 or stag2b mutants independently influence embryonic tailbud development. Both mutants have altered mesoderm induction, but only homozygous or heterozygous rad21 mutation affects cell cycle gene expression. stag2b mutants have narrower notochords and reduced Wnt signaling in neuromesodermal progenitors as revealed by single-cell RNA sequencing. Stimulation of Wnt signaling rescues transcription and morphology in stag2b, but not rad21, mutants. Our results suggest that mutations altering the quantity versus composition of cohesin have independent developmental consequences, with implications for the understanding and management of cohesinopathies.
Collapse
Affiliation(s)
- Anastasia A Labudina
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Michael Meier
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - David Tatarakis
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Sarada Ketharnathan
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Bridget Mackie
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| |
Collapse
|
4
|
Colijn S, Nambara M, Malin G, Sacchetti EA, Stratman AN. Identification of distinct vascular mural cell populations during zebrafish embryonic development. Dev Dyn 2024; 253:519-541. [PMID: 38112237 PMCID: PMC11065631 DOI: 10.1002/dvdy.681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Mural cells are an essential perivascular cell population that associate with blood vessels and contribute to vascular stabilization and tone. In the embryonic zebrafish vasculature, pdgfrb and tagln are commonly used as markers for identifying pericytes and vascular smooth muscle cells. However, the overlapping and distinct expression patterns of these markers in tandem have not been fully described. RESULTS Here, we used the Tg(pdgfrb:Gal4FF; UAS:RFP) and Tg(tagln:NLS-EGFP) transgenic lines to identify single- and double-positive perivascular cell populations on the cranial, axial, and intersegmental vessels between 1 and 5 days postfertilization. From this comparative analysis, we discovered two novel regions of tagln-positive cell populations that have the potential to function as mural cell precursors. Specifically, we found that the hypochord-a reportedly transient structure-contributes to tagln-positive cells along the dorsal aorta. We also identified a unique mural cell progenitor population that resides along the midline between the neural tube and notochord and contributes to intersegmental vessel mural cell coverage. CONCLUSION Together, our findings highlight the variability and versatility of tracking both pdgfrb and tagln expression in mural cells of the developing zebrafish embryo and reveal unexpected embryonic cell populations that express pdgfrb and tagln.
Collapse
Affiliation(s)
- Sarah Colijn
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Miku Nambara
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Gracie Malin
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Elena A. Sacchetti
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Amber N. Stratman
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| |
Collapse
|
5
|
Koparir A, Lekszas C, Keseroglu K, Rose T, Rappl L, Rad A, Maroofian R, Narendran N, Hasanzadeh A, Karimiani EG, Boschann F, Kornak U, Klopocki E, Özbudak EM, Vona B, Haaf T, Liedtke D. Zebrafish as a model to investigate a biallelic gain-of-function variant in MSGN1, associated with a novel skeletal dysplasia syndrome. Hum Genomics 2024; 18:23. [PMID: 38448978 PMCID: PMC10916241 DOI: 10.1186/s40246-024-00593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND/OBJECTIVES Rare genetic disorders causing specific congenital developmental abnormalities often manifest in single families. Investigation of disease-causing molecular features are most times lacking, although these investigations may open novel therapeutic options for patients. In this study, we aimed to identify the genetic cause in an Iranian patient with severe skeletal dysplasia and to model its molecular function in zebrafish embryos. RESULTS The proband displays short stature and multiple skeletal abnormalities, including mesomelic dysplasia of the arms with complete humero-radio-ulna synostosis, arched clavicles, pelvic dysplasia, short and thin fibulae, proportionally short vertebrae, hyperlordosis and mild kyphosis. Exome sequencing of the patient revealed a novel homozygous c.374G > T, p.(Arg125Leu) missense variant in MSGN1 (NM_001105569). MSGN1, a basic-Helix-Loop-Helix transcription factor, plays a crucial role in formation of presomitic mesoderm progenitor cells/mesodermal stem cells during early developmental processes in vertebrates. Initial in vitro experiments show protein stability and correct intracellular localization of the novel variant in the nucleus and imply retained transcription factor function. To test the pathogenicity of the detected variant, we overexpressed wild-type and mutant msgn1 mRNA in zebrafish embryos and analyzed tbxta (T/brachyury/ntl). Overexpression of wild-type or mutant msgn1 mRNA significantly reduces tbxta expression in the tailbud compared to control embryos. Mutant msgn1 mRNA injected embryos depict a more severe effect, implying a gain-of-function mechanism. In vivo analysis on embryonic development was performed by clonal msgn1 overexpression in zebrafish embryos further demonstrated altered cell compartments in the presomitic mesoderm, notochord and pectoral fin buds. Detection of ectopic tbx6 and bmp2 expression in these embryos hint to affected downstream signals due to Msgn1 gain-of-function. CONCLUSION In contrast to loss-of-function effects described in animal knockdown models, gain-of-function of MSGN1 explains the only mildly affected axial skeleton of the proband and rather normal vertebrae. In this context we observed notochord bending and potentially disruption of pectoral fin buds/upper extremity after overexpression of msgn1 in zebrafish embryos. The latter might result from Msgn1 function on mesenchymal stem cells or on chondrogenesis in these regions. In addition, we detected ectopic tbx6 and bmp2a expression after gain of Msgn1 function in zebrafish, which are interconnected to short stature, congenital scoliosis, limb shortening and prominent skeletal malformations in patients. Our findings highlight a rare, so far undescribed skeletal dysplasia syndrome associated with a gain-of-function mutation in MSGN1 and hint to its molecular downstream effectors.
Collapse
Affiliation(s)
- Asuman Koparir
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Caroline Lekszas
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Kemal Keseroglu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Thalia Rose
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Lena Rappl
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Aboulfazl Rad
- Cellular and Molecular Research Centre, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Nakul Narendran
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Atefeh Hasanzadeh
- Cellular and Molecular Research Centre, Sabzevar University of Medical Sciences, Sabzevar, 009851, Iran
| | | | - Felix Boschann
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Eva Klopocki
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Daniel Liedtke
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
6
|
Cucun G, Köhler M, Pfitsch S, Rastegar S. Insights into the mechanisms of neuron generation and specification in the zebrafish ventral spinal cord. FEBS J 2024; 291:646-662. [PMID: 37498183 DOI: 10.1111/febs.16913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
The vertebrate nervous system is composed of a wide range of neurons and complex synaptic connections, raising the intriguing question of how neuronal diversity is generated. The spinal cord provides an excellent model for exploring the mechanisms governing neuronal diversity due to its simple neural network and the conserved molecular processes involved in neuron formation and specification during evolution. This review specifically examines two distinct progenitor domains present in the zebrafish ventral spinal cord: the lateral floor plate (LFP) and the p2 progenitor domain. The LFP is responsible for the production of GABAergic Kolmer-Agduhr neurons (KA″), glutamatergic V3 neurons, and intraspinal serotonergic neurons, while the p2 domain generates V2 precursors that subsequently differentiate into three unique subpopulations of V2 neurons, namely glutamatergic V2a, GABAergic V2b, and glycinergic V2s. Based on recent findings, we will examine the fundamental signaling pathways and transcription factors that play a key role in the specification of these diverse neurons and neuronal subtypes derived from the LFP and p2 progenitor domains.
Collapse
Affiliation(s)
- Gokhan Cucun
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Melina Köhler
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sabrina Pfitsch
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sepand Rastegar
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Ramesh PS, Chu LF. Species-specific roles of the Notch ligands, receptors, and targets orchestrating the signaling landscape of the segmentation clock. Front Cell Dev Biol 2024; 11:1327227. [PMID: 38348091 PMCID: PMC10859470 DOI: 10.3389/fcell.2023.1327227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 02/15/2024] Open
Abstract
Somitogenesis is a hallmark feature of all vertebrates and some invertebrate species that involves the periodic formation of block-like structures called somites. Somites are transient embryonic segments that eventually establish the entire vertebral column. A highly conserved molecular oscillator called the segmentation clock underlies this periodic event and the pace of this clock regulates the pace of somite formation. Although conserved signaling pathways govern the clock in most vertebrates, the mechanisms underlying the species-specific divergence in various clock characteristics remain elusive. For example, the segmentation clock in classical model species such as zebrafish, chick, and mouse embryos tick with a periodicity of ∼30, ∼90, and ∼120 min respectively. This enables them to form the species-specific number of vertebrae during their overall timespan of somitogenesis. Here, we perform a systematic review of the species-specific features of the segmentation clock with a keen focus on mouse embryos. We perform this review using three different perspectives: Notch-responsive clock genes, ligand-receptor dynamics, and synchronization between neighboring oscillators. We further review reports that use non-classical model organisms and in vitro model systems that complement our current understanding of the segmentation clock. Our review highlights the importance of comparative developmental biology to further our understanding of this essential developmental process.
Collapse
Affiliation(s)
- Pranav S. Ramesh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
| | - Li-Fang Chu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
8
|
Colijn S, Nambara M, Stratman AN. Identification of overlapping and distinct mural cell populations during early embryonic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535476. [PMID: 37066365 PMCID: PMC10104062 DOI: 10.1101/2023.04.03.535476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Mural cells are an essential perivascular cell population that associate with blood vessels and contribute to vascular stabilization and tone. In the embryonic zebrafish vasculature, pdgfrb and tagln are commonly used as markers for identifying pericytes and vascular smooth muscle cells (vSMCs). However, the expression patterns of these markers used in tandem have not been fully described. Here, we used the Tg(pdgfrb:Gal4FF; UAS:RFP) and Tg(tagln:NLS-EGFP) transgenic lines to identify single- and double-positive perivascular populations in the cranial, axial, and intersegmental vessels between 1 and 5 days post-fertilization. From this comparative analysis, we discovered two novel regions of tagln-positive cell populations that have the potential to function as mural cell precursors. Specifically, we found that the hypochord- a reportedly transient structure-contributes to tagln-positive cells along the dorsal aorta. We also identified a unique sclerotome-derived mural cell progenitor population that resides along the midline between the neural tube and notochord and contributes to intersegmental vessel mural cell coverage. Together, our findings highlight the variability and versatility of tracking pdgfrb and tagln expression in mural cells of the developing zebrafish embryo.
Collapse
Affiliation(s)
- Sarah Colijn
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Miku Nambara
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Amber N. Stratman
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| |
Collapse
|
9
|
Horsfield JA. Full circle: a brief history of cohesin and the regulation of gene expression. FEBS J 2023; 290:1670-1687. [PMID: 35048511 DOI: 10.1111/febs.16362] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
The cohesin complex has a range of crucial functions in the cell. Cohesin is essential for mediating chromatid cohesion during mitosis, for repair of double-strand DNA breaks, and for control of gene transcription. This last function has been the subject of intense research ever since the discovery of cohesin's role in the long-range regulation of the cut gene in Drosophila. Subsequent research showed that the expression of some genes is exquisitely sensitive to cohesin depletion, while others remain relatively unperturbed. Sensitivity to cohesin depletion is also remarkably cell type- and/or condition-specific. The relatively recent discovery that cohesin is integral to forming chromatin loops via loop extrusion should explain much of cohesin's gene regulatory properties, but surprisingly, loop extrusion has failed to identify a 'one size fits all' mechanism for how cohesin controls gene expression. This review will illustrate how early examples of cohesin-dependent gene expression integrate with later work on cohesin's role in genome organization to explain mechanisms by which cohesin regulates gene expression.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, New Zealand
| |
Collapse
|
10
|
Toh K, Saunders D, Verd B, Steventon B. Zebrafish neuromesodermal progenitors undergo a critical state transition in vivo. iScience 2022; 25:105216. [PMID: 36274939 PMCID: PMC9579027 DOI: 10.1016/j.isci.2022.105216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/05/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
The transition state model of cell differentiation proposes that a transient window of gene expression stochasticity precedes entry into a differentiated state. Here, we assess this theoretical model in zebrafish neuromesodermal progenitors (NMps) in vivo during late somitogenesis stages. We observed an increase in gene expression variability at the 24 somite stage (24ss) before their differentiation into spinal cord and paraxial mesoderm. Analysis of a published 18ss scRNA-seq dataset showed that the NMp population is noisier than its derivatives. By building in silico composite gene expression maps from image data, we assigned an 'NM index' to in silico NMps based on the expression of neural and mesodermal markers and demonstrated that cell population heterogeneity peaked at 24ss. Further examination revealed cells with gene expression profiles incongruent with their prospective fate. Taken together, our work supports the transition state model within an endogenous cell fate decision making event.
Collapse
Affiliation(s)
- Kane Toh
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Dillan Saunders
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Berta Verd
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | | |
Collapse
|
11
|
Paulissen E, Palmisano NJ, Waxman J, Martin BL. Somite morphogenesis is required for axial blood vessel formation during zebrafish embryogenesis. eLife 2022; 11:74821. [PMID: 35137687 PMCID: PMC8863375 DOI: 10.7554/elife.74821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Angioblasts that form the major axial blood vessels of the dorsal aorta and cardinal vein migrate toward the embryonic midline from distant lateral positions. Little is known about what controls the precise timing of angioblast migration and their final destination at the midline. Using zebrafish, we found that midline angioblast migration requires neighboring tissue rearrangements generated by somite morphogenesis. The somitic shape changes cause the adjacent notochord to separate from the underlying endoderm, creating a ventral midline cavity that provides a physical space for the angioblasts to migrate into. The anterior to posterior progression of midline angioblast migration is facilitated by retinoic acid-induced anterior to posterior somite maturation and the subsequent progressive opening of the ventral midline cavity. Our work demonstrates a critical role for somite morphogenesis in organizing surrounding tissues to facilitate notochord positioning and angioblast migration, which is ultimately responsible for creating a functional cardiovascular system.
Collapse
Affiliation(s)
- Eric Paulissen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Nicholas J Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Joshua Waxman
- Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Benjamin Louis Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| |
Collapse
|
12
|
Yuikawa T, Ikeda M, Tsuda S, Saito S, Yamasu K. Involvement of Oct4-type transcription factor Pou5f3 in posterior spinal cord formation in zebrafish embryos. Dev Growth Differ 2021; 63:306-322. [PMID: 34331767 DOI: 10.1111/dgd.12742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
In vertebrate embryogenesis, elongation of the posterior body is driven by de novo production of the axial and paraxial mesoderm as well as the neural tube at the posterior end. This process is presumed to depend on the stem cell-like population in the tail bud region, but the details of the gene regulatory network involved are unknown. Previous studies suggested the involvement of pou5f3, an Oct4-type POU gene in zebrafish, in axial elongation. In the present study, we first found that pou5f3 is expressed mainly in the dorsal region of the tail bud immediately after gastrulation, and that this expression is restricted to the posterior-most region of the elongating neural tube during somitogenesis. This pou5f3 expression was complementary to the broad expression of sox3 in the neural tube, and formed a sharp boundary with specific expression of tbxta (orthologue of mammalian T/Brachyury) in the tail bud, implicating pou5f3 in the specification of tail bud-derived cells toward neural differentiation in the spinal cord. When pou5f3 was functionally impaired after gastrulation by induction of a dominant-interfering pou5f3 mutant gene (en-pou5f3), trunk and tail elongation were markedly disturbed at distinct positions along the axis depending on the stage. This finding showed involvement of pou5f3 in de novo generation of the body from the tail bud. Conditional functional abrogation also showed that pou5f3 downregulates mesoderm-forming genes but promotes neural development by activating neurogenesis genes around the tail bud. These results suggest that pou5f3 is involved in formation of the posterior spinal cord.
Collapse
Affiliation(s)
- Tatsuya Yuikawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Masaaki Ikeda
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Sachiko Tsuda
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Shinji Saito
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| |
Collapse
|
13
|
McLaren SBP, Steventon BJ. Anterior expansion and posterior addition to the notochord mechanically coordinate zebrafish embryo axis elongation. Development 2021; 148:269016. [PMID: 34086031 PMCID: PMC8327291 DOI: 10.1242/dev.199459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023]
Abstract
How force generated by the morphogenesis of one tissue impacts the morphogenesis of other tissues to achieve an elongated embryo axis is not well understood. The notochord runs along the length of the somitic compartment and is flanked on either side by somites. Vacuolating notochord cells undergo a constrained expansion, increasing notochord internal pressure and driving its elongation and stiffening. Therefore, the notochord is appropriately positioned to play a role in mechanically elongating the somitic compartment. We used multi-photon cell ablation to remove specific regions of the zebrafish notochord and quantify the impact on axis elongation. We show that anterior expansion generates a force that displaces notochord cells posteriorly relative to adjacent axial tissues, contributing to the elongation of segmented tissue during post-tailbud stages. Unexpanded cells derived from progenitors at the posterior end of the notochord provide resistance to anterior notochord cell expansion, allowing for stress generation along the anterior-posterior axis. Therefore, notochord cell expansion beginning in the anterior, and addition of cells to the posterior notochord, act as temporally coordinated morphogenetic events that shape the zebrafish embryo anterior-posterior axis. Summary: Targeted multi-photon tissue ablation reveals that coordinated cell expansion and addition to the notochord in zebrafish embryos contributes to the elongation of segmented tissue required for embryo anterior-posterior axis extension.
Collapse
|
14
|
Gladysheva J, Evnukova E, Kondakova E, Kulakova M, Efremov V. Neurulation in the posterior region of zebrafish, Danio rerio embryos. J Morphol 2021; 282:1437-1454. [PMID: 34233026 DOI: 10.1002/jmor.21396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/06/2022]
Abstract
The neural tube of amniotes is formed through different mechanisms that take place in the anterior and posterior regions and involve neural plate folding or mesenchymal condensation followed by its cavitation. Meanwhile, in teleost trunk region, the neural plate forms the neural keel, while the lumen develops later. However, the data on neurulation and other morphogenetic processes in the posterior body region in Teleostei remain fragmentary. We proposed that there could be variations in the morphogenetic processes, such as cell shape changes and cell rearrangements, in the posterior region compared to the anterior one at the different stages. Here, we performed morphological and histochemical analyses of morphogenetic processes with an emphasis on neurulation in the zebrafish tail bud (TB) and posterior region. To analyze the posterior expression of sox2 and tbxta we performed whole mount in situ hybridization. We showed that the TB cells of variable shapes and orientation are tightly packed, and the neural and notochord primordia develop first. The shape of the neural primordium undergoes numerous changes as a result of cell rearrangements leading to the development of the neural rod. At the prim-6 stage, the cells of the neural primordium directly form the neural rod. The neuroepithelial cells undergo sequential shape changes. At the stage of the neural rod formation, the apical regions of triangular neuroepithelial cells of the floor plate are enriched in F-actin. The neurocoel development onset is above the apical poles of neuroepithelial cells. The expression domains of sox2 and tbxta become more restricted during the development.
Collapse
Affiliation(s)
- Julia Gladysheva
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation.,The Scandinavia AVA-PETER Clinic, St. Petersburg, Russian Federation
| | - Evdokia Evnukova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| | - Ekaterina Kondakova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation.,Federal State Scientific Establishment "Berg State Research Institute on Lake and River Fisheries" (GosNIORH), St. Petersburg branch of VNIRO, Russian federal Research Institute of Fisheries and Oceanography, Moscow, Russian Federation
| | - Milana Kulakova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| | - Vladimir Efremov
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| |
Collapse
|
15
|
Abstract
Atonal homologue 8 (atoh8) is a basic helix-loop-helix transcription factor expressed in a variety of embryonic tissues. While several studies have implicated atoh8 in various developmental pathways in other species, its role in zebrafish development remains uncertain. So far, no studies have dealt with an in-depth in situ analysis of the tissue distribution of atoh8 in embryonic zebrafish. We set out to pinpoint the exact location of atoh8 expression in a detailed spatio-temporal analysis in zebrafish during the first 24 h of development (hpf). To our surprise, we observed transcription from pre-segmentation stages in the paraxial mesoderm and during the segmentation stages in the somitic sclerotome and not—as previously reported—in the myotome. With progressing maturation of the somites, the restriction of atoh8 to the sclerotomal compartment became evident. Double in situ hybridisation with atoh8 and myoD revealed that both genes are expressed in the somites at coinciding developmental stages; however, their domains do not spatially overlap. A second domain of atoh8 expression emerged in the embryonic brain in the developing cerebellum and hindbrain. Here, we observed a specific expression pattern which was again in contrast to the previously published suggestion of atoh8 transcription in neural crest cells. Our findings point towards a possible role of atoh8 in sclerotome, cerebellum and hindbrain development. More importantly, the results of this expression analysis provide new insights into early sclerotome development in zebrafish—a field of research in developmental biology which has not received much attention so far.
Collapse
|
16
|
Ye Z, Braden CR, Wills A, Kimelman D. Identification of in vivo Hox13-binding sites reveals an essential locus controlling zebrafish brachyury expression. Development 2021; 148:268973. [PMID: 34061173 DOI: 10.1242/dev.199408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
During early embryogenesis, the vertebrate embryo extends from anterior to posterior because of the progressive addition of cells from a posteriorly localized neuromesodermal progenitor (NMp) population. An autoregulatory loop between Wnt and Brachyury/Tbxt is required for NMps to retain mesodermal potential and, hence, normal axis development. We recently showed that Hox13 genes help to support body axis formation and to maintain the autoregulatory loop, although the direct Hox13 target genes were unknown. Here, using a new method for identifying in vivo transcription factor-binding sites, we identified more than 500 potential Hox13 target genes in zebrafish. Importantly, we found two highly conserved Hox13-binding elements far from the tbxta transcription start site that also contain a conserved Tcf7/Lef1 (Wnt response) site. We show that the proximal of the two elements is sufficient to confer somitogenesis-stage expression to a tbxta promoter that, on its own, only drives NMp expression during gastrulation. Importantly, elimination of this proximal element produces shortened embryos due to aberrant formation of the most posterior somites. Our study provides a potential direct connection between Hox13 and regulation of the Wnt/Brachyury loop.
Collapse
Affiliation(s)
- Zhi Ye
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - Christopher R Braden
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - Andrea Wills
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| |
Collapse
|
17
|
Catala M. Overview of Secondary Neurulation. J Korean Neurosurg Soc 2021; 64:346-358. [PMID: 33906344 PMCID: PMC8128529 DOI: 10.3340/jkns.2020.0362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 11/27/2022] Open
Abstract
Secondary neurulation is a morphological process described since the second half of the 19th century; it accounts for the formation of the caudal spinal cord in mammals including humans. A similar process takes place in birds. This form of neurulation is caused by the growth of the tail bud region, the most caudal axial region of the embryo. Experimental work in different animal species leads to questioning dogmas widely disseminated in the medical literature. Thus, it is clearly established that the tail bud is not a mass of undifferentiated pluripotent cells but is made up of a juxtaposition of territories whose fate is different. The lumens of the two tubes generated by the two modes of neurulation are continuous. There seem to be multiple cavities in the human embryo, but discrepancies exist according to the authors. Finally, the tissues that generate the secondary neural tube are initially located in the most superficial layer of the embryo. These cells must undergo internalization to generate the secondary neurectoderm. A defect in internalization could lead to an open neural tube defect that contradicts the dogma that a secondary neurulation defect is closed by definition.
Collapse
Affiliation(s)
- Martin Catala
- Laboratoire de Biologie du développement, Sorbonne Université, Paris, France
| |
Collapse
|
18
|
Hudson C, Yasuo H. Neuromesodermal Lineage Contribution to CNS Development in Invertebrate and Vertebrate Chordates. Genes (Basel) 2021; 12:genes12040592. [PMID: 33920662 PMCID: PMC8073528 DOI: 10.3390/genes12040592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Ascidians are invertebrate chordates and the closest living relative to vertebrates. In ascidian embryos a large part of the central nervous system arises from cells associated with mesoderm rather than ectoderm lineages. This seems at odds with the traditional view of vertebrate nervous system development which was thought to be induced from ectoderm cells, initially with anterior character and later transformed by posteriorizing signals, to generate the entire anterior-posterior axis of the central nervous system. Recent advances in vertebrate developmental biology, however, show that much of the posterior central nervous system, or spinal cord, in fact arises from cells that share a common origin with mesoderm. This indicates a conserved role for bi-potential neuromesoderm precursors in chordate CNS formation. However, the boundary between neural tissue arising from these distinct neural lineages does not appear to be fixed, which leads to the notion that anterior-posterior patterning and neural fate formation can evolve independently.
Collapse
|
19
|
Adikes RC, Kohrman AQ, Martinez MAQ, Palmisano NJ, Smith JJ, Medwig-Kinney TN, Min M, Sallee MD, Ahmed OB, Kim N, Liu S, Morabito RD, Weeks N, Zhao Q, Zhang W, Feldman JL, Barkoulas M, Pani AM, Spencer SL, Martin BL, Matus DQ. Visualizing the metazoan proliferation-quiescence decision in vivo. eLife 2020; 9:e63265. [PMID: 33350383 PMCID: PMC7880687 DOI: 10.7554/elife.63265] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Cell proliferation and quiescence are intimately coordinated during metazoan development. Here, we adapt a cyclin-dependent kinase (CDK) sensor to uncouple these key events of the cell cycle in Caenorhabditis elegans and zebrafish through live-cell imaging. The CDK sensor consists of a fluorescently tagged CDK substrate that steadily translocates from the nucleus to the cytoplasm in response to increasing CDK activity and consequent sensor phosphorylation. We show that the CDK sensor can distinguish cycling cells in G1 from quiescent cells in G0, revealing a possible commitment point and a cryptic stochasticity in an otherwise invariant C. elegans cell lineage. Finally, we derive a predictive model of future proliferation behavior in C. elegans based on a snapshot of CDK activity in newly born cells. Thus, we introduce a live-cell imaging tool to facilitate in vivo studies of cell-cycle control in a wide-range of developmental contexts.
Collapse
Affiliation(s)
- Rebecca C Adikes
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Abraham Q Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Nicholas J Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Jayson J Smith
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Mingwei Min
- Department of Biochemistry and BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Maria D Sallee
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Ononnah B Ahmed
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Nuri Kim
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Simeiyun Liu
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Robert D Morabito
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Nicholas Weeks
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Qinyun Zhao
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | | | | | - Ariel M Pani
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Sabrina L Spencer
- Department of Biochemistry and BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| |
Collapse
|
20
|
Pak B, Schmitt CE, Choi W, Kim JD, Han O, Alsiö J, Jung DW, Williams DR, Coppieters W, Stainier DYR, Jin SW. Analyses of Avascular Mutants Reveal Unique Transcriptomic Signature of Non-conventional Endothelial Cells. Front Cell Dev Biol 2020; 8:589717. [PMID: 33330468 PMCID: PMC7719722 DOI: 10.3389/fcell.2020.589717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells appear to emerge from diverse progenitors. However, to which extent their developmental origin contributes to define their cellular and molecular characteristics remains largely unknown. Here, we report that a subset of endothelial cells that emerge from the tailbud possess unique molecular characteristics that set them apart from stereotypical lateral plate mesoderm (LPM)-derived endothelial cells. Lineage tracing shows that these tailbud-derived endothelial cells arise at mid-somitogenesis stages, and surprisingly do not require Npas4l or Etsrp function, indicating that they have distinct spatiotemporal origins and are regulated by distinct molecular mechanisms. Microarray and single cell RNA-seq analyses reveal that somitogenesis- and neurogenesis-associated transcripts are over-represented in these tailbud-derived endothelial cells, suggesting that they possess a unique transcriptomic signature. Taken together, our results further reveal the diversity of endothelial cells with respect to their developmental origin and molecular properties, and provide compelling evidence that the molecular characteristics of endothelial cells may reflect their distinct developmental history.
Collapse
Affiliation(s)
- Boryeong Pak
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Christopher E. Schmitt
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Woosoung Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jun-Dae Kim
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Orjin Han
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jessica Alsiö
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Da-Woon Jung
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Darren R. Williams
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Wouter Coppieters
- Unit of Animal Genomics, Faculty of Veterinary Medicine, Interdisciplinary Institute of Applied Genomics (GIGA-R), University of Liège (B34), Liège, Belgium
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Suk-Won Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
21
|
Sox2 and Canonical Wnt Signaling Interact to Activate a Developmental Checkpoint Coordinating Morphogenesis with Mesoderm Fate Acquisition. Cell Rep 2020; 33:108311. [PMID: 33113369 PMCID: PMC7653682 DOI: 10.1016/j.celrep.2020.108311] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Animal embryogenesis requires a precise coordination between morphogenesis and cell fate specification. During mesoderm induction, mesodermal fate acquisition is tightly coordinated with the morphogenetic process of epithelial-to-mesenchymal transition (EMT). In zebrafish, cells exist transiently in a partial EMT state during mesoderm induction. Here, we show that cells expressing the transcription factor Sox2 are held in the partial EMT state, stopping them from completing the EMT and joining the mesoderm. This is critical for preventing the formation of ectopic neural tissue. The mechanism involves synergy between Sox2 and the mesoderm-inducing canonical Wnt signaling pathway. When Wnt signaling is inhibited in Sox2-expressing cells trapped in the partial EMT, cells exit into the mesodermal territory but form an ectopic spinal cord instead of mesoderm. Our work identifies a critical developmental checkpoint that ensures that morphogenetic movements establishing the mesodermal germ layer are accompanied by robust mesodermal cell fate acquisition.
Collapse
|
22
|
Can H, Chanumolu SK, Gonzalez-Muñoz E, Prukudom S, Otu HH, Cibelli JB. Comparative analysis of single-cell transcriptomics in human and Zebrafish oocytes. BMC Genomics 2020; 21:471. [PMID: 32640983 PMCID: PMC7346435 DOI: 10.1186/s12864-020-06860-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Zebrafish is a popular model organism, which is widely used in developmental biology research. Despite its general use, the direct comparison of the zebrafish and human oocyte transcriptomes has not been well studied. It is significant to see if the similarity observed between the two organisms at the gene sequence level is also observed at the expression level in key cell types such as the oocyte. Results We performed single-cell RNA-seq of the zebrafish oocyte and compared it with two studies that have performed single-cell RNA-seq of the human oocyte. We carried out a comparative analysis of genes expressed in the oocyte and genes highly expressed in the oocyte across the three studies. Overall, we found high consistency between the human studies and high concordance in expression for the orthologous genes in the two organisms. According to the Ensembl database, about 60% of the human protein coding genes are orthologous to the zebrafish genes. Our results showed that a higher percentage of the genes that are highly expressed in both organisms show orthology compared to the lower expressed genes. Systems biology analysis of the genes highly expressed in the three studies showed significant overlap of the enriched pathways and GO terms. Moreover, orthologous genes that are commonly overexpressed in both organisms were involved in biological mechanisms that are functionally essential to the oocyte. Conclusions Orthologous genes are concurrently highly expressed in the oocytes of the two organisms and these genes belong to similar functional categories. Our results provide evidence that zebrafish could serve as a valid model organism to study the oocyte with direct implications in human.
Collapse
Affiliation(s)
- Handan Can
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Sree K Chanumolu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Elena Gonzalez-Muñoz
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, 29590, Málaga, Spain.,Department of Cell Biology, Genetics and Physiology, University of Málaga and; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBNE), 29071, Málaga, Spain
| | - Sukumal Prukudom
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Hasan H Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Jose B Cibelli
- Departments of Animal Science and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
23
|
Kawachi T, Shimokita E, Kudo R, Tadokoro R, Takahashi Y. Neural-fated self-renewing cells regulated by Sox2 during secondary neurulation in chicken tail bud. Dev Biol 2020; 461:160-171. [DOI: 10.1016/j.ydbio.2020.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022]
|
24
|
Ontogeny of the anuran urostyle and the developmental context of evolutionary novelty. Proc Natl Acad Sci U S A 2020; 117:3034-3044. [PMID: 31988131 PMCID: PMC7022158 DOI: 10.1073/pnas.1917506117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fusion of caudal vertebrae has evolved multiple times independently: the pygostyle of birds, coccyx in apes and humans, ural plate of fish, and the urostyle of frogs. The anuran urostyle, however, is structurally and developmentally distinct because of the contribution of an ossifying hypochord. To date, the developmental mechanisms behind an ossifying hypochord have remained obscure. Here, we provide a detailed analysis of the development of this evolutionary innovative structure and of how neuromusculature, cell death, and proliferation paved their way to facilitate its formation. Finally, we propose that the ossifying hypochord plays a role in tail loss in anurans and reorganizing the dorsal aorta and thus is pivotal in the evolution of the anuran bauplan. Developmental novelties often underlie the evolutionary origins of key metazoan features. The anuran urostyle, which evolved nearly 200 MYA, is one such structure. It forms as the tail regresses during metamorphosis, when locomotion changes from an axial-driven mode in larvae to a limb-driven one in adult frogs. The urostyle comprises of a coccyx and a hypochord. The coccyx forms by fusion of caudal vertebrae and has evolved repeatedly across vertebrates. However, the contribution of an ossifying hypochord to the coccyx in anurans is unique among vertebrates and remains a developmental enigma. Here, we focus on the developmental changes that lead to the anuran urostyle, with an emphasis on understanding the ossifying hypochord. We find that the coccyx and hypochord have two different developmental histories: First, the development of the coccyx initiates before metamorphic climax whereas the ossifying hypochord undergoes rapid ossification and hypertrophy; second, thyroid hormone directly affects hypochord formation and appears to have a secondary effect on the coccygeal portion of the urostyle. The embryonic hypochord is known to play a significant role in the positioning of the dorsal aorta (DA), but the reason for hypochordal ossification remains obscure. Our results suggest that the ossifying hypochord plays a role in remodeling the DA in the newly forming adult body by partially occluding the DA in the tail. We propose that the ossifying hypochord-induced loss of the tail during metamorphosis has enabled the evolution of the unique anuran bauplan.
Collapse
|
25
|
Attardi A, Fulton T, Florescu M, Shah G, Muresan L, Lenz MO, Lancaster C, Huisken J, van Oudenaarden A, Steventon B. Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. Development 2018; 145:dev166728. [PMID: 30333213 PMCID: PMC6240315 DOI: 10.1242/dev.166728] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Abstract
During gastrulation, embryonic cells become specified into distinct germ layers. In mouse, this continues throughout somitogenesis from a population of bipotent stem cells called neuromesodermal progenitors (NMps). However, the degree of self-renewal associated with NMps in the fast-developing zebrafish embryo is unclear. Using a genetic clone-tracing method, we labelled early embryonic progenitors and found a strong clonal similarity between spinal cord and mesoderm tissues. We followed individual cell lineages using light-sheet imaging, revealing a common neuromesodermal lineage contribution to a subset of spinal cord tissue across the anterior-posterior body axis. An initial population subdivides at mid-gastrula stages and is directly allocated to neural and mesodermal compartments during gastrulation. A second population in the tailbud undergoes delayed allocation to contribute to the neural and mesodermal compartment only at late somitogenesis. Cell tracking and retrospective cell fate assignment at late somitogenesis stages reveal these cells to be a collection of mono-fated progenitors. Our results suggest that NMps are a conserved population of bipotential progenitors, the lineage of which varies in a species-specific manner due to vastly different rates of differentiation and growth.
Collapse
Affiliation(s)
- Andrea Attardi
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
- STEBICEF Department, Università degli Studi di Palermo, Palermo 90133, Italy
| | - Timothy Fulton
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Gopi Shah
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
- European Molecular Biology Laboratory, Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, Cambridge CB2 3EH, UK
| | - Martin O Lenz
- Cambridge Advanced Imaging Centre, Cambridge CB2 3EH, UK
| | | | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
- Morgridge Institute for Research, Madison, WI 53715, USA
| | | | | |
Collapse
|
26
|
Yin J, Lee R, Ono Y, Ingham PW, Saunders TE. Spatiotemporal Coordination of FGF and Shh Signaling Underlies the Specification of Myoblasts in the Zebrafish Embryo. Dev Cell 2018; 46:735-750.e4. [PMID: 30253169 DOI: 10.1016/j.devcel.2018.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/11/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
Somitic cells give rise to a variety of cell types in response to Hh, BMP, and FGF signaling. Cell position within the developing zebrafish somite is highly dynamic: how, when, and where these signals specify cell fate is largely unknown. Combining four-dimensional imaging with pathway perturbations, we characterize the spatiotemporal specification and localization of somitic cells. Muscle formation is guided by highly orchestrated waves of cell specification. We find that FGF directly and indirectly controls the differentiation of fast and slow-twitch muscle lineages, respectively. FGF signaling imposes tight temporal control on Shh induction of slow muscles by regulating the time at which fast-twitch progenitors displace slow-twitch progenitors from contacting the Shh-secreting notochord. Further, we find a reciprocal regulation of fast and slow muscle differentiation, morphogenesis, and migration. In conclusion, robust cell fate determination in the developing somite requires precise spatiotemporal coordination between distinct cell lineages and signaling pathways.
Collapse
Affiliation(s)
- Jianmin Yin
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Raymond Lee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore
| | - Yosuke Ono
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Living Systems Institute, University of Exeter, Exeter, UK
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore; Living Systems Institute, University of Exeter, Exeter, UK.
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore; Living Systems Institute, University of Exeter, Exeter, UK.
| |
Collapse
|
27
|
Row RH, Pegg A, Kinney BA, Farr GH, Maves L, Lowell S, Wilson V, Martin BL. BMP and FGF signaling interact to pattern mesoderm by controlling basic helix-loop-helix transcription factor activity. eLife 2018; 7:31018. [PMID: 29877796 PMCID: PMC6013256 DOI: 10.7554/elife.31018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 05/26/2018] [Indexed: 02/06/2023] Open
Abstract
The mesodermal germ layer is patterned into mediolateral subtypes by signaling factors including BMP and FGF. How these pathways are integrated to induce specific mediolateral cell fates is not well understood. We used mesoderm derived from post-gastrulation neuromesodermal progenitors (NMPs), which undergo a binary mediolateral patterning decision, as a simplified model to understand how FGF acts together with BMP to impart mediolateral fate. Using zebrafish and mouse NMPs, we identify an evolutionarily conserved mechanism of BMP and FGF-mediated mediolateral mesodermal patterning that occurs through modulation of basic helix-loop-helix (bHLH) transcription factor activity. BMP imparts lateral fate through induction of Id helix loop helix (HLH) proteins, which antagonize bHLH transcription factors, induced by FGF signaling, that specify medial fate. We extend our analysis of zebrafish development to show that bHLH activity is responsible for the mediolateral patterning of the entire mesodermal germ layer.
Collapse
Affiliation(s)
- Richard H Row
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Amy Pegg
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian A Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Gist H Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, United States
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, United States.,Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, United States
| | - Sally Lowell
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Valerie Wilson
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| |
Collapse
|
28
|
Wagner DE, Weinreb C, Collins ZM, Briggs JA, Megason SG, Klein AM. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 2018; 360:981-987. [PMID: 29700229 DOI: 10.1126/science.aar4362] [Citation(s) in RCA: 528] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
High-throughput mapping of cellular differentiation hierarchies from single-cell data promises to empower systematic interrogations of vertebrate development and disease. Here we applied single-cell RNA sequencing to >92,000 cells from zebrafish embryos during the first day of development. Using a graph-based approach, we mapped a cell-state landscape that describes axis patterning, germ layer formation, and organogenesis. We tested how clonally related cells traverse this landscape by developing a transposon-based barcoding approach (TracerSeq) for reconstructing single-cell lineage histories. Clonally related cells were often restricted by the state landscape, including a case in which two independent lineages converge on similar fates. Cell fates remained restricted to this landscape in embryos lacking the chordin gene. We provide web-based resources for further analysis of the single-cell data.
Collapse
Affiliation(s)
- Daniel E Wagner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Caleb Weinreb
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zach M Collins
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - James A Briggs
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Steventon B, Martinez Arias A. Evo-engineering and the cellular and molecular origins of the vertebrate spinal cord. Dev Biol 2017; 432:3-13. [DOI: 10.1016/j.ydbio.2017.01.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/03/2017] [Accepted: 01/31/2017] [Indexed: 12/31/2022]
|
30
|
Das D, Chatti V, Emonet T, Holley SA. Patterned Disordered Cell Motion Ensures Vertebral Column Symmetry. Dev Cell 2017; 42:170-180.e5. [PMID: 28743003 DOI: 10.1016/j.devcel.2017.06.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 03/30/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022]
Abstract
The biomechanics of posterior embryonic growth must be dynamically regulated to ensure bilateral symmetry of the spinal column. Throughout vertebrate trunk elongation, motile mesodermal progenitors undergo an order-to-disorder transition via an epithelial-to-mesenchymal transition and sort symmetrically into the left and right paraxial mesoderm. We combine theoretical modeling of cell migration in a tail-bud-like geometry with experimental data analysis to assess the importance of ordered and disordered cell motion. We find that increasing order in cell motion causes a phase transition from symmetric to asymmetric body elongation. In silico and in vivo, overly ordered cell motion converts normal anisotropic fluxes into stable vortices near the posterior tail bud, contributing to asymmetric cell sorting. Thus, disorder is a physical mechanism that ensures the bilateral symmetry of the spinal column. These physical properties of the tissue connect across scales such that patterned disorder at the cellular level leads to the emergence of organism-level order.
Collapse
Affiliation(s)
- Dipjyoti Das
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Veena Chatti
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Thierry Emonet
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA; Department of Physics, Yale University, New Haven, CT, USA.
| | - Scott A Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
31
|
Abstract
During vertebrate embryonic development, the spinal cord is formed by the neural derivatives of a neuromesodermal population that is specified at early stages of development and which develops in concert with the caudal regression of the primitive streak. Several processes related to spinal cord specification and maturation are coupled to this caudal extension including neurogenesis, ventral patterning and neural crest specification and all of them seem to be crucially regulated by Fibroblast Growth Factor (FGF) signaling, which is prominently active in the neuromesodermal region and transiently in its derivatives. Here we review the role of FGF signaling in those processes, trying to separate its different functions and highlighting the interactions with other signaling pathways. Finally, these early functions of FGF signaling in spinal cord development may underlay partly its ability to promote regeneration in the lesioned spinal cord as well as its action promoting specific fates in neural stem cell cultures that may be used for therapeutical purposes.
Collapse
Affiliation(s)
- Ruth Diez Del Corral
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Champalimaud Research, Champalimaud Centre for the UnknownLisbon, Portugal
| | - Aixa V Morales
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
32
|
Vaglia JL, Fornari C, Evans PK. Posterior tail development in the salamander Eurycea cirrigera: exploring cellular dynamics across life stages. Dev Genes Evol 2017; 227:85-99. [PMID: 28101674 DOI: 10.1007/s00427-016-0573-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
During embryogenesis, the body axis elongates and specializes. In vertebrate groups such as salamanders and lizards, elongation of the posterior body axis (tail) continues throughout life. This phenomenon of post-embryonic tail elongation via addition of vertebrae has remained largely unexplored, and little is known about the underlying developmental mechanisms that promote vertebral addition. Our research investigated tail elongation across life stages in a non-model salamander species, Eurycea cirrigera (Plethodontidae). Post-embryonic addition of segments suggests that the tail tip retains some aspects of embryonic cell/tissue organization and gene expression throughout the life cycle. We describe cell and tissue differentiation and segmentation of the posterior tail using serial histology and expression of the axial tissue markers, MF-20 and Pax6. Embryonic expression patterns of HoxA13 and C13 are shown with in situ hybridization. Tissue sections reveal that the posterior spinal cord forms via cavitation and precedes development of the underlying cartilaginous rod after embryogenesis. Post-embryonic tail elongation occurs in the absence of somites and mesenchymal cells lateral to the midline express MF-20. Pax6 expression was observed only in the spinal cord and some mesenchymal cells of adult Eurycea tails. Distinct temporal and spatial patterns of posterior Hox13 gene expression were observed throughout embryogenesis. Overall, important insights to cell organization, differentiation, and posterior Hox gene expression may be gained from this work. We suggest that further work on gene expression in the elongating adult tail could shed light on mechanisms that link continual axial elongation with regeneration.
Collapse
Affiliation(s)
- Janet L Vaglia
- Department of Biology, DePauw University, 1 E Hanna Street, Greencastle, IN, 46135, USA.
| | - Chet Fornari
- Department of Biology, DePauw University, 1 E Hanna Street, Greencastle, IN, 46135, USA
| | - Paula K Evans
- Department of Biology, DePauw University, 1 E Hanna Street, Greencastle, IN, 46135, USA
| |
Collapse
|
33
|
Goto H, Kimmey SC, Row RH, Matus DQ, Martin BL. FGF and canonical Wnt signaling cooperate to induce paraxial mesoderm from tailbud neuromesodermal progenitors through regulation of a two-step epithelial to mesenchymal transition. Development 2017; 144:1412-1424. [PMID: 28242612 DOI: 10.1242/dev.143578] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Mesoderm induction begins during gastrulation. Recent evidence from several vertebrate species indicates that mesoderm induction continues after gastrulation in neuromesodermal progenitors (NMPs) within the posteriormost embryonic structure, the tailbud. It is unclear to what extent the molecular mechanisms of mesoderm induction are conserved between gastrula and post-gastrula stages of development. Fibroblast growth factor (FGF) signaling is required for mesoderm induction during gastrulation through positive transcriptional regulation of the T-box transcription factor brachyury We find in zebrafish that FGF is continuously required for paraxial mesoderm (PM) induction in post-gastrula NMPs. FGF signaling represses the NMP markers brachyury (ntla) and sox2 through regulation of tbx16 and msgn1, thereby committing cells to a PM fate. FGF-mediated PM induction in NMPs functions in tight coordination with canonical Wnt signaling during the epithelial to mesenchymal transition (EMT) from NMP to mesodermal progenitor. Wnt signaling initiates EMT, whereas FGF signaling terminates this event. Our results indicate that germ layer induction in the zebrafish tailbud is not a simple continuation of gastrulation events.
Collapse
Affiliation(s)
- Hana Goto
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Samuel C Kimmey
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Richard H Row
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
34
|
Cooperation Between T-Box Factors Regulates the Continuous Segregation of Germ Layers During Vertebrate Embryogenesis. Curr Top Dev Biol 2017; 122:117-159. [DOI: 10.1016/bs.ctdb.2016.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Kimelman D. A novel cold-sensitive mutant of ntla reveals temporal roles of brachyury in zebrafish. Dev Dyn 2016; 245:874-80. [PMID: 27153483 PMCID: PMC4947019 DOI: 10.1002/dvdy.24417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND With the exception of the head, the vertebrate embryonic body is formed progressively in an anterior-posterior direction, originating from a posteriorly located bipotential neural-mesodermal progenitor population. The T-box transcription factor Brachyury is expressed within the progenitors and is essential for the formation of the posterior mesoderm. A novel cold-sensitive mutant of Zebrafish Brachyury (ntla(cs) ) is described that allows exploration of the temporal role of this key factor. RESULTS The ntla(cs) mutant is used to show that Ntla has an essential role during early gastrulation, but as gastrulation proceeds the importance of Ntla declines as Ntlb acquires a capacity to form the posterior mesoderm. Remarkably, ntla(cs) embryos held at the nonpermissive temperature just during the gastrula stages show recovery of normal levels of mesodermal gene expression, demonstrating the plasticity of the posterior progenitors. CONCLUSION ntla(cs) is a valuable tool for exploring the processes forming the posterior body since it allows temporally specific activation and inactivation of Brachyury function. It is used here to show the changing roles of Ntla during early development and the dynamics of the neuromesodermal progenitors. Developmental Dynamics 245:874-880, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350
| |
Collapse
|
36
|
Hudson C, Sirour C, Yasuo H. Co-expression of Foxa.a, Foxd and Fgf9/16/20 defines a transient mesendoderm regulatory state in ascidian embryos. eLife 2016; 5. [PMID: 27351101 PMCID: PMC4945153 DOI: 10.7554/elife.14692] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022] Open
Abstract
In many bilaterian embryos, nuclear β-catenin (nβ-catenin) promotes mesendoderm over ectoderm lineages. Although this is likely to represent an evolutionary ancient developmental process, the regulatory architecture of nβ-catenin-induced mesendoderm remains elusive in the majority of animals. Here, we show that, in ascidian embryos, three nβ-catenin transcriptional targets, Foxa.a, Foxd and Fgf9/16/20, are each required for the correct initiation of both the mesoderm and endoderm gene regulatory networks. Conversely, these three factors are sufficient, in combination, to produce a mesendoderm ground state that can be further programmed into mesoderm or endoderm lineages. Importantly, we show that the combinatorial activity of these three factors is sufficient to reprogramme developing ectoderm cells to mesendoderm. We conclude that in ascidian embryos, the transient mesendoderm regulatory state is defined by co-expression of Foxa.a, Foxd and Fgf9/16/20. DOI:http://dx.doi.org/10.7554/eLife.14692.001
Collapse
Affiliation(s)
- Clare Hudson
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, CNRS, Villefranche-sur-Mer, France
| | - Cathy Sirour
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, CNRS, Villefranche-sur-Mer, France
| | - Hitoyoshi Yasuo
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, CNRS, Villefranche-sur-Mer, France
| |
Collapse
|