1
|
Zhang X, Li Y, Ge Y, Mao Y, Hu G, Ma Q, Chen E. SEEDSTICK Affects Seed Development by Mediating Cytokinin Levels in Cotton. PHYSIOLOGIA PLANTARUM 2025; 177:e70161. [PMID: 40113449 DOI: 10.1111/ppl.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
The SEEDSTICK transcription factor is important for flower and seed development, but the underlying molecular mechanisms remain unclear in cotton. In this study, we identified and cloned two STK homolog genes in upland cotton, an economically valuable cultivated crop. Phylogenetic and sequence analyses showed that the C-terminus of both GhSTKs had a conserved -DJJILHLG amino acid sequence and that GhSTK1 and GhSTK2 were very similar to GaAGL11 and GrAGL11, respectively. Quantitative real-time PCR analysis revealed that both GhSTKs were highly expressed in the ovules, and GUS activity was detected in the style and stigma. Subcellular localization experiments showed that GhSTK1 and GhSTK2 were localized to the nucleus. In Arabidopsis, the overexpression of GhSTK1 or GhSTK2 affected floral organ development and seed formation by increasing the transcript levels of the CKX genes and other genes related to floral development. Silencing both GhSTK1 and GhSTK2 increased the expression of GhFT and GhSHP and led to the earlier appearance of cotton buds. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated that the two GhSTK proteins could interact with the GhSEP3 and GhSEP4 proteins. The present results suggest that GhSTK1 and GhSTK2, which have different sequences and expression patterns, might be functionally redundant and influence the regulation of cotton bud and seed development.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, Henan, P.R, China
| | - Yifan Li
- Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, Henan, P.R, China
| | - Yunjie Ge
- Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, Henan, P.R, China
| | - Yuhao Mao
- Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, Henan, P.R, China
| | - Genhai Hu
- Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, Henan, P.R, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R, China
| | - Eryong Chen
- Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, Henan, P.R, China
| |
Collapse
|
2
|
Lotz D, Rössner LH, Ehlers K, Kong D, Rössner C, Rupp O, Becker A. Conservation of the dehiscence zone gene regulatory network in dicots and the role of the SEEDSTICK ortholog of California poppy (Eschscholzia californica) in fruit development. EvoDevo 2024; 15:16. [PMID: 39731146 DOI: 10.1186/s13227-024-00236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/14/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Fruits, with their diverse shapes, colors, and flavors, represent a fascinating aspect of plant evolution and have played a significant role in human history and nutrition. Understanding the origins and evolutionary pathways of fruits offers valuable insights into plant diversity, ecological relationships, and the development of agricultural systems. Arabidopsis thaliana (Brassicaceae, core eudicot) and Eschscholzia californica (California poppy, Papaveraceae, sister group to core eudicots) both develop dry dehiscent fruits, with two valves separating explosively from the replum-like region upon maturation. This led to the hypothesis, that homologous gene regulatory networks direct fruit development and dehiscence in both species. RESULTS Transcriptome analysis of separately collected valve and replum-like tissue of California poppy yielded the SEEDSTICK (STK) ortholog as candidate for dehiscence zone regulation. Expression analysis of STK orthologs from dry dehiscing fruits of legumes (Vicia faba, Glycine max and Pisum sativum) shows their involvement in fruit development. Functional analysis using Virus-Induced Gene Silencing (VIGS) showed premature rupture of fruits and clarified the roles of EscaSTK: an evolutionary conserved role in seed filling and seed coat development, and a novel role in restricting cell divisions in the inner cell layer of the valve. CONCLUSION Our analysis shows that the gene regulatory network described in Arabidopsis is significantly different in other dicots, even if their fruits form a dehiscence zone at the valve margins. The ortholog of STK, known to be involved in ovule development and seed abscission in Arabidopsis, was recruited to a network regulating fruit wall proliferation in California poppy. There, EscaSTK allows fruit maturation without premature capsule rupture, highlighting the importance of proper endocarp development for successful seed dispersal.
Collapse
Affiliation(s)
- Dominik Lotz
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Le Han Rössner
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Katrin Ehlers
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Doudou Kong
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Clemens Rössner
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35392, Giessen, Germany
| | - Annette Becker
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392, Giessen, Germany.
| |
Collapse
|
3
|
Blaschek L, Serk H, Pesquet E. Functional Complexity on a Cellular Scale: Why In Situ Analyses Are Indispensable for Our Understanding of Lignified Tissues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38832924 DOI: 10.1021/acs.jafc.4c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Lignins are a key adaptation that enables vascular plants to thrive in terrestrial habitats. Lignin is heterogeneous, containing upward of 30 different monomers, and its function is multifarious: It provides structural support, predetermined breaking points, ultraviolet protection, diffusion barriers, pathogen resistance, and drought resilience. Recent studies, carefully characterizing lignin in situ, have started to identify specific lignin compositions and ultrastructures with distinct cellular functions, but our understanding remains fractional. We summarize recent works and highlight where further in situ lignin analysis could provide valuable insights into plant growth and adaptation. We also summarize strengths and weaknesses of lignin in situ analysis methods.
Collapse
Affiliation(s)
- Leonard Blaschek
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Edouard Pesquet
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Raman H, Raman R, Sharma N, Cui X, McVittie B, Qiu Y, Zhang Y, Hu Q, Liu S, Gororo N. Novel quantitative trait loci from an interspecific Brassica rapa derivative improve pod shatter resistance in Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 14:1233996. [PMID: 37736615 PMCID: PMC10510201 DOI: 10.3389/fpls.2023.1233996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023]
Abstract
Pod shatter is a trait of agricultural relevance that ensures plants dehisce seeds in their native environment and has been subjected to domestication and selection for non-shattering types in several broadacre crops. However, pod shattering causes a significant yield reduction in canola (Brassica napus L.) crops. An interspecific breeding line BC95042 derived from a B. rapa/B. napus cross showed improved pod shatter resistance (up to 12-fold than a shatter-prone B. napus variety). To uncover the genetic basis and improve pod shatter resistance in new varieties, we analysed F2 and F2:3 derived populations from the cross between BC95042 and an advanced breeding line, BC95041, and genotyped with 15,498 DArTseq markers. Through genome scan, interval and inclusive composite interval mapping analyses, we identified seven quantitative trait loci (QTLs) associated with pod rupture energy, a measure for pod shatter resistance or pod strength, and they locate on A02, A03, A05, A09 and C01 chromosomes. Both parental lines contributed alleles for pod shatter resistance. We identified five pairs of significant epistatic QTLs for additive x additive, additive dominance and dominance x dominance interactions between A01/C01, A03/A07, A07/C03, A03/C03, and C01/C02 chromosomes for rupture energy. QTL effects on A03/A07 and A01/C01 were in the repulsion phase. Comparative mapping identified several candidate genes (AG, ABI3, ARF3, BP1, CEL6, FIL, FUL, GA2OX2, IND, LATE, LEUNIG, MAGL15, RPL, QRT2, RGA, SPT and TCP10) underlying main QTL and epistatic QTL interactions for pod shatter resistance. Three QTLs detected on A02, A03, and A09 were near the FUL (FRUITFULL) homologues BnaA03g39820D and BnaA09g05500D. Focusing on the FUL, we investigated putative motifs, sequence variants and the evolutionary rate of its homologues in 373 resequenced B. napus accessions of interest. BnaA09g05500D is subjected to purifying selection as it had a low Ka/Ks ratio compared to other FUL homologues in B. napus. This study provides a valuable resource for genetic improvement for yield through an understanding of the genetic mechanism controlling pod shatter resistance in Brassica species.
Collapse
Affiliation(s)
- Harsh Raman
- New South Wales (NSW) Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Rosy Raman
- New South Wales (NSW) Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Niharika Sharma
- New South Wales (NSW) Department of Primary Industries, Orange Agricultural Institute, Orange, NSW, Australia
| | - Xiaobo Cui
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Brett McVittie
- New South Wales (NSW) Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Yu Qiu
- New South Wales (NSW) Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Yuanyuan Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Qiong Hu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Shengyi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | | |
Collapse
|
5
|
RNA-Seq and Genome-Wide Association Studies Reveal Potential Genes for Rice Seed Shattering. Int J Mol Sci 2022; 23:ijms232314633. [PMID: 36498964 PMCID: PMC9736558 DOI: 10.3390/ijms232314633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The loss of the shattering ability is one of the key events in rice domestication. The strength of the seed shattering ability is closely related to the harvest yield and the adaptability of modern mechanical harvesting methods. In this study, using a population of 587 natural rice cultivars, quantitative trait loci associated with seed shattering were detected by genome-wide association studies (GWASs). We consider the quantitative trait loci (QTLs) qBTS1 and qBTS3 to be the key loci for seed shattering in rice. Additionally, the abscission zone (AZ) and nonabscission zone (NAZ) of materials with a loss of shattering (DZ129) and easy shattering (W517) were subjected to RNA-Seq, and high-quality differential expression profiles were obtained. The AZ-specific differentially expressed genes (DEGs) of W517 were significantly enriched in plant hormone signal transduction, while the AZ-specific DEGs of DZ129 were enriched in phenylpropanoid biosynthesis. We identified candidate genes for the lignin-associated laccase precursor protein (LOC_Os01g63180) and the glycoside hydrolase family (LOC_Os03g14210) in the QTLs qBTS1 (chromosome 1) and qBTS3 (chromosome 3), respectively. In summary, our findings lay the foundation for the further cloning of qBTS1 and qBTS3, which would provide new insights into seed shattering in rice.
Collapse
|
6
|
Di Marzo M, Babolin N, Viana VE, de Oliveira AC, Gugi B, Caporali E, Herrera-Ubaldo H, Martínez-Estrada E, Driouich A, de Folter S, Colombo L, Ezquer I. The Genetic Control of SEEDSTICK and LEUNIG-HOMOLOG in Seed and Fruit Development: New Insights into Cell Wall Control. PLANTS (BASEL, SWITZERLAND) 2022; 11:3146. [PMID: 36432874 PMCID: PMC9698089 DOI: 10.3390/plants11223146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Although much is known about seed and fruit development at the molecular level, many gaps remain in our understanding of how cell wall modifications can impact developmental processes in plants, as well as how biomechanical alterations influence seed and fruit growth. Mutants of Arabidopsis thaliana constitute an excellent tool to study the function of gene families devoted to cell wall biogenesis. We have characterized a collection of lines carrying mutations in representative cell wall-related genes for seed and fruit size developmental defects, as well as altered germination rates. We have linked these studies to cell wall composition and structure. Interestingly, we have found that disruption of genes involved in pectin maturation and hemicellulose deposition strongly influence germination dynamics. Finally, we focused on two transcriptional regulators, SEEDSTICK (STK) and LEUNIG-HOMOLOG (LUH), which positively regulate seed growth. Herein, we demonstrate that these factors regulate specific aspects of cell wall properties such as pectin distribution. We propose a model wherein changes in seed coat structure due to alterations in the xyloglucan-cellulose matrix deposition and pectin maturation are critical for organ growth and germination. The results demonstrate the importance of cell wall properties and remodeling of polysaccharides as major factors responsible for seed development.
Collapse
Affiliation(s)
- Maurizio Di Marzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Nicola Babolin
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Vívian Ebeling Viana
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Plant Genomics and Breeding Center, Federal University of Pelotas, Capão do Leão 96010-610, RS, Brazil
| | - Antonio Costa de Oliveira
- Plant Genomics and Breeding Center, Federal University of Pelotas, Capão do Leão 96010-610, RS, Brazil
| | - Bruno Gugi
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, UNIROUEN—Universitè de Rouen Normandie, 76000 Rouen, France
| | - Elisabetta Caporali
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, Mexico
| | - Eduardo Martínez-Estrada
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, Mexico
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, UNIROUEN—Universitè de Rouen Normandie, 76000 Rouen, France
- Fédération de Recherche “NORVEGE”-FED 4277, 76000 Rouen, France
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, Mexico
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Ignacio Ezquer
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
7
|
He S, Ma R, Liu Z, Zhang D, Wang S, Guo Y, Chen M. Overexpression of BnaAGL11, a MADS-Box Transcription Factor, Regulates Leaf Morphogenesis and Senescence in Brassica napus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3420-3434. [PMID: 35261232 DOI: 10.1021/acs.jafc.1c07622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Previous studies have reported that SEEDSTICK/AGAMOUS-LIKE 11 (AtSTK/AtAGL11), a MADS-box transcription factor, plays important roles in many biological processes in Arabidopsis thaliana. However, the function of BnaAGL11, an AtAGL11 homologous gene from Brassica napus, in leaf development remains unknown. Here, we found that the ectopic expression of any copy of Bna.C09.AGL11, Bna.A03.AGL11, and Bna.A09.AGL11 in A. thaliana led to smaller and curly leaves and promoted leaf senescence. Consistently, the overexpression of Bna.C09.AGL11 in B. napus also caused smaller and curly leaves and accelerated leaf senescence. Furthermore, we demonstrated that Bna.C09.AGL11 controlled leaf morphogenesis by indirectly downregulating the genes of Bna.A01.DWF4 and Bna.C07.PGX3 and promoted leaf senescence by indirectly upregulating the genes of Bna.A04.ABI5, Bna.A05.ABI5, Bna.C04.ABI5-1, and Bna.C01.SEN4 and directly activating the transcription of Bna.C04.ABI5-2 and Bna.C03.SEN4 genes. Our results provide new insights into the underlying regulatory mechanism of BnaAGL11 during leaf development in B. napus.
Collapse
Affiliation(s)
- Shuangcheng He
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rong Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zijin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Da Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shixiang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
8
|
Abstract
Flowering plants produce flowers and one of the most complex floral structures is the pistil or the gynoecium. All the floral organs differentiate from the floral meristem. Various reviews exist on molecular mechanisms controlling reproductive development, but most focus on a short time window and there has been no recent review on the complete developmental time frame of gynoecium and fruit formation. Here, we highlight recent discoveries, including the players, interactions and mechanisms that govern gynoecium and fruit development in Arabidopsis. We also present the currently known gene regulatory networks from gynoecium initiation until fruit maturation.
Collapse
Affiliation(s)
- Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, México
| |
Collapse
|
9
|
Paolo D, Orozco-Arroyo G, Rotasperti L, Masiero S, Colombo L, de Folter S, Ambrose BA, Caporali E, Ezquer I, Mizzotti C. Genetic Interaction of SEEDSTICK, GORDITA and AUXIN RESPONSE FACTOR 2 during Seed Development. Genes (Basel) 2021; 12:1189. [PMID: 34440362 PMCID: PMC8393894 DOI: 10.3390/genes12081189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Seed development is under the control of complex and coordinated molecular networks required for the formation of its different components. The seed coat development largely determines final seed size and shape, in addition to playing a crucial role in protecting the embryo and promoting germination. In this study, we investigated the role of three transcription factors known to be active during seed development in Arabidopsis thaliana: SEEDSTICK (STK) and GORDITA (GOA), two MADS-domain proteins, and AUXIN RESPONSE FACTOR 2 (ARF2), belonging to the ARF family. Through a reverse genetic approach, we characterized the seed phenotypes of all the single, double and triple loss-of-function mutants in relation to seed size/shape and the effects on metabolic pathways occurring in the seed coat. This approach revealed that dynamic networks involving these TFs are active throughout ovule and seed development, affecting the formation of the seed coat. Notably, while the genetic interaction among these genes results in synergies that control the promotion of cell expansion in the seed coat upon pollination and production of proanthocyanidins, functional antagonists arise in the control of cell proliferation and release of mucilage.
Collapse
Affiliation(s)
- Dario Paolo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Gregorio Orozco-Arroyo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Lisa Rotasperti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Simona Masiero
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Stefan de Folter
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato CP 36824, Guanajuato, Mexico;
| | | | - Elisabetta Caporali
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| | - Chiara Mizzotti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (G.O.-A.); (L.R.); (S.M.); (L.C.); (E.C.); (I.E.)
| |
Collapse
|
10
|
Cruz-Valderrama JE, Bernal-Gallardo JJ, Herrera-Ubaldo H, de Folter S. Building a Flower: The Influence of Cell Wall Composition on Flower Development and Reproduction. Genes (Basel) 2021; 12:genes12070978. [PMID: 34206830 PMCID: PMC8304806 DOI: 10.3390/genes12070978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Floral patterning is a complex task. Various organs and tissues must be formed to fulfill reproductive functions. Flower development has been studied, mainly looking for master regulators. However, downstream changes such as the cell wall composition are relevant since they allow cells to divide, differentiate, and grow. In this review, we focus on the main components of the primary cell wall-cellulose, hemicellulose, and pectins-to describe how enzymes involved in the biosynthesis, modifications, and degradation of cell wall components are related to the formation of the floral organs. Additionally, internal and external stimuli participate in the genetic regulation that modulates the activity of cell wall remodeling proteins.
Collapse
|
11
|
De Coninck T, Gistelinck K, Janse van Rensburg HC, Van den Ende W, Van Damme EJM. Sweet Modifications Modulate Plant Development. Biomolecules 2021; 11:756. [PMID: 34070047 PMCID: PMC8158104 DOI: 10.3390/biom11050756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Plant development represents a continuous process in which the plant undergoes morphological, (epi)genetic and metabolic changes. Starting from pollination, seed maturation and germination, the plant continues to grow and develops specialized organs to survive, thrive and generate offspring. The development of plants and the interplay with its environment are highly linked to glycosylation of proteins and lipids as well as metabolism and signaling of sugars. Although the involvement of these protein modifications and sugars is well-studied, there is still a long road ahead to profoundly comprehend their nature, significance, importance for plant development and the interplay with stress responses. This review, approached from the plants' perspective, aims to focus on some key findings highlighting the importance of glycosylation and sugar signaling for plant development.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory of Glycobiology & Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (T.D.C.); (K.G.)
| | - Koen Gistelinck
- Laboratory of Glycobiology & Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (T.D.C.); (K.G.)
| | - Henry C. Janse van Rensburg
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium; (H.C.J.v.R.); (W.V.d.E.)
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium; (H.C.J.v.R.); (W.V.d.E.)
| | - Els J. M. Van Damme
- Laboratory of Glycobiology & Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (T.D.C.); (K.G.)
| |
Collapse
|
12
|
Łangowski Ł, Goñi O, Marques FS, Hamawaki OT, da Silva CO, Nogueira APO, Teixeira MAJ, Glasenapp JS, Pereira M, O’Connell S. Ascophyllum nodosum Extract (Sealicit TM) Boosts Soybean Yield Through Reduction of Pod Shattering-Related Seed Loss and Enhanced Seed Production. FRONTIERS IN PLANT SCIENCE 2021; 12:631768. [PMID: 33719306 PMCID: PMC7943832 DOI: 10.3389/fpls.2021.631768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 05/27/2023]
Abstract
Soybean is one of the most valuable commercial crops because of its high protein, carbohydrate, and oil content. The land area cultivated with soybean in subtropical regions, such as Brazil, is continuously expanding, in some instances at the expense of carbon storing natural habitats. Strategies to decrease yield/seed losses and increase production efficiency are urgently required to meet global demand for soybean in a sustainable manner. Here, we evaluated the effectiveness of an Ascophyllum nodosum extract (ANE), SealicitTM, in increasing yields of different soybean varieties, in two geographical regions (Canada and Brazil). In addition, we investigated the potential of SealicitTM to reduce pod shattering at the trials in Brazil. Three different concentrations of SealicitTM were applied to pod shatter-susceptible (SS) UFUS 6901 and shatter-resistant (SR) UFUS 7415 varieties to assess their impact on pod firmness. SS variety demonstrated a significant decrease in pod shattering, which coincided with deregulation of GmPDH1.1 and GmSHAT1-5 expression, genes that determine pod dehiscence, and higher seed weight per pod. SealicitTM application to the SR variety did not significantly alter its inherent pod shatter resistance, but provided higher increases in seed yield at harvest. This yield increase maybe associated with to other yield components stimulated by the biostimulant. This work demonstrates that SealicitTM, which has previously been shown to improve pod firmness in Arabidopsis and selected commercial oilseed rape varieties through IND gene down-regulation, also has the potential to improve pod resistance and seed productivity in soybean, a member of the legume family sharing a similar strategy for seed dispersal.
Collapse
Affiliation(s)
| | - Oscar Goñi
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University Kerry, Tralee, Ireland
| | - Fabio Serafim Marques
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia/UFU, Uberlândia, Brazil
| | | | | | | | | | | | - Marcio Pereira
- Fundação Educacional de Ituverava FAFRAM, Faculdade Agronomia, Ituverava, Brazil
| | - Shane O’Connell
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University Kerry, Tralee, Ireland
| |
Collapse
|
13
|
Paolo D, Rotasperti L, Schnittger A, Masiero S, Colombo L, Mizzotti C. The Arabidopsis MADS-Domain Transcription Factor SEEDSTICK Controls Seed Size via Direct Activation of E2Fa. PLANTS 2021; 10:plants10020192. [PMID: 33498552 PMCID: PMC7909557 DOI: 10.3390/plants10020192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
Seed size is the result of complex molecular networks controlling the development of the seed coat (of maternal origin) and the two fertilization products, the embryo and the endosperm. In this study we characterized the role of Arabidopsis thaliana MADS-domain transcription factor SEEDSTICK (STK) in seed size control. STK is known to regulate the differentiation of the seed coat as well as the structural and mechanical properties of cell walls in developing seeds. In particular, we further characterized stk mutant seeds. Genetic evidence (reciprocal crosses) of the inheritance of the small-seed phenotype, together with the provided analysis of cell division activity (flow cytometry), demonstrate that STK acts in the earlier phases of seed development as a maternal activator of growth. Moreover, we describe a molecular mechanism underlying this activity by reporting how STK positively regulates cell cycle progression via directly activating the expression of E2Fa, a key regulator of the cell cycle. Altogether, our results unveil a new genetic network active in the maternal control of seed size in Arabidopsis.
Collapse
Affiliation(s)
- Dario Paolo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
| | - Lisa Rotasperti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
| | - Arp Schnittger
- Abteilung für Entwicklungsbiologie, Institut für Pflanzenforschung und Mikrobiologie, Universität Hamburg, 22609 Hamburg, Germany;
| | - Simona Masiero
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
| | - Chiara Mizzotti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
- Correspondence: ; Tel.: +39-02-503-14838
| |
Collapse
|
14
|
Mendes MA, Petrella R, Cucinotta M, Vignati E, Gatti S, Pinto SC, Bird DC, Gregis V, Dickinson H, Tucker MR, Colombo L. The RNA-dependent DNA methylation pathway is required to restrict SPOROCYTELESS/NOZZLE expression to specify a single female germ cell precursor in Arabidopsis. Development 2020; 147:dev194274. [PMID: 33158925 PMCID: PMC7758631 DOI: 10.1242/dev.194274] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
In higher plants, the female germline is formed from the megaspore mother cell (MMC), a single cell in the premeiotic ovule. Previously, it was reported that mutants in the RNA-dependent DNA methylation (RdDM) pathway might be involved in restricting the female germline to a single nucellus cell. We show that the DRM methyltransferase double mutant drm1drm2 also presents ectopic enlarged cells, consistent with supernumerary MMC-like cells. In wild-type ovules, MMC differentiation requires SPOROCYTELESS/NOZZLE (SPL/NZZ), as demonstrated by the spl/nzz mutant failing to develop an MMC. We address the poorly understood upstream regulation of SPL/NZZ in ovules, showing that the RdDM pathway is important to restrict SPL/NZZ expression. In ago9, rdr6 and drm1drm2 mutants, SPL/NZZ is expressed ectopically, suggesting that the multiple MMC-like cells observed might be attributable to the ectopic expression of SPL/NZZ. We show that the ovule identity gene, SEEDSTICK, directly regulates AGO9 and RDR6 expression in the ovule and therefore indirectly regulates SPL/NZZ expression. A model is presented describing the network required to restrict SPL/NZZ expression to specify a single MMC.
Collapse
Affiliation(s)
- Marta A Mendes
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Rosanna Petrella
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Mara Cucinotta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Edoardo Vignati
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Stefano Gatti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Sara C Pinto
- LAQV REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Dayton C Bird
- School of Agriculture, Food, and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Hugh Dickinson
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Matthew R Tucker
- School of Agriculture, Food, and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
15
|
First approach to pod dehiscence in faba bean: genetic and histological analyses. Sci Rep 2020; 10:17678. [PMID: 33077797 PMCID: PMC7572390 DOI: 10.1038/s41598-020-74750-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Pod dehiscence causes important yield losses in cultivated crops and therefore has been a key trait strongly selected against in crop domestication. In spite of the growing knowledge on the genetic basis of dehiscence in different crops, no information is available so far for faba bean. Here we conduct the first comprehensive study for faba bean pod dehiscence by combining, linkage mapping, comparative genomics, QTL analysis and histological examination of mature pods. Mapping of dehiscence-related genes revealed conservation of syntenic blocks among different legumes. Three QTLs were identified in faba bean chromosomes II, IV and VI, although none of them was stable across years. Histological analysis supports the convergent phenotypic evolution previously reported in cereals and related legume species but revealed a more complex pattern in faba bean. Contrary to common bean and soybean, the faba bean dehiscence zone appears to show functional equivalence to that described in crucifers. The lignified wall fiber layer, which is absent in the paucijuga primitive line Vf27, or less lignified and vacuolated in other dehiscent lines, appears to act as the major force triggering pod dehiscence in this species. While our findings, provide new insight into the mechanisms underlying faba bean dehiscence, full understanding of the molecular bases will require further studies combining precise phenotyping with genomic analysis.
Collapse
|
16
|
Hui WK, Liu MQ, Wu GJ, Wang JY, Zhong Y, Li HY, Tang HL, Zeng W, Ma LX, Zhang Y, Xiang L, Chen XY, Gong W. Ectopic expression of an AGAMOUS homologue gene in Jatropha curcas causes early flowering and heterostylous phenotypes. Gene 2020; 766:145141. [PMID: 32911031 DOI: 10.1016/j.gene.2020.145141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 01/06/2023]
Abstract
Jatropha curcasseeds are abundant in biodiesel, and low seed yields are linked to poor quality female flowers, which creates a bottleneck for Jatropha seed utilization. Therefore, identifying the genes associated with flowering is crucial for the genetic enrichment of seed yields. Here, we identified an AGAMOUS homologue gene (JcAG) from J. curcas. We found that reproductive organs had higher JcAG expression than vegetative organs, particularly the carpel. Rosette leaves were small and misshapen in 35S:JcAG transgenic lines in comparison with those in wild-type plants. JcAG overexpression caused an extremely early flowering, delayed perianth and stamen filament development, small flowers, and significantly shorter Arabidopsis plants with little fruit. In the JcAG-overexpressing line, the homeotic transformation of sepals into pistillate organs was observed, and floral meristem and organ identity genes were regulated. This study provides insights into the JcAG's function and benefits to our knowledge of the underlying the genetic mechanisms related to floral sex differentiation in Jatropha.
Collapse
Affiliation(s)
- Wen-Kai Hui
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Ming-Qian Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, Preparation Office of South China Agricultural Museum, South China Agricultural University, Guangzhou 510642, China
| | - Guo-Jiang Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jing-Yan Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Zhong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - He-Yue Li
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hai-Long Tang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Zeng
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Le-Xun Ma
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Zhang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Xiang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Yang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, Preparation Office of South China Agricultural Museum, South China Agricultural University, Guangzhou 510642, China.
| | - Wei Gong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
17
|
Petrella R, Caselli F, Roig-Villanova I, Vignati V, Chiara M, Ezquer I, Tadini L, Kater MM, Gregis V. BPC transcription factors and a Polycomb Group protein confine the expression of the ovule identity gene SEEDSTICK in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:582-599. [PMID: 31909505 DOI: 10.1111/tpj.14673] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 05/26/2023]
Abstract
The BASIC PENTACYSTEINE (BPC) GAGA (C-box) binding proteins belong to a small plant transcription factor family. We previously reported that class I BPCs bind directly to C-boxes in the SEEDSTICK (STK) promoter and the mutagenesis of these cis-elements affects STK expression in the flower. The MADS-domain factor SHORT VEGETATIVE PHASE (SVP) is another key regulator of STK. Direct binding of SVP to CArG-boxes in the STK promoter are required to repress its expression during the first stages of flower development. Here we show that class II BPCs directly interact with SVP and that MADS-domain binding sites in the STK promoter region are important for the correct spatial and temporal expression of this homeotic gene. Furthermore, we show that class I and class II BPCs act redundantly to repress STK expression in the flower, most likely by recruiting TERMINAL FLOWER 2/LIKE HETEROCHROMATIN PROTEIN 1 (TFL2/LHP1) and mediating the establishment and the maintenance of H3K27me3 repressive marks on DNA. We investigate the role of LHP1 in the regulation of STK expression. In addition to providing a better understanding of the role of BPC transcription factors in the regulation of STK expression, our results suggest the existence of a more general regulatory complex composed of BPCs, MADS-domain factors and Polycomb Repressive Complexes that co-operate to regulate gene expression in reproductive tissues. We believe that our data along with the molecular model described here could provide significant insights for a more comprehensive understanding of gene regulation in plants.
Collapse
Affiliation(s)
- Rosanna Petrella
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Francesca Caselli
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Irma Roig-Villanova
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
- Department of Agri-Food Engineering and Biotechnology, Barcelona School of Agricultural Engineering, UPC, Esteve Terrades 8, Building 4, 08860, Castelldefels, Spain
| | - Valentina Vignati
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Matteo Chiara
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Luca Tadini
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Martin M Kater
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
18
|
Di Marzo M, Roig-Villanova I, Zanchetti E, Caselli F, Gregis V, Bardetti P, Chiara M, Guazzotti A, Caporali E, Mendes MA, Colombo L, Kater MM. MADS-Box and bHLH Transcription Factors Coordinate Transmitting Tract Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:526. [PMID: 32435255 PMCID: PMC7219087 DOI: 10.3389/fpls.2020.00526] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/07/2020] [Indexed: 05/14/2023]
Abstract
The MADS-domain transcription factor SEEDSTICK (STK) controls several aspects of plant reproduction. STK is co-expressed with CESTA (CES), a basic Helix-Loop-Helix (bHLH) transcription factor-encoding gene. CES was reported to control redundantly with the brassinosteroid positive signaling factors BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1) and BEE3 the development of the transmitting tract. Combining the stk ces-4 mutants led to a reduction in ovule fertilization due to a defect in carpel fusion which, caused the formation of holes at the center of the septum where the transmitting tract differentiates. Combining the stk mutant with the bee1 bee3 ces-4 triple mutant showed an increased number of unfertilized ovules and septum defects. The transcriptome profile of this quadruple mutant revealed a small subset of differentially expressed genes which are mainly involved in cell death, extracellular matrix and cell wall development. Our data evidence a regulatory gene network controlling transmitting tract development regulated directly or indirectly by a STK-CES containing complex and reveal new insights in the regulation of transmitting tract development by bHLH and MADS-domain transcription factors.
Collapse
|
19
|
Zaman QU, Chu W, Hao M, Shi Y, Sun M, Sang SF, Mei D, Cheng H, Liu J, Li C, Hu Q. CRISPR/Cas9-Mediated Multiplex Genome Editing of JAGGED Gene in Brassica napus L. Biomolecules 2019; 9:biom9110725. [PMID: 31726660 PMCID: PMC6921047 DOI: 10.3390/biom9110725] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022] Open
Abstract
Pod shattering resistance is an essential component to achieving a high yield, which is a substantial objective in polyploid rapeseed cultivation. Previous studies have suggested that the Arabidopsis JAGGED (JAG) gene is a key factor implicated in the regulatory web of dehiscence fruit. However, its role in controlling pod shattering resistance in oilseed rape is still unknown. In this study, multiplex genome editing was carried out by the CRISPR/Cas9 system on five homoeologs (BnJAG.A02, BnJAG.C02, BnJAG.C06, BnJAG.A07, and BnJAG.A08) of the JAG gene. Knockout mutagenesis of all homoeologs drastically affected the development of the lateral organs in organizing pod shape and size. The cylindrical body of the pod comprised a number of undifferentiated cells like a callus, without distinctive valves, replum, septum, and valve margins. Pseudoseeds were produced, which were divided into two halves with an incomplete layer of cells (probably septum) that separated the undifferentiated cells. These mutants were not capable of generating any productive seeds for further generations. However, one mutant line was identified in which only a BnJAG.A08-NUB-Like paralog of the JAG gene was mutated. Knockout mutagenesis in BnJAG.A08-NUB gene caused significant changes in the pod dehiscence zone. The replum region of the mutant was increased to a great extent, resulting in enlarged cell size, bumpy fruit, and reduced length compared with the wild type. A higher replum-valve joint area may have increased the resistance to pod shattering by ~2-fold in JAG mutants compared with wild type. Our results offer a basis for understanding variations in Brassica napus fruit by mutating JAG genes and providing a way forward for other Brassicaceae species.
Collapse
Affiliation(s)
- Qamar U Zaman
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Chu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Mengyu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Yuqin Shi
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Mengdan Sun
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Shi-Fei Sang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Desheng Mei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Jia Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Chao Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
- Correspondence: (C.L.); (Q.H.)
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
- Correspondence: (C.L.); (Q.H.)
| |
Collapse
|
20
|
Larson S, DeHaan L, Poland J, Zhang X, Dorn K, Kantarski T, Anderson J, Schmutz J, Grimwood J, Jenkins J, Shu S, Crain J, Robbins M, Jensen K. Genome mapping of quantitative trait loci (QTL) controlling domestication traits of intermediate wheatgrass (Thinopyrum intermedium). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2325-2351. [PMID: 31172227 DOI: 10.1007/s00122-019-03357-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/02/2019] [Indexed: 05/14/2023]
Abstract
Allohexaploid (2n = 6x = 42) intermediate wheatgrass (Thinopyrum intermedium), abbreviated IWG, is an outcrossing perennial grass belonging to the tertiary gene pool of wheat. Perenniality would be valuable option for grain production, but attempts to introgress this complex trait from wheat-Thinopyrum hybrids have not been commercially successful. Efforts to breed IWG itself as a dual-purpose forage and grain crop have demonstrated useful progress and applications, but grain yields are significantly less than wheat. Therefore, genetic and physical maps have been developed to accelerate domestication of IWG. Herein, these maps were used to identify quantitative trait loci (QTLs) and candidate genes associated with IWG grain production traits in a family of 266 full-sib progenies derived from two heterozygous parents, M26 and M35. Transgressive segregation was observed for 17 traits related to seed size, shattering, threshing, inflorescence capacity, fertility, stem size, and flowering time. A total of 111 QTLs were detected in 36 different regions using 3826 genotype-by-sequence markers in 21 linkage groups. The most prominent QTL had a LOD score of 15 with synergistic effects of 29% and 22% over the family means for seed retention and percentage of naked seeds, respectively. Many QTLs aligned with one or more IWG gene models corresponding to 42 possible domestication orthogenes including the wheat Q and RHT genes. A cluster of seed-size and fertility QTLs showed possible alignment to a putative Z self-incompatibility gene, which could have detrimental grain-yield effects when genetic variability is low. These findings elucidate pathways and possible hurdles in the domestication of IWG.
Collapse
Affiliation(s)
- Steve Larson
- United States Department of Agriculture, Agriculture Research Service, Forage and Range Research, Utah State University, Logan, UT, 84322, USA.
| | - Lee DeHaan
- The Land Institute, 2440 E. Water Well Rd, Salina, KS, 67401, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton, Manhattan, KS, 66506, USA
| | - Xiaofei Zhang
- Department of Horticultural Science, North Carolina State University, 212 Kilgore Hall, 2721 Founders Drive, PO Box 7609, Raleigh, NC, 27607, USA
| | - Kevin Dorn
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton, Manhattan, KS, 66506, USA
| | - Traci Kantarski
- American Association for the Advancement of Science, Science and Technology Policy Fellow at the United States Department of Agriculture, Animal and Plant Health Inspection Service, 4700 River Road, Riverdale, MD, 20737, USA
| | - James Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Buford Circle, St. Paul, MN, 55108, USA
| | - Jeremy Schmutz
- Department of Energy, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
- Hudson Alpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- Hudson Alpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Jerry Jenkins
- Hudson Alpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Shengqiang Shu
- Department of Energy, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Jared Crain
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton, Manhattan, KS, 66506, USA
| | - Matthew Robbins
- United States Department of Agriculture, Agriculture Research Service, Forage and Range Research, Utah State University, Logan, UT, 84322, USA
| | - Kevin Jensen
- United States Department of Agriculture, Agriculture Research Service, Forage and Range Research, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
21
|
How to build a fruit: Transcriptomics of a novel fruit type in the Brassiceae. PLoS One 2019; 14:e0209535. [PMID: 31318861 PMCID: PMC6638736 DOI: 10.1371/journal.pone.0209535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/25/2019] [Indexed: 11/19/2022] Open
Abstract
Comparative gene expression studies are invaluable for predicting how existing genetic pathways may be modified or redeployed to produce novel and variable phenotypes. Fruits are ecologically important organs because of their impact on plant fitness and seed dispersal, modifications in which results in morphological variation across species. A novel fruit type in the Brassicaceae known as heteroarthrocarpy enables distinct dispersal methods in a single fruit through segmentation via a lateral joint and variable dehiscence at maturity. Given the close relationship to Arabidopsis, species that exhibit heteroarthrocarpy are powerful models to elucidate how differences in gene expression of a fruit patterning pathway may result in novel fruit types. Transcriptomes of distal, joint, and proximal regions from Erucaria erucarioides and Cakile lanceolata were analyzed to elucidate within fruit and between species differences in whole transcriptome, gene ontology, and fruit patterning expression profiles. Whole transcriptome expression profiles vary between fruit regions in patterns that are consistent with fruit anatomy. These transcriptomic variances do not correlate with changes in gene ontology, as they remain generally stable within and between both species. Upstream regulators in the fruit patterning pathway, FILAMENTOUS FLOWER and YABBY3, are expressed in the distal and proximal regions of E. erucarioides, but not in the joint, implicating alterations in the pathway in heteroarthrocarpic fruits. Downstream gene, INDEHISCENT, is significantly upregulated in the abscissing joint region of C. lanceolata, which suggests repurposing of valve margin genes for novel joint disarticulation in an otherwise indehiscent fruit. In summary, these data are consistent with modifications in fruit patterning genes producing heteroarthrocarpic fruits through different components of the pathway relative to other indehiscent, non-heteroarthrocarpic, species within the family. Our understanding of fruit development in Arabidopsis is now extended to atypical siliques within the Brassicaceae, facilitating future studies on seed shattering in important Brassicaceous crops and pernicious weeds.
Collapse
|
22
|
Ariani A, Berny Mier Y Teran JC, Gepts P. Spatial and Temporal Scales of Range Expansion in Wild Phaseolus vulgaris. Mol Biol Evol 2019; 35:119-131. [PMID: 29069389 PMCID: PMC5850745 DOI: 10.1093/molbev/msx273] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The wild progenitor of common-bean has an exceptionally large distribution from northern Mexico to northwestern Argentina, unusual among crop wild progenitors. This research sought to document major events of range expansion that led to this distribution and associated environmental changes. Through the use of genotyping-by-sequencing (∼20,000 SNPs) and geographic information systems applied to a sample of 246 accessions of wild Phaseolus vulgaris, including 157 genotypes of the Mesoamerican, 77 of the southern Andean, and 12 of the Northern Peru–Ecuador gene pools, we identified five geographically distinct subpopulations. Three of these subpopulations belong to the Mesoamerican gene pool (Northern and Central Mexico, Oaxaca, and Southern Mexico, Central America and northern South America) and one each to the Northern Peru–Ecuador (PhI) and the southern Andean gene pools. The five subpopulations were distributed in different floristic provinces of the Neotropical seasonally dry forest and showed distinct distributions for temperature and rainfall resulting in decreased local potential evapotranspiration (PhI and southern Andes groups) compared with the two Mexican groups. Three of these subpopulations represent long-distance dispersal events from Mesoamerica into Northern Peru–Ecuador, southern Andes, and Central America and Colombia, in chronological order. Of particular note is that the dispersal to Northern Peru–Ecuador markedly predates the dispersal to the southern Andes (∼400 vs. ∼100 ky), consistent with the ancestral nature of the phaseolin seed protein and chloroplast sequences observed in the PhI group. Seed dispersal in common bean can be, therefore, described at different spatial and temporal scales, from localized, annual seed shattering to long‐distance, evolutionarily rare migration.
Collapse
Affiliation(s)
- Andrea Ariani
- Department of Plant Sciences, Section of Crop and Ecosystem Sciences, University of California, Davis, CA
| | | | - Paul Gepts
- Department of Plant Sciences, Section of Crop and Ecosystem Sciences, University of California, Davis, CA
| |
Collapse
|
23
|
Herrera-Ubaldo H, Lozano-Sotomayor P, Ezquer I, Di Marzo M, Chávez Montes RA, Gómez-Felipe A, Pablo-Villa J, Diaz-Ramirez D, Ballester P, Ferrándiz C, Sagasser M, Colombo L, Marsch-Martínez N, de Folter S. New roles of NO TRANSMITTING TRACT and SEEDSTICK during medial domain development in Arabidopsis fruits. Development 2019; 146:dev.172395. [PMID: 30538100 DOI: 10.1242/dev.172395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/03/2018] [Indexed: 01/11/2023]
Abstract
The gynoecium, the female reproductive part of the flower, is key for plant sexual reproduction. During its development, inner tissues such as the septum and the transmitting tract tissue, important for pollen germination and guidance, are formed. In Arabidopsis, several transcription factors are known to be involved in the development of these tissues. One of them is NO TRANSMITTING TRACT (NTT), essential for transmitting tract formation. We found that the NTT protein can interact with several gynoecium-related transcription factors, including several MADS-box proteins, such as SEEDSTICK (STK), known to specify ovule identity. Evidence suggests that NTT and STK control enzyme and transporter-encoding genes involved in cell wall polysaccharide and lipid distribution in gynoecial medial domain cells. The results indicate that the simultaneous loss of NTT and STK activity affects polysaccharide and lipid deposition and septum fusion, and delays entry of septum cells to their normal degradation program. Furthermore, we identified KAWAK, a direct target of NTT and STK, which is required for the correct formation of fruits in Arabidopsis These findings position NTT and STK as important factors in determining reproductive competence.
Collapse
Affiliation(s)
- Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - Paulina Lozano-Sotomayor
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - Ignacio Ezquer
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
| | - Maurizio Di Marzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
| | - Ricardo Aarón Chávez Montes
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - Andrea Gómez-Felipe
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - Jeanneth Pablo-Villa
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - David Diaz-Ramirez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Irapuato 36824, Guanajuato, México
| | - Patricia Ballester
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, 46022, Spain
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, 46022, Spain
| | - Martin Sagasser
- Bielefeld University, Faculty of Biology, Chair of Genetics and Genomics of Plants, Bielefeld 33615, Germany
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
| | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Irapuato 36824, Guanajuato, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| |
Collapse
|
24
|
Herrera-Ubaldo H, de Folter S. Exploring Cell Wall Composition and Modifications During the Development of the Gynoecium Medial Domain in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:454. [PMID: 29706978 PMCID: PMC5906702 DOI: 10.3389/fpls.2018.00454] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/22/2018] [Indexed: 05/27/2023]
Abstract
In Arabidopsis, the gynoecium, the inner whorl of the flower, is the female reproductive part. Many tissues important for fertilization such as the stigma, style, transmitting tract, placenta, ovules, and septum, comprising the medial domain, arise from the carpel margin meristem. During gynoecium development, septum fusion occurs and tissues form continuously to prepare for a successful pollination and fertilization. During gynoecium development, cell wall modifications take place and one of the most important is the formation of the transmitting tract, having a great impact on reproductive competence because it facilitates pollen tube growth and movement through the ovary. In this study, using a combination of classical staining methods, fluorescent dyes, and indirect immunolocalization, we analyzed cell wall composition and modifications accompanying medial domain formation during gynoecium development. We detected coordinated changes in polysaccharide distribution through time, cell wall modifications preceding the formation of the transmitting tract, mucosubstances increase during transmitting tract formation, and a decrease of mannan distribution. Furthermore, we also detected changes in lipid distribution during septum fusion. Proper cell wall composition and modifications are important for postgenital fusion of the carpel (septum fusion) and transmitting tract formation, because these tissues affect plant reproductive competence.
Collapse
Affiliation(s)
| | - Stefan de Folter
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| |
Collapse
|
25
|
Identifying novel fruit-related genes in Arabidopsis thaliana based on the random walk with restart algorithm. PLoS One 2017; 12:e0177017. [PMID: 28472169 PMCID: PMC5417634 DOI: 10.1371/journal.pone.0177017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Fruit is essential for plant reproduction and is responsible for protection and dispersal of seeds. The development and maturation of fruit is tightly regulated by numerous genetic factors that respond to environmental and internal stimulation. In this study, we attempted to identify novel fruit-related genes in a model organism, Arabidopsis thaliana, using a computational method. Based on validated fruit-related genes, the random walk with restart (RWR) algorithm was applied on a protein-protein interaction (PPI) network using these genes as seeds. The identified genes with high probabilities were filtered by the permutation test and linkage tests. In the permutation test, the genes that were selected due to the structure of the PPI network were discarded. In the linkage tests, the importance of each candidate gene was measured from two aspects: (1) its functional associations with validated genes and (2) its similarity with validated genes on gene ontology (GO) terms and KEGG pathways. Finally, 255 inferred genes were obtained, subsequent extensive analysis of important genes revealed that they mainly contribute to ubiquitination (UBQ9, UBQ8, UBQ11, UBQ10), serine hydroxymethyl transfer (SHM7, SHM5, SHM6) or glycol-metabolism (HXKL2_ARATH, CSY5, GAPCP1), suggesting essential roles during the development and maturation of fruit in Arabidopsis thaliana.
Collapse
|
26
|
Ballester P, Ferrándiz C. Shattering fruits: variations on a dehiscent theme. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:68-75. [PMID: 27888713 DOI: 10.1016/j.pbi.2016.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 05/18/2023]
Abstract
Fruits are seed dispersal units, and for that they have evolved different strategies to facilitate separation and dispersal of the progeny from the mother plant. A great proportion of fruits from different clades are dry and dehiscent, opening upon maturity to disperse the seeds. In the last two decades, intense research mainly in Arabidopsis has uncovered the basic network that controls the differentiation of the Arabidopsis fruit dehiscence zone. This review focuses on recent discoveries that have helped to complete the picture, as well as the insights from evo-devo and crop domestication studies that show how the conservation/variation of the elements of this network across species accounts for its evolutionary plasticity and the origin of evolutionary innovations.
Collapse
Affiliation(s)
- Patricia Ballester
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia 46022, Spain.
| |
Collapse
|