1
|
Wang X, Sun K, Xu Z, Chen Z, Wu W. Roles of SP/KLF transcription factors in odontoblast differentiation: From development to diseases. Oral Dis 2024; 30:3745-3760. [PMID: 38409677 DOI: 10.1111/odi.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES A zinc-finger transcription factor family comprising specificity proteins (SPs) and Krüppel-like factor proteins (KLFs) plays an important role in dentin development and regeneration. However, a systematic regulatory network involving SPs/KLFs in odontoblast differentiation has not yet been described. This review examined the expression patterns of SP/KLF gene family members and their current known functions and mechanisms in odontoblast differentiation, and discussed prospective research directions for further exploration of mechanisms involving the SP/KLF gene family in dentin development. MATERIALS AND METHODS Relevant literature on SP/KLF gene family members and dentin development was acquired from PubMed and Web of Science. RESULTS We discuss the expression patterns, functions, and related mechanisms of eight members of the SP/KLF gene family in dentin development and genetic disorders with dental problems. We also summarize current knowledge about their complementary or synergistic actions. Finally, we propose future research directions for investigating the mechanisms of dentin development. CONCLUSIONS The SP/KLF gene family plays a vital role in tooth development. Studying the complex complementary or synergistic interactions between SPs/KLFs is helpful for understanding the process of odontoblast differentiation. Applications of single-cell and spatial multi-omics may provide a more complete investigation of the mechanism involved in dentin development.
Collapse
Affiliation(s)
- Xuefei Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Kaida Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zekai Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Wenzhi Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Tan WH, Rücklin M, Larionova D, Ngoc TB, Joan van Heuven B, Marone F, Matsudaira P, Winkler C. A Collagen10a1 mutation disrupts cell polarity in a medaka model for metaphyseal chondrodysplasia type Schmid. iScience 2024; 27:109405. [PMID: 38510140 PMCID: PMC10952040 DOI: 10.1016/j.isci.2024.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Heterozygous mutations in COL10A1 lead to metaphyseal chondrodysplasia type Schmid (MCDS), a skeletal disorder characterized by epiphyseal abnormalities. Prior analysis revealed impaired trimerization and intracellular retention of mutant collagen type X alpha 1 chains as cause for elevated endoplasmic reticulum (ER) stress. However, how ER stress translates into structural defects remained unclear. We generated a medaka (Oryzias latipes) MCDS model harboring a 5 base pair deletion in col10a1, which led to a frameshift and disruption of 11 amino acids in the conserved trimerization domain. col10a1Δ633a heterozygotes recapitulated key features of MCDS and revealed early cell polarity defects as cause for dysregulated matrix secretion and deformed skeletal structures. Carbamazepine, an ER stress-reducing drug, rescued this polarity impairment and alleviated skeletal defects in col10a1Δ633a heterozygotes. Our data imply cell polarity dysregulation as a potential contributor to MCDS and suggest the col10a1Δ633a medaka mutant as an attractive MCDS animal model for drug screening.
Collapse
Affiliation(s)
- Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Martin Rücklin
- Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, the Netherlands
| | - Daria Larionova
- Department of Biology, Research Group Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | - Tran Bich Ngoc
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | - Federica Marone
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Paul Matsudaira
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
3
|
Martini A, Sahd L, Rücklin M, Huysseune A, Hall BK, Boglione C, Witten PE. Deformity or variation? Phenotypic diversity in the zebrafish vertebral column. J Anat 2023; 243:960-981. [PMID: 37424444 PMCID: PMC10641053 DOI: 10.1111/joa.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023] Open
Abstract
Vertebral bodies are composed of two types of metameric elements, centra and arches, each of which is considered as a developmental module. Most parts of the teleost vertebral column have a one-to-one relationship between centra and arches, although, in all teleosts, this one-to-one relationship is lost in the caudal fin endoskeleton. Deviation from the one-to-one relationship occurs in most vertebrates, related to changes in the number of vertebral centra or to a change in the number of arches. In zebrafish, deviations also occur predominantly in the caudal region of the vertebral column. In-depth phenotypic analysis of wild-type zebrafish was performed using whole-mount stained samples, histological analyses and synchrotron radiation X-ray tomographic microscopy 3D reconstructions. Three deviant centra phenotypes were observed: (i) fusion of two vertebral centra, (ii) wedge-shaped hemivertebrae and (iii) centra with reduced length. Neural and haemal arches and their spines displayed bilateral and unilateral variations that resemble vertebral column phenotypes of stem-ward actinopterygians or other gnathostomes as well as pathological conditions in extant species. Whether it is possible to distinguish variations from pathological alterations and whether alterations resemble ancestral conditions is discussed in the context of centra and arch variations in other vertebrate groups and basal actinopterygian species.
Collapse
Affiliation(s)
- Arianna Martini
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Lauren Sahd
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - Martin Rücklin
- Department of Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Ann Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Brian K Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Clara Boglione
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - P Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Di Biagio C, Dellacqua Z, Martini A, Huysseune A, Scardi M, Witten PE, Boglione C. A Baseline for Skeletal Investigations in Medaka ( Oryzias latipes): The Effects of Rearing Density on the Postcranial Phenotype. Front Endocrinol (Lausanne) 2022; 13:893699. [PMID: 35846331 PMCID: PMC9281570 DOI: 10.3389/fendo.2022.893699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Oryzias latipes is increasingly used as a model in biomedical skeletal research. The standard approach is to generate genetic variants with particular skeletal phenotypes which resemble skeletal diseases in humans. The proper diagnosis of skeletal variation is key for this type of research. However, even laboratory rearing conditions can alter skeletal phenotypes. The subject of this study is the link between skeletal phenotypes and rearing conditions. Thus, wildtype medaka were reared from hatching to an early juvenile stage at low (LD: 5 individuals/L), medium (MD: 15 individuals/L), and high (HD: 45 individuals/L) densities. The objectives of the study are: (I) provide a comprehensive overview of the postcranial skeletal elements in medaka; (II) evaluate the effects of rearing density on specific meristic counts and on the variability in type and incidence of skeletal anomalies; (III) define the best laboratory settings to obtain a skeletal reference for a sound evaluation of future experimental conditions; (IV) contribute to elucidating the structural and cellular changes related to the onset of skeletal anomalies. The results from this study reveal that rearing densities greater than 5 medaka/L reduce the animals' growth. This reduction is related to decreased mineralization of dermal (fin rays) and perichondral (fin supporting elements) bone. Furthermore, high density increases anomalies affecting the caudal fin endoskeleton and dermal rays, and the preural vertebral centra. A series of static observations on Alizarin red S whole mount-stained preural fusions provide insights into the etiology of centra fusion. The fusion of preural centra involves the ectopic formation of bony bridges over the intact intervertebral ligament. An apparent consequence is the degradation of the intervertebral ligaments and the remodeling and reshaping of the fused vertebral centra into a biconoid-shaped centrum. From this study it can be concluded that it is paramount to take into account the rearing conditions, natural variability, skeletal phenotypic plasticity, and the genetic background along with species-specific peculiarities when screening for skeletal phenotypes of mutant or wildtype medaka.
Collapse
Affiliation(s)
- Claudia Di Biagio
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
- Laboratory of Evolutionary Developmental Biology, Gent University, Department of Biology, Gent, Belgium
| | - Zachary Dellacqua
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
- Aquaculture Research Group (GIA), Universidad de Las Palmas de Gran Canaria, Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Las Palmas, Spain
| | - Arianna Martini
- Laboratory of Experimental Ecology and Aquaculture, University of Rome ‘Tor Vergata’, Department of Biology, Rome, Italy
| | - Ann Huysseune
- Laboratory of Evolutionary Developmental Biology, Gent University, Department of Biology, Gent, Belgium
| | - Michele Scardi
- Laboratory of Experimental Ecology and Aquaculture, University of Rome ‘Tor Vergata’, Department of Biology, Rome, Italy
| | - Paul Eckhard Witten
- Laboratory of Evolutionary Developmental Biology, Gent University, Department of Biology, Gent, Belgium
| | - Clara Boglione
- Laboratory of Experimental Ecology and Aquaculture, University of Rome ‘Tor Vergata’, Department of Biology, Rome, Italy
| |
Collapse
|
5
|
Hoyle DJ, Dranow DB, Schilling TF. Pthlha and mechanical force control early patterning of growth zones in the zebrafish craniofacial skeleton. Development 2022; 149:dev199826. [PMID: 34919126 PMCID: PMC8917414 DOI: 10.1242/dev.199826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022]
Abstract
Secreted signals in patterning systems often induce repressive signals that shape their distributions in space and time. In developing growth plates (GPs) of endochondral long bones, Parathyroid hormone-like hormone (Pthlh) inhibits Indian hedgehog (Ihh) to form a negative-feedback loop that controls GP progression and bone size. Whether similar systems operate in other bones and how they arise during embryogenesis remain unclear. We show that Pthlha expression in the zebrafish craniofacial skeleton precedes chondrocyte differentiation and restricts where cells undergo hypertrophy, thereby initiating a future GP. Loss of Pthlha leads to an expansion of cells expressing a novel early marker of the hypertrophic zone (HZ), entpd5a, and later HZ markers, such as ihha, whereas local Pthlha misexpression induces ectopic entpd5a expression. Formation of this early pre-HZ correlates with onset of muscle contraction and requires mechanical force; paralysis leads to loss of entpd5a and ihha expression in the pre-HZ, mislocalized pthlha expression and no subsequent ossification. These results suggest that local Pthlh sources combined with force determine HZ locations, establishing the negative-feedback loop that later maintains GPs.
Collapse
Affiliation(s)
| | | | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92693, USA
| |
Collapse
|
6
|
Pham CV, Pham TT, Lai TT, Trinh DC, Nguyen HVM, Ha TTM, Phuong TT, Tran LD, Winkler C, To TT. Icariin reduces bone loss in a Rankl-induced transgenic medaka (Oryzias latipes) model for osteoporosis. JOURNAL OF FISH BIOLOGY 2021; 98:1039-1048. [PMID: 31858585 DOI: 10.1111/jfb.14241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Given the limitations and side effects of many synthetic drugs, natural products are an important alternative source for drugs and medications for many diseases. Icariin (ICA), one of the main flavonoids from plants of the Epimedium genus, has been shown to ameliorate osteoporosis and improve bone health in preclinical studies. Those studies have used different in vivo models, mostly rodents, but the underlying mechanisms remain unclear. The present study shows, for the first time, that ICA reduces bone damage in a Rankl-induced medaka fish (Oryzias latipes), a non-rodent osteoporosis model. Live imaging was previously performed in this model to characterize antiresorptive and bone-anabolic properties of drugs. Here, a new quantification method (IM ) was established based on the length of mineralized neural arches to quantify levels of bone mineralization damage and protection in early post-embryonic fish. This method was validated by quantification of three levels of bone damage in three independent Rankl fish lines, and by the determination of different degrees of severity of osteoporosis-like phenotypes in one Rankl line exposed to variable Rankl induction schemes. IM was also used to quantify the efficacy of alendronate and etidronate, two common anti-osteoporotic bisphosphonates, and revealed comparable bone protective effects for ICA and alendronate in this fish osteoporosis model. This study's data support the value of the medaka fish model for bone research and establish a method to screen for novel osteoprotective compounds.
Collapse
Affiliation(s)
- Cuong V Pham
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Thanh T Pham
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Thuy T Lai
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Dat C Trinh
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Huong V M Nguyen
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Tam T M Ha
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Thuong T Phuong
- Department of Herbal Analysis and Standardization, Vietnam National Institute of Medicinal Materials, Hanoi, Vietnam
| | - Long D Tran
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- The Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi, Vietnam
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore
| | - Thuy T To
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- The Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi, Vietnam
- Dinh Tien Hoang Institute of Medicine, Hanoi, Vietnam
| |
Collapse
|
7
|
Bek JW, De Clercq A, De Saffel H, Soenens M, Huysseune A, Witten PE, Coucke PJ, Willaert A. Photoconvertible fluorescent proteins: a versatile tool in zebrafish skeletal imaging. JOURNAL OF FISH BIOLOGY 2021; 98:1007-1017. [PMID: 32242924 DOI: 10.1111/jfb.14335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
One of the most frequently applied techniques in zebrafish (Danio rerio) research is the visualisation or manipulation of specific cell populations using transgenic reporter lines. The generation of these transgenic zebrafish, displaying cell- or tissue-specific expression of frequently used fluorophores such as Green Fluorescent Protein (GFP) or mCherry, is relatively easy using modern techniques. Fluorophores with different emission wavelengths and driven by different promoters can be monitored simultaneously in the same animal. Photoconvertible fluorescent proteins (pcFPs) are different from these standard fluorophores because their emission spectrum is changed when exposed to UV light, a process called photoconversion. Here, the benefits and versatility of using pcFPs for both single and dual fluorochrome imaging in zebrafish skeletal research in a previously generated osx:Kaede transgenic line are illustrated. In this line, Kaede, which is expressed under control of the osterix, otherwise known as sp7, promoter thereby labelling immature osteoblasts, can switch from green to red fluorescence upon irradiation with UV light. First, this study demonstrates that osx:Kaede exhibits an expression pattern similar to a previously described osx:nuGFP transgenic line in both larval and adult stages, hereby validating the use of this line for the imaging of immature osteoblasts. More in-depth experiments highlight different applications for osx:Kaede, such as lineage tracing and its combined use with in vivo skeletal staining and other transgenic backgrounds. Mineral staining in combination with osx:Kaede confirms osteoblast-independent mineralisation of the notochord. Osteoblast lineage tracing reveals migration and dedifferentiation of scleroblasts during fin regeneration. Finally, this study shows that combining two transgenics, osx:Kaede and osc:GFP, with similar emission wavelengths is possible when using a pcFP such as Kaede.
Collapse
Affiliation(s)
- Jan Willem Bek
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Adelbert De Clercq
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Hanna De Saffel
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Mieke Soenens
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - Ann Huysseune
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - P Eckhard Witten
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - Paul J Coucke
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Andy Willaert
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| |
Collapse
|
8
|
A comparative genomic database of skeletogenesis genes: from fish to mammals. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100796. [PMID: 33676152 DOI: 10.1016/j.cbd.2021.100796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 11/20/2022]
Abstract
Skeletogenesis is a complex process that requires a rigorous control at multiple levels during osteogenesis, such as signaling pathways and transcription factors. The skeleton among vertebrates is a highly conserved organ system, but teleost fish and mammals have evolved unique traits or have lost particular skeletal elements in each lineage. In present study, we constructed a skeletogenesis database containing 4101, 3715, 2996, 3300, 3719 and 3737 genes in Danio rerio, Oryzias latipes, Gallus gallus, Xenopus tropicalis, Mus musculus and Homo sapiens genome, respectively. Then, we found over 55% of the genes are conserved in the six species. Notably, there are 181 specific-genes in the human genome without orthologues in the other five genomes, such as the ZNF family (ZNF100, ZNF101, ZNF14, CALML6, CCL4L2, ZIM2, HSPA6, etc); and 31 genes are identified explicitly in fish species, which are mainly involved in TGF-beta, Wnt, MAPK, Calcium signaling pathways, such as bmp16, bmpr2a, eif4e1c, wnt2ba, etc. Particularly, there are 20 zebrafish-specific genes (calm3a, si:dkey-25li10, drd1a, drd7, etc) and one medaka-specific gene (c-myc17) that may alter skeletogenesis formation in the corresponding species. The database provides the new systematic genomic insights into skeletal development from teleosts to mammals, which may help to explain some of the complexities of skeletal phenotypes among different vertebrates and provide a reference for the treatment of skeletal diseases as well as for applications in the aquaculture industry.
Collapse
|
9
|
Liu Q, Li M, Wang S, Xiao Z, Xiong Y, Wang G. Recent Advances of Osterix Transcription Factor in Osteoblast Differentiation and Bone Formation. Front Cell Dev Biol 2020; 8:601224. [PMID: 33384998 PMCID: PMC7769847 DOI: 10.3389/fcell.2020.601224] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
With increasing life expectations, more and more patients suffer from fractures either induced by intensive sports or other bone-related diseases. The balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption is the basis for maintaining bone health. Osterix (Osx) has long been known to be an essential transcription factor for the osteoblast differentiation and bone mineralization. Emerging evidence suggests that Osx not only plays an important role in intramembranous bone formation, but also affects endochondral ossification by participating in the terminal cartilage differentiation. Given its essentiality in skeletal development and bone formation, Osx has become a new research hotspot in recent years. In this review, we focus on the progress of Osx's function and its regulation in osteoblast differentiation and bone mass. And the potential role of Osx in developing new therapeutic strategies for osteolytic diseases was discussed.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| | - Mao Li
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| | - Shiyi Wang
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yuanyuan Xiong
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guangwei Wang
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
10
|
MLL4-associated condensates counterbalance Polycomb-mediated nuclear mechanical stress in Kabuki syndrome. Nat Genet 2020; 52:1397-1411. [PMID: 33169020 PMCID: PMC7610431 DOI: 10.1038/s41588-020-00724-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/22/2020] [Indexed: 12/21/2022]
Abstract
The genetic elements required to tune gene expression are partitioned in active and repressive nuclear condensates. Chromatin compartments include transcriptional clusters whose dynamic establishment and functioning depend on multivalent interactions occurring among transcription factors, cofactors and basal transcriptional machinery. However, how chromatin players contribute to the assembly of transcriptional condensates is poorly understood. By interrogating the effect of KMT2D (also known as MLL4) haploinsufficiency in Kabuki syndrome, we found that mixed lineage leukemia 4 (MLL4) contributes to the assembly of transcriptional condensates through liquid-liquid phase separation. MLL4 loss of function impaired Polycomb-dependent chromatin compartmentalization, altering the nuclear architecture. By releasing the nuclear mechanical stress through inhibition of the mechanosensor ATR, we re-established the mechanosignaling of mesenchymal stem cells and their commitment towards chondrocytes both in vitro and in vivo. This study supports the notion that, in Kabuki syndrome, the haploinsufficiency of MLL4 causes an altered functional partitioning of chromatin, which determines the architecture and mechanical properties of the nucleus.
Collapse
|
11
|
Mo J, Au DWT, Wan MT, Shi J, Zhang G, Winkler C, Kong RYC, Seemann F. Multigenerational Impacts of Benzo[ a]pyrene on Bone Modeling and Remodeling in Medaka ( Oryzias latipes). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12271-12284. [PMID: 32840350 DOI: 10.1021/acs.est.0c02416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ancestral benzo[a]pyrene (BaP) (1 μg/L, 21 days) exposure has previously been shown to cause skeletal deformities in medaka (Oryzias latipes) larvae in the F1-F3 generation. However, when and how this deformity is induced during bone development remain to be elucidated. The col10a1:nlGFP/osx:mCherry double transgenic medaka model was employed to determine the temporal and spatial changes of col10a1:nlGFP- positive osteochondral progenitor cells (OPCs) and osx:mCherry-positive premature osteoblasts (POBs) [8 days postfertilization (dpf)-31 dpf] in combination with changes in bone mineralization at the tissue level. Ancestral BaP exposure delayed the development of col10a1:nlGFP- and osx:mCherry-positive osteoblasts and reduced the abundance of col10a1:nlGFP-positive osteoblast progenitors and col10a1:nlGFP/osx:mCherry double-positive premature osteoblasts during critical windows of early vertebral bone formation, associated with reduced bone mineralization in embryos (14 dpf) and larvae (31 dpf), compressed vertebral segments in larvae (31 dpf), and reduced bone thickness in adult male medaka (6 months old) of the F1-F3 generations. Both Col10a1:nlGFP and osx:mCherry were identified as potential targets of epigenetic modifications underlying the transgenerational inheritance of BaP bone toxicity. The present study provides novel knowledge of the underlying mechanisms of transgenerational toxicity of BaP at the cellular level.
Collapse
Affiliation(s)
- Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Doris Wai-Ting Au
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Miles Teng Wan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jingchun Shi
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, 119077, Singapore
| | - Richard Yuen-Chong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Hong Kong SAR, China
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Frauke Seemann
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Center for Coastal Studies and Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas 78412, United States
| |
Collapse
|
12
|
Cai H, Lin L, Wang G, Berman Z, Yang X, Cheng X. Folic acid rescues corticosteroid-induced vertebral malformations in chick embryos through targeting TGF-β signaling. J Cell Physiol 2020; 235:8626-8639. [PMID: 32324263 DOI: 10.1002/jcp.29707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/02/2020] [Indexed: 11/08/2022]
Abstract
Folic acid (FA) is routinely supplemented in the food of pregnant women or women planning a pregnancy, but whether FA exerts a positive effect on preventing fetal bone malformation remains obscure. In this study, we first exposed chick embryos with different concentrations of FA (1-10,000 pmol/egg) and studied vertebral mineralization and ossification through alcian blue and alizarin red as well as hematoxylin and eosin staining. Morphological measurements of the thoracic vertebral bodies demonstrated that 100 pmol/egg FA exhibited the tendency of shortening the growth plate, extended the ossification center, and increased the amount of Type I collagen. Second, we suggested that FA treatment promotes osteogenesis by demonstrating increased RUNX family transcription factor 2 (Runx2) and Osterix expressions in MC3T3-E1 and ATDC5 cells. Transforming growth factor-β (TGF-β) signaling was also upregulated by FA exposure, and addition of smad2/3 small interfering RNA knocks down FA-induced increased p-smad2/3, Runx2, and Osterix expression in vitro during chondrogenesis induction. Third, we employed dexamethasone (Dex), exposed chick embryos as an animal model of skeletal developmental retardation, to explore whether FA could rescue the loss of embryonic bone mass. Micro-computed tomography imaging showed that the addition of FA improved the reduction of bone mass in our model. Histological analysis of the vertebral bodies revealed that FA dramatically improved the delayed turnover of the zones of growth plate caused by Dex exposure. Immunofluorescence on the chick embryonic vertebrae and chondrocytes showed that FA supplementation upregulated the expression of TGF-β1, p-smad2/3, and improved Runx2 as well as Osterix expression in the Dex + FA group compared with the Dex group. Lastly, we found that supplementation with TGF-β1 (1 ng/egg) rescued bone mass loss caused by Dex as was also seen in FA exposure. Taken together these results, our data revealed that FA supplementation was able to rescue Dex exposure-induced inhibitive osteogenesis through targeting on the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Hongmei Cai
- Division of Histology and Embryology, Joint Laboratory for Embryonic, Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Li Lin
- Division of Histology and Embryology, Joint Laboratory for Embryonic, Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Guang Wang
- Division of Histology and Embryology, Joint Laboratory for Embryonic, Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Zachary Berman
- Department of Radiology, University of California San Diego, San Diego, California
| | - Xuesong Yang
- Division of Histology and Embryology, Joint Laboratory for Embryonic, Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Xin Cheng
- Division of Histology and Embryology, Joint Laboratory for Embryonic, Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Abstract
The tooth provides an excellent system for deciphering the molecular mechanisms of organogenesis, and has thus been of longstanding interest to developmental and stem cell biologists studying embryonic morphogenesis and adult tissue renewal. In recent years, analyses of molecular signaling networks, together with new insights into cellular heterogeneity, have greatly improved our knowledge of the dynamic epithelial-mesenchymal interactions that take place during tooth development and homeostasis. Here, we review recent progress in the field of mammalian tooth morphogenesis and also discuss the mechanisms regulating stem cell-based dental tissue homeostasis, regeneration and repair. These exciting findings help to lay a foundation that will ultimately enable the application of fundamental research discoveries toward therapies to improve oral health.
Collapse
Affiliation(s)
- Tingsheng Yu
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
14
|
Chen Z, Song Z, Yang J, Huang J, Jiang H. Sp7/osterix positively regulates dlx2b and bglap to affect tooth development and bone mineralization in zebrafish larvae. J Biosci 2019. [DOI: 10.1007/s12038-019-9948-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Urso K, Caetano-Lopes J, Lee PY, Yan J, Henke K, Sury M, Liu H, Zgoda M, Jacome-Galarza C, Nigrovic PA, Duryea J, Harris MP, Charles JF. A role for G protein-coupled receptor 137b in bone remodeling in mouse and zebrafish. Bone 2019; 127:104-113. [PMID: 31173907 PMCID: PMC6708790 DOI: 10.1016/j.bone.2019.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptor 137b (GPR137b) is an orphan seven-pass transmembrane receptor of unknown function. In mouse, Gpr137b is highly expressed in osteoclasts in vivo and is upregulated during in vitro differentiation. To elucidate the role that GPR137b plays in osteoclasts, we tested the effect of GPR137b deficiency on osteoclast maturation and resorbing activity. We used CRISPR/Cas9 gene editing in mouse-derived ER-Hoxb8 immortalized myeloid progenitors to generate GPR137b-deficient osteoclast precursors. Decreasing Gpr137b in these precursors led to increased osteoclast differentiation and bone resorption activity. To explore the role of GPR137b during skeletal development, we generated zebrafish deficient for the ortholog gpr137ba. Gpr137ba-deficient zebrafish are viable and fertile and do not display overt morphological defects as adults. However, analysis of osteoclast function in gpr137ba-/- mutants demonstrated increased bone resorption. Micro-computed tomography evaluation of vertebral bone mass and morphology demonstrated that gpr137ba-deficiency altered the angle of the neural arch, a skeletal site with high osteoclast activity. Vital staining of gpr137ba-/- fish with calcein and alizarin red indicated that bone formation in the mutants is also increased, suggesting high bone turnover. These results identify GPR137b as a conserved negative regulator of osteoclast activity essential for normal resorption and patterning of the skeleton. Further, these data suggest that coordination of osteoclast and osteoblast activity is a conserved process among vertebrates and may have similar regulation.
Collapse
Affiliation(s)
- K Urso
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - J Caetano-Lopes
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - P Y Lee
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - J Yan
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - K Henke
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - M Sury
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - H Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - M Zgoda
- Department of Orthopedics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - C Jacome-Galarza
- Department of Orthopedics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - P A Nigrovic
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - J Duryea
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - M P Harris
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - J F Charles
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Orthopedics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Lleras-Forero L, Winkler C, Schulte-Merker S. Zebrafish and medaka as models for biomedical research of bone diseases. Dev Biol 2019; 457:191-205. [PMID: 31325453 DOI: 10.1016/j.ydbio.2019.07.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022]
Abstract
The identification of disease-causing mutations has in recent years progressed immensely due to whole genome sequencing approaches using patient material. The task accordingly is shifting from gene identification to functional analysis of putative disease-causing genes, preferably in an in vivo setting which also allows testing of drug candidates or biotherapeutics in whole animal disease models. In this review, we highlight the advances made in the field of bone diseases using small laboratory fish, focusing on zebrafish and medaka. We particularly highlight those human conditions where teleost models are available.
Collapse
Affiliation(s)
- L Lleras-Forero
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstrasse 7, 48149 Münster, Germany; CiM Cluster of Excellence (EXC-1003-CiM), Münster, Germany.
| | - C Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 04, 117558 Singapore
| | - S Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstrasse 7, 48149 Münster, Germany; CiM Cluster of Excellence (EXC-1003-CiM), Münster, Germany.
| |
Collapse
|
17
|
Bergen DJM, Kague E, Hammond CL. Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds. Front Endocrinol (Lausanne) 2019; 10:6. [PMID: 30761080 PMCID: PMC6361756 DOI: 10.3389/fendo.2019.00006] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is metabolic bone disease caused by an altered balance between bone anabolism and catabolism. This dysregulated balance is responsible for fragile bones that fracture easily after minor falls. With an aging population, the incidence is rising and as yet pharmaceutical options to restore this imbalance is limited, especially stimulating osteoblast bone-building activity. Excitingly, output from large genetic studies on people with high bone mass (HBM) cases and genome wide association studies (GWAS) on the population, yielded new insights into pathways containing osteo-anabolic players that have potential for drug target development. However, a bottleneck in development of new treatments targeting these putative osteo-anabolic genes is the lack of animal models for rapid and affordable testing to generate functional data and that simultaneously can be used as a compound testing platform. Zebrafish, a small teleost fish, are increasingly used in functional genomics and drug screening assays which resulted in new treatments in the clinic for other diseases. In this review we outline the zebrafish as a powerful model for osteoporosis research to validate potential therapeutic candidates, describe the tools and assays that can be used to study bone homeostasis, and affordable (semi-)high-throughput compound testing.
Collapse
Affiliation(s)
- Dylan J. M. Bergen
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
De Clercq A, Perrott MR, Davie PS, Preece MA, Owen MAG, Huysseune A, Witten PE. Temperature sensitive regions of the Chinook salmon vertebral column: Vestiges and meristic variation. J Morphol 2018; 279:1301-1311. [DOI: 10.1002/jmor.20871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/11/2018] [Accepted: 06/24/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Adelbert De Clercq
- School of Veterinary Science; Massey University; Palmerston North New Zealand
- Evolutionary Developmental Biology; Ghent University; Ghent Belgium
| | - Matthew R. Perrott
- School of Veterinary Science; Massey University; Palmerston North New Zealand
| | - Peter S. Davie
- School of Veterinary Science; Massey University; Palmerston North New Zealand
| | | | | | - Ann Huysseune
- Evolutionary Developmental Biology; Ghent University; Ghent Belgium
| | - P. Eckhard Witten
- School of Veterinary Science; Massey University; Palmerston North New Zealand
- Evolutionary Developmental Biology; Ghent University; Ghent Belgium
| |
Collapse
|
19
|
Pogoda HM, Riedl-Quinkertz I, Löhr H, Waxman JS, Dale RM, Topczewski J, Schulte-Merker S, Hammerschmidt M. Direct activation of chordoblasts by retinoic acid is required for segmented centra mineralization during zebrafish spine development. Development 2018; 145:dev.159418. [PMID: 29650589 DOI: 10.1242/dev.159418] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/29/2018] [Indexed: 01/20/2023]
Abstract
Zebrafish mutants with increased retinoic acid (RA) signaling due to the loss of the RA-inactivating enzyme Cyp26b1 develop a hyper-mineralized spine with gradually fusing vertebral body precursors (centra). However, the underlying cellular mechanisms remain incompletely understood. Here, we show that cells of the notochord epithelium named chordoblasts are sensitive to RA signaling. Chordoblasts are uniformly distributed along the anteroposterior axis and initially generate the continuous collagenous notochord sheath. However, subsequently and iteratively, subsets of these cells undergo further RA-dependent differentiation steps, acquire a stellate-like shape, downregulate expression of the collagen gene col2a1a, switch on cyp26b1 expression and trigger metameric sheath mineralization. This mineralization fails to appear upon chordoblast-specific cell ablation or RA signal transduction blockade. Together, our data reveal that, despite their different developmental origins, the activities and regulation of chordoblasts are very similar to those of osteoblasts, including their RA-induced transition from osteoid-producing cells to osteoid-mineralizing ones. Furthermore, our data point to a requirement for locally controlled RA activity within the chordoblast layer in order to generate the segmented vertebral column.
Collapse
Affiliation(s)
- Hans-Martin Pogoda
- Department of Biology, Institute of Zoology - Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Iris Riedl-Quinkertz
- Department of Biology, Institute of Zoology - Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Heiko Löhr
- Department of Biology, Institute of Zoology - Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rodney M Dale
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Jacek Topczewski
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611-2605, USA.,Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, 48149 Münster, Germany.,CiM Cluster of Excellence (EXC-1003), WWU Münster, 48149 Münster, Germany.,Hubrecht Institute - KNAW & UMC Utrecht, 3584CT Utrecht, Netherlands
| | - Matthias Hammerschmidt
- Department of Biology, Institute of Zoology - Developmental Biology, University of Cologne, 50674 Cologne, Germany .,CECAD Cluster of Excellence, University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
20
|
Lleras Forero L, Narayanan R, Huitema LF, VanBergen M, Apschner A, Peterson-Maduro J, Logister I, Valentin G, Morelli LG, Oates AC, Schulte-Merker S. Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock. eLife 2018; 7:33843. [PMID: 29624170 PMCID: PMC5962341 DOI: 10.7554/elife.33843] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Segmentation of the axial skeleton in amniotes depends on the segmentation clock, which patterns the paraxial mesoderm and the sclerotome. While the segmentation clock clearly operates in teleosts, the role of the sclerotome in establishing the axial skeleton is unclear. We severely disrupt zebrafish paraxial segmentation, yet observe a largely normal segmentation process of the chordacentra. We demonstrate that axial entpd5+ notochord sheath cells are responsible for chordacentrum mineralization, and serve as a marker for axial segmentation. While autonomous within the notochord sheath, entpd5 expression and centrum formation show some plasticity and can respond to myotome pattern. These observations reveal for the first time the dynamics of notochord segmentation in a teleost, and are consistent with an autonomous patterning mechanism that is influenced, but not determined by adjacent paraxial mesoderm. This behavior is not consistent with a clock-type mechanism in the notochord.
Collapse
Affiliation(s)
- Laura Lleras Forero
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany.,CiM Cluster of Excellence (EXC-1003-CiM), Münster, Germany.,Hubrecht Institute-KNAW & UMC Utrecht, Utrecht, Netherlands
| | | | | | - Maaike VanBergen
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | | | | | - Ive Logister
- Hubrecht Institute-KNAW & UMC Utrecht, Utrecht, Netherlands
| | | | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Departamento de Fisica, FCEyN, UBA, Ciudad Universitaria, Buenos Aires, Argentina.,Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Andrew C Oates
- The Francis Crick Institute, London, United Kingdom.,Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| |
Collapse
|
21
|
De Clercq A, Perrott MR, Davie PS, Preece MA, Huysseune A, Witten PE. The external phenotype-skeleton link in post-hatch farmed Chinook salmon (Oncorhynchus tshawytscha). JOURNAL OF FISH DISEASES 2018; 41:511-527. [PMID: 29159824 DOI: 10.1111/jfd.12753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Skeletal deformities in farmed fish are a recurrent problem. External malformations are easily recognized, but there is little information on how external malformations relate to malformations of the axial skeleton: the external phenotype-skeleton link. Here, this link is studied in post-hatch to first-feed life stages of Chinook salmon (Oncorhynchus tshawytscha) raised at 4, 8 and 12°C. Specimens were whole-mount-stained for cartilage and bone, and analysed by histology. In all temperature groups, externally normal specimens can have internal malformations, predominantly fused vertebral centra. Conversely, externally malformed fish usually display internal malformations. Externally curled animals typically have malformed haemal and neural arches. External malformations affecting a single region (tail malformation and bent neck) relate to malformed notochords and early fusion of fused vertebral centra. The frequencies of internal malformations in both externally normal and malformed specimens show a U-shaped response, with lowest frequency in 8°C specimens. The fused vertebral centra that occur in externally normal specimens represent a malformation that can be contained and could be carried through into harvest size animals. This study highlights the relationship between external phenotype and axial skeleton and may help to set the framework for the early identification of skeletal malformations on fish farms.
Collapse
Affiliation(s)
- A De Clercq
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | - M R Perrott
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - P S Davie
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - M A Preece
- New Zealand King Salmon, Nelson, New Zealand
| | - A Huysseune
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | - P E Witten
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Kague E, Witten PE, Soenens M, Campos CL, Lubiana T, Fisher S, Hammond C, Brown KR, Passos-Bueno MR, Huysseune A. Zebrafish sp7 mutants show tooth cycling independent of attachment, eruption and poor differentiation of teeth. Dev Biol 2018; 435:176-184. [PMID: 29409769 DOI: 10.1016/j.ydbio.2018.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
The capacity to fully replace teeth continuously makes zebrafish an attractive model to explore regeneration and tooth development. The requirement of attachment bone for the appearance of replacement teeth has been hypothesized but not yet investigated. The transcription factor sp7 (osterix) is known in mammals to play an important role during odontoblast differentiation and root formation. Here we study tooth replacement in the absence of attachment bone using sp7 zebrafish mutants. We analysed the pattern of tooth replacement at different stages of development and demonstrated that in zebrafish lacking sp7, attachment bone is never present, independent of the stage of tooth development or fish age, yet replacement is not interrupted. Without bone of attachment we observed abnormal orientation of teeth, and abnormal connection of pulp cavities of predecessor and replacement teeth. Mutants lacking sp7 show arrested dentinogenesis, with non-polarization of odontoblasts and only a thin layer of dentin deposited. Osteoclast activity was observed in sp7 mutants; due to the lack of bone of attachment, remodelling was diminished but nevertheless present along the pharyngeal bone. We conclude that tooth replacement is ongoing in the sp7 mutant despite poor differentiation and defective attachment. Without bone of attachment tooth orientation and pulp organization are compromised.
Collapse
Affiliation(s)
- E Kague
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, United Kingdom; Centro de Pesquisa sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil.
| | - P E Witten
- Evolutionary Developmental Biology, Ghent University, Belgium
| | - M Soenens
- Evolutionary Developmental Biology, Ghent University, Belgium
| | - C L Campos
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - T Lubiana
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - S Fisher
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, United States
| | - C Hammond
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, United Kingdom
| | - K Robson Brown
- School of Archaeology and Anthropology, University of Bristol, United Kingdom
| | - M R Passos-Bueno
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - A Huysseune
- Evolutionary Developmental Biology, Ghent University, Belgium
| |
Collapse
|
23
|
De Clercq A, Perrott MR, Davie PS, Preece MA, Wybourne B, Ruff N, Huysseune A, Witten PE. Vertebral column regionalisation in Chinook salmon, Oncorhynchus tshawytscha. J Anat 2017; 231:500-514. [PMID: 28762509 PMCID: PMC5603787 DOI: 10.1111/joa.12655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2017] [Indexed: 02/05/2023] Open
Abstract
Teleost vertebral centra are often similar in size and shape, but vertebral-associated elements, i.e. neural arches, haemal arches and ribs, show regional differences. Here we examine how the presence, absence and specific anatomical and histological characters of vertebral centra-associated elements can be used to define vertebral column regions in juvenile Chinook salmon (Oncorhynchus tshawytscha). To investigate if the presence of regions within the vertebral column is independent of temperature, animals raised at 8 and 12 °C were studied at 1400 and 1530 degreedays, in the freshwater phase of the life cycle. Anatomy and composition of the skeletal tissues of the vertebral column were analysed using Alizarin red S whole-mount staining and histological sections. Six regions, termed I-VI, are recognised in the vertebral column of specimens of both temperature groups. Postcranial vertebrae (region I) carry neural arches and parapophyses but lack ribs. Abdominal vertebrae (region II) carry neural arches and ribs that articulate with parapophyses. Elastic- and fibrohyaline cartilage and Sharpey's fibres connect the bone of the parapophyses to the bone of the ribs. In the transitional region (III) vertebrae carry neural arches and parapophyses change stepwise into haemal arches. Ribs decrease in size, anterior to posterior. Vestigial ribs remain attached to the haemal arches with Sharpey's fibres. Caudal vertebrae (region IV) carry neural and haemal arches and spines. Basidorsals and basiventrals are small and surrounded by cancellous bone. Preural vertebrae (region V) carry neural and haemal arches with modified neural and haemal spines to support the caudal fin. Ural vertebrae (region VI) carry hypurals and epurals that represent modified haemal and neural arches and spines, respectively. The postcranial and transitional vertebrae and their respective characters are usually recognised, but should be considered as regions within the vertebral column of teleosts because of their distinctive morphological characters. While the number of vertebrae within each region can vary, each of the six regions is recognised in specimens of both temperature groups. This refined identification of regionalisation in the vertebral column of Chinook salmon can help to address evolutionary developmental and functional questions, and to support applied research into this farmed species.
Collapse
Affiliation(s)
- A. De Clercq
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
- Evolutionary Developmental BiologyGhent UniversityGhentBelgium
| | - M. R. Perrott
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
| | - P. S. Davie
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
| | | | - B. Wybourne
- Skretting AustraliaRosny ParkTasmaniaAustralia
| | - N. Ruff
- Skretting AustraliaRosny ParkTasmaniaAustralia
| | - A. Huysseune
- Evolutionary Developmental BiologyGhent UniversityGhentBelgium
| | - P. E. Witten
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
- Evolutionary Developmental BiologyGhent UniversityGhentBelgium
| |
Collapse
|
24
|
The sp7 gene is required for maturation of osteoblast-lineage cells in medaka (Oryzias latipes) vertebral column development. Dev Biol 2017; 431:252-262. [PMID: 28899668 DOI: 10.1016/j.ydbio.2017.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/19/2017] [Accepted: 09/04/2017] [Indexed: 01/16/2023]
Abstract
Sp7 is a zinc finger transcription factor that is essential for osteoblast differentiation in mammals. To verify the characteristic features of osteoblast-lineage cells in teleosts, we established medaka sp7 mutants using a transcription activator-like effector nuclease (TALEN) genome editing system. These mutants showed severe defects in the formation of skeletal structures. In particular, the neural and the hemal arches were not formed, although the chordal centra were formed. Analysis of the transgenic medaka revealed that sp7 mutant had normal distribution of type X collagen a1 a (col10a1a)-positive osteoblast-like cells around the centrum and at the proximal region of the vertebral arch. The sp7 mutant phenotype could be rescued by exogenous sp7 expression in col10a1a-positive cells, as well as in sp7-positive osteoblast cells. Furthermore, runx2-positive osteoblast progenitors were observed on the vertebral arches, but not on the centrum, during vertebral column development. In addition, these osteoblast progenitors differentiated into the col10a1a-positive cells. In sp7 mutant, the runx2-positive cells were normally distributed at the region of unformed vertebral arch but failed to differentiate into col10a1a-positive cells. These results indicate that osteoblast-lineage cells undergo two distinct differentiation processes during development of the vertebral arch and the centrum. Nevertheless, our results verified that sp7 gene expression in osteoblast-lineage cells is required for differentiation into mature osteoblasts to form the vertebral column and other skeletal structures.
Collapse
|
25
|
Horimizu R, Ogawa R, Watanabe Y, Tatsukawa H, Kinoshita M, Hashimoto H, Hitomi K. Biochemical characterization of a medaka (Oryzias latipes) orthologue for mammalian Factor XIII and establishment of a gene-edited mutant. FEBS J 2017; 284:2843-2855. [DOI: 10.1111/febs.14153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/14/2017] [Accepted: 06/23/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Rima Horimizu
- Graduate School of Pharmaceutical Sciences; Nagoya University; Japan
| | - Ryota Ogawa
- Graduate School of Pharmaceutical Sciences; Nagoya University; Japan
| | - Yuko Watanabe
- Graduate School of Pharmaceutical Sciences; Nagoya University; Japan
| | - Hideki Tatsukawa
- Graduate School of Pharmaceutical Sciences; Nagoya University; Japan
| | | | | | - Kiyotaka Hitomi
- Graduate School of Pharmaceutical Sciences; Nagoya University; Japan
| |
Collapse
|