1
|
Narayanaswamy S, Technau U. Self-organization of an organizer: Whole-body regeneration from reaggregated cells in cnidarians. Cells Dev 2025:204024. [PMID: 40180217 DOI: 10.1016/j.cdev.2025.204024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Cnidarians like the freshwater polyp Hydra and the sea anemone Nematostella, are famous for their enormous capacity to regenerate missing head or feet upon bisection. Classical transplantation experiments have demonstrated that the hypostome, the oral tip of the freshwater polyp Hydra, acts as an axial organizer. Likewise, transplantation of the blastopore lip of an early Nematostella gastrula stage embryo to an aboral position leads to ectopic head formation. Following molecular analyses have shown that Wnt signaling is the key component of this organizer activity. Moreover, when dissociated and reaggregated head (and foot) organizer centres are re-established by self-organization. Similarly, "gastruloids", i.e. aggregates of dissociated early gastrula stage embryos, are able to self-organize. Here, we review the past and recent molecular and theoretical work in the field to explain this phenomenon. While Turing-type reaction-diffusion models involving morphogens like Wnt dominated the field for many years, recent work emphasized the importance of biophysical cues in symmetry breaking and establishment of the organizers in aggregates. The comparison with Nematostella aggregates suggests that the principles of self-organization in cnidarians is not universal.
Collapse
Affiliation(s)
- Sanjay Narayanaswamy
- Dept. of Neurosciences and Developmental Biology, Research Platform "Single cell regulation of stem cells", Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Ulrich Technau
- Dept. of Neurosciences and Developmental Biology, Research Platform "Single cell regulation of stem cells", Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
2
|
Lebedeva T, Boström J, Kremnyov S, Mörsdorf D, Niedermoser I, Genikhovich E, Hejnol A, Adameyko I, Genikhovich G. β-catenin-driven endomesoderm specification is a Bilateria-specific novelty. Nat Commun 2025; 16:2476. [PMID: 40075083 PMCID: PMC11903683 DOI: 10.1038/s41467-025-57109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 02/08/2025] [Indexed: 03/14/2025] Open
Abstract
Endomesoderm specification by a maternal β-catenin signal and body axis patterning by interpreting a gradient of zygotic Wnt/β-catenin signalling was suggested to predate the split between Bilateria and their sister clade Cnidaria. However, in Cnidaria, the roles of β-catenin signalling in these processes have not been demonstrated directly. Here, by tagging the endogenous β-catenin in the cnidarian Nematostella vectensis, we confirm that its oral-aboral axis is indeed patterned by a gradient of β-catenin signalling. Strikingly, we show that, in contrast to bilaterians, Nematostella endomesoderm specification is repressed by β-catenin and takes place in the maternal nuclear β-catenin-negative part of the embryo. This completely changes the accepted paradigm and suggests that β-catenin-dependent endomesoderm specification was a bilaterian innovation linking endomesoderm specification to the subsequent posterior-anterior patterning.
Collapse
Affiliation(s)
- Tatiana Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
- Institute for Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Germany
| | - Johan Boström
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Stanislav Kremnyov
- Institute for Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Germany
| | - David Mörsdorf
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Isabell Niedermoser
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | | | - Andreas Hejnol
- Institute for Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Germany
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Knabl P, Mörsdorf D, Genikhovich G. A whole-body atlas of BMP signaling activity in an adult sea anemone. BMC Biol 2025; 23:49. [PMID: 39984987 PMCID: PMC11846459 DOI: 10.1186/s12915-025-02150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND BMP signaling is responsible for the second body axis patterning in Bilateria and in the bilaterally symmetric members of the bilaterian sister clade Cnidaria-corals and sea anemones. However, medusozoan cnidarians (jellyfish, hydroids) are radially symmetric, and yet their genomes contain BMP signaling components. This evolutionary conservation suggests that BMP signaling must have other functions not related to axial patterning, which keeps BMP signaling components under selective pressure. RESULTS To find out what these functions might be, we generated a detailed whole-body atlas of BMP activity in the sea anemone Nematostella. In the adult polyp, we discover an unexpected diversity of domains with BMP signaling activity, which is especially prominent in the head, as well as across the neuro-muscular and reproductive parts of the gastrodermis. In accordance, analysis of two medusozoan species, the true jellyfish Aurelia and the box jellyfish Tripedalia, revealed similarly broad and diverse BMP activity. CONCLUSIONS Our study reveals multiple, distinct domains of BMP signaling in Anthozoa and Medusozoa, supporting the versatile nature of the BMP pathway across Cnidaria. Most prominently, BMP signaling appears to be involved in tentacle formation, neuronal development, and gameto- or gonadogenesis.
Collapse
Affiliation(s)
- Paul Knabl
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Vienna, Austria
| | - David Mörsdorf
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Vetrova AA, Kremnyov SV. SMAD2/3 signaling determines the colony architecture in a hydrozoan, Dynamena pumila. Differentiation 2025; 141:100834. [PMID: 39823995 DOI: 10.1016/j.diff.2025.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
Most hydrozoan cnidarians form complex colonies that vary in size, shape, and branching patterns. However, little is known about the molecular genetic mechanisms responsible for the diversity of the hydrozoan body plans. The Nodal signaling pathway has previously been shown to be essential for setting up a new body axis in a budding Hydra. This budding process is often compared to the branching of colonial hydrozoans, suggesting that the signaling mechanisms underlying branching and budding are evolutionarily conserved. Using the colonial hydrozoan Dynamena pumila, we demonstrated that colony architecture depends on the activity level of SMAD2/3-mediated signaling. Pharmacological inhibition of the SMAD2/3-mediated Nodal signaling pathway resulted in an altered architecture of D. pumila primary colony, resembling naturally occurring malformation. Additionally, we identified a Nodal-related gene in D. pumila and observed its expression at the earliest stage of new colony module formation. Taken together, our results suggest that TGF-β signaling pathway plays an important role in shaping the morphology of hydrozoan colony.
Collapse
Affiliation(s)
- Alexandra A Vetrova
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Vavilova st. 26, Moscow, 119334, Russia; Department of Embryology, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7, St, Petersburg, 199034, Russia.
| | - Stanislav V Kremnyov
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Vavilova st. 26, Moscow, 119334, Russia.
| |
Collapse
|
5
|
Tasker-Brown W, Koh SWH, Trozzi N, Maio KA, Jamil I, Jiang Y, Majda M, Smith RS, Moubayidin L. An incoherent feed-forward loop involving bHLH transcription factors, Auxin and CYCLIN-Ds regulates style radial symmetry establishment in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2885-2903. [PMID: 39121182 DOI: 10.1111/tpj.16959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/18/2024] [Accepted: 07/23/2024] [Indexed: 08/11/2024]
Abstract
The bilateral-to-radial symmetry transition occurring during the development of the Arabidopsis thaliana female reproductive organ (gynoecium) is a crucial biological process linked to plant fertilization and seed production. Despite its significance, the cellular mechanisms governing the establishment and breaking of radial symmetry at the gynoecium apex (style) remain unknown. To fill this gap, we employed quantitative confocal imaging coupled with MorphoGraphX analysis, in vivo and in vitro transcriptional experiments, and genetic analysis encompassing mutants in two bHLH transcription factors necessary and sufficient to promote transition to radial symmetry, SPATULA (SPT) and INDEHISCENT (IND). Here, we show that defects in style morphogenesis correlate with defects in cell-division orientation and rate. We showed that the SPT-mediated accumulation of auxin in the medial-apical cells undergoing symmetry transition is required to maintain cell-division-oriented perpendicular to the direction of organ growth (anticlinal, transversal cell division). In addition, SPT and IND promote the expression of specific core cell-cycle regulators, CYCLIN-D1;1 (CYC-D1;1) and CYC-D3;3, to support progression through the G1 phase of the cell cycle. This transcriptional regulation is repressed by auxin, thus forming an incoherent feed-forward loop mechanism. We propose that this mechanism fine-tunes cell division rate and orientation with the morphogenic signal provided by auxin, during patterning of radial symmetry at the style.
Collapse
Affiliation(s)
| | - Samuel W H Koh
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Nicola Trozzi
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
- Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Kestrel A Maio
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Iqra Jamil
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Yuxiang Jiang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Mateusz Majda
- Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Richard S Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Laila Moubayidin
- Department of Crop Genetics, John Innes Centre, Norwich, Norfolk, UK
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| |
Collapse
|
6
|
Holzem M, Boutros M, Holstein TW. The origin and evolution of Wnt signalling. Nat Rev Genet 2024; 25:500-512. [PMID: 38374446 DOI: 10.1038/s41576-024-00699-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
The Wnt signal transduction pathway has essential roles in the formation of the primary body axis during development, cellular differentiation and tissue homeostasis. This animal-specific pathway has been studied extensively in contexts ranging from developmental biology to medicine for more than 40 years. Despite its physiological importance, an understanding of the evolutionary origin and primary function of Wnt signalling has begun to emerge only recently. Recent studies on very basal metazoan species have shown high levels of conservation of components of both canonical and non-canonical Wnt signalling pathways. Furthermore, some pathway proteins have been described also in non-animal species, suggesting that recruitment and functional adaptation of these factors has occurred in metazoans. In this Review, we summarize the current state of research regarding the evolutionary origin of Wnt signalling, its ancestral function and the characteristics of the primal Wnt ligand, with emphasis on the importance of genomic studies in various pre-metazoan and basal metazoan species.
Collapse
Affiliation(s)
- Michaela Holzem
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany.
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Michael Boutros
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
7
|
Huan P, Liu B. The gastropod Lottia peitaihoensis as a model to study the body patterning of trochophore larvae. Evol Dev 2024; 26:e12456. [PMID: 37667429 DOI: 10.1111/ede.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
The body patterning of trochophore larvae is important for understanding spiralian evolution and the origin of the bilateral body plan. However, considerable variations are observed among spiralian lineages, which have adopted varied strategies to develop trochophore larvae or even omit a trochophore stage. Some spiralians, such as patellogastropod mollusks, are suggested to exhibit ancestral traits by producing equal-cleaving fertilized eggs and possessing "typical" trochophore larvae. In recent years, we developed a potential model system using the patellogastropod Lottia peitaihoensis (= Lottia goshimai). Here, we introduce how the species were selected and establish sources and techniques, including gene knockdown, ectopic gene expression, and genome editing. Investigations on this species reveal essential aspects of trochophore body patterning, including organizer signaling, molecular and cellular processes connecting the various developmental functions of the organizer, the specification and behaviors of the endomesoderm and ectomesoderm, and the characteristic dorsoventral decoupling of Hox expression. These findings enrich the knowledge of trochophore body patterning and have important implications regarding the evolution of spiralians as well as bilateral body plans.
Collapse
Affiliation(s)
- Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Mörsdorf D, Knabl P, Genikhovich G. Highly conserved and extremely evolvable: BMP signalling in secondary axis patterning of Cnidaria and Bilateria. Dev Genes Evol 2024; 234:1-19. [PMID: 38472535 PMCID: PMC11226491 DOI: 10.1007/s00427-024-00714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Bilateria encompass the vast majority of the animal phyla. As the name states, they are bilaterally symmetric, that is with a morphologically clear main body axis connecting their anterior and posterior ends, a second axis running between their dorsal and ventral surfaces, and with a left side being roughly a mirror image of their right side. Bone morphogenetic protein (BMP) signalling has widely conserved functions in the formation and patterning of the second, dorso-ventral (DV) body axis, albeit to different extents in different bilaterian species. Whilst initial findings in the fruit fly Drosophila and the frog Xenopus highlighted similarities amongst these evolutionarily very distant species, more recent analyses featuring other models revealed considerable diversity in the mechanisms underlying dorsoventral patterning. In fact, as phylogenetic sampling becomes broader, we find that this axis patterning system is so evolvable that even its core components can be deployed differently or lost in different model organisms. In this review, we will try to highlight the diversity of ways by which BMP signalling controls bilaterality in different animals, some of which do not belong to Bilateria. Future research combining functional analyses and modelling is bound to give us some understanding as to where the limits to the extent of the evolvability of BMP-dependent axial patterning may lie.
Collapse
Affiliation(s)
- David Mörsdorf
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
| | - Paul Knabl
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Vienna, Austria
| | - Grigory Genikhovich
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
9
|
Knabl P, Schauer A, Pomreinke AP, Zimmermann B, Rogers KW, Čapek D, Müller P, Genikhovich G. Analysis of SMAD1/5 target genes in a sea anemone reveals ZSWIM4-6 as a novel BMP signaling modulator. eLife 2024; 13:e80803. [PMID: 38323609 PMCID: PMC10849676 DOI: 10.7554/elife.80803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/28/2024] [Indexed: 02/08/2024] Open
Abstract
BMP signaling has a conserved function in patterning the dorsal-ventral body axis in Bilateria and the directive axis in anthozoan cnidarians. So far, cnidarian studies have focused on the role of different BMP signaling network components in regulating pSMAD1/5 gradient formation. Much less is known about the target genes downstream of BMP signaling. To address this, we generated a genome-wide list of direct pSMAD1/5 target genes in the anthozoan Nematostella vectensis, several of which were conserved in Drosophila and Xenopus. Our ChIP-seq analysis revealed that many of the regulatory molecules with documented bilaterally symmetric expression in Nematostella are directly controlled by BMP signaling. We identified several so far uncharacterized BMP-dependent transcription factors and signaling molecules, whose bilaterally symmetric expression may be indicative of their involvement in secondary axis patterning. One of these molecules is zswim4-6, which encodes a novel nuclear protein that can modulate the pSMAD1/5 gradient and potentially promote BMP-dependent gene repression.
Collapse
Affiliation(s)
- Paul Knabl
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of ViennaViennaAustria
| | - Alexandra Schauer
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | | | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
- University of KonstanzKonstanzGermany
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| |
Collapse
|
10
|
Mańko MK, Munro C, Leclère L. Establishing Bilateral Symmetry in Hydrozoan Planula Larvae, a Review of Siphonophore Early Development. Integr Comp Biol 2023; 63:975-989. [PMID: 37353930 DOI: 10.1093/icb/icad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023] Open
Abstract
Siphonophores are colonial hydrozoans, characterized by complex colony organization and unparalleled zooid functional specialization. Recent genomic studies have offered an evolutionary perspective on how this morphological complexity arose, but a molecular characterization of symmetry breaking in siphonophore embryonic development is still largely missing. Here, bringing together historical data on early development with new immunohistochemical data, we review the diversity of developmental trajectories that lead to the formation of bilaterally symmetric planula larvae in siphonophores. Embryonic development, up to the planula stage, is remarkably similar across siphonophore phylogeny. Then, with the appearance of the lateral endodermal thickening (= ventral endoderm), larval development diverges between taxa, differing in the location and patterning of the primary buds, chronology of budding, establishment of growth zones, and retention of larval zooids. Our work also uncovers a number of open questions in siphonophore development, including homology of different zooids, mechanisms underlying formation and maintenance of spatially restricted growth zone(s), and molecular factors establishing a secondary dorsal-ventral axis in planulae. By discussing siphonophore development and body axes within the broader cnidarian context, we then set the framework for future work on siphonophores, which is finally achievable with the advent of culturing methods.
Collapse
Affiliation(s)
- Maciej K Mańko
- Laboratory of Plankton Biology, Department of Marine Biology and Biotechnology, University of Gdańsk, Gdynia, 81-378, Poland
| | - Catriona Munro
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, 75005, France
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-Mer, 06230, France
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-Mer, 06230, France
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, 66650, France
| |
Collapse
|
11
|
Dumitru ML. Brain asymmetry is globally different in males and females: exploring cortical volume, area, thickness, and mean curvature. Cereb Cortex 2023; 33:11623-11633. [PMID: 37851852 PMCID: PMC10724869 DOI: 10.1093/cercor/bhad396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Brain asymmetry is a cornerstone in the development of higher-level cognition, but it is unclear whether and how it differs in males and females. Asymmetry has been investigated using the laterality index, which compares homologous regions as pairwise weighted differences between the left and the right hemisphere. However, if asymmetry differences between males and females are global instead of pairwise, involving proportions between multiple brain areas, novel methodological tools are needed to evaluate them. Here, we used the Amsterdam Open MRI collection to investigate sexual dimorphism in brain asymmetry by comparing laterality index with the distance index, which is a global measure of differences within and across hemispheres, and with the subtraction index, which compares pairwise raw values in the left and right hemisphere. Machine learning models, robustness tests, and group analyses of cortical volume, area, thickness, and mean curvature revealed that, of the three indices, distance index was the most successful biomarker of sexual dimorphism. These findings suggest that left-right asymmetry in males and females involves global coherence rather than pairwise contrasts. Further studies are needed to investigate the biological basis of local and global asymmetry based on growth patterns under genetic, hormonal, and environmental factors.
Collapse
Affiliation(s)
- Magda L Dumitru
- Department of Biological Sciences, University of Bergen, Postboks 7803, 5020 Bergen, Norway
- Department of Biological and Medical Psychology, University of Bergen, Postboks 7807, 5020 Bergen, Norway
| |
Collapse
|
12
|
Wang J, Ma S, Yu P, He X. Evolution of Human Brain Left-Right Asymmetry: Old Genes with New Functions. Mol Biol Evol 2023; 40:msad181. [PMID: 37561991 PMCID: PMC10473864 DOI: 10.1093/molbev/msad181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
The human brain is generally anatomically symmetrical, boasting mirror-like brain regions in the left and right hemispheres. Despite this symmetry, fine-scale structural asymmetries are prevalent and are believed to be responsible for distinct functional divisions within the brain. Prior studies propose that these asymmetric structures are predominantly primate specific or even unique to humans, suggesting that the genes contributing to the structural asymmetry of the human brain might have evolved recently. In our study, we identified approximately 1,500 traits associated with human brain asymmetry by collecting paired brain magnetic resonance imaging features from the UK Biobank. Each trait is measured in a specific region of one hemisphere and mirrored in the corresponding region of the other hemisphere. Conducting genome-wide association studies on these traits, we identified over 1,000 quantitative trait loci. Around these index single nucleotide polymorphisms, we found approximately 200 genes that are enriched in brain-related Gene Ontology terms and are predominantly upregulated in brain tissues. Interestingly, most of these genes are evolutionarily old, originating just prior to the emergence of Bilateria (bilaterally symmetrical animals) and Euteleostomi (bony vertebrates with a brain), at a significantly higher ratio than expected. Further analyses of these genes reveal a brain-specific upregulation in humans relative to other mammalian species. This suggests that the structural asymmetry of the human brain has been shaped by evolutionarily ancient genes that have assumed new functions over time.
Collapse
Affiliation(s)
- Jianguo Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Sidi Ma
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Peijie Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | | |
Collapse
|
13
|
Smits CM, Dutta S, Jain-Sharma V, Streichan SJ, Shvartsman SY. Maintaining symmetry during body axis elongation. Curr Biol 2023; 33:3536-3543.e6. [PMID: 37562404 DOI: 10.1016/j.cub.2023.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
Bilateral symmetry defines much of the animal kingdom and is crucial for numerous functions of bilaterian organisms. Genetic approaches have discovered highly conserved patterning networks that establish bilateral symmetry in early embryos,1 but how this symmetry is maintained throughout subsequent morphogenetic events remains largely unknown.2 Here we show that the terminal patterning system-which relies on Ras/ERK signaling through activation of the Torso receptor by its ligand Trunk3-is critical for preserving bilateral symmetry during Drosophila body axis elongation, a process driven by cell rearrangements in the two identical lateral regions of the embryo and specified by the dorsal-ventral and anterior-posterior patterning systems.4 We demonstrate that fluctuating asymmetries in this rapid convergent-extension process are attenuated in normal embryos over time, possibly through noise-dissipating forces from the posterior midgut invagination and movement. However, when Torso signaling is attenuated via mutation of Trunk or RNAi directed against downstream Ras/ERK pathway components, body axis elongation results in a characteristic corkscrew phenotype,5 which reflects dramatic reorganization of global tissue flow and is incompatible with viability. Our results reveal a new function downstream of the Drosophila terminal patterning system in potentially active control of bilateral symmetry and should motivate systematic search for similar symmetry-preserving regulatory mechanisms in other bilaterians.
Collapse
Affiliation(s)
- Celia M Smits
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sayantan Dutta
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Vishank Jain-Sharma
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sebastian J Streichan
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA.
| |
Collapse
|
14
|
Steinmetz PRH. Development: Sea anemone segments polarise. Curr Biol 2023; 33:R717-R719. [PMID: 37433272 DOI: 10.1016/j.cub.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The evolutionary origin of animal segmentation has been debated for centuries. A new study now reveals genetic similarities between the patterning of segmental pouches in a sea anemone, traditionally considered as unsegmented, and segmental structures of vertebrates and arthropods.
Collapse
Affiliation(s)
- Patrick R H Steinmetz
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway.
| |
Collapse
|
15
|
Full-Length Transcriptome Maps of Reef-Building Coral Illuminate the Molecular Basis of Calcification, Symbiosis, and Circa-Dian Genes. Int J Mol Sci 2022; 23:ijms231911135. [PMID: 36232445 PMCID: PMC9570262 DOI: 10.3390/ijms231911135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Coral transcriptomic data largely rely on short-read sequencing, which severely limits the understanding of coral molecular mechanisms and leaves many important biological questions unresolved. Here, we sequence the full-length transcriptomes of four common and frequently dominant reef-building corals using the PacBio Sequel II platform. We obtain information on reported gene functions, structures, and expression profiles. Among them, a comparative analysis of biomineralization-related genes provides insights into the molecular basis of coral skeletal density. The gene expression profiles of the symbiont Symbiodiniaceae are also isolated and annotated from the holobiont sequence data. Finally, a phylogenetic analysis of key circadian clock genes among 40 evolutionarily representative species indicates that there are four key members in early metazoans, including cry genes; Clock or Npas2; cyc or Arntl; and tim, while per, as the fifth member, occurs in Bilateria. In summary, this work provides a foundation for further work on the manipulation of skeleton production or symbiosis to promote the survival of these important organisms.
Collapse
|
16
|
Deppisch P, Helfrich-Förster C, Senthilan PR. The Gain and Loss of Cryptochrome/Photolyase Family Members during Evolution. Genes (Basel) 2022; 13:1613. [PMID: 36140781 PMCID: PMC9498864 DOI: 10.3390/genes13091613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
The cryptochrome/photolyase (CRY/PL) family represents an ancient group of proteins fulfilling two fundamental functions. While photolyases repair UV-induced DNA damages, cryptochromes mainly influence the circadian clock. In this study, we took advantage of the large number of already sequenced and annotated genes available in databases and systematically searched for the protein sequences of CRY/PL family members in all taxonomic groups primarily focusing on metazoans and limiting the number of species per taxonomic order to five. Using BLASTP searches and subsequent phylogenetic tree and motif analyses, we identified five distinct photolyases (CPDI, CPDII, CPDIII, 6-4 photolyase, and the plant photolyase PPL) and six cryptochrome subfamilies (DASH-CRY, mammalian-type MCRY, Drosophila-type DCRY, cnidarian-specific ACRY, plant-specific PCRY, and the putative magnetoreceptor CRY4. Manually assigning the CRY/PL subfamilies to the species studied, we have noted that over evolutionary history, an initial increase of various CRY/PL subfamilies was followed by a decrease and specialization. Thus, in more primitive organisms (e.g., bacteria, archaea, simple eukaryotes, and in basal metazoans), we find relatively few CRY/PL members. As species become more evolved (e.g., cnidarians, mollusks, echinoderms, etc.), the CRY/PL repertoire also increases, whereas it appears to decrease again in more recent organisms (humans, fruit flies, etc.). Moreover, our study indicates that all cryptochromes, although largely active in the circadian clock, arose independently from different photolyases, explaining their different modes of action.
Collapse
Affiliation(s)
| | | | - Pingkalai R. Senthilan
- Neurobiology & Genetics, Theodor-Boveri Institute, Biocenter, Julius-Maximilians-University Würzburg, 97074 Wurzburg, Germany
| |
Collapse
|
17
|
Ozernyuk ND, Isaeva VV. Early Stages of Animal Mesoderm Evolution. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Kremnev SV. Evolutionary and Ontogenetic Plasticity of Conserved Signaling Pathways in Animals’ Development. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Holstein TW. The role of cnidarian developmental biology in unraveling axis formation and Wnt signaling. Dev Biol 2022; 487:74-98. [DOI: 10.1016/j.ydbio.2022.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
20
|
Evo-Devo of Urbilateria and its larval forms. Dev Biol 2022; 487:10-20. [DOI: 10.1016/j.ydbio.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022]
|
21
|
Abstract
Theoretically, symmetry in bilateral animals is subject to sexual selection, since it can serve as a proxy for genetic quality of competing mates during mate choice. Here, we report female preference for symmetric males in Drosophila, using a mate-choice paradigm where males with environmentally or genetically induced wing asymmetry were competed. Analysis of courtship songs revealed that males with asymmetric wings produced songs with asymmetric features that served as acoustic cues, facilitating this female preference. Females experimentally evolved in the absence of mate choice lost this preference for symmetry, suggesting that it is maintained by sexual selection. In many species, including humans and Drosophila, symmetric individuals secure more matings, suggesting that bilateral symmetry signals the quality of potential mates and is subject to sexual selection. However, this idea remains controversial, largely because obtaining conclusive experimental evidence has been hindered by confounding effects arising from the methods used to increase asymmetry in test subjects. Here, we show that altering gravity during development increases asymmetry in Drosophila melanogaster without a detrimental effect on survival, growth, and behavior. Testing males with altered-gravity–induced asymmetry in female mate-choice assays revealed symmetry-based discrimination of males via auditory cues. Females similarly discriminated against males with genetically induced asymmetry, suggesting that their preference for symmetry is not specific to altered gravity. By segmenting the male courtship song into left and right wing-generated song-bouts, we detected asymmetry in the courtship song of altered-gravity males with asymmetric wings that experienced rejection. Females experimentally evolved in the absence of mate choice lacked this preference for symmetry, suggesting that symmetry is maintained by sexual selection. Our data provide evidence for the role of symmetry in sexual selection and reveal how nonvisual cues can flag mate asymmetry during courtship.
Collapse
|
22
|
Lev-Ari T, Beeri H, Gutfreund Y. The Ecological View of Selective Attention. Front Integr Neurosci 2022; 16:856207. [PMID: 35391754 PMCID: PMC8979825 DOI: 10.3389/fnint.2022.856207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence is supporting the hypothesis that our selective attention is a manifestation of mechanisms that evolved early in evolution and are shared by many organisms from different taxa. This surge of new data calls for the re-examination of our notions about attention, which have been dominated mostly by human psychology. Here, we present an hypothesis that challenges, based on evolutionary grounds, a common view of attention as a means to manage limited brain resources. We begin by arguing that evolutionary considerations do not favor the basic proposition of the limited brain resources view of attention, namely, that the capacity of the sensory organs to provide information exceeds the capacity of the brain to process this information. Moreover, physiological studies in animals and humans show that mechanisms of selective attention are highly demanding of brain resources, making it paradoxical to see attention as a means to release brain resources. Next, we build on the above arguments to address the question why attention evolved in evolution. We hypothesize that, to a certain extent, limiting sensory processing is adaptive irrespective of brain capacity. We call this hypothesis the ecological view of attention (EVA) because it is centered on interactions of an animal with its environment rather than on internal brain resources. In its essence is the notion that inherently noisy and degraded sensory inputs serve the animal's adaptive, dynamic interactions with its environment. Attention primarily functions to resolve behavioral conflicts and false distractions. Hence, we evolved to focus on a particular target at the expense of others, not because of internal limitations, but to ensure that behavior is properly oriented and committed to its goals. Here, we expand on this notion and review evidence supporting it. We show how common results in human psychophysics and physiology can be reconciled with an EVA and discuss possible implications of the notion for interpreting current results and guiding future research.
Collapse
Affiliation(s)
| | | | - Yoram Gutfreund
- The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Haifa, Israel
| |
Collapse
|
23
|
Hayat R, Manzoor M, Hussain A. Wnt Signaling Pathway: A Comprehensive Review. Cell Biol Int 2022; 46:863-877. [PMID: 35297539 DOI: 10.1002/cbin.11797] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022]
Abstract
Wnt signaling is an evolutionary cell-to-cell coordination mechanism and it is highly critical for a variety of physiological processes of an organism's body, including stem cell regeneration, proliferation, division, migration, polarity of a cell, determining fate of the cell and specification of neural crest, neural symmetry and morphogenesis. Wnts are extracellular secreted glycol proteins, consisted of a family of 19 human proteins that represent the complex nature of the regulatory structure and physiological efficiency of signaling. Moreover, a Wnt/β-catenin-dependent pathway and the β-catenin-independent pathway that is further classified into the Planar Cell Polarity and Wnt/Ca2+ pathways have been established as key signaling nodes downstream of the frizzled (Fz/Fzd) receptor, and these nodes are extensively analyzed at biochemical and molecular levels. Genetic and epigenetic activities that ultimately characterize the pathway and its subsequent responses contribute to Wnt-β-catenin signaling pathway hypo or hyper-activation and is associated with the variety of human disorders progression most significantly cancers. Recognizing how this mechanism operates is crucial to the advancement of cancer prevention therapies or regenerative medicine methods. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rabia Hayat
- Institute of Evolution and Marine Biodiversity, Ocean university of China, Qingdao
| | - Maleeha Manzoor
- Department of Zoology, Government College University, Faisalabad
| | - Ali Hussain
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore
| |
Collapse
|
24
|
Erofeeva TV, Grigorenko AP, Gusev FE, Kosevich IA, Rogaev EI. Studying of Molecular Regulation of Developmental Processes of Lower Metazoans Exemplified by Cnidaria Using High-Throughput Sequencing. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:269-293. [PMID: 35526848 DOI: 10.1134/s0006297922030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A unique set of features and characteristics of species of the Cnidaria phylum is the one reason that makes them a model for a various studies. The plasticity of a life cycle and the processes of cell differentiation and development of an integral multicellular organism associated with it are of a specific scientific interest. A new stage of development of molecular genetic methods, including methods for high-throughput genome, transcriptome, and epigenome sequencing, both at the level of the whole organism and at the level of individual cells, makes it possible to obtain a detailed picture of the development of these animals. This review examines some modern approaches and advances in the reconstruction of the processes of ontogenesis of cnidarians by studying the regulatory signal transduction pathways and their interactions.
Collapse
Affiliation(s)
- Taisia V Erofeeva
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasia P Grigorenko
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Fedor E Gusev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor A Kosevich
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Evgeny I Rogaev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
25
|
Robert NSM, Sarigol F, Zimmermann B, Meyer A, Voolstra CR, Simakov O. Emergence of distinct syntenic density regimes is associated with early metazoan genomic transitions. BMC Genomics 2022; 23:143. [PMID: 35177000 PMCID: PMC8851819 DOI: 10.1186/s12864-022-08304-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Abstract
Background Animal genomes are strikingly conserved in terms of local gene order (microsynteny). While some of these microsyntenies have been shown to be coregulated or to form gene regulatory blocks, the diversity of their genomic and regulatory properties across the metazoan tree of life remains largely unknown. Results Our comparative analyses of 49 animal genomes reveal that the largest gains of synteny occurred in the last common ancestor of bilaterians and cnidarians and in that of bilaterians. Depending on their node of emergence, we further show that novel syntenic blocks are characterized by distinct functional compositions (Gene Ontology terms enrichment) and gene density properties, such as high, average and low gene density regimes. This is particularly pronounced among bilaterian novel microsyntenies, most of which fall into high gene density regime associated with higher gene coexpression levels. Conversely, a majority of vertebrate novel microsyntenies display a low gene density regime associated with lower gene coexpression levels. Conclusions Our study provides first evidence for evolutionary transitions between different modes of microsyntenic block regulation that coincide with key events of metazoan evolution. Moreover, the microsyntenic profiling strategy and interactive online application (Syntenic Density Browser, available at: http://synteny.csb.univie.ac.at/) we present here can be used to explore regulatory properties of microsyntenic blocks and predict their coexpression in a wide-range of animal genomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08304-2.
Collapse
Affiliation(s)
- Nicolas S M Robert
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria.
| | - Fatih Sarigol
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78457, Constance, Germany
| | | | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria.
| |
Collapse
|
26
|
Hill EM, Chen CY, Del Viso F, Ellington LR, He S, Karabulut A, Paulson A, Gibson MC. Manipulation of Gene Activity in the Regenerative Model Sea Anemone, Nematostella vectensis. Methods Mol Biol 2022; 2450:437-465. [PMID: 35359322 PMCID: PMC9761902 DOI: 10.1007/978-1-0716-2172-1_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With a surprisingly complex genome and an ever-expanding genetic toolkit, the sea anemone Nematostella vectensis has become a powerful model system for the study of both development and whole-body regeneration. Here we provide the most current protocols for short-hairpin RNA (shRNA )-mediated gene knockdown and CRISPR/Cas9-targeted mutagenesis in this system. We further show that a simple Klenow reaction followed by in vitro transcription allows for the production of gene-specific shRNAs and single guide RNAs (sgRNAs) in a fast, affordable, and readily scalable manner. Together, shRNA knockdown and CRISPR/Cas9-targeted mutagenesis allow for rapid screens of gene function as well as the production of stable mutant lines that enable functional genetic analysis throughout the Nematostella life cycle.
Collapse
Affiliation(s)
- Eric M Hill
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Cheng-Yi Chen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ahmet Karabulut
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS, USA.
| |
Collapse
|
27
|
Ayali A, Couzin-Fuchs E. Editorial overview: Insect neuroscience: roads less travelled. CURRENT OPINION IN INSECT SCIENCE 2021; 48:v-vii. [PMID: 34863513 DOI: 10.1016/j.cois.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Amir Ayali
- School of Zoology, Tel Aviv University, 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, 6997801, Israel.
| | - Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, 78464, Germany
| |
Collapse
|
28
|
Sarper SE, Hirai T, Matsuyama T, Kuratani S, Fujimoto K. Polymorphism in the symmetries of gastric pouch arrangements in the sea anemone D. lineata. ZOOLOGICAL LETTERS 2021; 7:12. [PMID: 34488893 PMCID: PMC8419960 DOI: 10.1186/s40851-021-00180-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Symmetry in the arrangement of body parts is a distinctive phylogenetic feature of animals. Cnidarians show both bilateral and radial symmetries in their internal organs, such as gastric pouches and muscles. However, how different symmetries appear during the developmental process remains unknown. Here, we report intraspecific variations in the symmetric arrangement of gastric pouches, muscles, and siphonoglyphs, the Anthozoan-specific organ that drives water into the organism, in D. lineata (Diadumenidae, Actiniaria). We found that the positional arrangement of the internal organs was apparently constrained to either biradial or bilateral symmetries depending on the number of siphonoglyphs. Based on the morphological observations, a mathematical model of internal organ positioning was employed to predict the developmental backgrounds responsible for the biradial and bilateral symmetries. In the model, we assumed that the specification of gastric pouches is orchestrated by lateral inhibition and activation, which results in different symmetries depending on the number of siphonoglyphs. Thus, we propose that a common developmental program can generate either bilateral or biradial symmetries depending on the number of siphonoglyphs formed in the early developmental stages.
Collapse
Affiliation(s)
- Safiye E Sarper
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Tamami Hirai
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Take Matsuyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, 650-0047, Japan
| | - Koichi Fujimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
29
|
Anlas K, Trivedi V. Studying evolution of the primary body axis in vivo and in vitro. eLife 2021; 10:e69066. [PMID: 34463611 PMCID: PMC8456739 DOI: 10.7554/elife.69066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
The metazoan body plan is established during early embryogenesis via collective cell rearrangements and evolutionarily conserved gene networks, as part of a process commonly referred to as gastrulation. While substantial progress has been achieved in terms of characterizing the embryonic development of several model organisms, underlying principles of many early patterning processes nevertheless remain enigmatic. Despite the diversity of (pre-)gastrulating embryo and adult body shapes across the animal kingdom, the body axes, which are arguably the most fundamental features, generally remain identical between phyla. Recently there has been a renewed appreciation of ex vivo and in vitro embryo-like systems to model early embryonic patterning events. Here, we briefly review key examples and propose that similarities in morphogenesis and associated gene expression dynamics may reveal an evolutionarily conserved developmental mode as well as provide further insights into the role of external or extraembryonic cues in shaping the early embryo. In summary, we argue that embryo-like systems can be employed to inform previously uncharted aspects of animal body plan evolution as well as associated patterning rules.
Collapse
Affiliation(s)
| | - Vikas Trivedi
- EMBL BarcelonaBarcelonaSpain
- EMBL Heidelberg, Developmental BiologyHeidelbergGermany
| |
Collapse
|
30
|
Chipman AD. The evolution of the gene regulatory networks patterning the Drosophila Blastoderm. Curr Top Dev Biol 2021; 139:297-324. [PMID: 32450964 DOI: 10.1016/bs.ctdb.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Drosophila blastoderm gene regulatory network is one of the best studied networks in biology. It is composed of a series of tiered sub-networks that act sequentially to generate a primary segmental pattern. Many of these sub-networks have been studied in other arthropods, allowing us to reconstruct how each of them evolved over the transition from the arthropod ancestor to the situation seen in Drosophila today. I trace the evolution of each of these networks, showing how some of them have been modified significantly in Drosophila relative to the ancestral state while others are largely conserved across evolutionary timescales. I compare the putative ancestral arthropod segmentation network with that found in Drosophila and discuss how and why it has been modified throughout evolution, and to what extent this modification is unusual.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
| |
Collapse
|
31
|
Lebedeva T, Aman AJ, Graf T, Niedermoser I, Zimmermann B, Kraus Y, Schatka M, Demilly A, Technau U, Genikhovich G. Cnidarian-bilaterian comparison reveals the ancestral regulatory logic of the β-catenin dependent axial patterning. Nat Commun 2021; 12:4032. [PMID: 34188050 PMCID: PMC8241978 DOI: 10.1038/s41467-021-24346-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/30/2021] [Indexed: 11/09/2022] Open
Abstract
In animals, body axis patterning is based on the concentration-dependent interpretation of graded morphogen signals, which enables correct positioning of the anatomical structures. The most ancient axis patterning system acting across animal phyla relies on β-catenin signaling, which directs gastrulation, and patterns the main body axis. However, within Bilateria, the patterning logic varies significantly between protostomes and deuterostomes. To deduce the ancestral principles of β-catenin-dependent axial patterning, we investigate the oral–aboral axis patterning in the sea anemone Nematostella—a member of the bilaterian sister group Cnidaria. Here we elucidate the regulatory logic by which more orally expressed β-catenin targets repress more aborally expressed β-catenin targets, and progressively restrict the initially global, maternally provided aboral identity. Similar regulatory logic of β-catenin-dependent patterning in Nematostella and deuterostomes suggests a common evolutionary origin of these processes and the equivalence of the cnidarian oral–aboral and the bilaterian posterior–anterior body axes. The authors show in Nematostella that the more orally expressed β-catenin targets repress the more aborally expressed β-catenin targets, thus patterning the oral-aboral axis. This likely represents the common mechanism of β-catenin-dependent axial patterning shared by Cnidaria and Bilateria.
Collapse
Affiliation(s)
- Tatiana Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Andrew J Aman
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Thomas Graf
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Isabell Niedermoser
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Yulia Kraus
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria.,Department of Evolutionary Biology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye gory 1/12, Moscow, Russia
| | - Magdalena Schatka
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Adrien Demilly
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria.
| |
Collapse
|
32
|
Abstract
While the desire to uncover the neural correlates of consciousness has taken numerous directions, self-face recognition has been a constant in attempts to isolate aspects of self-awareness. The neuroimaging revolution of the 1990s brought about systematic attempts to isolate the underlying neural basis of self-face recognition. These studies, including some of the first fMRI (functional magnetic resonance imaging) examinations, revealed a right-hemisphere bias for self-face recognition in a diverse set of regions including the insula, the dorsal frontal lobe, the temporal parietal junction, and the medial temporal cortex. In this systematic review, we provide confirmation of these data (which are correlational) which were provided by TMS (transcranial magnetic stimulation) and patients in which direct inhibition or ablation of right-hemisphere regions leads to a disruption or absence of self-face recognition. These data are consistent with a number of theories including a right-hemisphere dominance for self-awareness and/or a right-hemisphere specialization for identifying significant social relationships, including to oneself.
Collapse
|
33
|
Abstract
Arthropod segmentation and vertebrate somitogenesis are leading fields in the experimental and theoretical interrogation of developmental patterning. However, despite the sophistication of current research, basic conceptual issues remain unresolved. These include: (i) the mechanistic origins of spatial organization within the segment addition zone (SAZ); (ii) the mechanistic origins of segment polarization; (iii) the mechanistic origins of axial variation; and (iv) the evolutionary origins of simultaneous patterning. Here, I explore these problems using coarse-grained models of cross-regulating dynamical processes. In the morphogenetic framework of a row of cells undergoing axial elongation, I simulate interactions between an 'oscillator', a 'switch' and up to three 'timers', successfully reproducing essential patterning behaviours of segmenting systems. By comparing the output of these largely cell-autonomous models to variants that incorporate positional information, I find that scaling relationships, wave patterns and patterning dynamics all depend on whether the SAZ is regulated by temporal or spatial information. I also identify three mechanisms for polarizing oscillator output, all of which functionally implicate the oscillator frequency profile. Finally, I demonstrate significant dynamical and regulatory continuity between sequential and simultaneous modes of segmentation. I discuss these results in the context of the experimental literature.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, 210 Longwood Ave, Boston, MA 02115, USA
- Trinity College Cambridge, University of Cambridge, Trinity Street, Cambridge CB2 1TQ, UK
| |
Collapse
|
34
|
Krasovec G, Pottin K, Rosello M, Quéinnec É, Chambon JP. Apoptosis and cell proliferation during metamorphosis of the planula larva of Clytia hemisphaerica (Hydrozoa, Cnidaria). Dev Dyn 2021; 250:1739-1758. [PMID: 34036636 DOI: 10.1002/dvdy.376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Metamorphosis in marine species is characterized by profound changes at the ecophysiological, morphological, and cellular levels. The cnidarian Clytia hemisphaerica exhibits a triphasic life cycle that includes a planula larva, a colonial polyp, and a sexually reproductive medusa. Most studies so far have focused on the embryogenesis of this species, whereas its metamorphosis has been only partially studied. RESULTS We investigated the main morphological changes of the planula larva of Clytia during the metamorphosis, and the associated cell proliferation and apoptosis. Based on our observations of planulae at successive times following artificial metamorphosis induction using GLWamide, we subdivided the Clytia's metamorphosis into a series of eight morphological stages occurring during a pre-settlement phase (from metamorphosis induction to planula ready for settlement) and the post-settlement phase (from planula settlement to primary polyp). Drastic morphological changes prior to definitive adhesion to the substrate were accompanied by specific patterns of stem-cell proliferation as well as apoptosis in both ectoderm and endoderm. Further waves of apoptosis occurring once the larva has settled were associated with morphogenesis of the primary polyp. CONCLUSION Clytia larval metamorphosis is characterized by distinct patterns of apoptosis and cell proliferation during the pre-settlement phase and the settled planula-to-polyp transformation.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, IBPS, Evolution Paris Seine, Paris, France
| | - Karen Pottin
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, IBPS, Evolution Paris Seine, Paris, France
| | - Marion Rosello
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, IBPS, Evolution Paris Seine, Paris, France
| | - Éric Quéinnec
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, IBPS, Evolution Paris Seine, Paris, France.,Institut de Systématique, Evolution, Biodiversité, Sorbonne Université, Muséum National d'histoire Naturelle, Paris Cedex, France
| | - Jean-Philippe Chambon
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, IBPS, Evolution Paris Seine, Paris, France.,Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier University, CNRS, Montpellier, France
| |
Collapse
|
35
|
Borchiellini C, Degnan SM, Le Goff E, Rocher C, Vernale A, Baghdiguian S, Séjourné N, Marschal F, Le Bivic A, Godefroy N, Degnan BM, Renard E. Staining and Tracking Methods for Studying Sponge Cell Dynamics. Methods Mol Biol 2021; 2219:81-97. [PMID: 33074535 DOI: 10.1007/978-1-0716-0974-3_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To better understand the origin of animal cell types, body plans, and other morphological features, further biological knowledge and understanding are needed from non-bilaterian phyla, namely, Placozoa, Ctenophora, and Porifera. This chapter describes recent cell staining approaches that have been developed in three phylogenetically distinct sponge species-the homoscleromorph Oscarella lobularis, and the demosponges Amphimedon queenslandica and Lycopodina hypogea-to enable analyses of cell death, proliferation, and migration. These methods allow for a more detailed understanding of cellular behaviors and fates, and morphogenetic processes in poriferans, building on current knowledge of sponge cell biology that relies chiefly on classical (static) histological observations.
Collapse
Affiliation(s)
| | - Sandie M Degnan
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Emilie Le Goff
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Caroline Rocher
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Amélie Vernale
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
- Aix Marseille University, CNRS, UMR 7288, IBDM, Marseille, France
| | | | - Nina Séjourné
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Florent Marschal
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - André Le Bivic
- Aix Marseille University, CNRS, UMR 7288, IBDM, Marseille, France
| | - Nelly Godefroy
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | - Bernard M Degnan
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Emmanuelle Renard
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France.
- Aix Marseille University, CNRS, UMR 7288, IBDM, Marseille, France.
| |
Collapse
|
36
|
McFadden CS, Quattrini AM, Brugler MR, Cowman PF, Dueñas LF, Kitahara MV, Paz-García DA, Reimer JD, Rodríguez E. Phylogenomics, Origin, and Diversification of Anthozoans (Phylum Cnidaria). Syst Biol 2021; 70:635-647. [PMID: 33507310 DOI: 10.1093/sysbio/syaa103] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/19/2023] Open
Abstract
Anthozoan cnidarians (corals and sea anemones) include some of the world's most important foundation species, capable of building massive reef complexes that support entire ecosystems. Although previous molecular phylogenetic analyses have revealed widespread homoplasy of the morphological characters traditionally used to define orders and families of anthozoans, analyses using mitochondrial genes or rDNA have failed to resolve many key nodes in the phylogeny. With a fully resolved, time-calibrated phylogeny for 234 species constructed from hundreds of ultraconserved elements and exon loci, we explore the evolutionary origins of the major clades of Anthozoa and some of their salient morphological features. The phylogeny supports reciprocally monophyletic Hexacorallia and Octocorallia, with Ceriantharia as the earliest diverging hexacorals; two reciprocally monophyletic clades of Octocorallia; and monophyly of all hexacoral orders with the exception of the enigmatic sea anemone Relicanthus daphneae. Divergence dating analyses place Anthozoa in the Cryogenian to Tonian periods (648-894 Ma), older than has been suggested by previous studies. Ancestral state reconstructions indicate that the ancestral anthozoan was a solitary polyp that had bilateral symmetry and lacked a skeleton. Colonial growth forms and the ability to precipitate calcium carbonate evolved in the Ediacaran (578 Ma) and Cambrian (503 Ma) respectively; these hallmarks of reef-building species have subsequently arisen multiple times independently in different orders. Anthozoans formed associations with photosymbionts by the Devonian (383 Ma), and photosymbioses have been gained and lost repeatedly in all orders. Together, these results have profound implications for the interpretation of the Precambrian environment and the early evolution of metazoans.[Bilateral symmetry; coloniality; coral; early metazoans; exon capture; Hexacorallia; Octocorallia photosymbiosis; sea anemone; ultraconserved elements.].
Collapse
Affiliation(s)
- Catherine S McFadden
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711 USA
| | - Andrea M Quattrini
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711 USA.,Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Mercer R Brugler
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA.,Biological Sciences Department, NYC College of Technology, City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA.,Department of Natural Sciences, University of South Carolina Beaufort, 801 Carteret Street, Beaufort, SC 29902, USA
| | - Peter F Cowman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD 4810, Australia
| | - Luisa F Dueñas
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Carrera 30 No.45-03 Edificio 421, Bogotá, D.C., Colombia
| | - Marcelo V Kitahara
- Department of Marine Science, Federal University of São Paulo, Santos, SP 11070-100 Brazil.,Centre for Marine Biology, University of São Paulo, São Sebastião, SP 11612-109 Brazil
| | - David A Paz-García
- CONACyT-Centro de Investigaciones Biológicas del Noroeste (CIBNOR). Laboratorio de Necton y Ecología de Arrecifes. Calle IPN 195, Col. Playa Palo de Santa Rita Sur, 23096 La Paz, B.C.S., México
| | - James D Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Department of Marine Science, Chemistry, and Biology, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Estefanía Rodríguez
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| |
Collapse
|
37
|
Krishnapati LS, Khade S, Trimbake D, Patwardhan R, Nadimpalli SK, Ghaskadbi S. Differential expression of BMP inhibitors gremlin and noggin in Hydra suggests distinct roles during budding and patterning of tentacles. Dev Dyn 2020; 249:1470-1485. [PMID: 33245611 DOI: 10.1002/dvdy.238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mechanisms regulating BMP and Wnt pathways and their interactions are not well studied in Hydra. RESULTS We report identification of BMP inhibitor gremlin, comparison of its expression with that of noggin and possible antagonism between Wnt and BMP signaling in Hydra. Gremlin is expressed in body column with high levels in budding region and in early buds. Noggin, on the other hand, is expressed in the hypostome, base of tentacles, lower body column, and basal disc. During budding, noggin is expressed at the sites of tentacle emergence. This was confirmed in ectopic tentacles in polyps treated with alsterpaullone (ALP), a GSK-3β inhibitor that leads to upregulation of Wnt pathway. RT-PCR data show that upregulation of Wnt is accompanied by downregulation of bmp 5-8b though noggin and gremlin remain unaltered till 24 hours. CONCLUSIONS Different expression patterns of gremlin and noggin suggest their roles in budding and patterning of tentacles, respectively. Further, bmp 5-8b inhibition by activated Wnt signaling does not directly involve noggin and gremlin in Hydra. Our data suggest that Wnt/BMP antagonism may have evolved early for defining the oral-aboral axis, while the involvement of BMP antagonists during axial patterning is a recent evolutionary acquisition within the Bilateria lineage.
Collapse
Affiliation(s)
- Lakshmi Surekha Krishnapati
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India.,Laboratory for Protein Biochemistry and Glycobiology, Biochemistry Department, University of Hyderabad, Hyderabad, India
| | - Samiksha Khade
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Diptee Trimbake
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Rohan Patwardhan
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Siva Kumar Nadimpalli
- Laboratory for Protein Biochemistry and Glycobiology, Biochemistry Department, University of Hyderabad, Hyderabad, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| |
Collapse
|
38
|
Stevens CA, Revaitis NT, Caur R, Yakoby N. The ETS-transcription factor Pointed is sufficient to regulate the posterior fate of the follicular epithelium. Development 2020; 147:dev.189787. [PMID: 33028611 DOI: 10.1242/dev.189787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022]
Abstract
The Janus-kinase/signal transducer and activator of transcription (JAK/STAT) pathway regulates the anterior posterior axis of the Drosophila follicle cells. In the anterior, it activates the bone morphogenetic protein (BMP) signaling pathway through expression of the BMP ligand decapentaplegic (dpp). In the posterior, JAK/STAT works with the epidermal growth factor receptor (EGFR) pathway to express the T-box transcription factor midline (mid). Although MID is necessary for establishing the posterior fate of the egg chamber, we show that it is not sufficient to determine a posterior fate. The ETS-transcription factor pointed (pnt) is expressed in an overlapping domain to mid in the follicle cells. This study shows that pnt is upstream of mid and that it is sufficient to induce a posterior fate in the anterior end, which is characterized by the induction of mid, the prevention of the stretched cells formation and the abrogation of border cell migration. We demonstrate that the anterior BMP signaling is abolished by PNT through dpp repression. However, ectopic DPP cannot rescue the anterior fate formation, suggesting additional targets of PNT participate in the posterior fate determination.
Collapse
Affiliation(s)
- Cody A Stevens
- Center for Computational and Integrative Biology, Rutgers, The State University of NJ, Camden, NJ 08102, USA
| | - Nicole T Revaitis
- Center for Computational and Integrative Biology, Rutgers, The State University of NJ, Camden, NJ 08102, USA
| | - Rumkan Caur
- Department of Biology, Rutgers, The State University of NJ, Camden, NJ 08102, USA
| | - Nir Yakoby
- Center for Computational and Integrative Biology, Rutgers, The State University of NJ, Camden, NJ 08102, USA .,Department of Biology, Rutgers, The State University of NJ, Camden, NJ 08102, USA
| |
Collapse
|
39
|
|
40
|
Thejer BM, Adhikary PP, Teakel SL, Fang J, Weston PA, Gurusinghe S, Anwer AG, Gosnell M, Jazayeri JA, Ludescher M, Gray LA, Pawlak M, Wallace RH, Pant SD, Wong M, Fischer T, New EJ, Fehm TN, Neubauer H, Goldys EM, Quinn JC, Weston LA, Cahill MA. PGRMC1 effects on metabolism, genomic mutation and CpG methylation imply crucial roles in animal biology and disease. BMC Mol Cell Biol 2020; 21:26. [PMID: 32293262 PMCID: PMC7160964 DOI: 10.1186/s12860-020-00268-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/20/2020] [Indexed: 01/08/2023] Open
Abstract
Background Progesterone receptor membrane component 1 (PGRMC1) is often elevated in cancers, and exists in alternative states of phosphorylation. A motif centered on PGRMC1 Y180 was evolutionarily acquired concurrently with the embryological gastrulation organizer that orchestrates vertebrate tissue differentiation. Results Here, we show that mutagenic manipulation of PGRMC1 phosphorylation alters cell metabolism, genomic stability, and CpG methylation. Each of several mutants elicited distinct patterns of genomic CpG methylation. Mutation of S57A/Y180/S181A led to increased net hypermethylation, reminiscent of embryonic stem cells. Pathways enrichment analysis suggested modulation of processes related to animal cell differentiation status and tissue identity, as well as cell cycle control and ATM/ATR DNA damage repair regulation. We detected different genomic mutation rates in culture. Conclusions A companion manuscript shows that these cell states dramatically affect protein abundances, cell and mitochondrial morphology, and glycolytic metabolism. We propose that PGRMC1 phosphorylation status modulates cellular plasticity mechanisms relevant to early embryological tissue differentiation.
Collapse
Affiliation(s)
- Bashar M Thejer
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,Department of Biology, College of Science, University of Wasit, Kut, Wasit, Iraq
| | - Partho P Adhikary
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,Present Address: Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Sarah L Teakel
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Johnny Fang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Paul A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia.,School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Saliya Gurusinghe
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Ayad G Anwer
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia.,Present Address: The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia
| | - Martin Gosnell
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia.,Quantitative (Biotechnology) Pty. Ltd., ABN 17 165 684 186, Australia
| | - Jalal A Jazayeri
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Marina Ludescher
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, Dusseldorf, Germany
| | - Lesley-Ann Gray
- Australian Genome Research Facility Ltd., Victorian Comprehensive Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Michael Pawlak
- NMI TT Pharmaservices, Protein Profiling, 72770 Reutlingen, Germany
| | - Robyn H Wallace
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Sameer D Pant
- School of Animal and Veterinary Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Marie Wong
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Tamas Fischer
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Elizabeth J New
- University of Sydney, School of Chemistry, Sydney, NSW, 2006, Australia
| | - Tanja N Fehm
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, Dusseldorf, Germany
| | - Hans Neubauer
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, Dusseldorf, Germany
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia.,Present Address: The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia
| | - Jane C Quinn
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia.,Faculty of Science, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia.,School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia. .,ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
41
|
Hehenberger E, Eitel M, Fortunato SAV, Miller DJ, Keeling PJ, Cahill MA. Early eukaryotic origins and metazoan elaboration of MAPR family proteins. Mol Phylogenet Evol 2020; 148:106814. [PMID: 32278076 DOI: 10.1016/j.ympev.2020.106814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023]
Abstract
The membrane-associated progesterone receptor (MAPR) family consists of heme-binding proteins containing a cytochrome b5 (cytb5) domain characterized by the presence of a MAPR-specific interhelical insert region (MIHIR) between helices 3 and 4 of the canonical cytb5-domain fold. Animals possess three MAPR genes (PGRMC-like, Neuferricin and Neudesin). Here we show that all three animal MAPR genes were already present in the common ancestor of the opisthokonts (comprising animals and fungi as well as related single-celled taxa). All three MAPR genes acquired extensions C-terminal to the cytb5 domain, either before or with the evolution of animals. The archetypical MAPR protein, progesterone receptor membrane component 1 (PGRMC1), contains phosphorylated tyrosines Y139 and Y180. The combination of Y139/Y180 appeared in the common ancestor of cnidarians and bilaterians, along with an early embryological organizer and synapsed neurons, and is strongly conserved in all bilaterian animals. A predicted protein interaction motif in the PGRMC1 MIHIR is potentially regulated by Y139 phosphorylation. A multilayered model of animal MAPR function acquisition includes some pre-metazoan functions (e.g., heme binding and cytochrome P450 interactions) and some acquired animal-specific functions that involve regulation of strongly conserved protein interaction motifs acquired by animals (Metazoa). This study provides a conceptual framework for future studies, against which especially PGRMC1's multiple functions can perhaps be stratified and functionally dissected.
Collapse
Affiliation(s)
- Elisabeth Hehenberger
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sofia A V Fortunato
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Canberra, ACT 2601, Australia.
| |
Collapse
|
42
|
Oda H, Iwasaki-Yokozawa S, Usui T, Akiyama-Oda Y. Experimental duplication of bilaterian body axes in spider embryos: Holm's organizer and self-regulation of embryonic fields. Dev Genes Evol 2020; 230:49-63. [PMID: 30972574 PMCID: PMC7128006 DOI: 10.1007/s00427-019-00631-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
Bilaterally symmetric body plans of vertebrates and arthropods are defined by a single set of two orthogonal axes, the anterior-posterior (or head-tail) and dorsal-ventral axes. In vertebrates, and especially amphibians, complete or partial doubling of the bilaterian body axes can be induced by two different types of embryological manipulations: transplantation of an organizer region or bi-sectioning of an embryo. Such axis doubling relies on the ability of embryonic fields to flexibly respond to the situation and self-regulate toward forming a whole body. This phenomenon has facilitated experimental efforts to investigate the mechanisms of vertebrate body axes formation. However, few studies have addressed the self-regulatory capabilities of embryonic fields associated with body axes formation in non-vertebrate bilaterians. The pioneer spider embryologist Åke Holm reported twinning of spider embryos induced by both types of embryological manipulations in 1952; yet, his experiments have not been replicated by other investigators, and access to spider or non-vertebrate twins has been limited. In this review, we provide a historical background on twinning experiments in spiders, and an overview of current twinning approaches in familiar spider species and related molecular studies. Moreover, we discuss the benefits of the spider model system for a deeper understanding of the ancestral mechanisms of body axes formation in arthropods, as well as in bilaterians.
Collapse
Affiliation(s)
- Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | - Sawa Iwasaki-Yokozawa
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | | | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
43
|
Erwin DH. The origin of animal body plans: a view from fossil evidence and the regulatory genome. Development 2020; 147:147/4/dev182899. [DOI: 10.1242/dev.182899] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT
The origins and the early evolution of multicellular animals required the exploitation of holozoan genomic regulatory elements and the acquisition of new regulatory tools. Comparative studies of metazoans and their relatives now allow reconstruction of the evolution of the metazoan regulatory genome, but the deep conservation of many genes has led to varied hypotheses about the morphology of early animals and the extent of developmental co-option. In this Review, I assess the emerging view that the early diversification of animals involved small organisms with diverse cell types, but largely lacking complex developmental patterning, which evolved independently in different bilaterian clades during the Cambrian Explosion.
Collapse
Affiliation(s)
- Douglas H. Erwin
- Department of Paleobiology, MRC-121, National Museum of Natural History, PO Box 37012, Washington, DC 20013-7012, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
44
|
Davison A. Flipping Shells! Unwinding LR Asymmetry in Mirror-Image Molluscs. Trends Genet 2020; 36:189-202. [PMID: 31952839 DOI: 10.1016/j.tig.2019.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
In seeking to understand the establishment of left-right (LR) asymmetry, a limiting factor is that most animals are ordinarily invariant in their asymmetry, except when manipulated or mutated. It is therefore surprising that the wider scientific field does not appear to fully appreciate the remarkable fact that normal development in molluscs, especially snails, can flip between two chiral types without pathology. Here, I describe recent progress in understanding the evolution, development, and genetics of chiral variation in snails, and place it in context with other animals. I argue that the natural variation of snails is a crucial resource towards understanding the invariance in other animal groups and, ultimately, will be key in revealing the common factors that define cellular and organismal LR asymmetry.
Collapse
Affiliation(s)
- Angus Davison
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
45
|
Extracellular matrix and morphogenesis in cnidarians: a tightly knit relationship. Essays Biochem 2019; 63:407-416. [PMID: 31462530 DOI: 10.1042/ebc20190021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022]
Abstract
Cnidarians, members of an early-branching metazoan phylum, possess an extracellular matrix (ECM) between their two epithelial cell layers, called the mesoglea. The cnidarian ECM, which is best studied in Hydra, contains matrix components reflective of both interstitial matrix and basement membrane. The identification of core matrisome components in cnidarian genomes has led to the notion that the basic composition of vertebrate ECM is of highly conserved nature and can be traced back to pre-bilaterians. While in vertebrate classes ECM factors have often diverged and acquired specialized functions in the context of organ development, cnidarians with their simple body plan retained direct links between ECM and morphogenesis. Recent advances in genetic manipulation techniques have provided tools for systematically studying cnidarian ECM function in body axis patterning and regeneration.
Collapse
|
46
|
сWnt signaling modulation results in a change of the colony architecture in a hydrozoan. Dev Biol 2019; 456:145-153. [PMID: 31473187 DOI: 10.1016/j.ydbio.2019.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/11/2019] [Accepted: 08/28/2019] [Indexed: 01/11/2023]
Abstract
At the polyp stage, most hydrozoan cnidarians form highly elaborate colonies with a variety of branching patterns, which makes them excellent models for studying the evolutionary mechanisms of body plan diversification. At the same time, molecular mechanisms underlying the robust patterning of the architecturally complex hydrozoan colonies remain unexplored. Using non-model hydrozoan Dynamena pumila we showed that the key components of the Wnt/β-catenin (cWnt) pathway (β-catenin, TCF) and the cWnt-responsive gene, brachyury 2, are involved in specification and patterning of the developing colony shoots. Strikingly, pharmacological modulation of the cWnt pathway leads to radical modification of the monopodially branching colony of Dynamena which acquire branching patterns typical for colonies of other hydrozoan species. Our results suggest that modulation of the cWnt signaling is the driving force promoting the evolution of the vast variety of the body plans in hydrozoan colonies and offer an intriguing possibility that the involvement of the cWnt pathway in the regulation of branching morphogenesis might represent an ancestral feature predating the cnidarian-bilaterian split.
Collapse
|
47
|
Fujita S, Kuranaga E, Nakajima YI. Cell proliferation controls body size growth, tentacle morphogenesis, and regeneration in hydrozoan jellyfish Cladonema pacificum. PeerJ 2019; 7:e7579. [PMID: 31523518 PMCID: PMC6714968 DOI: 10.7717/peerj.7579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022] Open
Abstract
Jellyfish have existed on the earth for around 600 million years and have evolved in response to environmental changes. Hydrozoan jellyfish, members of phylum Cnidaria, exist in multiple life stages, including planula larvae, vegetatively-propagating polyps, and sexually-reproducing medusae. Although free-swimming medusae display complex morphology and exhibit increase in body size and regenerative ability, their underlying cellular mechanisms are poorly understood. Here, we investigate the roles of cell proliferation in body-size growth, appendage morphogenesis, and regeneration using Cladonema pacificum as a hydrozoan jellyfish model. By examining the distribution of S phase cells and mitotic cells, we revealed spatially distinct proliferating cell populations in medusae, uniform cell proliferation in the umbrella, and clustered cell proliferation in tentacles. Blocking cell proliferation by hydroxyurea caused inhibition of body size growth and defects in tentacle branching, nematocyte differentiation, and regeneration. Local cell proliferation in tentacle bulbs is observed in medusae of two other hydrozoan species, Cytaeis uchidae and Rathkea octopunctata, indicating that it may be a conserved feature among hydrozoan jellyfish. Altogether, our results suggest that hydrozoan medusae possess actively proliferating cells and provide experimental evidence regarding the role of cell proliferation in body-size control, tentacle morphogenesis, and regeneration.
Collapse
Affiliation(s)
- Sosuke Fujita
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Erina Kuranaga
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yu-Ichiro Nakajima
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
48
|
Abstract
Consistent asymmetries between the left and right sides of animal bodies are common. For example, the internal organs of vertebrates are left-right (L-R) asymmetric in a stereotyped fashion. Other structures, such as the skeleton and muscles, are largely symmetric. This Review considers how symmetries and asymmetries form alongside each other within the embryo, and how they are then maintained during growth. I describe how asymmetric signals are generated in the embryo. Using the limbs and somites as major examples, I then address mechanisms for protecting symmetrically forming tissues from asymmetrically acting signals. These examples reveal that symmetry should not be considered as an inherent background state, but instead must be actively maintained throughout multiple phases of embryonic patterning and organismal growth.
Collapse
Affiliation(s)
- Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
49
|
Kozin VV, Borisenko IE, Kostyuchenko RP. Establishment of the Axial Polarity and Cell Fate in Metazoa via Canonical Wnt Signaling: New Insights from Sponges and Annelids. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019010035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Leclère L, Horin C, Chevalier S, Lapébie P, Dru P, Peron S, Jager M, Condamine T, Pottin K, Romano S, Steger J, Sinigaglia C, Barreau C, Quiroga Artigas G, Ruggiero A, Fourrage C, Kraus JEM, Poulain J, Aury JM, Wincker P, Quéinnec E, Technau U, Manuel M, Momose T, Houliston E, Copley RR. The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle. Nat Ecol Evol 2019; 3:801-810. [PMID: 30858591 DOI: 10.1038/s41559-019-0833-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
Jellyfish (medusae) are a distinctive life-cycle stage of medusozoan cnidarians. They are major marine predators, with integrated neurosensory, muscular and organ systems. The genetic foundations of this complex form are largely unknown. We report the draft genome of the hydrozoan jellyfish Clytia hemisphaerica and use multiple transcriptomes to determine gene use across life-cycle stages. Medusa, planula larva and polyp are each characterized by distinct transcriptome signatures reflecting abrupt life-cycle transitions and all deploy a mixture of phylogenetically old and new genes. Medusa-specific transcription factors, including many with bilaterian orthologues, associate with diverse neurosensory structures. Compared to Clytia, the polyp-only hydrozoan Hydra has lost many of the medusa-expressed transcription factors, despite similar overall rates of gene content evolution and sequence evolution. Absence of expression and gene loss among Clytia orthologues of genes patterning the anthozoan aboral pole, secondary axis and endomesoderm support simplification of planulae and polyps in Hydrozoa, including loss of bilateral symmetry. Consequently, although the polyp and planula are generally considered the ancestral cnidarian forms, in Clytia the medusa maximally deploys the ancestral cnidarian-bilaterian transcription factor gene complement.
Collapse
Affiliation(s)
- Lucas Leclère
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Coralie Horin
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Sandra Chevalier
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Pascal Lapébie
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
| | - Philippe Dru
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Sophie Peron
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Muriel Jager
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
| | - Thomas Condamine
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France
| | - Karen Pottin
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Laboratoire de Biologie du Développement (IBPS-LBD, UMR7622), Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Séverine Romano
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Julia Steger
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Laboratoire de Biologie du Développement (IBPS-LBD, UMR7622), Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Chiara Sinigaglia
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242-INRA USC 1370, Lyon cedex 07, France
| | - Carine Barreau
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Gonzalo Quiroga Artigas
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Antonella Ruggiero
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, Université de Montpellier, Montpellier Cedex 5, France
| | - Cécile Fourrage
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Service de Génétique UMR 781, Hôpital Necker-APHP, Paris, France
| | - Johanna E M Kraus
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna, Austria.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique, Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Eric Quéinnec
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna, Austria
| | - Michaël Manuel
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
| | - Tsuyoshi Momose
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Richard R Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.
| |
Collapse
|