1
|
Yang H, Ryu J, Gil Y, Ma Y, Nam KH, Jang SW, Shim S. A role of Lhx2 in the migration and axonal projection of cortical postmitotic neurons in the cortical upper layer of the mouse neocortex. Biochem Biophys Res Commun 2024; 734:150780. [PMID: 39362030 DOI: 10.1016/j.bbrc.2024.150780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The transcription factor LHX2 contains a LIM domain and plays an important role in the development of the vertebrate nervous system. Although much research has been conducted on the function of Lhx2 during cerebral development, its role in postmitotic neuron differentiation in the cerebral cortex remains unknown. Therefore, this study was conducted to determine the function of Lhx2 in dynamic and elaborate developmental processes, including neurogenesis. We first created and confirmed an Lhx2-BAC Gfp transgenic model to three-dimensionally confirm the spatiotemporal expression pattern of Lhx2 during brain development. On this basis, we used the bilateral in utero electroporation technique to express the dominant-negative form of LHX2. LHX2 was confirmed to be important for the migration and callosal projection of postmitotic neurons that form the upper layer of the cerebral cortex during neurogenesis. Additionally, transcriptome analysis confirmed that LHX2 affected the genes involved in neuronal migration and axonal projection. We demonstrated that Lhx2 is important for postmitotic neurons in the cerebral cortex, which migrate to normal positions and extend nerve axons. Taken together, our findings can provide important clues to understanding the relationship between human Lhx2 gene mutations and brain developmental diseases.
Collapse
Affiliation(s)
- Hayoung Yang
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jiho Ryu
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yongjin Gil
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yechan Ma
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Sung-Wuk Jang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
| | - Sungbo Shim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
2
|
Tan DCS, Jung S, Deng Y, Morey N, Chan G, Bongers A, Ke YD, Ittner LM, Delerue F. PLP1-Targeting Antisense Oligonucleotides Improve FOXG1 Syndrome Mice. Int J Mol Sci 2024; 25:10846. [PMID: 39409184 PMCID: PMC11477415 DOI: 10.3390/ijms251910846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
FOXG1 syndrome is a rare neurodevelopmental disorder of the telencephalon, for which there is no cure. Underlying heterozygous pathogenic variants in the Forkhead Box G1 (FOXG1) gene with resulting impaired or loss of FOXG1 function lead to severe neurological impairments. Here, we report a patient with a de novo pathogenic single nucleotide deletion c.946del (p.Leu316Cysfs*10) of the FOXG1 gene that causes a premature protein truncation. To study this variant in vivo, we generated and characterized Foxg1 c946del mice that recapitulate hallmarks of the human disorder. Accordingly, heterozygous Foxg1 c946del mice display neurological symptoms with aberrant neuronal networks and increased seizure susceptibility. Gene expression profiling identified increased oligodendrocyte- and myelination-related gene clusters. Specifically, we showed that expression of the c946del mutant and of other pathogenic FOXG1 variants correlated with overexpression of proteolipid protein 1 (Plp1), a gene linked to white matter disorders. Postnatal administration of Plp1-targeting antisense oligonucleotides (ASOs) in Foxg1 c946del mice improved neurological deficits. Our data suggest Plp1 as a new target for therapeutic strategies mitigating disease phenotypes in FOXG1 syndrome patients.
Collapse
Affiliation(s)
- Daniel C. S. Tan
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Seonghee Jung
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Yuanyuan Deng
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Nicolle Morey
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Gabriella Chan
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Andre Bongers
- Biological Resources Imaging Laboratory, University of New South Wales, Sydney, NSW 2052, Australia; (A.B.)
| | - Yazi D. Ke
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Lars M. Ittner
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Fabien Delerue
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| |
Collapse
|
3
|
Umeda K, Tanaka K, Chowdhury G, Nasu K, Kuroyanagi Y, Yamasu K. Evolutionarily conserved roles of foxg1a in the developing subpallium of zebrafish embryos. Dev Growth Differ 2024; 66:219-234. [PMID: 38378191 PMCID: PMC11457518 DOI: 10.1111/dgd.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
The vertebrate telencephalic lobes consist of the pallium (dorsal) and subpallium (ventral). The subpallium gives rise to the basal ganglia, encompassing the pallidum and striatum. The development of this region is believed to depend on Foxg1/Foxg1a functions in both mice and zebrafish. This study aims to elucidate the genetic regulatory network controlled by foxg1a in subpallium development using zebrafish as a model. The expression gradient of foxg1a within the developing telencephalon was examined semi-quantitatively in initial investigations. Utilizing the CRISPR/Cas9 technique, we subsequently established a foxg1a mutant line and observed the resultant phenotypes. Morphological assessment revealed that foxg1a mutants exhibit a thin telencephalon together with a misshapen preoptic area (POA). Notably, accumulation of apoptotic cells was identified in this region. In mutants at 24 h postfertilization, the expression of pallium markers expanded ventrally, while that of subpallium markers was markedly suppressed. Concurrently, the expression of fgf8a, vax2, and six3b was shifted ventrally, causing anomalous expression in regions typical of POA formation in wild-type embryos. Consequently, the foxg1a mutation led to expansion of the pallium and disrupted the subpallium and POA. This highlights a pivotal role of foxg1a in directing the dorsoventral patterning of the telencephalon, particularly in subpallium differentiation, mirroring observations in mice. Additionally, reduced expression of neural progenitor maintenance genes was detected in mutants, suggesting the necessity of foxg1a in preserving neural progenitors. Collectively, these findings underscore evolutionarily conserved functions of foxg1 in the development of the subpallium in vertebrate embryos.
Collapse
Affiliation(s)
- Koto Umeda
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Kaiho Tanaka
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Gazlima Chowdhury
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
- Department of Aquatic Environment and Resource ManagementSher‐e‐Bangla Agricultural UniversityDhakaBangladesh
| | - Kouhei Nasu
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Yuri Kuroyanagi
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| |
Collapse
|
4
|
Ba R, Yang L, Zhang B, Jiang P, Ding Z, Zhou X, Yang Z, Zhao C. FOXG1 drives transcriptomic networks to specify principal neuron subtypes during the development of the medial pallium. SCIENCE ADVANCES 2023; 9:eade2441. [PMID: 36791184 PMCID: PMC9931217 DOI: 10.1126/sciadv.ade2441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The medial pallium (MP) is the major forebrain region underlying learning and memory, spatial navigation, and emotion; however, the mechanisms underlying the specification of its principal neuron subtypes remain largely unexplored. Here, by postmitotic deletion of FOXG1 (a transcription factor linked to autism spectrum disorders and FOXG1 syndrome) and single-cell RNA sequencing of E17.5 MP in mice, we found that FOXG1 controls the specification of upper-layer retrosplenial cortical pyramidal neurons [RSC-PyNs (UL)], subiculum PyNs (SubC-PyNs), CA1-PyNs, CA3-PyNs, and dentate gyrus granule cells (DG-GCs) in the MP. We uncovered subtype-specific and subtype-shared FOXG1-regulated transcriptomic networks orchestrating MP neuron specification. We further demonstrated that FOXG1 transcriptionally represses Zbtb20, Prox1, and Epha4 to prevent CA3-PyN and DG-GC identities during the specification of RSC-PyNs (UL) and SubC-PyNs; FOXG1 directly activates Nr4a2 to promote SubC-PyN identity. We showed that TBR1, controlled by FOXG1 during CA1-PyN specification, was down-regulated. Thus, our study illuminates MP principal neuron subtype specification and related neuropathogenesis.
Collapse
Affiliation(s)
- Ru Ba
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Lin Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Fudan University, Shanghai 200032, P.R. China
| | - Baoshen Zhang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Pengfei Jiang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhipeng Ding
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xue Zhou
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Fudan University, Shanghai 200032, P.R. China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
5
|
Zhang L, Lin S, Huang K, Chen A, Li N, Shen S, Zheng Z, Shi X, Sun J, Kong J, Chen M. Effects of HAR1 on cognitive function in mice and the regulatory network of HAR1 determined by RNA sequencing and applied bioinformatics analysis. Front Genet 2023; 14:947144. [PMID: 36968607 PMCID: PMC10030831 DOI: 10.3389/fgene.2023.947144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Background: HAR1 is a 118-bp segment that lies in a pair of novel non-coding RNA genes. It shows a dramatic accelerated change with an estimated 18 substitutions in the human lineage since the human-chimpanzee ancestor, compared with the expected 0.27 substitutions based on the slow rate of change in this region in other amniotes. Mutations of HAR1 lead to a different HAR1 secondary structure in humans compared to that in chimpanzees. Methods: We cloned HAR1 into the EF-1α promoter vector to generate transgenic mice. Morris water maze tests and step-down passive avoidance tests were conducted to observe the changes in memory and cognitive abilities of mice. RNA-seq analysis was performed to identify differentially expressed genes (DEGs) between the experimental and control groups. Systematic bioinformatics analysis was used to confirm the pathways and functions that the DEGs were involved in. Results: Memory and cognitive abilities of the transgenic mice were significantly improved. The results of Gene Ontology (GO) analysis showed that Neuron differentiation, Dentate gyrus development, Nervous system development, Cerebral cortex neuron differentiation, Cerebral cortex development, Cerebral cortex development and Neurogenesis are all significant GO terms related to brain development. The DEGs enriched in these terms included Lhx2, Emx2, Foxg1, Nr2e1 and Emx1. All these genes play an important role in regulating the functioning of Cajal-Retzius cells (CRs). The DEGs were also enriched in glutamatergic synapses, synapses, memory, and the positive regulation of long-term synaptic potentiation. In addition, "cellular response to calcium ions" exhibited the second highest rich factor in the GO analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs showed that the neuroactive ligand-receptor interaction pathway was the most significantly enriched pathway, and DEGs also notably enriched in neuroactive ligand-receptor interaction, axon guidance, and cholinergic synapses. Conclusion: HAR1 overexpression led to improvements in memory and cognitive abilities of the transgenic mice. The possible mechanism for this was that the long non-coding RNA (lncRNA) HAR1A affected brain development by regulating the function of CRs. Moreover, HAR1A may be involved in ligand-receptor interaction, axon guidance, and synapse formation, all of which are important in brain development and evolution. Furthermore, cellular response to calcium may play an important role in those processes.
Collapse
Affiliation(s)
- Luting Zhang
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guang-Dong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengmou Lin
- Department of Obstetrics and Gynecology, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kailing Huang
- Guangzhou Mendel Genomics and Medical Technology Co., Ltd., Guangzhou, China
| | - Allen Chen
- Guangzhou Mendel Genomics and Medical Technology Co., Ltd., Guangzhou, China
| | - Nan Li
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guang-Dong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Zhouxia Zheng
- Guangzhou Mendel Genomics and Medical Technology Co., Ltd., Guangzhou, China
| | - Xiaoshun Shi
- Guangzhou Mendel Genomics and Medical Technology Co., Ltd., Guangzhou, China
| | - Jimei Sun
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guang-Dong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingyin Kong
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guang-Dong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Chen
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guang-Dong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Min Chen,
| |
Collapse
|
6
|
Nguyen H, Sokpor G, Parichha A, Pham L, Saikhedkar N, Xie Y, Ulmke PA, Rosenbusch J, Pirouz M, Behr R, Stoykova A, Brand-Saberi B, Nguyen HP, Staiger JF, Tole S, Tuoc T. BAF (mSWI/SNF) complex regulates mediolateral cortical patterning in the developing forebrain. Front Cell Dev Biol 2022; 10:1011109. [PMID: 36263009 PMCID: PMC9573979 DOI: 10.3389/fcell.2022.1011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Early forebrain patterning entails the correct regional designation of the neuroepithelium, and appropriate specification, generation, and distribution of neural cells during brain development. Specific signaling and transcription factors are known to tightly regulate patterning of the dorsal telencephalon to afford proper structural/functional cortical arealization and morphogenesis. Nevertheless, whether and how changes of the chromatin structure link to the transcriptional program(s) that control cortical patterning remains elusive. Here, we report that the BAF chromatin remodeling complex regulates the spatiotemporal patterning of the mouse dorsal telencephalon. To determine whether and how the BAF complex regulates cortical patterning, we conditionally deleted the BAF complex scaffolding subunits BAF155 and BAF170 in the mouse dorsal telencephalic neuroepithelium. Morphological and cellular changes in the BAF mutant forebrain were examined using immunohistochemistry and in situ hybridization. RNA sequencing, Co-immunoprecipitation, and mass spectrometry were used to investigate the molecular basis of BAF complex involvement in forebrain patterning. We found that conditional ablation of BAF complex in the dorsal telencephalon neuroepithelium caused expansion of the cortical hem and medial cortex beyond their developmental boundaries. Consequently, the hippocampal primordium is not specified, the mediolateral cortical patterning is compromised, and the cortical identity is disturbed in the absence of BAF complex. The BAF complex was found to interact with the cortical hem suppressor LHX2. The BAF complex suppresses cortical hem fate to permit proper forebrain patterning. We provide evidence that BAF complex modulates mediolateral cortical patterning possibly by interacting with the transcription factor LHX2 to drive the LHX2-dependent transcriptional program essential for dorsal telencephalon patterning. Our data suggest a putative mechanistic synergy between BAF chromatin remodeling complex and LHX2 in regulating forebrain patterning and ontogeny.
Collapse
Affiliation(s)
- Huong Nguyen
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | | | - Linh Pham
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | | | - Yuanbin Xie
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Pauline Antonie Ulmke
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Mehdi Pirouz
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, United States
| | - Rüdiger Behr
- German Primate Center-Leibniz Institute for Primate Research, Goettingen, Germany
| | | | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Jochen F. Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Shubha Tole
- Tata Institute of Fundamental Research, Mumbai, India
- *Correspondence: Shubha Tole, ; Tran Tuoc,
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Shubha Tole, ; Tran Tuoc,
| |
Collapse
|
7
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Consolidation and maintenance of long-term memory involve dual functions of the developmental regulator Apterous in clock neurons and mushroom bodies in the Drosophila brain. PLoS Biol 2021; 19:e3001459. [PMID: 34860826 PMCID: PMC8641882 DOI: 10.1371/journal.pbio.3001459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Memory is initially labile but can be consolidated into stable long-term memory (LTM) that is stored in the brain for extended periods. Despite recent progress, the molecular and cellular mechanisms underlying the intriguing neurobiological processes of LTM remain incompletely understood. Using the Drosophila courtship conditioning assay as a memory paradigm, here, we show that the LIM homeodomain (LIM-HD) transcription factor Apterous (Ap), which is known to regulate various developmental events, is required for both the consolidation and maintenance of LTM. Interestingly, Ap is involved in these 2 memory processes through distinct mechanisms in different neuronal subsets in the adult brain. Ap and its cofactor Chip (Chi) are indispensable for LTM maintenance in the Drosophila memory center, the mushroom bodies (MBs). On the other hand, Ap plays a crucial role in memory consolidation in a Chi-independent manner in pigment dispersing factor (Pdf)-containing large ventral–lateral clock neurons (l-LNvs) that modulate behavioral arousal and sleep. Since disrupted neurotransmission and electrical silencing in clock neurons impair memory consolidation, Ap is suggested to contribute to the stabilization of memory by ensuring the excitability of l-LNvs. Indeed, ex vivo imaging revealed that a reduced function of Ap, but not Chi, results in exaggerated Cl− responses to the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in l-LNvs, indicating that wild-type (WT) Ap maintains high l-LNv excitability by suppressing the GABA response. Consistently, enhancing the excitability of l-LNvs by knocking down GABAA receptors compensates for the impaired memory consolidation in ap null mutants. Overall, our results revealed unique dual functions of the developmental regulator Ap for LTM consolidation in clock neurons and LTM maintenance in MBs. A neurogenetic study using Drosophila reveals that the centrally expressed LIM-homeodomain transcription factor Apterous plays a crucial neuron-type-dependent role in two different memory processes - consolidation and maintenance of long-term memory.
Collapse
|
9
|
Matho KS, Huilgol D, Galbavy W, He M, Kim G, An X, Lu J, Wu P, Di Bella DJ, Shetty AS, Palaniswamy R, Hatfield J, Raudales R, Narasimhan A, Gamache E, Levine JM, Tucciarone J, Szelenyi E, Harris JA, Mitra PP, Osten P, Arlotta P, Huang ZJ. Genetic dissection of the glutamatergic neuron system in cerebral cortex. Nature 2021; 598:182-187. [PMID: 34616069 PMCID: PMC8494647 DOI: 10.1038/s41586-021-03955-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/25/2021] [Indexed: 11/09/2022]
Abstract
Diverse types of glutamatergic pyramidal neurons mediate the myriad processing streams and output channels of the cerebral cortex1,2, yet all derive from neural progenitors of the embryonic dorsal telencephalon3,4. Here we establish genetic strategies and tools for dissecting and fate-mapping subpopulations of pyramidal neurons on the basis of their developmental and molecular programs. We leverage key transcription factors and effector genes to systematically target temporal patterning programs in progenitors and differentiation programs in postmitotic neurons. We generated over a dozen temporally inducible mouse Cre and Flp knock-in driver lines to enable the combinatorial targeting of major progenitor types and projection classes. Combinatorial strategies confer viral access to subsets of pyramidal neurons defined by developmental origin, marker expression, anatomical location and projection targets. These strategies establish an experimental framework for understanding the hierarchical organization and developmental trajectory of subpopulations of pyramidal neurons that assemble cortical processing networks and output channels.
Collapse
Affiliation(s)
- Katherine S Matho
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Dhananjay Huilgol
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - William Galbavy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Miao He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Gukhan Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Xu An
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Jiangteng Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Shanghai Jiaotong University Medical School, Shanghai, China
| | - Priscilla Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Daniela J Di Bella
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Ashwin S Shetty
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | - Joshua Hatfield
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Ricardo Raudales
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Arun Narasimhan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Eric Gamache
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Jesse M Levine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, New York, NY, USA
| | - Jason Tucciarone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, New York, NY, USA
- Department of Psychiatry, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Eric Szelenyi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Julie A Harris
- Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, New York, NY, USA
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Partha P Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
10
|
Abstract
In mammals, the selective transformation of transient experience into stored memory occurs in the hippocampus, which develops representations of specific events in the context in which they occur. In this review, we focus on the development of hippocampal circuits and the self-organized dynamics embedded within them since the latter critically support the role of the hippocampus in learning and memory. We first discuss evidence that adult hippocampal cells and circuits are sculpted by development as early as during embryonic neurogenesis. We argue that these primary developmental programs provide a scaffold onto which later experience of the external world can be grafted. Next, we review the different sequences in the development of hippocampal cells and circuits at anatomical and functional levels. We cover a period extending from neurogenesis and migration to the appearance of phenotypic diversity within hippocampal cells, and their wiring into functional networks. We describe the progressive emergence of network dynamics in the hippocampus, from sensorimotor-driven early sharp waves to sequences of place cells tracking relational information. We outline the critical turn points and discontinuities in that developmental journey, and close by formulating open questions. We propose that rewinding the process of hippocampal development helps understand the main organization principles of memory circuits.
Collapse
Affiliation(s)
- Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems, Aix Marseille University, Marseille, France
| | - Rustem Khazipov
- Inserm, INMED, Turing Center for Living Systems, Aix Marseille University, Marseille, France.,Laboratory of Neurobiology, Kazan Federal University, Kazan Russia
| |
Collapse
|
11
|
Miyoshi G, Ueta Y, Natsubori A, Hiraga K, Osaki H, Yagasaki Y, Kishi Y, Yanagawa Y, Fishell G, Machold RP, Miyata M. FoxG1 regulates the formation of cortical GABAergic circuit during an early postnatal critical period resulting in autism spectrum disorder-like phenotypes. Nat Commun 2021; 12:3773. [PMID: 34145239 PMCID: PMC8213811 DOI: 10.1038/s41467-021-23987-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
Abnormalities in GABAergic inhibitory circuits have been implicated in the aetiology of autism spectrum disorder (ASD). ASD is caused by genetic and environmental factors. Several genes have been associated with syndromic forms of ASD, including FOXG1. However, when and how dysregulation of FOXG1 can result in defects in inhibitory circuit development and ASD-like social impairments is unclear. Here, we show that increased or decreased FoxG1 expression in both excitatory and inhibitory neurons results in ASD-related circuit and social behavior deficits in our mouse models. We observe that the second postnatal week is the critical period when regulation of FoxG1 expression is required to prevent subsequent ASD-like social impairments. Transplantation of GABAergic precursor cells prior to this critical period and reduction in GABAergic tone via Gad2 mutation ameliorates and exacerbates circuit functionality and social behavioral defects, respectively. Our results provide mechanistic insight into the developmental timing of inhibitory circuit formation underlying ASD-like phenotypes in mouse models.
Collapse
Affiliation(s)
- Goichi Miyoshi
- Department of Neurophysiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.
| | - Yoshifumi Ueta
- Department of Neurophysiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Akiyo Natsubori
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Kou Hiraga
- Department of Neurophysiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Hironobu Osaki
- Department of Neurophysiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Yuki Yagasaki
- Department of Neurophysiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Gord Fishell
- NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, NY, USA
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Stanley Center at the Broad Institute, Cambridge, MA, USA
| | - Robert P Machold
- NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, NY, USA
| | - Mariko Miyata
- Department of Neurophysiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| |
Collapse
|
12
|
Ni Y, Liu B, Wu X, Liu J, Ba R, Zhao C. FOXG1 Directly Suppresses Wnt5a During the Development of the Hippocampus. Neurosci Bull 2021; 37:298-310. [PMID: 33389683 PMCID: PMC7954983 DOI: 10.1007/s12264-020-00618-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022] Open
Abstract
The Wnt signaling pathway plays key roles in various developmental processes. Wnt5a, which activates the non-canonical pathway, has been shown to be particularly important for axon guidance and outgrowth as well as dendrite morphogenesis. However, the mechanism underlying the regulation of Wnt5a remains unclear. Here, through conditional disruption of Foxg1 in hippocampal progenitors and postmitotic neurons achieved by crossing Foxg1fl/fl with Emx1-Cre and Nex-Cre, respectively, we found that Wnt5a rather than Wnt3a/Wnt2b was markedly upregulated. Overexpression of Foxg1 had the opposite effects along with decreased dendritic complexity and reduced mossy fibers in the hippocampus. We further demonstrated that FOXG1 directly repressed Wnt5a by binding to its promoter and one enhancer site. These results expand our knowledge of the interaction between Foxg1 and Wnt signaling and help elucidate the mechanisms underlying hippocampal development.
Collapse
Affiliation(s)
- Yang Ni
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Bin Liu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaojing Wu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Junhua Liu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ru Ba
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Generation of the Human Pluripotent Stem-Cell-Derived Astrocyte Model with Forebrain Identity. Brain Sci 2021; 11:brainsci11020209. [PMID: 33572154 PMCID: PMC7914711 DOI: 10.3390/brainsci11020209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/04/2023] Open
Abstract
Astrocytes form functionally and morphologically distinct populations of cells with brain-region-specific properties. Human pluripotent stem cells (hPSCs) offer possibilities to generate astroglia for studies investigating mechanisms governing the emergence of astrocytic diversity. We established a method to generate human astrocytes from hPSCs with forebrain patterning and final specification with ciliary neurotrophic factor (CNTF). Transcriptome profiling and gene enrichment analysis monitored the sequential expression of genes determining astrocyte differentiation and confirmed activation of forebrain differentiation pathways at Day 30 (D30) and D60 of differentiation in vitro. More than 90% of astrocytes aged D95 in vitro co-expressed the astrocytic markers glial fibrillary acidic protein (GFAP) and S100β. Intracellular calcium responses to ATP indicated differentiation of the functional astrocyte population with constitutive monocyte chemoattractant protein-1 (MCP-1/CCL2) and tissue inhibitor of metalloproteinases-2 (TIMP-2) expression. The method was reproducible across several hPSC lines, and the data demonstrated the usefulness of forebrain astrocyte modeling in research investigating forebrain pathology.
Collapse
|
14
|
Ye XC, Roslin NM, Paterson AD, Lyons CJ, Pegado V, Richmond P, Shyr C, Fornes O, Han X, Higginson M, Ross CJ, Giaschi D, Gregory-Evans C, Patel MS, Wasserman WW. Linkage analysis identifies an isolated strabismus locus at 14q12 overlapping with FOXG1 syndrome region. J Med Genet 2020; 59:46-55. [PMID: 33257509 PMCID: PMC8685624 DOI: 10.1136/jmedgenet-2020-107226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/05/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022]
Abstract
Strabismus is a common condition, affecting 1%–4% of individuals. Isolated strabismus has been studied in families with Mendelian inheritance patterns. Despite the identification of multiple loci via linkage analyses, no specific genes have been identified from these studies. The current study is based on a seven-generation family with isolated strabismus inherited in an autosomal dominant manner. A total of 13 individuals from a common ancestor have been included for linkage analysis. Among these, nine are affected and four are unaffected. A single linkage signal has been identified at an 8.5 Mb region of chromosome 14q12 with a multipoint LOD (logarithm of the odds) score of 4.69. Disruption of this locus is known to cause FOXG1 syndrome (or congenital Rett syndrome; OMIM #613454 and *164874), in which 84% of affected individuals present with strabismus. With the incorporation of next-generation sequencing and in-depth bioinformatic analyses, a 4 bp non-coding deletion was prioritised as the top candidate for the observed strabismus phenotype. The deletion is predicted to disrupt regulation of FOXG1, which encodes a transcription factor of the Forkhead family. Suggestive of an autoregulation effect, the disrupted sequence matches the consensus FOXG1 and Forkhead family transcription factor binding site and has been observed in previous ChIP-seq studies to be bound by Foxg1 in early mouse brain development. Future study of this specific deletion may shed light on the regulation of FOXG1 expression and may enhance our understanding of the mechanisms contributing to strabismus and FOXG1 syndrome.
Collapse
Affiliation(s)
- Xin Cynthia Ye
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicole M Roslin
- The Centre for Applied Genomics, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Andrew D Paterson
- The Centre for Applied Genomics, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada.,Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Divisions of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christopher J Lyons
- BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Victor Pegado
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Phillip Richmond
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Casper Shyr
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - XiaoHua Han
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Higginson
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Ross
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Deborah Giaschi
- BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl Gregory-Evans
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Millan S Patel
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada .,BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada .,Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Kinare V, Iyer A, Padmanabhan H, Godbole G, Khan T, Khatri Z, Maheshwari U, Muralidharan B, Tole S. An evolutionarily conserved Lhx2-Ldb1 interaction regulates the acquisition of hippocampal cell fate and regional identity. Development 2020; 147:dev.187856. [PMID: 32994168 DOI: 10.1242/dev.187856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 09/11/2020] [Indexed: 12/29/2022]
Abstract
The protein co-factor Ldb1 regulates cell fate specification by interacting with LIM-homeodomain (LIM-HD) proteins in a tetrameric complex consisting of an LDB:LDB dimer that bridges two LIM-HD molecules, a mechanism first demonstrated in the Drosophila wing disc. Here, we demonstrate conservation of this interaction in the regulation of mammalian hippocampal development, which is profoundly defective upon loss of either Lhx2 or Ldb1 Electroporation of a chimeric construct that encodes the Lhx2-HD and Ldb1-DD (dimerization domain) in a single transcript cell-autonomously rescues a comprehensive range of hippocampal deficits in the mouse Ldb1 mutant, including the acquisition of field-specific molecular identity and the regulation of the neuron-glia cell fate switch. This demonstrates that the LHX:LDB complex is an evolutionarily conserved molecular regulatory device that controls complex aspects of regional cell identity in the developing brain.
Collapse
Affiliation(s)
- Veena Kinare
- Department of Life Sciences, Sophia College for Women, Mumbai 400026, India
| | - Archana Iyer
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Hari Padmanabhan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Geeta Godbole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Tooba Khan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Zeba Khatri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Upasana Maheshwari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Bhavana Muralidharan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
16
|
Fair SR, Julian D, Hartlaub AM, Pusuluri ST, Malik G, Summerfied TL, Zhao G, Hester AB, Ackerman WE, Hollingsworth EW, Ali M, McElroy CA, Buhimschi IA, Imitola J, Maitre NL, Bedrosian TA, Hester ME. Electrophysiological Maturation of Cerebral Organoids Correlates with Dynamic Morphological and Cellular Development. Stem Cell Reports 2020; 15:855-868. [PMID: 32976764 PMCID: PMC7562943 DOI: 10.1016/j.stemcr.2020.08.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022] Open
Abstract
Cerebral organoids (COs) are rapidly accelerating the rate of translational neuroscience based on their potential to model complex features of the developing human brain. Several studies have examined the electrophysiological and neural network features of COs; however, no study has comprehensively investigated the developmental trajectory of electrophysiological properties in whole-brain COs and correlated these properties with developmentally linked morphological and cellular features. Here, we profiled the neuroelectrical activities of COs over the span of 5 months with a multi-electrode array platform and observed the emergence and maturation of several electrophysiologic properties, including rapid firing rates and network bursting events. To complement these analyses, we characterized the complex molecular and cellular development that gives rise to these mature neuroelectrical properties with immunohistochemical and single-cell transcriptomic analyses. This integrated approach highlights the value of COs as an emerging model system of human brain development and neurological disease. CO electrophysiology can be quantified with a multi-electrode array method CO electrophysiological trajectories correlate with molecular and cellular development The neurotrophin/TRK signaling pathway is active in COs by 5 months in culture
Collapse
Affiliation(s)
- Summer R Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43205-2716, USA
| | - Dominic Julian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43205-2716, USA
| | - Annalisa M Hartlaub
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Sai Teja Pusuluri
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Girik Malik
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA
| | - Taryn L Summerfied
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Guomao Zhao
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Arelis B Hester
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43205-2716, USA
| | - William E Ackerman
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Ethan W Hollingsworth
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43205-2716, USA
| | - Mehboob Ali
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Craig A McElroy
- College of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Irina A Buhimschi
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Jaime Imitola
- Department of Neurology, Laboratory for Neural Stem Cells and Functional Neurogenetics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Nathalie L Maitre
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43205-2716, USA
| | - Mark E Hester
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43205-2716, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
17
|
Muralidharan B. Understanding brain development - Indian researchers' past, present and growing contribution. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2020; 64:123-132. [PMID: 32659000 DOI: 10.1387/ijdb.190204bm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The brain is the seat of all higher-order functions in the body. Brain development and the vast array of neurons and glia it produces is a baffling mystery to be studied. Neuroscientists using a vast number of model systems have been able to crack many of the nitty-gritty details using various model systems. One way has been to size down the problem by utilizing the power of genetics using simple model systems such as Drosophila to create a fundamental framework in order to unravel the basic principles of brain development. Scientists have used simpler organisms to uncover the fundamental principles of brain development and also to study the evo-devo angle to brain development. Complex circuitry has been unraveled in complex model systems, such as the mouse, to reveal the intricacies and regional specialization of brain function. This is an ever-growing field, and with newer genetic and molecular tools, together with several new centers of excellence, India's contribution to this fascinating field of study is continually rising. Here, I review the pioneering work done by Indian developmental neurobiologists in the past and their mounting contribution in the present.
Collapse
Affiliation(s)
- Bhavana Muralidharan
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.
| |
Collapse
|
18
|
Eura N, Matsui TK, Luginbühl J, Matsubayashi M, Nanaura H, Shiota T, Kinugawa K, Iguchi N, Kiriyama T, Zheng C, Kouno T, Lan YJ, Kongpracha P, Wiriyasermkul P, Sakaguchi YM, Nagata R, Komeda T, Morikawa N, Kitayoshi F, Jong M, Kobashigawa S, Nakanishi M, Hasegawa M, Saito Y, Shiromizu T, Nishimura Y, Kasai T, Takeda M, Kobayashi H, Inagaki Y, Tanaka Y, Makinodan M, Kishimoto T, Kuniyasu H, Nagamori S, Muotri AR, Shin JW, Sugie K, Mori E. Brainstem Organoids From Human Pluripotent Stem Cells. Front Neurosci 2020; 14:538. [PMID: 32670003 PMCID: PMC7332712 DOI: 10.3389/fnins.2020.00538] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/01/2020] [Indexed: 01/10/2023] Open
Abstract
The brainstem is a posterior region of the brain, composed of three parts, midbrain, pons, and medulla oblongata. It is critical in controlling heartbeat, blood pressure, and respiration, all of which are life-sustaining functions, and therefore, damages to or disorders of the brainstem can be lethal. Brain organoids derived from human pluripotent stem cells (hPSCs) recapitulate the course of human brain development and are expected to be useful for medical research on central nervous system disorders. However, existing organoid models are limited in the extent hPSCs recapitulate human brain development and hence are not able to fully elucidate the diseases affecting various components of the brain such as brainstem. Here, we developed a method to generate human brainstem organoids (hBSOs), containing midbrain/hindbrain progenitors, noradrenergic and cholinergic neurons, dopaminergic neurons, and neural crest lineage cells. Single-cell RNA sequence (scRNA-seq) analysis, together with evidence from proteomics and electrophysiology, revealed that the cellular population in these organoids was similar to that of the human brainstem, which raises the possibility of making use of hBSOs in investigating central nervous system disorders affecting brainstem and in efficient drug screenings.
Collapse
Affiliation(s)
- Nobuyuki Eura
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Takeshi K. Matsui
- Department of Neurology, Nara Medical University, Kashihara, Japan
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Joachim Luginbühl
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Masaya Matsubayashi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Hitoki Nanaura
- Department of Neurology, Nara Medical University, Kashihara, Japan
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Tomo Shiota
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Kaoru Kinugawa
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Naohiko Iguchi
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Takao Kiriyama
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Tsukasa Kouno
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Yan Jun Lan
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Pornparn Kongpracha
- Laboratory of Biomolecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara, Japan
| | - Pattama Wiriyasermkul
- Laboratory of Biomolecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara, Japan
| | | | - Riko Nagata
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Tomoya Komeda
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Naritaka Morikawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Fumika Kitayoshi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Miyong Jong
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Shinko Kobashigawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Mari Nakanishi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Masatoshi Hasegawa
- Department of Radiation Oncology, Nara Medical University, Kashihara, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Takahiko Kasai
- Department of Laboratory Medicine and Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Maiko Takeda
- Department of Laboratory Medicine and Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Yusuke Inagaki
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | | | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Shushi Nagamori
- Laboratory of Biomolecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara, Japan
| | - Alysson R. Muotri
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jay W. Shin
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
19
|
LDB1 Is Required for the Early Development of the Dorsal Telencephalon and the Thalamus. eNeuro 2019; 6:eN-NWR-0356-18. [PMID: 30873428 PMCID: PMC6416242 DOI: 10.1523/eneuro.0356-18.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/12/2022] Open
Abstract
LIM domain binding protein 1 (LDB1) is a protein cofactor that participates in several multiprotein complexes with transcription factors that regulate mouse forebrain development. Since Ldb1 null mutants display early embryonic lethality, we used a conditional knockout strategy to examine the role of LDB1 in early forebrain development using multiple Cre lines. Loss of Ldb1 from E8.75 using Foxg1Cre caused a disruption of midline boundary structures in the dorsal telencephalon. While this Cre line gave the expected pattern of recombination of the floxed Ldb1 locus, unexpectedly, standard Cre lines that act from embryonic day (E)10.5 (Emx1Cre) and E11.5 (NesCre) did not show efficient or complete recombination in the dorsal telencephalon by E12.5. Intriguingly, this effect was specific to the Ldb1 floxed allele, since three other lines including floxed Ai9 and mTmG reporters, and a floxed Lhx2 line, each displayed the expected spatial patterns of recombination. Furthermore, the incomplete recombination of the floxed Ldb1 locus using NesCre was limited to the dorsal telencephalon, while the ventral telencephalon and the diencephalon displayed the expected loss of Ldb1. This permitted us to examine the requirement for LDB1 in the development of the thalamus in a context wherein the cortex continued to express Ldb1. We report that the somatosensory VB nucleus is profoundly shrunken upon loss of LDB1. Our findings highlight the unusual nature of the Ldb1 locus in terms of recombination efficiency, and also report a novel role for LDB1 during the development of the thalamus.
Collapse
|
20
|
Han X, Gu X, Zhang Q, Wang Q, Cheng Y, Pleasure SJ, Zhao C. FoxG1 Directly Represses Dentate Granule Cell Fate During Forebrain Development. Front Cell Neurosci 2018; 12:452. [PMID: 30532694 PMCID: PMC6265346 DOI: 10.3389/fncel.2018.00452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/08/2018] [Indexed: 01/27/2023] Open
Abstract
The cortex consists of 100s of neuronal subtypes that are organized into distinct functional regions; however, the mechanisms underlying cell fate determination remain unclear. Foxg1 is involved in several developmental processes, including telencephalic patterning, cell proliferation and cell fate determination. Constitutive disruption of Foxg1 leads to the transformation of cortical neurons into Cajal-Retzius (CR) cells, accompanied by a substantial expansion of the cortical hem through the consumption of the cortex. However, rather than the induction of a cell fate switch, another group has reported a large lateral to medial repatterning of the developing telencephalon as the explanation for this change in cell type output. Here, we conditionally disrupted Foxg1 in telencephalic progenitor cells by crossing Foxg1fl/fl mice with Nestin-CreERTM mice combined with tamoxifen (TM) induction at distinct developmental stages beginning at E10.5 to further elucidate the role of FoxG1 in cell fate determination after telencephalon pattern formation. The number of dentate gyrus (DG) granule-like cells was significantly increased in the cortex. The increase was even detected after deletion at E14.5. In vivo mosaic deletion and in vitro cell culture further revealed a cell-autonomous role for FoxG1 in repressing granule cell fate. However, the cortical hem, which is required for the patterning and the development of the hippocampus, was only slightly enlarged and thus may not contribute to the cell fate switch. Lef1 expression was significantly upregulated in the lateral, cortical VZ and FoxG1 may function upstream of Wnt signaling. Our results provide new insights into the functions of FoxG1 and the mechanisms of cell fate determination during telencephalic development.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Xiaochun Gu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Qianqian Zhang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Qingxia Wang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Yao Cheng
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Samuel J Pleasure
- Programs in Neuroscience and Developmental Stem Cell Biology, Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Forced Expression of Foxg1 in the Cortical Hem Leads to the Transformation of Cajal-Retzius Cells into Dentate Granule Neurons. J Dev Biol 2018; 6:jdb6030016. [PMID: 29949945 PMCID: PMC6162630 DOI: 10.3390/jdb6030016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022] Open
Abstract
The Wnt- and BMP-rich cortical hem has been demonstrated to be critical for the pattern formation of the telencephalon, and it is particularly important for the induction of the hippocampus. Meanwhile, the cortical hem is one of the sources of Cajal-Retzius cells. Many Cajal-Retzius cells are produced in the hem and populated to the media-caudal surface of the telencephalon. However, the mechanism of the maintenance of the hem remain unclear. In this study, we generated a transgenic mouse line CAG-loxp-stop-loxp-Foxg1-IRES-EGFP. By crossing Fzd10CreERTM with this line, combined with tamoxifen induction, Foxg1 was ectopically expressed in the hem from embryonic day 10.5 (E10.5) onwards. We have found the hem-derived Cajal-Retzius cells were transformed into dentate granule neurons accompanied with ectopic expression of Lhx2. However, the morphology of the hem displayed no obvious changes. The hem specific markers, Wnt3a and Wnt2b, were slightly downregulated. Our results indicate that Foxg1 is sufficient to induce the expression of Lhx2 in the dorsal part of the hem. The ectopic Lhx2 and decreased Wnt signals may both contribute to the cell fate switch. Our study provides new insight into the mechanism underlying the maintenance of the hem.
Collapse
|
22
|
Abstract
A hundred years after Lhx2 ortholog apterous was identified as a critical regulator of wing development in Drosophila, LIM-HD gene family members have proved to be versatile and powerful components of the molecular machinery that executes the blueprint of embryogenesis across vertebrate and invertebrate species. Here, we focus on the spatio-temporally varied functions of LIM-homeodomain transcription factor LHX2 in the developing mouse forebrain. Right from its earliest known role in telencephalic and eye field patterning, to the control of the neuron-glia cell fate switch, and the regulation of axon pathfinding and dendritic arborization in late embryonic stages, LHX2 has been identified as a fundamental, temporally dynamic, always necessary, and often sufficient factor in a range of critical developmental phenomena. While Lhx2 mutant phenotypes have been characterized in detail in multiple brain structures, only recently have we advanced in our understanding of the molecular mechanisms by which this factor acts. Common themes emerge from how this multifunctional molecule controls a range of developmental steps in distinct forebrain structures. Examining these shared features, and noting unique aspects of LHX2 function is likely to inform our understanding of how a single factor can bring about a diversity of effects and play central and critical roles across systems and stages. The parallels in LHX2 and APTEROUS functions, and the protein complexes they participate in, offer insights into evolutionary strategies that conserve tool kits and deploy them to play new, yet familiar roles in species separated by hundreds of millions of years.
Collapse
Affiliation(s)
- Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| |
Collapse
|