1
|
Yen CYT, Kagioglou S, Eroglu E. European Research Council-funded grant: tight junctions and heart regeneration. Eur Heart J 2025:ehaf287. [PMID: 40326362 DOI: 10.1093/eurheartj/ehaf287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025] Open
Affiliation(s)
- Christopher Yu Tai Yen
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Sofia Kagioglou
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Elif Eroglu
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| |
Collapse
|
2
|
Byatt TC, Razaghi E, Tüzüner S, Simões FC. Immune-mediated cardiac development and regeneration. Semin Cell Dev Biol 2025; 171:103613. [PMID: 40315634 DOI: 10.1016/j.semcdb.2025.103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/18/2025] [Accepted: 04/16/2025] [Indexed: 05/04/2025]
Abstract
The complex interplay between the immune and cardiovascular systems during development, homeostasis and regeneration represents a rapidly evolving field in cardiac biology. Single cell technologies, spatial mapping and computational analysis have revolutionised our understanding of the diversity and functional specialisation of immune cells within the heart. From the earliest stages of cardiogenesis, where primitive macrophages guide heart tube formation, to the complex choreography of inflammation and its resolution during regeneration, immune cells emerge as central orchestrators of cardiac fate. Translating these fundamental insights into clinical applications represents a major challenge and opportunity for the field. In this Review, we decode the immunological blueprint of heart development and regeneration to transform cardiovascular disease treatment and unlock the regenerative capacity of the human heart.
Collapse
Affiliation(s)
- Timothy C Byatt
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ehsan Razaghi
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Selin Tüzüner
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Filipa C Simões
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
3
|
Wang F, Zou X, Zheng H, Kong T, Pei D. Human epicardial organoids from pluripotent stem cells resemble fetal stage with potential cardiomyocyte- transdifferentiation. Cell Biosci 2025; 15:4. [PMID: 39825425 PMCID: PMC11740338 DOI: 10.1186/s13578-024-01339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells. Epicardium could also integrate and invade into mouse heart with SNAI1 expression, and give birth to numerous cardiomyocyte-like cells. Single-cell RNA seq unveils the heterogeneity and multipotency exhibited by epicardium-derived-cells and fetal-like epicardium. Meanwhile, extracellular matrix and growth factors secreted by epicardial organoid mimics the ecology of subepicardial space between the epicardium and cardiomyocytes. As such, this epicardial organoid offers a unique ground for investigating and exploring the potential of epicardium in heart development and regeneration.
Collapse
Affiliation(s)
- Fanwen Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xinle Zou
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
| | - Huilin Zheng
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Tianci Kong
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
4
|
Takahashi M, Isagawa T, Sato T, Takeda N, Kawakami K. Lineage tracing using Wnt2b-2A-CreERT2 knock-in mice reveals the contributions of Wnt2b-expressing cells to novel subpopulations of mesothelial/epicardial cell lineages during mouse development. Genes Cells 2024; 29:854-875. [PMID: 39109760 DOI: 10.1111/gtc.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 10/04/2024]
Abstract
Mesothelial and epicardial cells give rise to various types of mesenchymal cells via epithelial (mesothelial)-to-mesenchymal transition during development. However, the genes controlling the differentiation and diversification of mesothelial/epicardial cells remain unclear. Here, we examined Wnt2b expression in the embryonic mesothelium and epicardium and performed lineage tracing of Wnt2b-expressing cells by using novel Wnt2b-2A-CreERT2 knock-in and LacZ-reporter mice. Wnt2b was expressed in mesothelial cells covering visceral organs, but the expression was restricted in their subpopulations. Wnt2b-expressing cells labeled at embryonic day (E) 10.5 were distributed to the mesothelium and mesenchyme in the lungs, abdominal wall, stomach, and spleen in Wnt2b2A-CreERT2/+;R26RLacZ/+ mice at E13.0. Wnt2b was initially expressed in the proepicardial organ (PEO) at E9.5 and then in the epicardium after E10.0. Wnt2b-expressing PEO cells labeled at E9.5 differentiated into a small fraction of cardiac fibroblasts and preferentially localized at the left side of the postnatal heart. LacZ+ epicardium-derived cells labeled at E10.5 differentiated into a small fraction of fibroblasts and smooth muscle cells in the postnatal heart. Taken together, our results reveal novel subpopulations of PEO and mesothelial/epicardial cells that are distinguishable by Wnt2b expression and elucidate the unique contribution of Wnt2b-expressing PEO and epicardial cells to the postnatal heart.
Collapse
Affiliation(s)
- Masanori Takahashi
- Department of Anatomy, Division of Bioimaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Japan
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Takayuki Isagawa
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Data Science Center, Jichi Medical University, Shimotsuke, Japan
| | - Tatsuyuki Sato
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | | |
Collapse
|
5
|
Carroll SH, Schafer S, Kawasaki K, Tsimbal C, Julé AM, Hallett SA, Li E, Liao EC. Genetic requirement of dact1/2 to regulate noncanonical Wnt signaling and calpain 8 during embryonic convergent extension and craniofacial morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566024. [PMID: 37986847 PMCID: PMC10659360 DOI: 10.1101/2023.11.07.566024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar convergent extension defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2 specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Over-expression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.
Collapse
Affiliation(s)
- Shannon H Carroll
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| | - Sogand Schafer
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
| | - Kenta Kawasaki
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| | - Casey Tsimbal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| | - Amélie M Julé
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shawn A Hallett
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| | - Edward Li
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| |
Collapse
|
6
|
Foglio E, D'Avorio E, Nieri R, Russo MA, Limana F. Epicardial EMT and cardiac repair: an update. Stem Cell Res Ther 2024; 15:219. [PMID: 39026298 PMCID: PMC11264588 DOI: 10.1186/s13287-024-03823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Epicardial epithelial-to-mesenchymal transition (EMT) plays a pivotal role in both heart development and injury response and involves dynamic cellular changes that are essential for cardiogenesis and myocardial repair. Specifically, epicardial EMT is a crucial process in which epicardial cells lose polarity, migrate into the myocardium, and differentiate into various cardiac cell types during development and repair. Importantly, following EMT, the epicardium becomes a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis and contribute to cardiac remodeling after injury. As such, EMT seems to represent a fundamental step in cardiac repair. Nevertheless, endogenous EMT alone is insufficient to stimulate adequate repair. Redirecting and amplifying epicardial EMT pathways offers promising avenues for the development of innovative therapeutic strategies and treatment approaches for heart disease. In this review, we present a synthesis of recent literature highlighting the significance of epicardial EMT reactivation in adult heart disease patients.
Collapse
Affiliation(s)
- Eleonora Foglio
- Technoscience, Parco Scientifico e Tecnologico Pontino, Latina, Italy
| | - Erica D'Avorio
- Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, San Raffaele University of Rome, Rome, Italy
| | - Riccardo Nieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Federica Limana
- Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, San Raffaele University of Rome, Rome, Italy.
- Laboratorio di Patologia Cellulare e Molecolare, IRCCS San Raffaele Roma, Rome, Italy.
| |
Collapse
|
7
|
Loubet-Senear K, Srivastava M. Regeneration recapitulates many embryonic processes, including reuse of developmental regulatory regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.601589. [PMID: 39005439 PMCID: PMC11245107 DOI: 10.1101/2024.07.04.601589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The wide distribution of regenerative capacity across the animal tree of life raises the question of how regeneration has evolved in distantly-related animals. Given that whole-body regeneration shares the same end-point - formation of a functional body plan - as embryonic development, it has been proposed that regeneration likely recapitulates developmental processes to some extent. Therefore, understanding how developmental processes are reactivated during regeneration is important for uncovering the evolutionary history of regeneration. Comparative transcriptomic studies in some species have revealed shared gene expression between development and regeneration, but it is not known whether these shared expression profiles correspond to shared functions, and which mechanisms activate expression of developmental genes during regeneration. We sought to address these questions using the acoel Hofstenia miamia , which is amenable to studies of both embryonic development and whole-body regeneration. By examining functionally validated regeneration processes during development at single-cell resolution, we found that whereas patterning and cellular differentiation are largely similar, wound response programs have distinct dynamics between development and regeneration. Chromatin accessibility analyses revealed that regardless of playing concordant or divergent roles during regeneration and development, genes expressed in both processes are frequently controlled by the same regulatory regions, potentially via utilization of distinct transcription factor binding sites. This study extends the known correspondence of development and regeneration from broad transcriptomic similarity to include patterning and differentiation processes. Further, our work provides a catalog of regulatory regions and binding sites that potentially regulate developmental genes during regeneration, fueling comparative studies of regeneration.
Collapse
|
8
|
Xu J, Deng Y, Li G. Keratin 19 (Krt19) is a novel marker gene for epicardial cells. Front Genet 2024; 15:1385867. [PMID: 38831775 PMCID: PMC11145414 DOI: 10.3389/fgene.2024.1385867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024] Open
Abstract
Epicardial cells regulate heart growth by secreting numerous growth factors and undergoing lineage specification into other cardiac lineages. However, the lack of specific marker genes for epicardial cells has hindered the understanding of this cell type in heart development. Through the analysis of a cardiac single cell mRNA sequencing dataset, we identified a novel epicardial gene named Keratin 19 (Krt19). Further analysis of the expression patterns of Krt19 and Wt1, a well-known epicardial gene, revealed their preferences in major cardiac cell types. Using lineage-tracing analysis, we analyzed Krt19-CreER labeled cells at multiple time windows and found that it labels epicardial cells at both embryonic and neonatal stages. Furthermore, we studied the function of epicardial cells using a diphtheria toxin A chain (DTA)-based cell ablation system. We discovered that Krt19-CreER labeled cells are essential for fetal heart development. Finally, we investigated the function of Krt19-CreER and Wt1-CreER labeled cells in neonatal mouse development. We observed that the Krt19-CreER; Rosa-DTA mice displayed a smaller size after tamoxifen treatment, suggesting the potential importance of Krt19-CreER labeled cells in neonatal mouse development. Additionally, we found that Wt1-CreER; Rosa-DTA mice died at early stages, likely due to defects in the kidney and spleen. In summary, we have identified Krt19 as a new epicardial cell marker gene and further explored the function of epicardial cells using the Krt19-CreER and Wt1-CreER-mediated DTA ablation system.
Collapse
Affiliation(s)
| | | | - Guang Li
- Department of Cell Biology, Center for Integrative Organ Systems, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Butler K, Ahmed S, Jablonski J, Hookway TA. Engineered Cardiac Microtissue Biomanufacturing Using Human Induced Pluripotent Stem Cell Derived Epicardial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593960. [PMID: 38798424 PMCID: PMC11118268 DOI: 10.1101/2024.05.13.593960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epicardial cells are a crucial component in constructing in vitro 3D tissue models of the human heart, contributing to the ECM environment and the resident mesenchymal cell population. Studying the human epicardium and its development from the proepicardial organ is difficult, but induced pluripotent stem cells can provide a source of human epicardial cells for developmental modeling and for biomanufacturing heterotypic cardiac tissues. This study shows that a robust population of epicardial cells (approx. 87.7% WT1+) can be obtained by small molecule modulation of the Wnt signaling pathway. The population maintains WT1 expression and characteristic epithelial morphology over successive passaging, but increases in size and decreases in cell number, suggesting a limit to their expandability in vitro. Further, low passage number epicardial cells formed into more robust 3D microtissues compared to their higher passage counterparts, suggesting that the ideal time frame for use of these epicardial cells for tissue engineering and modeling purposes is early on in their differentiated state. Additionally, the differentiated epicardial cells displayed two distinct morphologic sub populations with a subset of larger, more migratory cells which led expansion of the epicardial cells across various extracellular matrix environments. When incorporated into a mixed 3D co-culture with cardiomyocytes, epicardial cells promoted greater remodeling and migration without impairing cardiomyocyte function. This study provides an important characterization of stem cell-derived epicardial cells, identifying key characteristics that influence their ability to fabricate consistent engineered cardiac tissues.
Collapse
Affiliation(s)
- Kirk Butler
- Biomedical Engineering Department, Binghamton University, the State University of New York, Binghamton NY 13902
| | - Saif Ahmed
- Biomedical Engineering Department, Binghamton University, the State University of New York, Binghamton NY 13902
| | - Justin Jablonski
- Biomedical Engineering Department, University of Rochester, Rochester, NY14627
| | - Tracy A. Hookway
- Biomedical Engineering Department, Binghamton University, the State University of New York, Binghamton NY 13902
| |
Collapse
|
10
|
Qin D, Zhang Y, Liu F, Xu X, Jiang H, Su Z, Xia L. Spatiotemporal development and the regulatory mechanisms of cardiac resident macrophages: Contribution in cardiac development and steady state. Acta Physiol (Oxf) 2024; 240:e14088. [PMID: 38230805 DOI: 10.1111/apha.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
Cardiac resident macrophages (CRMs) are integral components of the heart and play significant roles in cardiac development, steady-state, and injury. Advances in sequencing technology have revealed that CRMs are a highly heterogeneous population, with significant differences in phenotype and function at different developmental stages and locations within the heart. In addition to research focused on diseases, recent years have witnessed a heightened interest in elucidating the involvement of CRMs in heart development and the maintenance of cardiac function. In this review, we primarily concentrated on summarizing the developmental trajectories, both spatial and temporal, of CRMs and their impact on cardiac development and steady-state. Moreover, we discuss the possible factors by which the cardiac microenvironment regulates macrophages from the perspectives of migration, proliferation, and differentiation under physiological conditions. Gaining insight into the spatiotemporal heterogeneity and regulatory mechanisms of CRMs is of paramount importance in comprehending the involvement of macrophages in cardiac development, injury, and repair, and also provides new ideas and therapeutic methods for treating heart diseases.
Collapse
Affiliation(s)
- Demeng Qin
- Institute of Hematological Disease, Jiangsu University, Zhenjiang, China
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang, China
- Institute of Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Xiang Xu
- Department of Business, Yancheng Blood Center, Yancheng, China
| | - Haiqiang Jiang
- Department of Laboratory Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China
- Institute of Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Lin Xia
- Institute of Hematological Disease, Jiangsu University, Zhenjiang, China
- International Genome Center, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Weinberger M, Simões FC, Gungoosingh T, Sauka-Spengler T, Riley PR. Distinct epicardial gene regulatory programs drive development and regeneration of the zebrafish heart. Dev Cell 2024; 59:351-367.e6. [PMID: 38237592 DOI: 10.1016/j.devcel.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/12/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
Unlike the adult mammalian heart, which has limited regenerative capacity, the zebrafish heart fully regenerates following injury. Reactivation of cardiac developmental programs is considered key to successfully regenerating the heart, yet the regulation underlying the response to injury remains elusive. Here, we compared the transcriptome and epigenome of the developing and regenerating zebrafish epicardia. We identified epicardial enhancer elements with specific activity during development or during adult heart regeneration. By generating gene regulatory networks associated with epicardial development and regeneration, we inferred genetic programs driving each of these processes, which were largely distinct. Loss of Hif1ab, Nrf1, Tbx2b, and Zbtb7a, central regulators of the regenerating epicardial network, in injured hearts resulted in elevated epicardial cell numbers infiltrating the wound and excess fibrosis after cryoinjury. Our work identifies differences between the regulatory blueprint deployed during epicardial development and regeneration, underlining that heart regeneration goes beyond the reactivation of developmental programs.
Collapse
Affiliation(s)
- Michael Weinberger
- Department of Physiology, Anatomy and Genetics, Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford OX3 7TY, Oxfordshire, UK; Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, Oxfordshire, UK
| | - Filipa C Simões
- Department of Physiology, Anatomy and Genetics, Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford OX3 7TY, Oxfordshire, UK
| | - Trishalee Gungoosingh
- Department of Physiology, Anatomy and Genetics, Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford OX3 7TY, Oxfordshire, UK
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, Oxfordshire, UK; Stowers Institute for Medical Research, Kansas City, MO, USA.
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford OX3 7TY, Oxfordshire, UK.
| |
Collapse
|
12
|
Abstract
Permanent fibrosis and chronic deterioration of heart function in patients after myocardial infarction present a major health-care burden worldwide. In contrast to the restricted potential for cellular and functional regeneration of the adult mammalian heart, a robust capacity for cardiac regeneration is seen during the neonatal period in mammals as well as in the adults of many fish and amphibian species. However, we lack a complete understanding as to why cardiac regeneration takes place more efficiently in some species than in others. The capacity of the heart to regenerate after injury is controlled by a complex network of cellular and molecular mechanisms that form a regulatory landscape, either permitting or restricting regeneration. In this Review, we provide an overview of the diverse array of vertebrates that have been studied for their cardiac regenerative potential and discuss differential heart regeneration outcomes in closely related species. Additionally, we summarize current knowledge about the core mechanisms that regulate cardiac regeneration across vertebrate species.
Collapse
Affiliation(s)
- Michael Weinberger
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul R Riley
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Wang R, Lu D, Song R, Du L, Yang X, Wu ST, Wang X, Wong J, Xu Z, Zhao Q, Liu R, Zheng X. Epicardial CCM2 Promotes Cardiac Development and Repair Via its Regulation on Cytoskeletal Reorganization. JACC Basic Transl Sci 2024; 9:203-219. [PMID: 38510716 PMCID: PMC10950406 DOI: 10.1016/j.jacbts.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 03/22/2024]
Abstract
The epicardium provides epicardial-derived cells and molecular signals to support cardiac development and regeneration. Zebrafish and mouse studies have shown that ccm2, a cerebral cavernous malformation disease gene, is essential for cardiac development. Endocardial cell-specific deletion of Ccm2 in mice has previously established that Ccm2 is essential for maintenance of the cardiac jelly for cardiac development during early gestation. The current study aimed to explore the function of Ccm2 in epicardial cells for heart development and regeneration. Through genetic deletion of Ccm2 in epicardial cells, our in vivo and ex vivo experiments revealed that Ccm2 is required by epicardial cells to support heart development. Ccm2 regulates epicardial cell adhesion, cell polarity, cell spreading, and migration. Importantly, the loss of Ccm2 in epicardial cells delays cardiac function recovery and aggravates cardiac fibrosis following myocardial infarction. Molecularly, Ccm2 targets the production of cytoskeletal and matrix proteins to maintain epicardial cell function and behaviors. Epicardial Ccm2 plays a critical role in heart development and regeneration via its regulation of cytoskeleton reorganization.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Dongbo Lu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Renhua Song
- Epigenetics and RNA Biology Program, Centenary Institute and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Luping Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shi-ting Wu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Justin Wong
- Epigenetics and RNA Biology Program, Centenary Institute and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiang Zhao
- Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute and School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
14
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. Human Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:3-55. [PMID: 38884703 DOI: 10.1007/978-3-031-44087-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Many aspects of heart development are topographically complex and require three-dimensional (3D) reconstruction to understand the pertinent morphology. We have recently completed a comprehensive primer of human cardiac development that is based on firsthand segmentation of structures of interest in histological sections. We visualized the hearts of 12 human embryos between their first appearance at 3.5 weeks and the end of the embryonic period at 8 weeks. The models were presented as calibrated, interactive, 3D portable document format (PDF) files. We used them to describe the appearance and the subsequent remodeling of around 70 different structures incrementally for each of the reconstructed stages. In this chapter, we begin our account by describing the formation of the single heart tube, which occurs at the end of the fourth week subsequent to conception. We describe its looping in the fifth week, the formation of the cardiac compartments in the sixth week, and, finally, the septation of these compartments into the physically separated left- and right-sided circulations in the seventh and eighth weeks. The phases are successive, albeit partially overlapping. Thus, the basic cardiac layout is established between 26 and 32 days after fertilization and is described as Carnegie stages (CSs) 9 through 14, with development in the outlet component trailing that in the inlet parts. Septation at the venous pole is completed at CS17, equivalent to almost 6 weeks of development. During Carnegie stages 17 and 18, in the seventh week, the outflow tract and arterial pole undergo major remodeling, including incorporation of the proximal portion of the outflow tract into the ventricles and transfer of the spiraling course of the subaortic and subpulmonary channels to the intrapericardial arterial trunks. Remodeling of the interventricular foramen, with its eventual closure, is complete at CS20, which occurs at the end of the seventh week. We provide quantitative correlations between the age of human and mouse embryos as well as the Carnegie stages of development. We have also set our descriptions in the context of variations in the timing of developmental features.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Present address: Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Li Q, Feng Q, Zhou H, Lin C, Sun X, Ma C, Sun L, Guo G, Wang D. Mechanisms and therapeutic strategies of extracellular vesicles in cardiovascular diseases. MedComm (Beijing) 2023; 4:e454. [PMID: 38124785 PMCID: PMC10732331 DOI: 10.1002/mco2.454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Cardiovascular disease (CVD) significantly impacts global society since it is the leading cause of death and disability worldwide, and extracellular vesicle (EV)-based therapies have been extensively investigated. EV delivery is involved in mediating the progression of CVDs and has great potential to be biomarker and therapeutic molecular carrier. Besides, EVs from stem cells and cardiac cells can effectively protect the heart from various pathologic conditions, and then serve as an alternative treatment for CVDs. Moreover, the research of using EVs as delivery carriers of therapeutic molecules, membrane engineering modification of EVs, or combining EVs with biomaterials further improves the application potential of EVs in clinical treatment. However, currently there are only a few articles summarizing the application of EVs in CVDs. This review provides an overview of the role of EVs in the pathogenesis and diagnosis of CVDs. It also focuses on how EVs promote the repair of myocardial injury and therapeutic methods of CVDs. In conclusion, it is of great significance to review the research on the application of EVs in the treatment of CVDs, which lays a foundation for further exploration of the role of EVs, and clarifies the prospect of EVs in the treatment of myocardial injury.
Collapse
Affiliation(s)
- Qirong Li
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Xiaoming Sun
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Chaoyang Ma
- Hepatology Hospital of Jilin ProvinceChangchunChina
| | - Liqun Sun
- Department of PathogenobiologyJilin University Mycology Research CenterCollege of Basic Medical SciencesJilin UniversityChangchunChina
| | - Gongliang Guo
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| |
Collapse
|
16
|
Li J, Xin Y, Wang Z, Li J, Li W, Li H. The role of cardiac resident macrophage in cardiac aging. Aging Cell 2023; 22:e14008. [PMID: 37817547 PMCID: PMC10726886 DOI: 10.1111/acel.14008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Advancements in longevity research have provided insights into the impact of cardiac aging on the structural and functional aspects of the heart. Notable changes include the gradual remodeling of the myocardium, the occurrence of left ventricular hypertrophy, and the decline in both systolic and diastolic functions. Macrophages, a type of immune cell, play a pivotal role in innate immunity by serving as vigilant agents against pathogens, facilitating wound healing, and orchestrating the development of targeted acquired immune responses. Distinct subsets of macrophages are present within the cardiac tissue and demonstrate varied functions in response to myocardial injury. The differentiation of cardiac macrophages according to their developmental origin has proven to be a valuable strategy in identifying reparative macrophage populations, which originate from embryonic cells and reside within the tissue, as well as inflammatory macrophages, which are derived from monocytes and recruited to the heart. These subsets of macrophages possess unique characteristics and perform distinct functions. This review aims to summarize the current understanding of the roles and phenotypes of cardiac macrophages in various conditions, including the steady state, aging, and other pathological conditions. Additionally, it will highlight areas that require further investigation to expand our knowledge in this field.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Zhaojia Wang
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Weiping Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular DiseaseBeijingChina
| |
Collapse
|
17
|
Sanchez-Fernandez C, Rodriguez-Outeiriño L, Matias-Valiente L, Ramírez de Acuña F, Franco D, Aránega AE. Understanding Epicardial Cell Heterogeneity during Cardiogenesis and Heart Regeneration. J Cardiovasc Dev Dis 2023; 10:376. [PMID: 37754805 PMCID: PMC10531887 DOI: 10.3390/jcdd10090376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
The outermost layer of the heart, the epicardium, is an essential cell population that contributes, through epithelial-to-mesenchymal transition (EMT), to the formation of different cell types and provides paracrine signals to the developing heart. Despite its quiescent state during adulthood, the adult epicardium reactivates and recapitulates many aspects of embryonic cardiogenesis in response to cardiac injury, thereby supporting cardiac tissue remodeling. Thus, the epicardium has been considered a crucial source of cell progenitors that offers an important contribution to cardiac development and injured hearts. Although several studies have provided evidence regarding cell fate determination in the epicardium, to date, it is unclear whether epicardium-derived cells (EPDCs) come from specific, and predetermined, epicardial cell subpopulations or if they are derived from a common progenitor. In recent years, different approaches have been used to study cell heterogeneity within the epicardial layer using different experimental models. However, the data generated are still insufficient with respect to revealing the complexity of this epithelial layer. In this review, we summarize the previous works documenting the cellular composition, molecular signatures, and diversity within the developing and adult epicardium.
Collapse
Affiliation(s)
- Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Lara Rodriguez-Outeiriño
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Lidia Matias-Valiente
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Felicitas Ramírez de Acuña
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Amelia Eva Aránega
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| |
Collapse
|
18
|
Deng Y, He Y, Xu J, He H, Li G. Heterogeneity and Functional Analysis of Cardiac Fibroblasts in Heart Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.30.551164. [PMID: 37577541 PMCID: PMC10418062 DOI: 10.1101/2023.07.30.551164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background As one of the major cell types in the heart, fibroblasts play critical roles in multiple biological processes. Cardiac fibroblasts are known to develop from multiple sources, but their transcriptional profiles have not been systematically compared. Furthermore, while the function of a few genes in cardiac fibroblasts has been studied, the overall function of fibroblasts as a cell type remains uninvestigated. Methods Single-cell mRNA sequencing (scRNA-seq) and bioinformatics approaches were used to analyze the genome-wide genes expression and extracellular matrix genes expression in fibroblasts, as well as the ligand-receptor interactions between fibroblasts and cardiomyocytes. Single molecular in situ hybridization was employed to analyze the expression pattern of fibroblast subpopulation-specific genes. The Diphtheria toxin fragment A (DTA) system was utilized to ablate fibroblasts at each developmental phase. Results Using RNA staining of Col1a1 at different stages, we grouped cardiac fibroblasts into four developmental phases. Through the analysis of scRNA-seq profiles of fibroblasts at 18 stages from two mouse strains, we identified significant heterogeneity, preserving lineage gene expression in their precursor cells. Within the main fibroblast population, we found differential expressions of Wt1, Tbx18, and Aldh1a2 genes in various cell clusters. Lineage tracing studies showed Wt1- and Tbx18-positive fibroblasts originated from respective epicardial cells. Furthermore, using a conditional DTA system-based elimination, we identified the crucial role of fibroblasts in early embryonic and heart growth, but not in neonatal heart growth. Additionally, we identified the zone- and stage-associated expression of extracellular matrix genes and fibroblast-cardiomyocyte ligand-receptor interactions. This comprehensive understanding sheds light on fibroblast function in heart development. Conclusion We observed cardiac fibroblast heterogeneity at embryonic and neonatal stages, with preserved lineage gene expression. Ablation studies revealed their distinct roles during development, likely influenced by varying extracellular matrix genes and ligand-receptor interactions at different stages.
Collapse
|
19
|
Muniyandi P, O’Hern C, Popa MA, Aguirre A. Biotechnological advances and applications of human pluripotent stem cell-derived heart models. Front Bioeng Biotechnol 2023; 11:1214431. [PMID: 37560538 PMCID: PMC10407810 DOI: 10.3389/fbioe.2023.1214431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
In recent years, significant biotechnological advancements have been made in engineering human cardiac tissues and organ-like models. This field of research is crucial for both basic and translational research due to cardiovascular disease being the leading cause of death in the developed world. Additionally, drug-associated cardiotoxicity poses a major challenge for drug development in the pharmaceutical and biotechnological industries. Progress in three-dimensional cell culture and microfluidic devices has enabled the generation of human cardiac models that faithfully recapitulate key aspects of human physiology. In this review, we will discuss 3D pluripotent stem cell (PSC)-models of the human heart, such as engineered heart tissues and organoids, and their applications in disease modeling and drug screening.
Collapse
Affiliation(s)
- Priyadharshni Muniyandi
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Colin O’Hern
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Mirel Adrian Popa
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
20
|
Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages. Nat Commun 2022; 13:7960. [PMID: 36575170 PMCID: PMC9794824 DOI: 10.1038/s41467-022-35691-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Heart development is a continuous process involving significant remodeling during embryogenesis and neonatal stages. To date, several groups have used single-cell sequencing to characterize the heart transcriptomes but failed to capture the progression of heart development at most stages. This has left gaps in understanding the contribution of each cell type across cardiac development. Here, we report the transcriptional profile of the murine heart from early embryogenesis to late neonatal stages. Through further analysis of this dataset, we identify several transcriptional features. We identify gene expression modules enriched at early embryonic and neonatal stages; multiple cell types in the left and right atriums are transcriptionally distinct at neonatal stages; many congenital heart defect-associated genes have cell type-specific expression; stage-unique ligand-receptor interactions are mostly between epicardial cells and other cell types at neonatal stages; and mutants of epicardium-expressed genes Wt1 and Tbx18 have different heart defects. Assessment of this dataset serves as an invaluable source of information for studies of heart development.
Collapse
|
21
|
Xia Y, Duca S, Perder B, Dündar F, Zumbo P, Qiu M, Yao J, Cao Y, Harrison MRM, Zangi L, Betel D, Cao J. Activation of a transient progenitor state in the epicardium is required for zebrafish heart regeneration. Nat Commun 2022; 13:7704. [PMID: 36513650 PMCID: PMC9747719 DOI: 10.1038/s41467-022-35433-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
The epicardium, a mesothelial cell tissue that encompasses vertebrate hearts, supports heart regeneration after injury through paracrine effects and as a source of multipotent progenitors. However, the progenitor state in the adult epicardium has yet to be defined. Through single-cell RNA-sequencing of isolated epicardial cells from uninjured and regenerating adult zebrafish hearts, we define the epithelial and mesenchymal subsets of the epicardium. We further identify a transiently activated epicardial progenitor cell (aEPC) subpopulation marked by ptx3a and col12a1b expression. Upon cardiac injury, aEPCs emerge from the epithelial epicardium, migrate to enclose the wound, undergo epithelial-mesenchymal transition (EMT), and differentiate into mural cells and pdgfra+hapln1a+ mesenchymal epicardial cells. These EMT and differentiation processes are regulated by the Tgfβ pathway. Conditional ablation of aEPCs blocks heart regeneration through reduced nrg1 expression and mesenchymal cell number. Our findings identify a transient progenitor population of the adult epicardium that is indispensable for heart regeneration and highlight it as a potential target for enhancing cardiac repair.
Collapse
Affiliation(s)
- Yu Xia
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Sierra Duca
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Björn Perder
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Miaoyan Qiu
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Jun Yao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Yingxi Cao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Michael R M Harrison
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
22
|
Guo Z, Geng M, Huang Y, Han G, Jing R, Lin C, Zhang X, Zhang M, Fan G, Wang F, Yin H. Upregulation of Wilms' Tumor 1 in epicardial cells increases cardiac fibrosis in dystrophic mice. Cell Death Differ 2022; 29:1928-1940. [PMID: 35306537 PMCID: PMC9525265 DOI: 10.1038/s41418-022-00979-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
Cardiomyopathy is a primary cause of mortality in Duchenne muscular dystrophy (DMD) patients. Mechanistic understanding of cardiac fibrosis holds the key to effective DMD cardiomyopathy treatments. Here we demonstrate that upregulation of Wilms' tumor 1 (Wt1) gene in epicardial cells increased cardiac fibrosis and impaired cardiac function in 8-month old mdx mice lacking the RNA component of telomerase (mdx/mTR-/-). Levels of phosphorylated IƙBα and p65 significantly rose in mdx/mTR-/- dystrophic hearts and Wt1 expression declined in the epicardium of mdx/mTR-/- mice when nuclear factor κB (NF-κB) and inflammation were inhibited by metformin. This demonstrates that Wt1 expression in epicardial cells is dependent on inflammation-triggered NF-κB activation. Metformin effectively prevented cardiac fibrosis and improved cardiac function in mdx/mTR-/- mice. Our study demonstrates that upregulation of Wt1 in epicardial cells contributes to fibrosis in dystrophic hearts and metformin-mediated inhibition of NF-κB can ameliorate the pathology, and thus showing clinical potential for dystrophic cardiomyopathy. Translational Perspective: Cardiomyopathy is a major cause of mortality in Duchenne muscular dystrophy (DMD) patients. Promising exon-skipping treatments are moving to the clinic, but getting sufficient dystrophin expression in the heart has proven challenging. The present study shows that Wilms' Tumor 1 (Wt1) upregulation in epicardial cells is primarily responsible for cardiac fibrosis and dysfunction of dystrophic mice and likely of DMD patients. Metformin effectively prevents cardiac fibrosis and improves cardiac function in dystrophic mice, thus representing a treatment option for DMD patients on top of existing therapies.
Collapse
Affiliation(s)
- Zhenglong Guo
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
- Medical Genetic Institute of Henan Province, Henan Provincial Key laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Mengyuan Geng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Yuting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Changling Road, Xiqing District, Tianjin, 300193, China
| | - Gang Han
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Renwei Jing
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Caorui Lin
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Xiaoning Zhang
- Department of Genetics, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Miaomiao Zhang
- Department of Genetics, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Changling Road, Xiqing District, Tianjin, 300193, China
| | - Feng Wang
- Department of Genetics, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - HaiFang Yin
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China.
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
23
|
Sun J, Peterson EA, Wang AZ, Ou J, Smith KE, Poss KD, Wang J. hapln1 Defines an Epicardial Cell Subpopulation Required for Cardiomyocyte Expansion During Heart Morphogenesis and Regeneration. Circulation 2022; 146:48-63. [PMID: 35652354 PMCID: PMC9308751 DOI: 10.1161/circulationaha.121.055468] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Certain nonmammalian species such as zebrafish have an elevated capacity for innate heart regeneration. Understanding how heart regeneration occurs in these contexts can help illuminate cellular and molecular events that can be targets for heart failure prevention or treatment. The epicardium, a mesothelial tissue layer that encompasses the heart, is a dynamic structure that is essential for cardiac regeneration in zebrafish. The extent to which different cell subpopulations or states facilitate heart regeneration requires research attention. METHODS To dissect epicardial cell states and associated proregenerative functions, we performed single-cell RNA sequencing and identified 7 epicardial cell clusters in adult zebrafish, 3 of which displayed enhanced cell numbers during regeneration. We identified paralogs of hapln1 as factors associated with the extracellular matrix and largely expressed in cluster 1. We assessed HAPLN1 expression in published single-cell RNA sequencing data sets from different stages and injury states of murine and human hearts, and we performed molecular genetics to determine the requirements for hapln1-expressing cells and functions of each hapln1 paralog. RESULTS A particular cluster of epicardial cells had the strongest association with regeneration and was marked by expression of hapln1a and hapln1b. The hapln1 paralogs are expressed in epicardial cells that enclose dedifferentiated and proliferating cardiomyocytes during regeneration. Induced genetic depletion of hapln1-expressing cells or genetic inactivation of hapln1b altered deposition of the key extracellular matrix component hyaluronic acid, disrupted cardiomyocyte proliferation, and inhibited heart regeneration. We also found that hapln1-expressing epicardial cells first emerge at the juvenile stage, when they associate with and are required for focused cardiomyocyte expansion events that direct maturation of the ventricular wall. CONCLUSIONS Our findings identify a subset of epicardial cells that emerge in postembryonic zebrafish and sponsor regions of active cardiomyogenesis during cardiac growth and regeneration. We provide evidence that, as the heart achieves its mature structure, these cells facilitate hyaluronic acid deposition to support formation of the compact muscle layer of the ventricle. They are also required, along with the function of hapln1b paralog, in the production and organization of hyaluronic acid-containing matrix in cardiac injury sites, enabling normal cardiomyocyte proliferation and muscle regeneration.
Collapse
Affiliation(s)
- Jisheng Sun
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA (J.S., E.A.P., K.E.S., J.W.)
| | - Elizabeth A Peterson
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA (J.S., E.A.P., K.E.S., J.W.)
| | - Annabel Z Wang
- Duke Regeneration Center, Department of Cell Biology, Duke University Medical Center, Durham, NC (A.Z.W., J.O., K.D.P.)
| | - Jianhong Ou
- Duke Regeneration Center, Department of Cell Biology, Duke University Medical Center, Durham, NC (A.Z.W., J.O., K.D.P.)
| | - Kieko E Smith
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA (J.S., E.A.P., K.E.S., J.W.)
| | - Kenneth D Poss
- Duke Regeneration Center, Department of Cell Biology, Duke University Medical Center, Durham, NC (A.Z.W., J.O., K.D.P.)
| | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA (J.S., E.A.P., K.E.S., J.W.)
| |
Collapse
|
24
|
Eroglu E, Yen CYT, Tsoi YL, Witman N, Elewa A, Joven Araus A, Wang H, Szattler T, Umeano CH, Sohlmér J, Goedel A, Simon A, Chien KR. Epicardium-derived cells organize through tight junctions to replenish cardiac muscle in salamanders. Nat Cell Biol 2022; 24:645-658. [PMID: 35550612 PMCID: PMC9106584 DOI: 10.1038/s41556-022-00902-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
The contribution of the epicardium, the outermost layer of the heart, to cardiac regeneration has remained controversial due to a lack of suitable analytical tools. By combining genetic marker-independent lineage-tracing strategies with transcriptional profiling and loss-of-function methods, we report here that the epicardium of the highly regenerative salamander species Pleurodeles waltl has an intrinsic capacity to differentiate into cardiomyocytes. Following cryoinjury, CLDN6+ epicardium-derived cells appear at the lesion site, organize into honeycomb-like structures connected via focal tight junctions and undergo transcriptional reprogramming that results in concomitant differentiation into de novo cardiomyocytes. Ablation of CLDN6+ differentiation intermediates as well as disruption of their tight junctions impairs cardiac regeneration. Salamanders constitute the evolutionarily closest species to mammals with an extensive ability to regenerate heart muscle and our results highlight the epicardium and tight junctions as key targets in efforts to promote cardiac regeneration.
Collapse
Affiliation(s)
- Elif Eroglu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Christopher Y T Yen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yat-Long Tsoi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed Elewa
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Heng Wang
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tamara Szattler
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chimezie H Umeano
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Gene Therapy, Lunds Universitet, Lund, Sweden
| | - Jesper Sohlmér
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Goedel
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
25
|
Jiang S, Feng W, Chang C, Li G. Modeling Human Heart Development and Congenital Defects Using Organoids: How Close Are We? J Cardiovasc Dev Dis 2022; 9:jcdd9050125. [PMID: 35621836 PMCID: PMC9145739 DOI: 10.3390/jcdd9050125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
The emergence of human-induced Pluripotent Stem Cells (hiPSCs) has dramatically improved our understanding of human developmental processes under normal and diseased conditions. The hiPSCs have been differentiated into various tissue-specific cells in vitro, and the advancement in three-dimensional (3D) culture has provided a possibility to generate those cells in an in vivo-like environment. Tissues with 3D structures can be generated using different approaches such as self-assembled organoids and tissue-engineering methods, such as bioprinting. We are interested in studying the self-assembled organoids differentiated from hiPSCs, as they have the potential to recapitulate the in vivo developmental process and be used to model human development and congenital defects. Organoids of tissues such as those of the intestine and brain were developed many years ago, but heart organoids were not reported until recently. In this review, we will compare the heart organoids with the in vivo hearts to understand the anatomical structures we still lack in the organoids. Specifically, we will compare the development of main heart structures, focusing on their marker genes and regulatory signaling pathways.
Collapse
|
26
|
Abstract
The immune system is fundamental to tissue homeostasis and is the first line of defense following infection, injury or disease. In the damaged heart, large numbers of immune cells are recruited to the site of injury. These cells play an integral part in both repair by scar formation and the initiation of tissue regeneration. They initially assume inflammatory phenotypes, releasing pro-inflammatory cytokines and removing dead and dying tissue, before entering a reparative stage, replacing dead muscle tissue with a non-contractile scar. In this Review, we present an overview of the innate and adaptive immune response to heart injury. We explore the kinetics of immune cell mobilization following cardiac injury and how the different innate and adaptive immune cells interact with one another and with the damaged tissue. We draw on key findings from regenerative models, providing insight into how to support a robust immune response permissible for cardiac regeneration. Finally, we consider how the latest technological developments can offer opportunities for a deeper and unbiased functional understanding of the immune response to heart disease, highlighting the importance of such knowledge as the basis for promoting regeneration following cardiac injury in human patients.
Collapse
Affiliation(s)
- Filipa C. Simões
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford,Oxford, OxfordshireOX3 9DS, UK
- Institute of Developmental and Regenerative Medicine, Old Road Campus, Oxford, OxfordshireOX3 7DQ, UK
| | - Paul R. Riley
- Institute of Developmental and Regenerative Medicine, Old Road Campus, Oxford, OxfordshireOX3 7DQ, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OxfordshireOX1 3PT, UK
| |
Collapse
|
27
|
Regulation of Epicardial Cell Fate during Cardiac Development and Disease: An Overview. Int J Mol Sci 2022; 23:ijms23063220. [PMID: 35328640 PMCID: PMC8950551 DOI: 10.3390/ijms23063220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
The epicardium is the outermost cell layer in the vertebrate heart that originates during development from mesothelial precursors located in the proepicardium and septum transversum. The epicardial layer plays a key role during cardiogenesis since a subset of epicardial-derived cells (EPDCs) undergo an epithelial–mesenchymal transition (EMT); migrate into the myocardium; and differentiate into distinct cell types, such as coronary vascular smooth muscle cells, cardiac fibroblasts, endothelial cells, and presumably a subpopulation of cardiomyocytes, thus contributing to complete heart formation. Furthermore, the epicardium is a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis. Although several lineage trace studies have provided some evidence about epicardial cell fate determination, the molecular mechanisms underlying epicardial cell heterogeneity remain not fully understood. Interestingly, seminal works during the last decade have pointed out that the adult epicardium is reactivated after heart damage, re-expressing some embryonic genes and contributing to cardiac remodeling. Therefore, the epicardium has been proposed as a potential target in the treatment of cardiovascular disease. In this review, we summarize the previous knowledge regarding the regulation of epicardial cell contribution during development and the control of epicardial reactivation in cardiac repair after damage.
Collapse
|
28
|
del Campo CV, Liaw NY, Gunadasa-Rohling M, Matthaei M, Braga L, Kennedy T, Salinas G, Voigt N, Giacca M, Zimmermann WH, Riley PR. Regenerative potential of epicardium-derived extracellular vesicles mediated by conserved miRNA transfer. Cardiovasc Res 2022; 118:597-611. [PMID: 33599250 PMCID: PMC8803084 DOI: 10.1093/cvr/cvab054] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
AIMS After a myocardial infarction, the adult human heart lacks sufficient regenerative capacity to restore lost tissue, leading to heart failure progression. Finding novel ways to reprogram adult cardiomyocytes into a regenerative state is a major therapeutic goal. The epicardium, the outermost layer of the heart, contributes cardiovascular cell types to the forming heart and is a source of trophic signals to promote heart muscle growth during embryonic development. The epicardium is also essential for heart regeneration in zebrafish and neonatal mice and can be reactivated after injury in adult hearts to improve outcome. A recently identified mechanism of cell-cell communication and signalling is that mediated by extracellular vesicles (EVs). Here, we aimed to investigate epicardial signalling via EV release in response to cardiac injury and as a means to optimize cardiac repair and regeneration. METHODS AND RESULTS We isolated epicardial EVs from mouse and human sources and targeted the cardiomyocyte population. Epicardial EVs enhanced proliferation in H9C2 cells and in primary neonatal murine cardiomyocytes in vitro and promoted cell cycle re-entry when injected into the injured area of infarcted neonatal hearts. These EVs also enhanced regeneration in cryoinjured engineered human myocardium (EHM) as a novel model of human myocardial injury. Deep RNA-sequencing of epicardial EV cargo revealed conserved microRNAs (miRs) between human and mouse epicardial-derived exosomes, and the effects on cell cycle re-entry were recapitulated by administration of cargo miR-30a, miR-100, miR-27a, and miR-30e to human stem cell-derived cardiomyocytes and cryoinjured EHM constructs. CONCLUSION Here, we describe the first characterization of epicardial EV secretion, which can signal to promote proliferation of cardiomyocytes in infarcted mouse hearts and in a human model of myocardial injury, resulting in enhanced contractile function. Analysis of exosome cargo in mouse and human identified conserved pro-regenerative miRs, which in combination recapitulated the therapeutic effects of promoting cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Cristina Villa del Campo
- Department of Physiology, Anatomy and Genetics, British Heart Foundation, Oxbridge Centre of Regenerative Medicine, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Norman Y Liaw
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Robert-Koch-Straße 42a, 37075 Göttingen, Germany
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy and Genetics, British Heart Foundation, Oxbridge Centre of Regenerative Medicine, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Moritz Matthaei
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Località Padriciano, 99, 34149 Trieste TS, Italy
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre, King's College London, Strand, London WC2R 2L, UK
| | - Tahnee Kennedy
- Department of Physiology, Anatomy and Genetics, British Heart Foundation, Oxbridge Centre of Regenerative Medicine, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Gabriela Salinas
- NGS- Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Centre Göttingen (UMG), Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Robert-Koch-Straße 42a, 37075 Göttingen, Germany
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Località Padriciano, 99, 34149 Trieste TS, Italy
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre, King's College London, Strand, London WC2R 2L, UK
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Robert-Koch-Straße 42a, 37075 Göttingen, Germany
| | - Paul Richard Riley
- Department of Physiology, Anatomy and Genetics, British Heart Foundation, Oxbridge Centre of Regenerative Medicine, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| |
Collapse
|
29
|
Guo Z, Geng M, Qin L, Hao B, Liao S. Epicardium-Derived Tbx18 + CDCs Transplantation Improve Heart Function in Infarcted Mice. Front Cardiovasc Med 2022; 8:744353. [PMID: 35141286 PMCID: PMC8820322 DOI: 10.3389/fcvm.2021.744353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiosphere-derived cells (CDCs) constitute a cardiac stem cell pool, a promising therapeutics in treating myocardial infarction (MI). However, the cell source of CDCs remains unclear. In this study, we isolated CDCs directly from adult mouse heart epicardium named primary epicardium-derived CDCs (pECDCs), which showed a different expression profile compared with primary epicardial cells (pEpiCs). Interestingly, pECDCs highly expressed T-box transcription factor 18 (Tbx18) and showed multipotent differentiation ability in vitro. Human telomerase reverse transcriptase (hTERT) transduction could inhibit aging-induced pECDCs apoptosis and differentiation, thus keeping a better proliferation capacity. Furthermore, immortalized epicardium CDCs (iECDCs) transplantation extensively promote cardiogenesis in the infracted mouse heart. This study demonstrated epicardium-derived CDCs that may derive from Tbx18+ EpiCs, which possess the therapeutic potential to be applied to cardiac repair and regeneration and suggest a new kind of CDCs with identified origination that may be followed in the developing and injured heart.
Collapse
Affiliation(s)
- Zhenglong Guo
- Henan Medical Genetics Institute, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mengyuan Geng
- School of Medical Laboratory and Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Tianjin Medical University, Tianjin, China
| | - Litao Qin
- Henan Medical Genetics Institute, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bingtao Hao
- Henan Medical Genetics Institute, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- School of Basic Medical Sciences, Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Shixiu Liao
- Henan Medical Genetics Institute, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
30
|
Wasserman AH, Huang AR, Lewis-Israeli YR, Dooley MD, Mitchell AL, Venkatesan M, Aguirre A. Oxytocin promotes epicardial cell activation and heart regeneration after cardiac injury. Front Cell Dev Biol 2022; 10:985298. [PMID: 36247002 PMCID: PMC9561106 DOI: 10.3389/fcell.2022.985298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of mortality worldwide, and frequently leads to massive heart injury and the loss of billions of cardiac muscle cells and associated vasculature. Critical work in the last 2 decades demonstrated that these lost cells can be partially regenerated by the epicardium, the outermost mesothelial layer of the heart, in a process that highly recapitulates its role in heart development. Upon cardiac injury, mature epicardial cells activate and undergo an epithelial-mesenchymal transition (EMT) to form epicardium-derived progenitor cells (EpiPCs), multipotent progenitors that can differentiate into several important cardiac lineages, including cardiomyocytes and vascular cells. In mammals, this process alone is insufficient for significant regeneration, but it might be possible to prime it by administering specific reprogramming factors, leading to enhanced EpiPC function. Here, we show that oxytocin (OXT), a hypothalamic neuroendocrine peptide, induces epicardial cell proliferation, EMT, and transcriptional activity in a model of human induced pluripotent stem cell (hiPSC)-derived epicardial cells. In addition, we demonstrate that OXT is produced after cardiac cryoinjury in zebrafish, and that it elicits significant epicardial activation promoting heart regeneration. Oxytocin signaling is also critical for proper epicardium development in zebrafish embryos. The above processes are significantly impaired when OXT signaling is inhibited chemically or genetically through RNA interference. RNA sequencing data suggests that the transforming growth factor beta (TGF-β) pathway is the primary mediator of OXT-induced epicardial activation. Our research reveals for the first time an evolutionary conserved brain-controlled mechanism inducing cellular reprogramming and regeneration of the injured mammalian and zebrafish heart, a finding that could contribute to translational advances for the treatment of cardiac injuries.
Collapse
Affiliation(s)
- Aaron H Wasserman
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States.,Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Amanda R Huang
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States.,Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Yonatan R Lewis-Israeli
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States.,Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - McKenna D Dooley
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States.,Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Allison L Mitchell
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States.,Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Manigandan Venkatesan
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States.,Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Aitor Aguirre
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States.,Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
31
|
Jaconi ME, Puceat M. Cardiac Organoids and Gastruloids to Study Physio-Pathological Heart Development. J Cardiovasc Dev Dis 2021; 8:178. [PMID: 34940533 PMCID: PMC8709242 DOI: 10.3390/jcdd8120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
Ethical issues restrict research on human embryos, therefore calling for in vitro models to study human embryonic development including the formation of the first functional organ, the heart. For the last five years, two major models have been under development, namely the human gastruloids and the cardiac organoids. While the first one mainly recapitulates the gastrulation and is still limited to investigate cardiac development, the second one is becoming more and more helpful to mimic a functional beating heart. The review reports and discusses seminal works in the fields of human gastruloids and cardiac organoids. It further describes technologies which improve the formation of cardiac organoids. Finally, we propose some lines of research towards the building of beating mini-hearts in vitro for more relevant functional studies.
Collapse
Affiliation(s)
- Marisa E. Jaconi
- Faculty of Medicine, Geneva University, 1206 Geneva, Switzerland
| | - Michel Puceat
- Inserm U1251, MMG (Marseille Medical Genetics), Aix Marseille Université, 13885 Marseille, France
| |
Collapse
|
32
|
van den Berg NWE, Kawasaki M, Fabrizi B, Nariswari FA, Verduijn AC, Neefs J, Wesselink R, Al‐Shama RFM, van der Wal AC, de Boer OJ, Aten J, Driessen AHG, Jongejan A, de Groot JR. Epicardial and endothelial cell activation concurs with extracellular matrix remodeling in atrial fibrillation. Clin Transl Med 2021; 11:e558. [PMID: 34841686 PMCID: PMC8567047 DOI: 10.1002/ctm2.558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Improved understanding of the interconnectedness of structural remodeling processes in atrial fibrillation (AF) in patients could identify targets for future therapies. METHODS We present transcriptome sequencing of atrial tissues of patients without AF, with paroxysmal AF, and persistent AF (total n = 64). RNA expression levels were validated in the same and an independent cohort with qPCR. Biological processes were assessed with histological and immunohistochemical analyses. RESULTS In AF patients, epicardial cell gene expression decreased, contrasting with an upregulation of epithelial-to-mesenchymal transition (EMT) and mesenchymal cell gene expression. Immunohistochemistry demonstrated thickening of the epicardium and an increased proportion of (myo)fibroblast-like cells in the myocardium, supporting enhanced EMT in AF. We furthermore report an upregulation of endothelial cell proliferation, angiogenesis, and endothelial signaling. EMT and endothelial cell proliferation concurred with increased interstitial (myo)fibroblast-like cells and extracellular matrix gene expression including enhanced tenascin-C, thrombospondins, biglycan, and versican. Morphological analyses discovered increased and redistributed glycosaminoglycans and collagens in the atria of AF patients. Signaling pathways, including cell-matrix interactions, PI3K-AKT, and Notch signaling that could regulate mesenchymal cell activation, were upregulated. CONCLUSION Our results suggest that EMT and endothelial cell proliferation work in concert and characterize the (myo)fibroblast recruitment and ECM remodeling of AF. These processes could guide future research toward the discovery of targets for AF therapy.
Collapse
Affiliation(s)
- Nicoline W. E. van den Berg
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Makiri Kawasaki
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Benedetta Fabrizi
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Fransisca A. Nariswari
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Arianne C. Verduijn
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Jolien Neefs
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Robin Wesselink
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Rushd F. M. Al‐Shama
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Allard C. van der Wal
- Department of Clinical PathologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Onno J. de Boer
- Department of Clinical PathologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Jan Aten
- Department of Clinical PathologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Antoine H. G. Driessen
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| | - Aldo Jongejan
- Department of Epidemiology & Data ScienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Joris R. de Groot
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Heart CenterAmsterdamThe Netherlands
| |
Collapse
|
33
|
Choudhury TZ, Majumdar U, Basu M, Garg V. Impact of maternal hyperglycemia on cardiac development: Insights from animal models. Genesis 2021; 59:e23449. [PMID: 34498806 PMCID: PMC8599640 DOI: 10.1002/dvg.23449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Congenital heart disease (CHD) is the leading cause of birth defect-related death in infants and is a global pediatric health concern. While the genetic causes of CHD have become increasingly recognized with advances in genome sequencing technologies, the etiology for the majority of cases of CHD is unknown. The maternal environment during embryogenesis has a profound impact on cardiac development, and numerous environmental factors are associated with an elevated risk of CHD. Maternal diabetes mellitus (matDM) is associated with up to a fivefold increased risk of having an infant with CHD. The rising prevalence of diabetes mellitus has led to a growing interest in the use of experimental diabetic models to elucidate mechanisms underlying this associated risk for CHD. The purpose of this review is to provide a comprehensive summary of rodent models that are being used to investigate alterations in cardiac developmental pathways when exposed to a maternal diabetic setting and to summarize the key findings from these models. The majority of studies in the field have utilized the chemically induced model of matDM, but recent advances have also been made using diet based and genetic models. Each model provides an opportunity to investigate unique aspects of matDM and is invaluable for a comprehensive understanding of the molecular and cellular mechanisms underlying matDM-associated CHD.
Collapse
Affiliation(s)
- Talita Z. Choudhury
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Uddalak Majumdar
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
| | - Madhumita Basu
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, United States
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
34
|
Abstract
Cardiac congenital disabilities are the most common organ malformations, but we still do not understand how they arise in the human embryo. Moreover, although cardiovascular disease is the most common cause of death globally, the development of new therapies is lagging compared with other fields. One major bottleneck hindering progress is the lack of self-organizing human cardiac models that recapitulate key aspects of human heart development, physiology and disease. Current in vitro cardiac three-dimensional systems are either engineered constructs or spherical aggregates of cardiomyocytes and other cell types. Although tissue engineering enables the modeling of some electro-mechanical properties, it falls short of mimicking heart development, morphogenetic defects and many clinically relevant aspects of cardiomyopathies. Here, we review different approaches and recent efforts to overcome these challenges in the field using a new generation of self-organizing embryonic and cardiac organoids.
Collapse
Affiliation(s)
- Pablo Hofbauer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Stefan M Jahnel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
35
|
Adams E, McCloy R, Jordan A, Falconer K, Dykes IM. Direct Reprogramming of Cardiac Fibroblasts to Repair the Injured Heart. J Cardiovasc Dev Dis 2021; 8:72. [PMID: 34206355 PMCID: PMC8306371 DOI: 10.3390/jcdd8070072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease is a leading cause of mortality and morbidity. Those that survive acute myocardial infarction are at significant risk of subsequent heart failure due to fibrotic remodelling of the infarcted myocardium. By applying knowledge from the study of embryonic cardiovascular development, modern medicine offers hope for treatment of this condition through regeneration of the myocardium by direct reprogramming of fibrotic scar tissue. Here, we will review mechanisms of cell fate specification leading to the generation of cardiovascular cell types in the embryo and use this as a framework in which to understand direct reprogramming. Driving expression of a network of transcription factors, micro RNA or small molecule epigenetic modifiers can reverse epigenetic silencing, reverting differentiated cells to a state of induced pluripotency. The pluripotent state can be bypassed by direct reprogramming in which one differentiated cell type can be transdifferentiated into another. Transdifferentiating cardiac fibroblasts to cardiomyocytes requires a network of transcription factors similar to that observed in embryonic multipotent cardiac progenitors. There is some flexibility in the composition of this network. These studies raise the possibility that the failing heart could one day be regenerated by directly reprogramming cardiac fibroblasts within post-infarct scar tissue.
Collapse
Affiliation(s)
- Emma Adams
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Rachel McCloy
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Ashley Jordan
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Kaitlin Falconer
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Iain M. Dykes
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
36
|
Hofbauer P, Jahnel SM, Papai N, Giesshammer M, Deyett A, Schmidt C, Penc M, Tavernini K, Grdseloff N, Meledeth C, Ginistrelli LC, Ctortecka C, Šalic Š, Novatchkova M, Mendjan S. Cardioids reveal self-organizing principles of human cardiogenesis. Cell 2021; 184:3299-3317.e22. [PMID: 34019794 DOI: 10.1016/j.cell.2021.04.034] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Organoids capable of forming tissue-like structures have transformed our ability to model human development and disease. With the notable exception of the human heart, lineage-specific self-organizing organoids have been reported for all major organs. Here, we established self-organizing cardioids from human pluripotent stem cells that intrinsically specify, pattern, and morph into chamber-like structures containing a cavity. Cardioid complexity can be controlled by signaling that instructs the separation of cardiomyocyte and endothelial layers and by directing epicardial spreading, inward migration, and differentiation. We find that cavity morphogenesis is governed by a mesodermal WNT-BMP signaling axis and requires its target HAND1, a transcription factor linked to developmental heart chamber defects. Upon cryoinjury, cardioids initiated a cell-type-dependent accumulation of extracellular matrix, an early hallmark of both regeneration and heart disease. Thus, human cardioids represent a powerful platform to mechanistically dissect self-organization, congenital heart defects and serve as a foundation for future translational research.
Collapse
Affiliation(s)
- Pablo Hofbauer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Stefan M Jahnel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Nora Papai
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Magdalena Giesshammer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Alison Deyett
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Clara Schmidt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Mirjam Penc
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Katherina Tavernini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Nastasja Grdseloff
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Christy Meledeth
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Lavinia Ceci Ginistrelli
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Claudia Ctortecka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Šejla Šalic
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Pathology (IMP), Vienna Biocenter 1, 1030 Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
37
|
Sun X, Malandraki-Miller S, Kennedy T, Bassat E, Klaourakis K, Zhao J, Gamen E, Vieira JM, Tzahor E, Riley PR. The extracellular matrix protein agrin is essential for epicardial epithelial-to-mesenchymal transition during heart development. Development 2021; 148:261801. [PMID: 33969874 PMCID: PMC8172119 DOI: 10.1242/dev.197525] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/03/2021] [Indexed: 12/15/2022]
Abstract
During heart development, epicardial cells residing within the outer layer undergo epithelial-mesenchymal transition (EMT) and migrate into the underlying myocardium to support organ growth and morphogenesis. Disruption of epicardial EMT results in embryonic lethality, yet its regulation is poorly understood. Here, we report epicardial EMT within the mesothelial layer of the mouse embryonic heart at ultra-high resolution using scanning electron microscopy combined with immunofluorescence analyses. We identified morphologically active EMT regions that associated with key components of the extracellular matrix, including the basement membrane-associated proteoglycan agrin. Deletion of agrin resulted in impaired EMT and compromised development of the epicardium, accompanied by downregulation of Wilms' tumor 1. Agrin enhanced EMT in human embryonic stem cell-derived epicardial-like cells by decreasing β-catenin and promoting pFAK localization at focal adhesions, and promoted the aggregation of dystroglycan within the Golgi apparatus in murine epicardial cells. Loss of agrin resulted in dispersal of dystroglycan in vivo, disrupting basement membrane integrity and impairing EMT. Our results provide new insights into the role of the extracellular matrix in heart development and implicate agrin as a crucial regulator of epicardial EMT.
Collapse
Affiliation(s)
- Xin Sun
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Sophia Malandraki-Miller
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Tahnee Kennedy
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Elad Bassat
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Konstantinos Klaourakis
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Jia Zhao
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Elisabetta Gamen
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Joaquim Miguel Vieira
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Paul R Riley
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
38
|
George RM, Firulli AB. Deletion of a Hand1 lncRNA-Containing Septum Transversum Enhancer Alters lncRNA Expression but Is Not Required for Hand1 Expression. J Cardiovasc Dev Dis 2021; 8:jcdd8050050. [PMID: 34064373 PMCID: PMC8147853 DOI: 10.3390/jcdd8050050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 01/18/2023] Open
Abstract
We have previously identified a Hand1 transcriptional enhancer that drives expression within the septum transversum, the origin of the cells that contribute to the epicardium. This enhancer directly overlaps a common exon of a predicted family of long non-coding RNAs (lncRNA) that are specific to mice. To interrogate the necessity of this Hand1 enhancer, as well as the importance of these novel lncRNAs, we deleted the enhancer sequences, including the common exon shared by these lncRNAs, using genome editing. Resultant homozygous Hand1 enhancer mutants (Hand1ΔST/ΔST) present with no observable phenotype. Assessment of lncRNA expression reveals that Hand1ΔST/ΔST mutants effectively eliminate detectable lncRNA expression. Expression analysis within Hand1ΔST/ΔST mutant hearts indicates higher levels of Hand1 than in controls. The generation of Hand1 compound heterozygous mutants with the Hand1LacZ null allele (Hand1ΔST/LacZ) also did not reveal any observable phenotypes. Together these data indicate that deletion of this Hand1 enhancer and by consequence a family of murine-specific lncRNAs does not impact embryonic development in observable ways.
Collapse
|
39
|
Yuan P, Cheedipudi SM, Rouhi L, Fan S, Simon L, Zhao Z, Hong K, Gurha P, Marian AJ. Single-Cell RNA Sequencing Uncovers Paracrine Functions of the Epicardial-Derived Cells in Arrhythmogenic Cardiomyopathy. Circulation 2021; 143:2169-2187. [PMID: 33726497 DOI: 10.1161/circulationaha.120.052928] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) manifests with sudden death, arrhythmias, heart failure, apoptosis, and myocardial fibro-adipogenesis. The phenotype typically starts at the epicardium and advances transmurally. Mutations in genes encoding desmosome proteins, including DSP (desmoplakin), are major causes of ACM. METHODS To delineate contributions of the epicardium to the pathogenesis of ACM, the Dsp allele was conditionally deleted in the epicardial cells in mice upon expression of tamoxifen-inducible Cre from the Wt1 locus. Wild type (WT) and Wt1-CreERT2:DspW/F were crossed to Rosa26mT/mG (R26mT/mG) dual reporter mice to tag the epicardial-derived cells with the EGFP (enhanced green fluorescent protein) reporter protein. Tagged epicardial-derived cells from adult Wt1-CreERT2:R26mT/mG and Wt1-CreERT2: R26mT/mG:DspW/F mouse hearts were isolated by fluorescence-activated cell staining and sequenced by single-cell RNA sequencing. RESULTS WT1 (Wilms tumor 1) expression was progressively restricted postnatally and was exclusive to the epicardium by postnatal day 21. Expression of Dsp was reduced in the epicardial cells but not in cardiac myocytes in the Wt1-CreERT2:DspW/F mice. The Wt1-CreERT2:DspW/F mice exhibited premature death, cardiac dysfunction, arrhythmias, myocardial fibro-adipogenesis, and apoptosis. Single-cell RNA sequencing of ≈18 000 EGFP-tagged epicardial-derived cells identified genotype-independent clusters of endothelial cells, fibroblasts, epithelial cells, and a very small cluster of cardiac myocytes, which were confirmed on coimmunofluorescence staining of the myocardial sections. Differentially expressed genes between the paired clusters in the 2 genotypes predicted activation of the inflammatory and mitotic pathways-including the TGFβ1 (transforming growth factor β1) and fibroblast growth factors-in the epicardial-derived fibroblast and epithelial clusters, but predicted their suppression in the endothelial cell cluster. The findings were corroborated by analysis of gene expression in the pooled RNA-sequencing data, which identified predominant dysregulation of genes involved in epithelial-mesenchymal transition, and dysregulation of 146 genes encoding the secreted proteins (secretome), including genes in the TGFβ1 pathway. Activation of the TGFβ1 and its colocalization with fibrosis in the Wt1-CreERT2:R26mT/mG:DspW/F mouse heart was validated by complementary methods. CONCLUSIONS Epicardial-derived cardiac fibroblasts and epithelial cells express paracrine factors, including TGFβ1 and fibroblast growth factors, which mediate epithelial-mesenchymal transition, and contribute to the pathogenesis of myocardial fibrosis, apoptosis, arrhythmias, and cardiac dysfunction in a mouse model of ACM. The findings uncover contributions of the epicardial-derived cells to the pathogenesis of ACM.
Collapse
Affiliation(s)
- Ping Yuan
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine (P.Y., S.M.C., L.R., S.F., P.G., A.J.M.).,Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, China (P.Y., K.H.)
| | - Sirisha M Cheedipudi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine (P.Y., S.M.C., L.R., S.F., P.G., A.J.M.)
| | - Leila Rouhi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine (P.Y., S.M.C., L.R., S.F., P.G., A.J.M.)
| | - Siyang Fan
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine (P.Y., S.M.C., L.R., S.F., P.G., A.J.M.)
| | - Lukas Simon
- Center for Precision Health, School of Biomedical Informatics and School of Public Health, University of Texas Health Science Center at Houston (L.S., Z.Z.)
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics and School of Public Health, University of Texas Health Science Center at Houston (L.S., Z.Z.)
| | - Kui Hong
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, China (P.Y., K.H.)
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine (P.Y., S.M.C., L.R., S.F., P.G., A.J.M.)
| | - Ali J Marian
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine (P.Y., S.M.C., L.R., S.F., P.G., A.J.M.)
| |
Collapse
|
40
|
Tyser RCV, Ibarra-Soria X, McDole K, Arcot Jayaram S, Godwin J, van den Brand TAH, Miranda AMA, Scialdone A, Keller PJ, Marioni JC, Srinivas S. Characterization of a common progenitor pool of the epicardium and myocardium. Science 2021; 371:eabb2986. [PMID: 33414188 PMCID: PMC7615359 DOI: 10.1126/science.abb2986] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
The mammalian heart is derived from multiple cell lineages; however, our understanding of when and how the diverse cardiac cell types arise is limited. We mapped the origin of the embryonic mouse heart at single-cell resolution using a combination of transcriptomic, imaging, and genetic lineage labeling approaches. This mapping provided a transcriptional and anatomic definition of cardiac progenitor types. Furthermore, it revealed a cardiac progenitor pool that is anatomically and transcriptionally distinct from currently known cardiac progenitors. Besides contributing to cardiomyocytes, these cells also represent the earliest progenitor of the epicardium, a source of trophic factors and cells during cardiac development and injury. This study provides detailed insights into the formation of early cardiac cell types, with particular relevance to the development of cell-based cardiac regenerative therapies.
Collapse
Affiliation(s)
- Richard C V Tyser
- Department of Physiology, Anatomy and Genetics, South Parks Road, University of Oxford, Oxford OX1 3QX, UK
| | - Ximena Ibarra-Soria
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Katie McDole
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Satish Arcot Jayaram
- Department of Physiology, Anatomy and Genetics, South Parks Road, University of Oxford, Oxford OX1 3QX, UK
| | - Jonathan Godwin
- Department of Physiology, Anatomy and Genetics, South Parks Road, University of Oxford, Oxford OX1 3QX, UK
| | - Teun A H van den Brand
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Antonio M A Miranda
- Department of Physiology, Anatomy and Genetics, South Parks Road, University of Oxford, Oxford OX1 3QX, UK
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, D-81377 München, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Philipp J Keller
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge CB10 1SD, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, South Parks Road, University of Oxford, Oxford OX1 3QX, UK.
| |
Collapse
|
41
|
Cahill TJ, Sun X, Ravaud C, Villa Del Campo C, Klaourakis K, Lupu IE, Lord AM, Browne C, Jacobsen SEW, Greaves DR, Jackson DG, Cowley SA, James W, Choudhury RP, Vieira JM, Riley PR. Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart. Development 2021; 148:dev194563. [PMID: 33462113 PMCID: PMC7875498 DOI: 10.1242/dev.194563] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/26/2020] [Indexed: 12/31/2022]
Abstract
Macrophages are components of the innate immune system with key roles in tissue inflammation and repair. It is now evident that macrophages also support organogenesis, but few studies have characterized their identity, ontogeny and function during heart development. Here, we show that the distribution and prevalence of resident macrophages in the subepicardial compartment of the developing heart coincides with the emergence of new lymphatics, and that macrophages interact closely with the nascent lymphatic capillaries. Consequently, global macrophage deficiency led to extensive vessel disruption, with mutant hearts exhibiting shortened and mis-patterned lymphatics. The origin of cardiac macrophages was linked to the yolk sac and foetal liver. Moreover, the Cx3cr1+ myeloid lineage was found to play essential functions in the remodelling of the lymphatic endothelium. Mechanistically, macrophage hyaluronan was required for lymphatic sprouting by mediating direct macrophage-lymphatic endothelial cell interactions. Together, these findings reveal insight into the role of macrophages as indispensable mediators of lymphatic growth during the development of the mammalian cardiac vasculature.
Collapse
Affiliation(s)
- Thomas J Cahill
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Xin Sun
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Christophe Ravaud
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Cristina Villa Del Campo
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Konstantinos Klaourakis
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Irina-Elena Lupu
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Allegra M Lord
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-14186, Sweden
| | - Cathy Browne
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Sten Eirik W Jacobsen
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-14186, Sweden
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David G Jackson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Sally A Cowley
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - William James
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Joaquim Miguel Vieira
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Paul R Riley
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
42
|
Sayers JR, Riley PR. Heart regeneration: beyond new muscle and vessels. Cardiovasc Res 2020; 117:727-742. [PMID: 33241843 DOI: 10.1093/cvr/cvaa320] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
The most striking consequence of a heart attack is the loss of billions of heart muscle cells, alongside damage to the associated vasculature. The lost cardiovascular tissue is replaced by scar formation, which is non-functional and results in pathological remodelling of the heart and ultimately heart failure. It is, therefore, unsurprising that the heart regeneration field has centred efforts to generate new muscle and blood vessels through targeting cardiomyocyte proliferation and angiogenesis following injury. However, combined insights from embryological studies and regenerative models, alongside the adoption of -omics technology, highlight the extensive heterogeneity of cell types within the forming or re-forming heart and the significant crosstalk arising from non-muscle and non-vessel cells. In this review, we focus on the roles of fibroblasts, immune, conduction system, and nervous system cell populations during heart development and we consider the latest evidence supporting a function for these diverse lineages in contributing to regeneration following heart injury. We suggest that the emerging picture of neurologically, immunologically, and electrically coupled cell function calls for a wider-ranging combinatorial approach to heart regeneration.
Collapse
Affiliation(s)
- Judy R Sayers
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Oxbridge Centre of Regenerative Medicine, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Oxbridge Centre of Regenerative Medicine, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
43
|
Owenier C, Hesse J, Alter C, Ding Z, Marzoq A, Petzsch P, Köhrer K, Schrader J. Novel technique for the simultaneous isolation of cardiac fibroblasts and epicardial stromal cells from the infarcted murine heart. Cardiovasc Res 2020; 116:1047-1058. [PMID: 31504244 DOI: 10.1093/cvr/cvz193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/03/2019] [Accepted: 08/15/2019] [Indexed: 01/07/2023] Open
Abstract
AIMS Myocardial infarction (MI) leads to activation of cardiac fibroblasts (aCFs) and at the same time induces the formation of epicardium-derived cells at the heart surface. To discriminate between the two cell populations, we elaborated a fast and efficient protocol for the simultaneous isolation and characterization of aCFs and epicardial stromal cells (EpiSCs) from the infarcted mouse heart. METHODS AND RESULTS For the isolation of aCFs and EpiSCs, infarcted hearts (50 min ischaemia/reperfusion) were digested by perfusion with a collagenase-containing medium for only 8 min, while EpiSCs were enzymatically removed from the outside by applying mild shear forces via a motor driven device. Cardiac fibroblasts (CFs) isolated from unstressed hearts served as control. Viability of isolated cells was >90%. Purity of EpiSCs was confirmed by immunofluorescence staining and qPCR of various mesenchymal markers including Wilms-tumor-protein-1. Microarray analysis of CFs, aCFs, and EpiSCs on day 5 post-MI revealed a unique gene expression pattern in the EpiSC fraction, which was enriched for epithelial markers and epithelial to mesenchymal transition-related genes. Compared to aCFs, 336 significantly altered gene entities were identified in the EpiSC fraction. qPCR analysis showed high expression of Serpinb2, Cxcl13, Adora2b, and Il10 in EpiSCs relative to CFs and aCFs. Furthermore, microarray data identified Ddah1 and Cemip to be highly up-regulated in aCFs compared to CFs. Immunostaining of the infarcted heart revealed a unique distribution of Dermokine, Aquaporin-1, Cytokeratin, Lipocalin2, and Periostin within the epicardial cell layer. CONCLUSIONS We describe the simultaneous isolation of viable, purified fractions of aCFs and EpiSCs from the infarcted mouse heart. In this study, several differentially expressed markers for aCFs and EpiSCs were identified, underlining the importance of cell separation to study heterogeneity of stromal cells in the healing process after MI.
Collapse
Affiliation(s)
- Christoph Owenier
- Institut für Molekulare Kardiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Julia Hesse
- Institut für Molekulare Kardiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Christina Alter
- Institut für Molekulare Kardiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Zhaoping Ding
- Institut für Molekulare Kardiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Aseel Marzoq
- Institut für Molekulare Kardiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Patrick Petzsch
- Biologisch-Medizinisches-Forschungszentrum (BMFZ), Genomics & Transcriptomics Labor, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225, Germany
| | - Karl Köhrer
- Biologisch-Medizinisches-Forschungszentrum (BMFZ), Genomics & Transcriptomics Labor, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225, Germany
| | - Jürgen Schrader
- Institut für Molekulare Kardiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
44
|
Protze SI, Lee JH, Keller GM. Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell 2020; 25:311-327. [PMID: 31491395 DOI: 10.1016/j.stem.2019.07.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in our understanding of cardiovascular development have provided a roadmap for the directed differentiation of human pluripotent stem cells (hPSCs) to the major cell types found in the heart. In this Perspective, we review the state of the field in generating and maturing cardiovascular cells from hPSCs based on our fundamental understanding of heart development. We then highlight their applications for studying human heart development, modeling disease-performing drug screening, and cell replacement therapy. With the advancements highlighted here, the promise that hPSCs will deliver new treatments for degenerative and debilitating diseases may soon be fulfilled.
Collapse
Affiliation(s)
- Stephanie I Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jee Hoon Lee
- BlueRock Therapeutics ULC, Toronto, ON M5G 1L7, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
45
|
Han L, Chaturvedi P, Kishimoto K, Koike H, Nasr T, Iwasawa K, Giesbrecht K, Witcher PC, Eicher A, Haines L, Lee Y, Shannon JM, Morimoto M, Wells JM, Takebe T, Zorn AM. Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis. Nat Commun 2020; 11:4158. [PMID: 32855417 PMCID: PMC7453027 DOI: 10.1038/s41467-020-17968-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Visceral organs, such as the lungs, stomach and liver, are derived from the fetal foregut through a series of inductive interactions between the definitive endoderm (DE) and the surrounding splanchnic mesoderm (SM). While DE patterning is fairly well studied, the paracrine signaling controlling SM regionalization and how this is coordinated with epithelial identity is obscure. Here, we use single cell transcriptomics to generate a high-resolution cell state map of the embryonic mouse foregut. This identifies a diversity of SM cell types that develop in close register with the organ-specific epithelium. We infer a spatiotemporal signaling network of endoderm-mesoderm interactions that orchestrate foregut organogenesis. We validate key predictions with mouse genetics, showing the importance of endoderm-derived signals in mesoderm patterning. Finally, leveraging these signaling interactions, we generate different SM subtypes from human pluripotent stem cells (hPSCs), which previously have been elusive. The single cell data can be explored at: https://research.cchmc.org/ZornLab-singlecell. The fetal murine foregut develops into visceral organs via interactions between the mesoderm and endoderm, but how is unclear. Here, the authors use single cell RNAseq to show a diversity in organ specific splanchnic mesoderm cell-types, infer a signalling network governing organogenesis and use this to differentiate human pluripotent stem cells.
Collapse
Affiliation(s)
- Lu Han
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Praneet Chaturvedi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Keishi Kishimoto
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA.,Laboratory for Lung Development, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan.,CuSTOM-RIKEN BDR Collaborative Laboratory, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Hiroyuki Koike
- CuSTOM, Division of Gastroenterology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Talia Nasr
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Kentaro Iwasawa
- CuSTOM, Division of Gastroenterology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Kirsten Giesbrecht
- CuSTOM, Division of Gastroenterology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Phillip C Witcher
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Alexandra Eicher
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Lauren Haines
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Yarim Lee
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Mitsuru Morimoto
- Laboratory for Lung Development, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan.,CuSTOM-RIKEN BDR Collaborative Laboratory, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - James M Wells
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Takanori Takebe
- CuSTOM, Division of Gastroenterology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA. .,CuSTOM-RIKEN BDR Collaborative Laboratory, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
46
|
Sanz-Morejón A, García-Redondo AB, Reuter H, Marques IJ, Bates T, Galardi-Castilla M, Große A, Manig S, Langa X, Ernst A, Piragyte I, Botos MA, González-Rosa JM, Ruiz-Ortega M, Briones AM, Salaices M, Englert C, Mercader N. Wilms Tumor 1b Expression Defines a Pro-regenerative Macrophage Subtype and Is Required for Organ Regeneration in the Zebrafish. Cell Rep 2020; 28:1296-1306.e6. [PMID: 31365871 PMCID: PMC6685527 DOI: 10.1016/j.celrep.2019.06.091] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/25/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Organ regeneration is preceded by the recruitment of innate immune cells, which play an active role during repair and regrowth. Here, we studied macrophage subtypes during organ regeneration in the zebrafish, an animal model with a high regenerative capacity. We identified a macrophage subpopulation expressing Wilms tumor 1b (wt1b), which accumulates within regenerating tissues. This wt1b+ macrophage population exhibited an overall pro-regenerative gene expression profile and different migratory behavior compared to the remainder of the macrophages. Functional studies showed that wt1b regulates macrophage migration and retention at the injury area. Furthermore, wt1b-null mutant zebrafish presented signs of impaired macrophage differentiation, delayed fin growth upon caudal fin amputation, and reduced cardiomyocyte proliferation following cardiac injury that correlated with altered macrophage recruitment to the regenerating areas. We describe a pro-regenerative macrophage subtype in the zebrafish and a role for wt1b in organ regeneration. Wt1b+ macrophages reveal a pro-regenerative gene expression prolife Wt1b controls migration behavior of macrophages during fin and heart regeneration Wt1b regulates differentiation of macrophages in the kidney marrow wt1b mutants reveal impaired fin and heart regeneration
Collapse
Affiliation(s)
- Andrés Sanz-Morejón
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Ana B García-Redondo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Department of Pharmacology, Universidad Autónoma de Madrid, IIS-Hospital La Paz, Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Hanna Reuter
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Inês J Marques
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Thomas Bates
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | | | - Andreas Große
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Steffi Manig
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Xavier Langa
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Alexander Ernst
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Indre Piragyte
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | | | | | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, 28040 Madrid, Spain
| | - Ana M Briones
- Department of Pharmacology, Universidad Autónoma de Madrid, IIS-Hospital La Paz, Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Mercedes Salaices
- Department of Pharmacology, Universidad Autónoma de Madrid, IIS-Hospital La Paz, Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Christoph Englert
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany; Institute of Biochemistry and Biophysics, Friedrich-Schiller-Universität, 07743 Jena, Germany
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
47
|
Wittig JG, Münsterberg A. The Chicken as a Model Organism to Study Heart Development. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037218. [PMID: 31767650 DOI: 10.1101/cshperspect.a037218] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart development is a complex process and begins with the long-range migration of cardiac progenitor cells during gastrulation. This culminates in the formation of a simple contractile tube with multiple layers, which undergoes remodeling into a four-chambered heart. During this morphogenesis, additional cell populations become incorporated. It is important to unravel the underlying genetic and cellular mechanisms to be able to identify the embryonic origin of diseases, including congenital malformations, which impair cardiac function and may affect life expectancy or quality. Owing to the evolutionary conservation of development, observations made in nonamniote and amniote vertebrate species allow us to extrapolate to human. This review will focus on the contributions made to a better understanding of heart development through studying avian embryos-mainly the chicken but also quail embryos. We will illustrate the classic and recent approaches used in the avian system, give an overview of the important discoveries made, and summarize the early stages of cardiac development up to the establishment of the four-chambered heart.
Collapse
Affiliation(s)
- Johannes G Wittig
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
48
|
Andrés-Delgado L, Galardi-Castilla M, Mercader N, Santamaría L. Analysis of wt1a reporter line expression levels during proepicardium formation in the zebrafish. Histol Histopathol 2020; 35:1035-1046. [PMID: 32633330 DOI: 10.14670/hh-18-238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The epicardium is the outer mesothelial layer of the heart. It covers the myocardium and plays important roles in both heart development and regeneration. It is derived from the proepicardium (PE), groups of cells that emerges at early developmental stages from the dorsal pericardial layer (DP) close to the atrio-ventricular canal and the venous pole of the heart-tube. In zebrafish, PE cells extrude apically into the pericardial cavity as a consequence of DP tissue constriction, a process that is dependent on Bmp pathway signaling. Expression of the transcription factor Wilms tumor-1, Wt1, which is a leader of important morphogenetic events such as apoptosis regulation or epithelial-mesenchymal cell transition, is also necessary during PE formation. In this study, we used the zebrafish model to compare intensity level of the wt1a reporter line epi:GFP in PE and its original tissue, the DP. We found that GFP is present at higher intensity level in the PE tissue, and differentially wt1 expression at pericardial tissues could be involved in the PE formation process. Our results reveal that bmp2b overexpression leads to enhanced GFP level both in DP and in PE tissues.
Collapse
Affiliation(s)
- Laura Andrés-Delgado
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Madrid, Spain. .,Development of the Epicardium and its Role During Regeneration Laboratory, Nacional Center of Cardiovascular Research Carlos III, Madrid, Spain
| | - María Galardi-Castilla
- Development of the Epicardium and its Role During Regeneration Laboratory, Nacional Center of Cardiovascular Research Carlos III, Madrid, Spain
| | - Nadia Mercader
- Development of the Epicardium and its Role During Regeneration Laboratory, Nacional Center of Cardiovascular Research Carlos III, Madrid, Spain.,Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Luis Santamaría
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Madrid, Spain
| |
Collapse
|
49
|
Abstract
Cardiac fibroblasts and fibrosis contribute to the pathogenesis of heart failure, a prevalent cause of mortality. Therefore, a majority of the existing information regarding cardiac fibroblasts is focused on their function and behavior after heart injury. Less is understood about the signaling and transcriptional networks required for the development and homeostatic roles of these cells. This review is devoted to describing our current understanding of cardiac fibroblast development. I detail cardiac fibroblast formation during embryogenesis including the discovery of a second embryonic origin for cardiac fibroblasts. Additional information is provided regarding the roles of the genes essential for cardiac fibroblast development. It should be noted that many questions remain regarding the cell-fate specification of these fibroblast progenitors, and it is hoped that this review will provide a basis for future studies regarding this topic.
Collapse
|
50
|
Balbi C, Costa A, Barile L, Bollini S. Message in a Bottle: Upgrading Cardiac Repair into Rejuvenation. Cells 2020; 9:cells9030724. [PMID: 32183455 PMCID: PMC7140681 DOI: 10.3390/cells9030724] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ischaemic cardiac disease is associated with a loss of cardiomyocytes and an intrinsic lack of myocardial renewal. Recent work has shown that the heart retains limited cardiomyocyte proliferation, which remains inefficient when facing pathological conditions. While broadly active in the neonatal mammalian heart, this mechanism becomes quiescent soon after birth, suggesting loss of regenerative potential with maturation into adulthood. A key question is whether this temporary regenerative window can be enhanced via appropriate stimulation and further extended. Recently the search for novel therapeutic approaches for heart disease has centred on stem cell biology. The “paracrine effect” has been proposed as a promising strategy to boost endogenous reparative and regenerative mechanisms from within the cardiac tissue by exploiting the modulatory potential of soluble stem cell-secreted factors. As such, growing interest has been specifically addressed towards stem/progenitor cell-secreted extracellular vesicles (EVs), which can be easily isolated in vitro from cell-conditioned medium. This review will provide a comprehensive overview of the current paradigm on cardiac repair and regeneration, with a specific focus on the role and mechanism(s) of paracrine action of EVs from cardiac stromal progenitors as compared to exogenous stem cells in order to discuss the optimal choice for future therapy. In addition, the challenges to overcoming translational EV biology from bench to bedside for future cardiac regenerative medicine will be discussed.
Collapse
Affiliation(s)
- Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland;
| | - Ambra Costa
- Regenerative Medicine Laboratory, Dept. of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Correspondence: (L.B.); (S.B.)
| | - Sveva Bollini
- Regenerative Medicine Laboratory, Dept. of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
- Correspondence: (L.B.); (S.B.)
| |
Collapse
|