1
|
Fujimori H, Shima‐Nakamura M, Kanno S, Shibuya‐Takahashi R, Mochizuki M, Mizuma M, Unno M, Wakui Y, Abue M, Iwai W, Fukushi D, Satoh K, Yamaguchi K, Shindo N, Yasuda J, Tamai K. FAXC interacts with ANXA2 and SRC in mitochondria and promotes tumorigenesis in cholangiocarcinoma. Cancer Sci 2024; 115:1896-1909. [PMID: 38480477 PMCID: PMC11145136 DOI: 10.1111/cas.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 06/04/2024] Open
Abstract
Cholangiocarcinoma (CCA) is one of the most difficult malignancies to treat as the therapeutic options are limited. Although several driver genes have been identified, most remain unknown. In this study, we identified a failed axon connection homolog (FAXC), whose function is unknown in mammals, by analyzing serially passaged CCA xenograft models. Knockdown of FAXC reduced subcutaneous tumorigenicity in mice. FAXC was bound to annexin A2 (ANXA2) and c-SRC, which are tumor-promoting genes. The FAXC/ANXA2/c-SRC complex forms in the mitochondria. FAXC enhances SRC-dependent ANXA2 phosphorylation at tyrosine-24, and the C-terminal amino acid residues (351-375) of FAXC are required for ANXA2 phosphorylation. Transcriptome data from a xenografted CCA cell line revealed that FAXC correlated with epithelial-mesenchymal transition, hypoxia, and KRAS signaling genes. Collectively, these findings advance our understanding of CCA tumorigenesis and provide candidate therapeutic targets.
Collapse
Affiliation(s)
- Haruna Fujimori
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Mao Shima‐Nakamura
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Shin‐Ichiro Kanno
- IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | | | - Mai Mochizuki
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Masamichi Mizuma
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Michiaki Unno
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Yuta Wakui
- Department of GastroenterologyMiyagi Cancer CenterNatoriJapan
| | - Makoto Abue
- Department of GastroenterologyMiyagi Cancer CenterNatoriJapan
| | - Wataru Iwai
- Department of GastroenterologyMiyagi Cancer CenterNatoriJapan
| | - Daisuke Fukushi
- Division of GastroenterologyTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Kennich Satoh
- Division of GastroenterologyTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Norihisa Shindo
- Cancer Chromosome Biology UnitMiyagi Cancer Center Research InstituteNatoriJapan
| | - Jun Yasuda
- Division of Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Keiichi Tamai
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| |
Collapse
|
2
|
Sun Z, Nystul TG, Zhong G. Single-cell RNA sequencing identifies eggplant as a regulator of germ cell development in Drosophila. EMBO Rep 2023; 24:e56475. [PMID: 37603128 PMCID: PMC10561367 DOI: 10.15252/embr.202256475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Drosophila ovarian germline stem cells (GSCs) are a powerful model for stem cell research. In this study, we use single-cell RNA sequencing (scRNA-seq), an RNAi screen and bioinformatic analysis, to identify genes involved in germ cell differentiation, including 34 genes with upregulated expression during early germ cell development and 19 genes that may regulate germ cell differentiation. Among these, a gene we have named eggplant (eggpl) is highly expressed in GSCs and downregulated in early daughter cells. RNAi knockdown of eggpl causes germ cell proliferation and differentiation defects. In flies fed a rich yeast diet, the expression of eggpl is significantly lower and knockdown or knockout of eggpl phenocopies a rich diet. In addition, eggpl knockdown suppresses the reduction in germ cell proliferation caused by inhibition of the insulin effector PI3K. These findings suggest that downregulation of eggpl links nutritional status to germ cell proliferation and differentiation. Collectively, this study provides new insights into the signaling networks that regulate early germ cell development and identifies eggpl as a key player in this process.
Collapse
Affiliation(s)
- Zhipeng Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of EducationSouth China Agricultural UniversityGuangzhouChina
| | | | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of EducationSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
3
|
Cabrita B, Martinho RG. Genetic and Epigenetic Regulation of Drosophila Oocyte Determination. J Dev Biol 2023; 11:21. [PMID: 37367475 DOI: 10.3390/jdb11020021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023] Open
Abstract
Primary oocyte determination occurs in many organisms within a germ line cyst, a multicellular structure composed of interconnected germ cells. However, the structure of the cyst is itself highly diverse, which raises intriguing questions about the benefits of this stereotypical multicellular environment for female gametogenesis. Drosophila melanogaster is a well-studied model for female gametogenesis, and numerous genes and pathways critical for the determination and differentiation of a viable female gamete have been identified. This review provides an up-to-date overview of Drosophila oocyte determination, with a particular emphasis on the mechanisms that regulate germ line gene expression.
Collapse
Affiliation(s)
- Brigite Cabrita
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Rui Gonçalo Martinho
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Chen TA, Lin KY, Yang SM, Tseng CY, Wang YT, Lin CH, Luo L, Cai Y, Hsu HJ. Canonical Wnt Signaling Promotes Formation of Somatic Permeability Barrier for Proper Germ Cell Differentiation. Front Cell Dev Biol 2022; 10:877047. [PMID: 35517512 PMCID: PMC9062081 DOI: 10.3389/fcell.2022.877047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
Morphogen-mediated signaling is critical for proper organ development and stem cell function, and well-characterized mechanisms spatiotemporally limit the expression of ligands, receptors, and ligand-binding cell-surface glypicans. Here, we show that in the developing Drosophila ovary, canonical Wnt signaling promotes the formation of somatic escort cells (ECs) and their protrusions, which establish a physical permeability barrier to define morphogen territories for proper germ cell differentiation. The protrusions shield germ cells from Dpp and Wingless morphogens produced by the germline stem cell (GSC) niche and normally only received by GSCs. Genetic disruption of EC protrusions allows GSC progeny to also receive Dpp and Wingless, which subsequently disrupt germ cell differentiation. Our results reveal a role for canonical Wnt signaling in specifying the ovarian somatic cells necessary for germ cell differentiation. Additionally, we demonstrate the morphogen-limiting function of this physical permeability barrier, which may be a common mechanism in other organs across species.
Collapse
Affiliation(s)
- Ting-An Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Kun-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shun-Min Yang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Chen-Yuan Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Lichao Luo
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
| | - Yu Cai
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Hwei-Jan Hsu,
| |
Collapse
|
5
|
Mendoza-Garcia P, Basu S, Sukumar SK, Arefin B, Wolfstetter G, Anthonydhason V, Molander L, Uçkun E, Lindehell H, Lebrero-Fernandez C, Larsson J, Larsson E, Bemark M, Palmer RH. DamID transcriptional profiling identifies the Snail/Scratch transcription factor Kahuli as an Alk target in the Drosophila visceral mesoderm. Development 2021; 148:dev199465. [PMID: 34905617 PMCID: PMC8722224 DOI: 10.1242/dev.199465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
Development of the Drosophila visceral muscle depends on Anaplastic Lymphoma Kinase (Alk) receptor tyrosine kinase (RTK) signaling, which specifies founder cells (FCs) in the circular visceral mesoderm (VM). Although Alk activation by its ligand Jelly Belly (Jeb) is well characterized, few target molecules have been identified. Here, we used targeted DamID (TaDa) to identify Alk targets in embryos overexpressing Jeb versus embryos with abrogated Alk activity, revealing differentially expressed genes, including the Snail/Scratch family transcription factor Kahuli (Kah). We confirmed Kah mRNA and protein expression in the VM, and identified midgut constriction defects in Kah mutants similar to those of pointed (pnt). ChIP and RNA-Seq data analysis defined a Kah target-binding site similar to that of Snail, and identified a set of common target genes putatively regulated by Kah and Pnt during midgut constriction. Taken together, we report a rich dataset of Alk-responsive loci in the embryonic VM and functionally characterize the role of Kah in the regulation of embryonic midgut morphogenesis.
Collapse
Affiliation(s)
- Patricia Mendoza-Garcia
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Swaraj Basu
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Sanjay Kumar Sukumar
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Georg Wolfstetter
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Vimala Anthonydhason
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Linnea Molander
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Ezgi Uçkun
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Henrik Lindehell
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Cristina Lebrero-Fernandez
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Jan Larsson
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Region Västra Götaland, SE-41346 Gothenburg, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
6
|
Millington JW, Brownrigg GP, Chao C, Sun Z, Basner-Collins PJ, Wat LW, Hudry B, Miguel-Aliaga I, Rideout EJ. Female-biased upregulation of insulin pathway activity mediates the sex difference in Drosophila body size plasticity. eLife 2021; 10:e58341. [PMID: 33448263 PMCID: PMC7864645 DOI: 10.7554/elife.58341] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Nutrient-dependent body size plasticity differs between the sexes in most species, including mammals. Previous work in Drosophila showed that body size plasticity was higher in females, yet the mechanisms underlying increased female body size plasticity remain unclear. Here, we discover that a protein-rich diet augments body size in females and not males because of a female-biased increase in activity of the conserved insulin/insulin-like growth factor signaling pathway (IIS). This sex-biased upregulation of IIS activity was triggered by a diet-induced increase in stunted mRNA in females, and required Drosophila insulin-like peptide 2, illuminating new sex-specific roles for these genes. Importantly, we show that sex determination gene transformer promotes the diet-induced increase in stunted mRNA via transcriptional coactivator Spargel to regulate the male-female difference in body size plasticity. Together, these findings provide vital insight into conserved mechanisms underlying the sex difference in nutrient-dependent body size plasticity.
Collapse
Affiliation(s)
- Jason W Millington
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - George P Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Charlotte Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Ziwei Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Paige J Basner-Collins
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Lianna W Wat
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Bruno Hudry
- MRC London Institute of Medical Sciences, and Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, and Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| |
Collapse
|
7
|
A single-cell atlas and lineage analysis of the adult Drosophila ovary. Nat Commun 2020; 11:5628. [PMID: 33159074 PMCID: PMC7648648 DOI: 10.1038/s41467-020-19361-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/08/2020] [Indexed: 01/05/2023] Open
Abstract
The Drosophila ovary is a widely used model for germ cell and somatic tissue biology. Here we use single-cell RNA-sequencing (scRNA-seq) to build a comprehensive cell atlas of the adult Drosophila ovary that contains transcriptional profiles for every major cell type in the ovary, including the germline stem cells and their niche cells, follicle stem cells, and previously undescribed subpopulations of escort cells. In addition, we identify Gal4 lines with specific expression patterns and perform lineage tracing of subpopulations of escort cells and follicle cells. We discover that a distinct subpopulation of escort cells is able to convert to follicle stem cells in response to starvation or upon genetic manipulation, including knockdown of escargot, or overactivation of mTor or Toll signalling.
Collapse
|
8
|
Ahmed SMH, Maldera JA, Krunic D, Paiva-Silva GO, Pénalva C, Teleman AA, Edgar BA. Fitness trade-offs incurred by ovary-to-gut steroid signalling in Drosophila. Nature 2020; 584:415-419. [PMID: 32641829 PMCID: PMC7442704 DOI: 10.1038/s41586-020-2462-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/15/2020] [Indexed: 01/05/2023]
Abstract
Sexual dimorphism arises from genetic differences between male and female cells, and from systemic hormonal differences1-3. How sex hormones affect non-reproductive organs is poorly understood, yet highly relevant to health given the sex-biased incidence of many diseases4. Here we report that steroid signalling in Drosophila from the ovaries to the gut promotes growth of the intestine specifically in mated females, and enhances their reproductive output. The active ovaries of the fly produce the steroid hormone ecdysone, which stimulates the division and expansion of intestinal stem cells in two distinct proliferative phases via the steroid receptors EcR and Usp and their downstream targets Broad, Eip75B and Hr3. Although ecdysone-dependent growth of the female gut augments fecundity, the more active and more numerous intestinal stem cells also increase female susceptibility to age-dependent gut dysplasia and tumorigenesis, thus potentially reducing lifespan. This work highlights the trade-offs in fitness traits that occur when inter-organ signalling alters stem-cell behaviour to optimize organ size.
Collapse
Affiliation(s)
- Sara Mahmoud H Ahmed
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Julieta A Maldera
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Damir Krunic
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clothilde Pénalva
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Heidelberg University, Heidelberg, Germany.
| | - Bruce A Edgar
- German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany. .,Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Lin KY, Wang WD, Lin CH, Rastegari E, Su YH, Chang YT, Liao YF, Chang YC, Pi H, Yu BY, Chen SH, Lin CY, Lu MY, Su TY, Tzou FY, Chan CC, Hsu HJ. Piwi reduction in the aged niche eliminates germline stem cells via Toll-GSK3 signaling. Nat Commun 2020; 11:3147. [PMID: 32561720 PMCID: PMC7305233 DOI: 10.1038/s41467-020-16858-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
Transposons are known to participate in tissue aging, but their effects on aged stem cells remain unclear. Here, we report that in the Drosophila ovarian germline stem cell (GSC) niche, aging-related reductions in expression of Piwi (a transposon silencer) derepress retrotransposons and cause GSC loss. Suppression of Piwi expression in the young niche mimics the aged niche, causing retrotransposon depression and coincident activation of Toll-mediated signaling, which promotes Glycogen synthase kinase 3 activity to degrade β-catenin. Disruption of β-catenin-E-cadherin-mediated GSC anchorage then results in GSC loss. Knocking down gypsy (a highly active retrotransposon) or toll, or inhibiting reverse transcription in the piwi-deficient niche, suppresses GSK3 activity and β-catenin degradation, restoring GSC-niche attachment. This retrotransposon-mediated impairment of aged stem cell maintenance may have relevance in many tissues, and could represent a viable therapeutic target for aging-related tissue degeneration.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Der Wang
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, 60004, Taiwan
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Elham Rastegari
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Han Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Tzu Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chieh Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Haiwei Pi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Bo-Yi Yu
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsu-Yi Su
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Fei-Yang Tzou
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hwei-Jan Hsu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
10
|
Hinnant TD, Merkle JA, Ables ET. Coordinating Proliferation, Polarity, and Cell Fate in the Drosophila Female Germline. Front Cell Dev Biol 2020; 8:19. [PMID: 32117961 PMCID: PMC7010594 DOI: 10.3389/fcell.2020.00019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023] Open
Abstract
Gametes are highly specialized cell types produced by a complex differentiation process. Production of viable oocytes requires a series of precise and coordinated molecular events. Early in their development, germ cells are an interconnected group of mitotically dividing cells. Key regulatory events lead to the specification of mature oocytes and initiate a switch to the meiotic cell cycle program. Though the chromosomal events of meiosis have been extensively studied, it is unclear how other aspects of oocyte specification are temporally coordinated. The fruit fly, Drosophila melanogaster, has long been at the forefront as a model system for genetics and cell biology research. The adult Drosophila ovary continuously produces germ cells throughout the organism’s lifetime, and many of the cellular processes that occur to establish oocyte fate are conserved with mammalian gamete development. Here, we review recent discoveries from Drosophila that advance our understanding of how early germ cells balance mitotic exit with meiotic initiation. We discuss cell cycle control and establishment of cell polarity as major themes in oocyte specification. We also highlight a germline-specific organelle, the fusome, as integral to the coordination of cell division, cell polarity, and cell fate in ovarian germ cells. Finally, we discuss how the molecular controls of the cell cycle might be integrated with cell polarity and cell fate to maintain oocyte production.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
11
|
Zhang H, Cai Y. Signal transduction pathways regulating Drosophila ovarian germline stem cells. CURRENT OPINION IN INSECT SCIENCE 2020; 37:1-7. [PMID: 31726320 DOI: 10.1016/j.cois.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Drosophila female germline stem cells (GSCs) serve as one of the best understood stem cell types. GSCs reside in a special microenvironment, the stem cell niche, and their activity is tightly regulated by niche-derived signals. In addition to the stemness-promoting signaling molecules, the niche also generates other signaling molecules that regulate GSC differentiation. Recent studies are beginning to appreciate the intricate interactions among these signaling molecules in the niche and their effects on GSC behaviour. This review summarizes recent advances to demonstrate how the niche functions as a signaling hub to integrate these niche-derived local signals as well as other organ-produced systemic signals to control GSC self-renewal and differentiation.
Collapse
Affiliation(s)
- Heng Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore; Department of Biological Sciences, National University of Singapore, 117558, Singapore.
| |
Collapse
|
12
|
Lin KY, Hsu HJ. Regulation of adult female germline stem cells by nutrient-responsive signaling. CURRENT OPINION IN INSECT SCIENCE 2020; 37:16-22. [PMID: 32070932 DOI: 10.1016/j.cois.2019.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Insect oogenesis is greatly affected by nutrient availability. When nutrients are abundant, oocytes are rapidly generated, but the process is slowed to conserve energy under nutrient-deficient conditions. To properly allocate limited resources toward oogenesis, systemic factors coordinate the behavioral response of ovarian germline stem cells (GSCs) to nutritional inputs by acting on the GSC itself, GSC supporting cells (the niche), or the adipose tissue surrounding the ovary. In this review, we describe current knowledge of the Drosophila ovarian GSC-niche-adipocyte system and major nutrient sensing pathways (insulin/IGF signaling, TOR signaling, and GCN2-dependent amino acid sensing) that intrinsically or extrinsically regulate GSC responses to nutrient signals.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hwei-Jan Hsu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan; Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
13
|
Rastegari E, Kajal K, Tan BS, Huang F, Chen RH, Hsieh TS, Hsu HJ. WD40 protein Wuho controls germline homeostasis via TRIM-NHL tumor suppressor Mei-p26 in Drosophila. Development 2020; 147:147/2/dev182063. [PMID: 31941704 DOI: 10.1242/dev.182063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
Abstract
WD40 proteins control many cellular processes via protein interactions. Drosophila Wuho (Wh, a WD40 protein) controls fertility, although the involved mechanisms are unclear. Here, we show that Wh promotion of Mei-p26 (a human TRIM32 ortholog) function maintains ovarian germ cell homeostasis. Wh and Mei-p26 are epistatically linked, with wh and mei-p26 mutants showing nearly identical phenotypes, including germline stem cell (GSC) loss, stem-cyst formation due to incomplete cytokinesis between GSCs and daughter cells, and overproliferation of GSC progeny. Mechanistically, Wh interacts with Mei-p26 in different cellular contexts to induce cell type-specific effects. In GSCs, Wh and Mei-p26 promote BMP stemness signaling for proper GSC division and maintenance. In GSC progeny, Wh and Mei-p26 silence nanos translation, downregulate a subset of microRNAs involved in germ cell differentiation and suppress ribosomal biogenesis via dMyc to limit germ cell mitosis. We also found that the human ortholog of Wh (WDR4) interacts with TRIM32 in human cells. Our results show that Wh is a regulator of Mei-p26 in Drosophila germ cells and suggest that the WD40-TRIM interaction may also control tissue homeostasis in other stem cell systems.
Collapse
Affiliation(s)
- Elham Rastegari
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Institute of Cellular and Organismic Biology, Sinica, Taipei 11529, Taiwan, R.O.C
| | - Kreeti Kajal
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529, Taiwan, R.O.C.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Boon-Shing Tan
- Institute of Biological Chemistry, Sinica, Taipei 11529, Taiwan, R.O.C
| | - Fu Huang
- Institute of Biological Chemistry, Sinica, Taipei 11529, Taiwan, R.O.C
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Sinica, Taipei 11529, Taiwan, R.O.C
| | - Tao-Shieh Hsieh
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Institute of Cellular and Organismic Biology, Sinica, Taipei 11529, Taiwan, R.O.C
| | - Hwei-Jan Hsu
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, R.O.C .,Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Institute of Cellular and Organismic Biology, Sinica, Taipei 11529, Taiwan, R.O.C.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| |
Collapse
|
14
|
Mao Y, Tu R, Huang Y, Mao D, Yang Z, Lau PK, Wang J, Ni J, Guo Y, Xie T. The exocyst functions in niche cells to promote germline stem cell differentiation by directly controlling EGFR membrane trafficking. Development 2019; 146:dev.174615. [PMID: 31142545 DOI: 10.1242/dev.174615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
The niche controls stem cell self-renewal and differentiation in animal tissues. Although the exocyst is known to be important for protein membrane trafficking and secretion, its role in stem cells and niches has never been reported. Here, this study shows that the exocyst functions in the niche to promote germline stem cell (GSC) progeny differentiation in the Drosophila ovary by directly regulating EGFR membrane trafficking and signaling. Inactivation of exocyst components in inner germarial sheath cells, which form the differentiation niche, causes a severe GSC differentiation defect. The exocyst is required for maintaining niche cells and preventing BMP signaling in GSC progeny by promoting EGFR membrane targeting and signaling through direct association with EGFR. Finally, it is also required for EGFR membrane targeting, recycling and signaling in human cells. Therefore, this study reveals a novel function of the exocyst in niche cells to promote stem cell progeny differentiation by directly controlling EGFR membrane trafficking and signaling in vivo, and also provides important insight into how the niche controls stem cell progeny differentiation at the molecular level.
Collapse
Affiliation(s)
- Ying Mao
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Renjun Tu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Yan Huang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Decai Mao
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zhihao Yang
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Pik Ki Lau
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jinhui Wang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianquan Ni
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| |
Collapse
|
15
|
Ke YT, Hsu HJ. Generation of Inducible Gene-Switched GAL4 Expressed in the Drosophila Female Germline Stem Cell Niche. G3 (BETHESDA, MD.) 2019; 9:2007-2016. [PMID: 31018943 PMCID: PMC6553524 DOI: 10.1534/g3.119.400246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
The stem cell niche, a regulatory microenvironment, houses and regulates stem cells for maintenance of tissues throughout an organism's lifespan. While it is known that stem cell function declines with age, the role of niche cells in this decline is not completely understood. Drosophila exhibits a short lifespan with well-characterized ovarian germline stem cells (GSCs) and niche compartments, providing a good model with which to study stem cell biology. However, no inducible tools for temporal and spatial control of gene expression in the GSC-niche unit have been previously developed for aging studies. The current UAS-GAL4 systems are not ideal for aging studies because fly physiological aging may be affected by the temperature shifts used to manipulate GAL4 activity. Additionally, the actual needs of the aged niche may be masked by continuously driven gene expression. Since GeneSwitch GAL4 is conveniently activated by the steroid RU486 (mifepristone), we conducted an enhancer-trap screen to isolate GeneSwitch GAL4 lines with expression in the GSC-niche unit. We identified six lines with expression in germarial somatic cells, and two lines (#2305 and #2261) with expression in niche cap cells, the major constituent of the GSC niche. The use of lines #2305 or #2261 to overexpress Drosophila insulin-like peptide 2, which maintains GSC lifespan, in aged niche cap cells significantly delayed age-dependent GSC loss. These results support the notion that insulin signaling is beneficial for maintaining aged stem cells and also validate the utility of our GeneSwitch GAL4 lines for studying stem cell aging.
Collapse
Affiliation(s)
- Yi-Teng Ke
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
16
|
Ben-Zvi DS, Volk T. Escort cell encapsulation of Drosophila germline cells is maintained by irre cell recognition module proteins. Biol Open 2019; 8:bio039842. [PMID: 30837217 PMCID: PMC6451344 DOI: 10.1242/bio.039842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/06/2019] [Indexed: 12/17/2022] Open
Abstract
Differentiation of germline stem cells (GSCs) in the Drosophila ovary is induced by somatic escort cells (ECs), which extend membrane protrusions encapsulating the germline cells (GCs). Germline encapsulation requires activated epidermal growth factor receptor (Egfr) signaling within the ECs, following secretion of its ligands from the GCs. We show that the conserved family of irre cell recognition module (IRM) proteins is essential for GC encapsulation by ECs, with a requirement for roughest (rst) and kin of irre (kirre) in the germline and for sticks and stones (sns) and hibris (hbs) in ECs. In the absence of IRM components in their respective cell types, EC extensions are reduced concomitantly with a decrease in Egfr signaling in these cells. Reintroducing either activated Egfr in the ECs, or overexpressing its ligand Spitz (Spi) from the germline, rescued the requirement for IRM proteins in both cell types. These experiments introduce novel essential components, the IRM proteins, into the process of inductive interactions between GCs and ECs, and imply that IRM-mediated activity is required upstream of the Egfr signaling.
Collapse
Affiliation(s)
- Doreen S Ben-Zvi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
17
|
Yoshinari Y, Kurogi Y, Ameku T, Niwa R. Endocrine regulation of female germline stem cells in the fruit fly Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2019; 31:14-19. [PMID: 31109668 DOI: 10.1016/j.cois.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 06/09/2023]
Abstract
Germline stem cells (GSCs) are critical for the generation of sperms and eggs in most animals including the fruit fly Drosophila melanogaster. It is well known that self-renewal and differentiation of female D. melanogaster GSCs are regulated by local niche signals. However, little is known about whether and how the GSC number is regulated by paracrine signals. In the last decade, however, multiple humoral factors, including insulin and ecdysteroids, have been recognized as key regulators of female D. melanogaster GSCs. This review paper summarizes the role of humoral factors in female D. melanogaster GSC proliferation and maintenance in response to internal and external conditions, such as nutrients, mating stimuli, and aging.
Collapse
Affiliation(s)
- Yuto Yoshinari
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshitomo Kurogi
- College of Biological Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Tomotsune Ameku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|