1
|
Vuong LM, Pan S, Sierra RA, Waterman ML, Gershon PD, Donovan PJ. Characterization of a chromatin-associated TCF7L1 complex in human embryonic stem cells. Proteomics 2024; 24:e2300641. [PMID: 38629187 DOI: 10.1002/pmic.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 10/11/2024]
Abstract
Human embryonic stem cells (hESCs) resemble the pluripotent epiblast cells found in the early postimplantation human embryo and represent the "primed" state of pluripotency. One factor that helps primed pluripotent cells retain pluripotency and prepare genes for differentiation is the transcription factor TCF7L1, a member of a small family of proteins known as T cell factors/Lymphoid enhancer factors (TCF/LEF) that act as downstream components of the WNT signaling pathway. Transcriptional output of the WNT pathway is regulated, in part, by the activity of TCF/LEFs in conjunction with another component of the WNT pathway, β-CATENIN. Because TCF7L1 plays an important role in regulating pluripotency, we began to characterize the protein complex associated with TCF7L1 when bound to chromatin in hESCs using rapid immunoprecipitation of endogenous proteins (RIME). Data are available via ProteomeXchange with identifier PXD047582. These data identify known and new partners of TCF7L1 on chromatin and provide novel insights into how TCF7L1 and pluripotency itself might be regulated.
Collapse
Affiliation(s)
- Linh M Vuong
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
- Department of Biological Chemistry, University of California, Irvine, California, USA
- Sue and Bill Gross Stem Cell Research Center: A CIRM Institute, University of California, Irvine, California, USA
| | - Songqin Pan
- W.M. Keck Proteomics Laboratory, Institute of Integrated Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, California, USA
| | - Robert A Sierra
- Department of Biological Chemistry, University of California, Irvine, California, USA
- Sue and Bill Gross Stem Cell Research Center: A CIRM Institute, University of California, Irvine, California, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Paul D Gershon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Peter J Donovan
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
- Department of Biological Chemistry, University of California, Irvine, California, USA
- Sue and Bill Gross Stem Cell Research Center: A CIRM Institute, University of California, Irvine, California, USA
| |
Collapse
|
2
|
Gan Y, Yu J, Xu G, Yan C, Zou G. Inferring gene regulatory networks from single-cell transcriptomics based on graph embedding. Bioinformatics 2024; 40:btae291. [PMID: 38810116 PMCID: PMC11142726 DOI: 10.1093/bioinformatics/btae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/06/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024] Open
Abstract
MOTIVATION Gene regulatory networks (GRNs) encode gene regulation in living organisms, and have become a critical tool to understand complex biological processes. However, due to the dynamic and complex nature of gene regulation, inferring GRNs from scRNA-seq data is still a challenging task. Existing computational methods usually focus on the close connections between genes, and ignore the global structure and distal regulatory relationships. RESULTS In this study, we develop a supervised deep learning framework, IGEGRNS, to infer GRNs from scRNA-seq data based on graph embedding. In the framework, contextual information of genes is captured by GraphSAGE, which aggregates gene features and neighborhood structures to generate low-dimensional embedding for genes. Then, the k most influential nodes in the whole graph are filtered through Top-k pooling. Finally, potential regulatory relationships between genes are predicted by stacking CNNs. Compared with nine competing supervised and unsupervised methods, our method achieves better performance on six time-series scRNA-seq datasets. AVAILABILITY AND IMPLEMENTATION Our method IGEGRNS is implemented in Python using the Pytorch machine learning library, and it is freely available at https://github.com/DHUDBlab/IGEGRNS.
Collapse
Affiliation(s)
- Yanglan Gan
- School of Computer Science and Technology, Donghua University, Shanghai 201620, China
| | - Jiacheng Yu
- School of Computer Science and Technology, Donghua University, Shanghai 201620, China
| | - Guangwei Xu
- School of Computer Science and Technology, Donghua University, Shanghai 201620, China
| | - Cairong Yan
- School of Computer Science and Technology, Donghua University, Shanghai 201620, China
| | - Guobing Zou
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Timmermans RGM, Blom AB, Nelissen RGHH, Broekhuis D, van der Kraan PM, Meulenbelt I, van den Bosch MHJ, Ramos YFM. Mechanical stress and inflammation have opposite effects on Wnt signaling in human chondrocytes. J Orthop Res 2024; 42:286-295. [PMID: 37525432 DOI: 10.1002/jor.25673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Dysregulation of Wingless and Int-1 (Wnt) signaling has been strongly associated with development and progression of osteoarthritis (OA). Here, we set out to investigate the independent effects of either mechanical stress (MS) or inflammation on Wnt signaling in human neocartilage pellets, and to relate this Wnt signaling to OA pathophysiology. OA synovium-conditioned media (OAS-CM) was collected after incubating synovium from human end-stage OA joints for 24 h in medium. Cytokine levels in the OAS-CM were determined with a multiplex immunoassay (Luminex). Human neocartilage pellets were exposed to 20% MS, 2% OAS-CM or 1 ng/mL Interleukin-1β (IL-1β). Effects on expression levels of Wnt signaling members were determined by reverse transcription-quantitative polymerase chain reaction. Additionally, the expression of these members in articular cartilage from human OA joints was analyzed in association with joint space narrowing (JSN) and osteophyte scores. Protein levels of IL-1β, IL-6, IL-8, IL-10, tumor necrosis factor α, and granulocyte-macrophage colony-stimulating factor positively correlated with each other. MS increased noncanonical WNT5A and FOS expression. In contrast, these genes were downregulated upon stimulation with OAS-CM or IL-1β. Furthermore, Wnt inhibitors DKK1 and FRZB decreased in response to OAS-CM or IL-1β exposure. Finally, expression of WNT5A in OA articular cartilage was associated with increased JSN scores, but not osteophyte scores. Our results demonstrate that MS and inflammatory stimuli have opposite effects on canonical and noncanonical Wnt signaling in human neocartilage. Considering the extent to which MS and inflammation contribute to OA in individual patients, we hypothesize that targeting specific Wnt pathways offers a more effective, individualized approach.
Collapse
Affiliation(s)
- Ritchie G M Timmermans
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob G H H Nelissen
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Demiën Broekhuis
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Yolande F M Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Liu WX, Li CX, Xie XX, Ge W, Qiao T, Sun XF, Shen W, Cheng SF. Transcriptomic landscape reveals germline potential of porcine skin-derived multipotent dermal fibroblast progenitors. Cell Mol Life Sci 2023; 80:224. [PMID: 37480481 PMCID: PMC11072884 DOI: 10.1007/s00018-023-04869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
According to estimations, approximately about 15% of couples worldwide suffer from infertility, in which individuals with azoospermia or oocyte abnormalities cannot be treated with assisted reproductive technology. The skin-derived stem cells (SDSCs) differentiation into primordial germ cell-like cells (PGCLCs) is one of the major breakthroughs in the field of stem cells intervention for infertility treatment in recent years. However, the cellular origin of SDSCs and their dynamic changes in transcription profile during differentiation into PGCLCs in vitro remain largely undissected. Here, the results of single-cell RNA sequencing indicated that porcine SDSCs are mainly derived from multipotent dermal fibroblast progenitors (MDFPs), which are regulated by growth factors (EGF/bFGF). Importantly, porcine SDSCs exhibit pluripotency for differentiating into three germ layers and can effectively differentiate into PGCLCs through complex transcriptional regulation involving histone modification. Moreover, this study also highlights that porcine SDSC-derived PGCLCs specification exhibit conservation with the human primordial germ cells lineage and that its proliferation is mediated by the MAPK signaling pathway. Our findings provide substantial novel insights into the field of regenerative medicine in which stem cells differentiate into germ cells in vitro, as well as potential therapeutic effects in individuals with azoospermia and/or defective oocytes.
Collapse
Affiliation(s)
- Wen-Xiang Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Chun-Xiao Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin-Xiang Xie
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-Feng Sun
- Anqiu Women and Children's Hospital, Weifang, 262100, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
5
|
Salvato I, Ricciardi L, Dal Col J, Nigro A, Giurato G, Memoli D, Sellitto A, Lamparelli EP, Crescenzi MA, Vitale M, Vatrella A, Nucera F, Brun P, Caicci F, Dama P, Stiff T, Castellano L, Idrees S, Johansen MD, Faiz A, Wark PA, Hansbro PM, Adcock IM, Caramori G, Stellato C. Expression of targets of the RNA-binding protein AUF-1 in human airway epithelium indicates its role in cellular senescence and inflammation. Front Immunol 2023; 14:1192028. [PMID: 37483631 PMCID: PMC10360199 DOI: 10.3389/fimmu.2023.1192028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The RNA-binding protein AU-rich-element factor-1 (AUF-1) participates to posttranscriptional regulation of genes involved in inflammation and cellular senescence, two pathogenic mechanisms of chronic obstructive pulmonary disease (COPD). Decreased AUF-1 expression was described in bronchiolar epithelium of COPD patients versus controls and in vitro cytokine- and cigarette smoke-challenged human airway epithelial cells, prompting the identification of epithelial AUF-1-targeted transcripts and function, and investigation on the mechanism of its loss. Results RNA immunoprecipitation-sequencing (RIP-Seq) identified, in the human airway epithelial cell line BEAS-2B, 494 AUF-1-bound mRNAs enriched in their 3'-untranslated regions for a Guanine-Cytosine (GC)-rich binding motif. AUF-1 association with selected transcripts and with a synthetic GC-rich motif were validated by biotin pulldown. AUF-1-targets' steady-state levels were equally affected by partial or near-total AUF-1 loss induced by cytomix (TNFα/IL1β/IFNγ/10 nM each) and siRNA, respectively, with differential transcript decay rates. Cytomix-mediated decrease in AUF-1 levels in BEAS-2B and primary human small-airways epithelium (HSAEC) was replicated by treatment with the senescence- inducer compound etoposide and associated with readouts of cell-cycle arrest, increase in lysosomal damage and senescence-associated secretory phenotype (SASP) factors, and with AUF-1 transfer in extracellular vesicles, detected by transmission electron microscopy and immunoblotting. Extensive in-silico and genome ontology analysis found, consistent with AUF-1 functions, enriched RIP-Seq-derived AUF-1-targets in COPD-related pathways involved in inflammation, senescence, gene regulation and also in the public SASP proteome atlas; AUF-1 target signature was also significantly represented in multiple transcriptomic COPD databases generated from primary HSAEC, from lung tissue and from single-cell RNA-sequencing, displaying a predominant downregulation of expression. Discussion Loss of intracellular AUF-1 may alter posttranscriptional regulation of targets particularly relevant for protection of genomic integrity and gene regulation, thus concurring to airway epithelial inflammatory responses related to oxidative stress and accelerated aging. Exosomal-associated AUF-1 may in turn preserve bound RNA targets and sustain their function, participating to spreading of inflammation and senescence to neighbouring cells.
Collapse
Affiliation(s)
- Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Luca Ricciardi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Assunta Sellitto
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Maria Assunta Crescenzi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Monica Vitale
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Francesco Nucera
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Paola Dama
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Thomas Stiff
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Leandro Castellano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Alen Faiz
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Peter A. Wark
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College London and the National Institute for Health and Care Research (NIHR) Imperial Biomedical Research Centre, London, United Kingdom
| | - Gaetano Caramori
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| |
Collapse
|
6
|
van der Veer BK, Chen L, Custers C, Athanasouli P, Schroiff M, Cornelis R, Chui JSH, Finnell R, Lluis F, Koh K. Dual functions of TET1 in germ layer lineage bifurcation distinguished by genomic context and dependence on 5-methylcytosine oxidation. Nucleic Acids Res 2023; 51:5469-5498. [PMID: 37021585 PMCID: PMC10287924 DOI: 10.1093/nar/gkad231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Gastrulation begins when the epiblast forms the primitive streak or becomes definitive ectoderm. During this lineage bifurcation, the DNA dioxygenase TET1 has bipartite functions in transcriptional activation and repression, but the mechanisms remain unclear. By converting mouse embryonic stem cells (ESCs) into neuroprogenitors, we defined how Tet1-/- cells switch from neuroectoderm fate to form mesoderm and endoderm. We identified the Wnt repressor Tcf7l1 as a TET1 target that suppresses Wnt/β-catenin and Nodal signalling. ESCs expressing catalytic dead TET1 retain neural potential but activate Nodal and subsequently Wnt/β-catenin pathways to generate also mesoderm and endoderm. At CpG-poor distal enhancers, TET1 maintains accessible chromatin at neuroectodermal loci independently of DNA demethylation. At CpG-rich promoters, DNA demethylation by TET1 affects the expression of bivalent genes. In ESCs, a non-catalytic TET1 cooperation with Polycomb represses primitive streak genes; post-lineage priming, the interaction becomes antagonistic at neuronal genes, when TET1's catalytic activity is further involved by repressing Wnt signalling. The convergence of repressive DNA and histone methylation does not inhibit neural induction in Tet1-deficient cells, but some DNA hypermethylated loci persist at genes with brain-specific functions. Our results reveal versatile switching of non-catalytic and catalytic TET1 activities based on genomic context, lineage and developmental stage.
Collapse
Affiliation(s)
- Bernard K van der Veer
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Lehua Chen
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Colin Custers
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Paraskevi Athanasouli
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell Signaling, B-3000 Leuven, Belgium
| | - Mariana Schroiff
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Riet Cornelis
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Jonathan Sai-Hong Chui
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell Signaling, B-3000 Leuven, Belgium
| | - Richard H Finnell
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Houston, TX 77030, USA
- Baylor College of Medicine, Department of Molecular and Human Genetics, Department of Medicine, Houston, TX 77030, USA
| | - Frederic Lluis
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell Signaling, B-3000 Leuven, Belgium
| | - Kian Peng Koh
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Houston, TX 77030, USA
| |
Collapse
|
7
|
Mohan S, Kesavan C. T-cell factor 7L2 is a novel regulator of osteoblast functions that acts in part by modulation of hypoxia signaling. Am J Physiol Endocrinol Metab 2022; 322:E528-E539. [PMID: 35466691 PMCID: PMC9169825 DOI: 10.1152/ajpendo.00035.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
T-cell-like factor (TCF)7l2, a key effector of canonical Wnt signaling, is highly expressed in bone but nothing is known about its role in regulating osteoblast function. To test this, we generated mice with conditional disruption of Tcf7l2 gene in osteoblast lineages using Tcf7l2 floxed and Col1α2-Cre mice. Skeletal parameters were evaluated using heterozygous conditional knockdown (HCKD) mice since homozygous conditional knockout died during pregnancy or immediately after birth. At 5 wk of age, trabecular bone mass of long bones was reduced by 35% as measured by microcomputed tomography (μCT). Histology data showed a 42% reduction in femur trabecular bone mass caused by reduced bone formation. Knockdown of Tcf7l2 expression in osteoblasts decreased proliferation and differentiation by 20%-40%. Expression levels of genes (Hif1α, Vegf, and β-catenin) targeted by TCF7L2 were decreased by 50% in Tcf7l2-deficient osteoblasts and bones of HCKD mice. We found that the Hif1α gene promoter contained multiple putative TCF7L2 motifs and stabilization of HIF1α protein levels rescued expression of TCF7L2 target genes and alkaline phosphatase (ALP) activity in Tcf7l2-deficient osteoblasts. Furthermore, Tcf7l2 overexpression increased proliferation in the presence of canonical Wnt3a that was not affected by β-catenin inhibitor providing evidence for a noncanonical signaling in mediating TCF7L2 effects. Tcf7l2 expression was increased in response to mechanical strain (MS) in vitro and in vivo, and disruption of Tcf7l2 expression in osteoblasts reduced MS-induced ALP activity by 35%. We conclude that Tcf7l2, a mechanoresponsive gene, is an important regulator of osteoblast function acting, in part, via hypoxia signaling.NEW & NOTEWORTHY TCF7L2 is expressed by bone but it was not known whether TCF7L2 expression influenced bone development. By using a mouse model with conditional disruption of Tcf7l2 in osteoblast lineage cells, we have demonstrated for the first time, that TCF7L2 plays an important role in regulating osteoblasts via a noncanonical pathway.
Collapse
Affiliation(s)
- Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, California
- Department of Orthopedics, School of Medicine, Loma Linda University, Loma Linda, California
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
8
|
Abstract
The development of therapies to eliminate the latent HIV-1 reservoir is hampered by our incomplete understanding of the biomolecular mechanism governing HIV-1 latency. To further complicate matters, recent single cell RNA-seq studies reported extensive heterogeneity between latently HIV-1-infected primary T cells, implying that latent HIV-1 infection can persist in greatly differing host cell environments. We here show that transcriptomic heterogeneity is also found between latently infected T cell lines, which allowed us to study the underlying mechanisms of intercell heterogeneity at high signal resolution. Latently infected T cells exhibited a de-differentiated phenotype, characterized by the loss of T cell-specific markers and gene regulation profiles reminiscent of hematopoietic stem cells (HSC). These changes had functional consequences. As reported for stem cells, latently HIV-1 infected T cells efficiently forced lentiviral superinfections into a latent state and favored glycolysis. As a result, metabolic reprogramming or cell re-differentiation destabilized latent infection. Guided by these findings, data-mining of single cell RNA-seq data of latently HIV-1 infected primary T cells from patients revealed the presence of similar dedifferentiation motifs. >20% of the highly detectable genes that were differentially regulated in latently infected cells were associated with hematopoietic lineage development (e.g. HUWE1, IRF4, PRDM1, BATF3, TOX, ID2, IKZF3, CDK6) or were hematopoietic markers (SRGN; hematopoietic proteoglycan core protein). The data add to evidence that the biomolecular phenotype of latently HIV-1 infected cells differs from normal T cells and strategies to address their differential phenotype need to be considered in the design of therapeutic cure interventions. IMPORTANCE HIV-1 persists in a latent reservoir in memory CD4 T cells for the lifetime of a patient. Understanding the biomolecular mechanisms used by the host cells to suppress viral expression will provide essential insights required to develop curative therapeutic interventions. Unfortunately, our current understanding of these control mechanisms is still limited. By studying gene expression profiles, we demonstrated that latently HIV-1-infected T cells have a de-differentiated T cell phenotype. Software-based data integration allowed for the identification of drug targets that would re-differentiate viral host cells and, in extension, destabilize latent HIV-1 infection events. The importance of the presented data lies within the clear demonstration that HIV-1 latency is a host cell phenomenon. As such, therapeutic strategies must first restore proper host cell functionality to accomplish efficient HIV-1 reactivation.
Collapse
|
9
|
Abstract
The generation of germ cells from embryonic stem cells in vitro has current historical significance. Western blot, qPCR, immunofluorescence and flow cytometry assays were used to investigate the differences in expression levels of totipotency and specific markers for Wnt regulation and the related signalling pathways during primordial germ cell-like cell (PGCLC) induction and differentiation. During PGCLC induction, activation of WNT3a increased the expression of NANOG, SOX2 and OCT4, but Mvh, DAZL, Blimp1, TFAP2C, Gata4, SOX17, EOMES, Brachyury and PRDM1 expression levels were significantly reduced. Inhibition of the WNT signal demonstrated the opposite effect. Similarly, inhibitors of BMP and the Nodal/Activin signal were used to determine the effect of signal pathways on differentiation. CER1 affected the Wnt signal and differentiation, but the inhibitor SB only regulated differentiation. BMP-WNT-NODAL were mainly responsible for regulating differentiation. Our results provide a reliable theoretical basis and feasibility for further clinical medical research.
Collapse
|
10
|
McKee C, Brown C, Bakshi S, Walker K, Govind CK, Chaudhry GR. Transcriptomic Analysis of Naïve Human Embryonic Stem Cells Cultured in Three-Dimensional PEG Scaffolds. Biomolecules 2020; 11:E21. [PMID: 33379237 PMCID: PMC7824559 DOI: 10.3390/biom11010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
Naïve human embryonic stem cells (ESCs) are characterized by improved viability, proliferation, and differentiation capacity in comparison to traditionally derived primed human ESCs. However, currently used two-dimensional (2-D) cell culture techniques fail to mimic the three-dimensional (3-D) in vivo microenvironment, altering morphological and molecular characteristics of ESCs. Here, we describe the use of 3-D self-assembling scaffolds that support growth and maintenance of the naïve state characteristics of ESC line, Elf1. Scaffolds were formed via a Michael addition reaction upon the combination of two 8-arm polyethylene glycol (PEG) polymers functionalized with thiol (PEG-8-SH) and acrylate (PEG-8-Acr) end groups. 3-D scaffold environment maintained the naïve state and supported the long-term growth of ESCs. RNA-sequencing demonstrated significant changes in gene expression profiles between 2-D and 3-D grown cells. Gene ontology analysis revealed upregulation of biological processes involved in the regulation of transcription and translation, extracellular matrix organization, and chromatin remodeling in 3-D grown cells. 3-D culture conditions also induced upregulation of genes associated with Wnt and focal adhesion signaling, while p53 signaling pathway associated genes were downregulated. Our findings, for the first time, provide insight into the possible mechanisms of self-renewal of naïve ESCs stimulated by the transduction of mechanical signals from the 3-D microenvironment.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Chhabi K. Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - G. Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| |
Collapse
|
11
|
Angeloni C, Gatti M, Prata C, Hrelia S, Maraldi T. Role of Mesenchymal Stem Cells in Counteracting Oxidative Stress-Related Neurodegeneration. Int J Mol Sci 2020; 21:ijms21093299. [PMID: 32392722 PMCID: PMC7246730 DOI: 10.3390/ijms21093299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases include a variety of pathologies such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and so forth, which share many common characteristics such as oxidative stress, glycation, abnormal protein deposition, inflammation, and progressive neuronal loss. The last century has witnessed significant research to identify mechanisms and risk factors contributing to the complex etiopathogenesis of neurodegenerative diseases, such as genetic, vascular/metabolic, and lifestyle-related factors, which often co-occur and interact with each other. Apart from several environmental or genetic factors, in recent years, much evidence hints that impairment in redox homeostasis is a common mechanism in different neurological diseases. However, from a pharmacological perspective, oxidative stress is a difficult target, and antioxidants, the only strategy used so far, have been ineffective or even provoked side effects. In this review, we report an analysis of the recent literature on the role of oxidative stress in Alzheimer’s and Parkinson’s diseases as well as in amyotrophic lateral sclerosis, retinal ganglion cells, and ataxia. Moreover, the contribution of stem cells has been widely explored, looking at their potential in neuronal differentiation and reporting findings on their application in fighting oxidative stress in different neurodegenerative diseases. In particular, the exposure to mesenchymal stem cells or their secretome can be considered as a promising therapeutic strategy to enhance antioxidant capacity and neurotrophin expression while inhibiting pro-inflammatory cytokine secretion, which are common aspects of neurodegenerative pathologies. Further studies are needed to identify a tailored approach for each neurodegenerative disease in order to design more effective stem cell therapeutic strategies to prevent a broad range of neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Martina Gatti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.G.); (T.M.)
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
- Correspondence:
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy;
| | - Tullia Maraldi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.G.); (T.M.)
| |
Collapse
|
12
|
Wang L, Su Y, Huang C, Yin Y, Chu A, Knupp A, Tang Y. NANOG and LIN28 dramatically improve human cell reprogramming by modulating LIN41 and canonical WNT activities. Biol Open 2019; 8:8/12/bio047225. [PMID: 31806618 PMCID: PMC6918770 DOI: 10.1242/bio.047225] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human cell reprogramming remains extremely inefficient and the underlying mechanisms by different reprogramming factors are elusive. We found that NANOG and LIN28 (NL) synergize to improve OCT4, SOX2, KLF4 and MYC (OSKM)-mediated reprogramming by ∼76-fold and shorten reprogramming latency by at least 1 week. This synergy is inhibited by GLIS1 but reinforced by an inhibitor of the histone methyltransferase DOT1L (iDOT1L) to a ∼127-fold increase in TRA-1-60-positive (+) iPSC colonies. Mechanistically, NL serve as the main drivers of reprogramming in cell epithelialization, the expression of Let-7 miRNA target LIN41, and the activation of canonical WNT/β-CATENIN signaling, which can be further enhanced by iDOT1L treatment. LIN41 overexpression in addition to OSKM similarly promoted cell epithelialization and WNT activation in reprogramming, and a dominant-negative LIN41 mutation significantly blocked NL- and iDOT1L-enhanced reprogramming. We also found that NL- and iDOT1L-induced canonical WNT activation facilitates the initial development kinetics of iPSCs. However, a substantial increase in more mature, homogeneous TRA-1-60+ colony formation was achieved by inhibiting WNT activity at the middle-to-late-reprogramming stage. We further found that LIN41 can replace LIN28 to synergize with NANOG, and that the coexpression of LIN41 with NL further enhanced the formation of mature iPSCs under WNT inhibition. Our study established LIN41 and canonical WNT signaling as the key downstream effectors of NL for the dramatic improvement in reprogramming efficiency and kinetics, and optimized a condition for the robust formation of mature human iPSC colonies from primary cells.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ling Wang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT 06269, USA
| | - Yue Su
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT 06269, USA
| | - Chang Huang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT 06269, USA
| | - Yexuan Yin
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT 06269, USA
| | - Alexander Chu
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT 06269, USA
| | - Alec Knupp
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT 06269, USA
| | - Young Tang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT 06269, USA
| |
Collapse
|
13
|
Khorraminejad-Shirazi M, Dorvash M, Estedlal A, Hoveidaei AH, Mazloomrezaei M, Mosaddeghi P. Aging: A cell source limiting factor in tissue engineering. World J Stem Cells 2019; 11:787-802. [PMID: 31692986 PMCID: PMC6828594 DOI: 10.4252/wjsc.v11.i10.787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/03/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering has yet to reach its ideal goal, i.e. creating profitable off-the-shelf tissues and organs, designing scaffolds and three-dimensional tissue architectures that can maintain the blood supply, proper biomaterial selection, and identifying the most efficient cell source for use in cell therapy and tissue engineering. These are still the major challenges in this field. Regarding the identification of the most appropriate cell source, aging as a factor that affects both somatic and stem cells and limits their function and applications is a preventable and, at least to some extents, a reversible phenomenon. Here, we reviewed different stem cell types, namely embryonic stem cells, adult stem cells, induced pluripotent stem cells, and genetically modified stem cells, as well as their sources, i.e. autologous, allogeneic, and xenogeneic sources. Afterward, we approached aging by discussing the functional decline of aged stem cells and different intrinsic and extrinsic factors that are involved in stem cell aging including replicative senescence and Hayflick limit, autophagy, epigenetic changes, miRNAs, mTOR and AMPK pathways, and the role of mitochondria in stem cell senescence. Finally, various interventions for rejuvenation and geroprotection of stem cells are discussed. These interventions can be applied in cell therapy and tissue engineering methods to conquer aging as a limiting factor, both in original cell source and in the in vitro proliferated cells.
Collapse
Affiliation(s)
- Mohammadhossein Khorraminejad-Shirazi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mohammadreza Dorvash
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Alireza Estedlal
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Amir Human Hoveidaei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mohsen Mazloomrezaei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Pouria Mosaddeghi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| |
Collapse
|
14
|
Yang SC, Liu JJ, Wang CK, Lin YT, Tsai SY, Chen WJ, Huang WK, Tu PWA, Lin YC, Chang CF, Cheng CL, Lin H, Lai CY, Lin CY, Lee YH, Chiu YC, Hsu CC, Hsu SC, Hsiao M, Schuyler SC, Lu FL, Lu J. Down-regulation of ATF1 leads to early neuroectoderm differentiation of human embryonic stem cells by increasing the expression level of SOX2. FASEB J 2019; 33:10577-10592. [PMID: 31242772 DOI: 10.1096/fj.201800220rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We reveal by high-throughput screening that activating transcription factor 1 (ATF1) is a novel pluripotent regulator in human embryonic stem cells (hESCs). The knockdown of ATF1 expression significantly up-regulated neuroectoderm (NE) genes but not mesoderm, endoderm, and trophectoderm genes. Of note, down-regulation or knockout of ATF1 with short hairpin RNA (shRNA), small interfering RNA (siRNA), or clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) was sufficient to up-regulate sex-determining region Y-box (SOX)2 and paired box 6 (PAX6) expression under the undifferentiated or differentiated conditions, whereas overexpression of ATF1 suppressed NE differentiation. Endogenous ATF1 was spontaneously down-regulated after d 1-3 of neural induction. By double-knockdown experiments, up-regulation of SOX2 was critical for the increase of PAX6 and SOX1 expression in shRNA targeting Atf1 hESCs. Using the luciferase reporter assay, we identified ATF1 as a negative transcriptional regulator of Sox2 gene expression. A novel function of ATF1 was discovered, and these findings contribute to a broader understanding of the very first steps in regulating NE differentiation in hESCs.-Yang, S.-C., Liu, J.-J., Wang, C.-K., Lin, Y.-T., Tsai, S.-Y., Chen, W.-J., Huang, W.-K., Tu, P.-W. A., Lin, Y.-C., Chang, C.-F., Cheng, C.-L., Lin, H., Lai, C.-Y., Lin, C.-Y., Lee, Y.-H., Chiu, Y.-C., Hsu, C.-C., Hsu, S.-C., Hsiao, M., Schuyler, S. C., Lu, F. L., Lu, J. Down-regulation of ATF1 leads to early neuroectoderm differentiation of human embryonic stem cells by increasing the expression level of SOX2.
Collapse
Affiliation(s)
- Shang-Chih Yang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jan-Jan Liu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Kai Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Tsen Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Yi Tsai
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Wei-Ju Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Kai Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Po-Wen A Tu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | | | - Chih-Lun Cheng
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsuan Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Ying Lai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Yu Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yen-Chun Chiu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, Zhunan, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Scott C Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Division of Head and Neck Surgery, Department of Otolaryngology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Frank Leigh Lu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jean Lu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan.,RNAi Core, National Core Facility, Academia Sinica, Taipei, Taiwan.,Department of Life Science, Tzu Chi University, Hualien, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
15
|
Yamazaki T, Liu L, Lazarev D, Al-Zain A, Fomin V, Yeung PL, Chambers SM, Lu CW, Studer L, Manley JL. TCF3 alternative splicing controlled by hnRNP H/F regulates E-cadherin expression and hESC pluripotency. Genes Dev 2018; 32:1161-1174. [PMID: 30115631 PMCID: PMC6120717 DOI: 10.1101/gad.316984.118] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
Yamazaki et al. show that alternative splicing creates two TCF3 isoforms (E12 and E47) and identified two related splicing factors, hnRNPs H1 and F (hnRNP H/F), that regulate TCF3 splicing. Expression of known TCF3 target E-cadherin, critical for maintaining ESC pluripotency, is repressed by E47 but not by E12. Alternative splicing (AS) plays important roles in embryonic stem cell (ESC) differentiation. In this study, we first identified transcripts that display specific AS patterns in pluripotent human ESCs (hESCs) relative to differentiated cells. One of these encodes T-cell factor 3 (TCF3), a transcription factor that plays important roles in ESC differentiation. AS creates two TCF3 isoforms, E12 and E47, and we identified two related splicing factors, heterogeneous nuclear ribonucleoproteins (hnRNPs) H1 and F (hnRNP H/F), that regulate TCF3 splicing. We found that hnRNP H/F levels are high in hESCs, leading to high E12 expression, but decrease during differentiation, switching splicing to produce elevated E47 levels. Importantly, hnRNP H/F knockdown not only recapitulated the switch in TCF3 AS but also destabilized hESC colonies and induced differentiation. Providing an explanation for this, we show that expression of known TCF3 target E-cadherin, critical for maintaining ESC pluripotency, is repressed by E47 but not by E12.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Denis Lazarev
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Amr Al-Zain
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Vitalay Fomin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Percy Luk Yeung
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Child Health Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Stuart M Chambers
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, New York 10065, USA.,Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Chi-Wei Lu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Child Health Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, New York 10065, USA.,Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|