1
|
Lin Y, Zhou H, Hu W, Gao B, Liang T, Qiu J, Li P, Que Y, Wong C, Qiu X, Deng Z, Shi H, Liu S, Chen J, Liao N, Chen Q, Li X, Liang A, Gao W, Huang D. Understanding the role of NOTCH2 mutation in centronuclear myopathy. Mol Ther 2025:S1525-0016(25)00360-0. [PMID: 40336196 DOI: 10.1016/j.ymthe.2025.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 01/27/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
NOTCH2 is a widely expressed protein that plays a crucial role in the normal development and function of various tissues, including skeletal muscle. This study focused on a pedigree with centronuclear myopathy, primarily characterized by muscle weakness and centralized nuclei, and identified the autosomal recessive NOTCH2p.I1689F mutation through whole-exome sequencing. Using a homologous mutant mouse model, several defects were identified that elucidate the muscle phenotype. These defects include a reduction in Pax7-expressing, proliferating myoblasts and the functional consequences of this reduction. In vitro studies demonstrated that the Notch2 mutation impaired proliferation and causing premature differentiation of myogenic progenitor cells. Mechanistically, the Notch2 mutation resulted in decreased production of the Notch2 intracellular domain from γ-secretase S3 cleavage, which affected the function of Pax7+ cells through the Notch2-Hey1-MyoD axis. Overall, our findings reveal impaired muscle regeneration in mice with the Notch2 mutation, contributing to the understanding of centronuclear myopathy by identifying a previously unreported gene and mutation site of NOTCH2.
Collapse
Affiliation(s)
- Youxi Lin
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Hang Zhou
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Wenjun Hu
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Bo Gao
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Tongzhou Liang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR 999077, China
| | - Jincheng Qiu
- Panyu Hospital of Chinese Medicine, Department of Minimally Invasive Spine Surgery, Guangzhou 511400, Guangdong, China
| | - Pengfei Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yichen Que
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Chipiu Wong
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Xianjian Qiu
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Zhihuai Deng
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Huihong Shi
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Song Liu
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Jianan Chen
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Nianchun Liao
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Qihui Chen
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Xiaojuan Li
- Center for Cellular and Molecular Diagnostics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510300, Guangdong, China
| | - Anjing Liang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China.
| | - Wenjie Gao
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China.
| | - Dongsheng Huang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China.
| |
Collapse
|
2
|
Broer T, Tsintolas N, Hammond S, Helfer A, Lee J, Purkey K, DeLuca S, Khodabukus A, Bursac N. Human Myobundle Platform for Studying the Role of Notch Signaling in Satellite Cell Phenotype and Function. Adv Healthc Mater 2025; 14:e2404695. [PMID: 40123310 DOI: 10.1002/adhm.202404695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Notch signaling plays a pivotal role in regulating satellite cell (SC) behavior during skeletal muscle development, homeostasis, and repair. While well-characterized in mouse models, the impact of Notch signaling in human muscle tissues remains largely underexplored. Here, a 3D tissue-engineered model of human skeletal muscle ("myobundles") is utilized as an in vitro platform for temporal control and studies of Notch singaling. Myofiber-specific overexpression of the Notch ligand, DLL1, early in myobundle differentiation increases the abundance of 3D SCs and shifts their phenotype to a more quiescent-like state, along with decreasing muscle mass and function. In contrast, myofiber-specific DLL1 overexpression after one week of myobundle differentiation does not affect 3D SC abundance or muscle function, but increases transcriptomic markers of SC quiescence, confirming the temporal dependence of SC activation and self-renewal on Notch signaling activity. Finally, for the first time these studies show that even after a transient, myofiber-specific upregulation of Notch signaling in myobundles, 3D SCs expanded from these tissues can re-form functional "secondary" myobundles containing an amplified SC pool. Future studies in the described human myobundle platform are expected to aid the development of novel Notch-targeted therapies for muscular dystrophies and aging.
Collapse
Affiliation(s)
- Torie Broer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nick Tsintolas
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Stewart Hammond
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Abbigail Helfer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Joonbum Lee
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Karly Purkey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
3
|
Chen H, Peng C, Fang F, Li Y, Liu X, Hu Y, Wang G, Liu X, Shen Y. Angiogenesis within atherosclerotic plaques: Mechanical regulation, molecular mechanism and clinical diagnosis. MECHANOBIOLOGY IN MEDICINE 2025; 3:100114. [PMID: 40396135 PMCID: PMC12082165 DOI: 10.1016/j.mbm.2025.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/12/2024] [Accepted: 01/05/2025] [Indexed: 05/22/2025]
Abstract
Atherosclerosis (AS) is a disease characterized by focal cholesterol accumulation and insoluble inflammation in arterial intima, leading to the formation of an atherosclerotic plaque consisting of lipids, cells, and fibrous matrix. The presence of plaque can restrict or obstruct blood flow, resulting in arterial stenosis and local mechanical microenvironment changes including flow shear stress, vascular matrix stiffness, and plaque structural stress. Neovascularization within the atherosclerotic plaque plays a crucial role in both plaque growth and destabilization, potentially leading to plaque rupture and fatal embolism. However, the exact interactions between neovessels and plaque remain unclear. In this review, we provide a comprehensive analysis of the origin of intraplaque neovessels, the contributing factors, underlying molecular mechanisms, and associated signaling pathways. We specifically emphasize the role of mechanical factors contributing to angiogenesis in atherosclerotic plaques. Additionally, we summarize the imaging techniques and therapeutic strategies for intraplaque neovessels to enhance our understanding of this field.
Collapse
Affiliation(s)
- Hanxiao Chen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chengxiu Peng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yuhao Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaran Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ying Hu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guixue Wang
- Jinfeng Laboratory, Chongqing 401329, China
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
4
|
Chambers TL, Dimet‐Wiley A, Keeble AR, Haghani A, Lo W, Kang G, Brooke R, Horvath S, Fry CS, Watowich SJ, Wen Y, Murach KA. Methylome-proteome integration after late-life voluntary exercise training reveals regulation and target information for improved skeletal muscle health. J Physiol 2025; 603:211-237. [PMID: 39058663 PMCID: PMC11702923 DOI: 10.1113/jp286681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Exercise is a potent stimulus for combatting skeletal muscle ageing. To study the effects of exercise on muscle in a preclinical setting, we developed a combined endurance-resistance training stimulus for mice called progressive weighted wheel running (PoWeR). PoWeR improves molecular, biochemical, cellular and functional characteristics of skeletal muscle and promotes aspects of partial epigenetic reprogramming when performed late in life (22-24 months of age). In this investigation, we leveraged pan-mammalian DNA methylome arrays and tandem mass-spectrometry proteomics in skeletal muscle to provide detailed information on late-life PoWeR adaptations in female mice relative to age-matched sedentary controls (n = 7-10 per group). Differential CpG methylation at conserved promoter sites was related to transcriptional regulation genes as well as Nr4a3, Hes1 and Hox genes after PoWeR. Using a holistic method of -omics integration called binding and expression target analysis (BETA), methylome changes were associated with upregulated proteins related to global and mitochondrial translation after PoWeR (P = 0.03). Specifically, BETA implicated methylation control of ribosomal, mitoribosomal, and mitochondrial complex I protein abundance after training. DNA methylation may also influence LACTB, MIB1 and UBR4 protein induction with exercise - all are mechanistically linked to muscle health. Computational cistrome analysis predicted several transcription factors including MYC as regulators of the exercise trained methylome-proteome landscape, corroborating prior late-life PoWeR transcriptome data. Correlating the proteome to muscle mass and fatigue resistance revealed positive relationships with VPS13A and NPL levels, respectively. Our findings expose differential epigenetic and proteomic adaptations associated with translational regulation after PoWeR that could influence skeletal muscle mass and function in aged mice. KEY POINTS: Late-life combined endurance-resistance exercise training from 22-24 months of age in mice is shown to improve molecular, biochemical, cellular and in vivo functional characteristics of skeletal muscle and promote aspects of partial epigenetic reprogramming and epigenetic age mitigation. Integration of DNA CpG 36k methylation arrays using conserved sites (which also contain methylation ageing clock sites) with exploratory proteomics in skeletal muscle extends our prior work and reveals coordinated and widespread regulation of ribosomal, translation initiation, mitochondrial ribosomal (mitoribosomal) and complex I proteins after combined voluntary exercise training in a sizeable cohort of female mice (n = 7-10 per group and analysis). Multi-omics integration predicted epigenetic regulation of serine β-lactamase-like protein (LACTB - linked to tumour resistance in muscle), mind bomb 1 (MIB1 - linked to satellite cell and type 2 fibre maintenance) and ubiquitin protein ligase E3 component N-recognin 4 (UBR4 - linked to muscle protein quality control) after training. Computational cistrome analysis identified MYC as a regulator of the late-life training proteome, in agreement with prior transcriptional analyses. Vacuolar protein sorting 13 homolog A (VPS13A) was positively correlated to muscle mass, and the glycoprotein/glycolipid associated sialylation enzyme N-acetylneuraminate pyruvate lyase (NPL) was associated to in vivo muscle fatigue resistance.
Collapse
Affiliation(s)
- Toby L. Chambers
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and RecreationUniversity of ArkansasFayettevilleARUSA
| | | | - Alexander R. Keeble
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKYUSA
| | - Amin Haghani
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCAUSA
- Altos LabsSan DiegoCAUSA
| | - Wen‐Juo Lo
- Department of Educational Statistics and Research MethodsUniversity of ArkansasFayettevilleARUSA
| | - Gyumin Kang
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Division of Biomedical Informatics, Department of Internal MedicineUniversity of KentuckyLexingtonKYUSA
| | - Robert Brooke
- Epigenetic Clock Development FoundationLos AngelesCAUSA
| | - Steve Horvath
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCAUSA
- Altos LabsSan DiegoCAUSA
- Epigenetic Clock Development FoundationLos AngelesCAUSA
| | - Christopher S. Fry
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKYUSA
| | - Stanley J. Watowich
- Ridgeline TherapeuticsHoustonTXUSA
- Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Yuan Wen
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Division of Biomedical Informatics, Department of Internal MedicineUniversity of KentuckyLexingtonKYUSA
| | - Kevin A. Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and RecreationUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
5
|
Kim YE, Hann SH, Jo YW, Yoo K, Kim JH, Lee JW, Kong YY. Mll4 in skeletal muscle fibers maintains muscle stem cells. Skelet Muscle 2024; 14:35. [PMID: 39710699 DOI: 10.1186/s13395-024-00369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Muscle stem cells (MuSCs) undergo numerous state transitions throughout life, which are critical for supporting normal muscle growth and regeneration. Epigenetic modifications in skeletal muscle play a significant role in influencing the niche and cellular states of MuSCs. Mixed-lineage leukemia 4 (Mll4) is a histone methyltransferase critical for activating the transcription of various target genes and is highly expressed in skeletal muscle. This raises the question of whether Mll4 has a regulatory function in modulating the state transitions of MuSCs, warranting further investigation. METHODS To assess if myofiber-expressed Mll4, a histone methyltransferase, contributes to the maintenance of MuSCs, we crossed MCKCre/+ or HSAMerCreMer/+ mice to Mll4f/f mice to generate myofiber-specific Mll4-deleted mice. Investigations were conducted using 8-week-old and 4-week-old MCKCre/+;Mll4f/f mice, and adult HSAMerCreMer/+;Mll4f/f mice between the ages of 3 months and 6 months. RESULTS During postnatal myogenesis, Mll4 deleted muscles were observed with increased number of cycling MuSCs that proceeded to a differentiation state, leading to MuSC deprivation. This phenomenon occurred independently of gender. When Mll4 was ablated in adult muscles using the inducible method, adult MuSCs lost their quiescence and differentiated into myoblasts, also causing the depletion of MuSCs. Such roles of Mll4 in myofibers coincided with decreased expression levels of distinct Notch ligands: Jag1 and Dll1 in pubertal and Jag2 and Dll4 in adult muscles. CONCLUSIONS Our study suggests that Mll4 is crucial for maintaining MuSCs in both pubertal and adult muscles, which may be accomplished through the modulation of distinct Notch ligand expressions in myofibers. These findings offer new insights into the role of myofiber-expressed Mll4 as a master regulator of MuSCs, highlighting its significance not only in developmental myogenesis but also in adult muscle, irrespective of sex.
Collapse
Affiliation(s)
- Yea-Eun Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Hyeon Hann
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Woo Jo
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Hoon Kim
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jae W Lee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Iwamori K, Kubota M, Zhang L, Kodama K, Kubo A, Kokubo H, Akimoto T, Fukada SI. Decreased number of satellite cells-derived myonuclei in both fast- and slow-twitch muscles in HeyL-KO mice during voluntary running exercise. Skelet Muscle 2024; 14:25. [PMID: 39449015 PMCID: PMC11515490 DOI: 10.1186/s13395-024-00357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Skeletal muscles possess unique abilities known as adaptation or plasticity. When exposed to external stimuli, such as mechanical loading, both myofiber size and myonuclear number increase. Muscle stem cells, also known as muscle satellite cells (MuSCs), play vital roles in these changes. HeyL, a direct target of Notch signaling, is crucial for efficient muscle hypertrophy because it ensures MuSC proliferation in surgically overloaded muscles by inhibiting the premature differentiation. However, it remains unclear whether HeyL is essential for MuSC expansion in physiologically exercised muscles. Additionally, the influence of myofiber type on the requirement for HeyL in MuSCs within exercised muscles remains unclear. METHODS We used a voluntary wheel running model and HeyL-knockout mice to investigate the impact of HeyL deficiency on MuSC-derived myonuclei, MuSC behavior, muscle weight, myofiber size, and myofiber type in the running mice. RESULTS The number of new MuSC-derived myonuclei was significantly lower in both slow-twitch soleus and fast-twitch plantaris muscles from exercised HeyL-knockout mice than in control mice. However, expect for the frequency of Type IIb myofiber in plantaris muscle, exercised HeyL-knockout mice exhibited similar responses to control mice regarding myofiber size and type. CONCLUSIONS HeyL expression is crucial for MuSC expansion during physiological exercise in both slow and fast muscles. The frequency of Type IIb myofiber in plantaris muscle of HeyL-knockout mice was not significantly reduced compared to that of control mice. However, the absence of HeyL did not affect the increased size and frequency of Type IIa myofiber in plantaris muscles. In this model, no detectable changes in myofiber size or type were observed in the soleus muscles of either control or HeyL-knockout mice. These findings imply that the requirement for MuSCs in the wheel-running model is difficult to observe due to the relatively low degree of hypertrophy compared to surgically overloaded models.
Collapse
Affiliation(s)
- Kanako Iwamori
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Manami Kubota
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Lidan Zhang
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 40016, China
| | - Kazuki Kodama
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Atsushi Kubo
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Hiroki Kokubo
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Takayuki Akimoto
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, 359-1192, Saitama, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
7
|
Chrysostomou E, Mourikis P. The extracellular matrix niche of muscle stem cells. Curr Top Dev Biol 2024; 158:123-150. [PMID: 38670702 DOI: 10.1016/bs.ctdb.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Preserving the potency of stem cells in adult tissues is very demanding and relies on the concerted action of various cellular and non-cellular elements in a precise stoichiometry. This balanced microenvironment is found in specific anatomical "pockets" within the tissue, known as the stem cell niche. In this review, we explore the interplay between stem cells and their niches, with a primary focus on skeletal muscle stem cells and the extracellular matrix (ECM). Quiescent muscle stem cells, known as satellite cells are active producers of a diverse array of ECM molecules, encompassing major constituents like collagens, laminins, and integrins, some of which are explored in this review. The conventional perception of ECM as merely a structural scaffold is evolving. Collagens can directly interact as ligands with receptors on satellite cells, while other ECM proteins have the capacity to sequester growth factors and regulate their release, especially relevant during satellite cell turnover in homeostasis or activation upon injury. Additionally, we explore an evolutionary perspective on the ECM across a range of multicellular organisms and discuss a model wherein satellite cells are self-sustained by generating their own niche. Considering the prevalence of ECM proteins in the connective tissue of various organs it is not surprising that mutations in ECM genes have pathological implications, including in muscle, where they can lead to myopathies. However, the particular role of certain disease-related ECM proteins in stem cell maintenance highlights the potential contribution of stem cell deregulation to the progression of these disorders.
Collapse
Affiliation(s)
- Eleni Chrysostomou
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France
| | - Philippos Mourikis
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France.
| |
Collapse
|
8
|
Girolamo DD, Benavente-Diaz M, Murolo M, Grimaldi A, Lopes PT, Evano B, Kuriki M, Gioftsidi S, Laville V, Tinevez JY, Letort G, Mella S, Tajbakhsh S, Comai G. Extraocular muscle stem cells exhibit distinct cellular properties associated with non-muscle molecular signatures. Development 2024; 151:dev202144. [PMID: 38240380 DOI: 10.1242/dev.202144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Skeletal muscle stem cells (MuSCs) are recognised as functionally heterogeneous. Cranial MuSCs are reported to have greater proliferative and regenerative capacity when compared with those in the limb. A comprehensive understanding of the mechanisms underlying this functional heterogeneity is lacking. Here, we have used clonal analysis, live imaging and single cell transcriptomic analysis to identify crucial features that distinguish extraocular muscle (EOM) from limb muscle stem cell populations. A MyogeninntdTom reporter showed that the increased proliferation capacity of EOM MuSCs correlates with deferred differentiation and lower expression of the myogenic commitment gene Myod. Unexpectedly, EOM MuSCs activated in vitro expressed a large array of extracellular matrix components typical of mesenchymal non-muscle cells. Computational analysis underscored a distinct co-regulatory module, which is absent in limb MuSCs, as driver of these features. The EOM transcription factor network, with Foxc1 as key player, appears to be hardwired to EOM identity as it persists during growth, disease and in vitro after several passages. Our findings shed light on how high-performing MuSCs regulate myogenic commitment by remodelling their local environment and adopting properties not generally associated with myogenic cells.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Maria Benavente-Diaz
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Melania Murolo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Alexandre Grimaldi
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Priscilla Thomas Lopes
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Brendan Evano
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Mao Kuriki
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Stamatia Gioftsidi
- Université Paris-Est, 77420 Champs-sur- Marne, France
- Freie Universität Berlin, 14195 Berlin, Germany
- Inserm, IMRB U955-E10, 94000 Créteil, France
| | - Vincent Laville
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, 75015 Paris, France
| | - Gaëlle Letort
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Sebastian Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Glenda Comai
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| |
Collapse
|
9
|
Ren R, Ding S, Ma K, Jiang Y, Wang Y, Chen J, Wang Y, Kou Y, Fan X, Zhu X, Qin L, Qiu C, Simons M, Wei X, Yu L. SUMOylation Fine-Tunes Endothelial HEY1 in the Regulation of Angiogenesis. Circ Res 2024; 134:203-222. [PMID: 38166414 PMCID: PMC10872267 DOI: 10.1161/circresaha.123.323398] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/15/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Angiogenesis, which plays a critical role in embryonic development and tissue repair, is controlled by a set of angiogenic signaling pathways. As a TF (transcription factor) belonging to the basic helix-loop-helix family, HEY (hairy/enhancer of split related with YRPW motif)-1 (YRPW motif, abbreviation of 4 highly conserved amino acids in the motif) has been identified as a key player in developmental angiogenesis. However, the precise mechanisms underlying HEY1's actions in angiogenesis remain largely unknown. Our previous studies have suggested a potential role for posttranslational SUMOylation in the dynamic regulation of vascular development and organization. METHODS Immunoprecipitation, mass spectrometry, and bioinformatics analysis were used to determine the biochemical characteristics of HEY1 SUMOylation. The promoter-binding capability of HEY1 was determined by chromatin immunoprecipitation, dual luciferase, and electrophoretic mobility shift assays. The dimerization pattern of HEY1 was determined by coimmunoprecipitation. The angiogenic capabilities of endothelial cells were assessed by CCK-8 (cell counting kit-8), 5-ethynyl-2-deoxyuridine staining, wound healing, transwell, and sprouting assays. Embryonic and postnatal vascular growth in mouse tissues, matrigel plug assay, cutaneous wound healing model, oxygen-induced retinopathy model, and tumor angiogenesis model were used to investigate the angiogenesis in vivo. RESULTS We identified intrinsic endothelial HEY1 SUMOylation at conserved lysines by TRIM28 (tripartite motif containing 28) as the unique E3 ligase. Functionally, SUMOylation facilitated HEY1-mediated suppression of angiogenic RTK (receptor tyrosine kinase) signaling and angiogenesis in primary human endothelial cells and mice with endothelial cell-specific expression of wild-type HEY1 or a SUMOylation-deficient HEY1 mutant. Mechanistically, SUMOylation facilitates HEY1 homodimer formation, which in turn preserves HEY1's DNA-binding capability via recognition of E-box promoter elements. Therefore, SUMOylation maintains HEY1's function as a repressive TF controlling numerous angiogenic genes, including RTKs and Notch pathway components. Proangiogenic stimuli induce HEY1 deSUMOylation, leading to heterodimerization of HEY1 with HES (hairy and enhancer of split)-1, which results in ineffective DNA binding and loss of HEY1's angiogenesis-suppressive activity. CONCLUSIONS Our findings demonstrate that reversible HEY1 SUMOylation is a molecular mechanism that coordinates endothelial angiogenic signaling and angiogenesis, both in physiological and pathological milieus, by fine-tuning the transcriptional activity of HEY1. Specifically, SUMOylation facilitates the formation of the HEY1 transcriptional complex and enhances its DNA-binding capability in endothelial cells.
Collapse
Affiliation(s)
- Ruizhe Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Sha Ding
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Kefan Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yuanqing Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yiran Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Junbo Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yunyun Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yaohui Kou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Xiao Fan
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaolong Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Lingfeng Qin
- Department of Surgery, Program in Vascular Biology and Therapeutics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Cong Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiyang Wei
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luyang Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| |
Collapse
|
10
|
de Morree A, Rando TA. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol 2023; 24:334-354. [PMID: 36922629 PMCID: PMC10725182 DOI: 10.1038/s41580-022-00568-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 03/18/2023]
Abstract
Adult stem cells are important for mammalian tissues, where they act as a cell reserve that supports normal tissue turnover and can mount a regenerative response following acute injuries. Quiescent stem cells are well established in certain tissues, such as skeletal muscle, brain, and bone marrow. The quiescent state is actively controlled and is essential for long-term maintenance of stem cell pools. In this Review, we discuss the importance of maintaining a functional pool of quiescent adult stem cells, including haematopoietic stem cells, skeletal muscle stem cells, neural stem cells, hair follicle stem cells, and mesenchymal stem cells such as fibro-adipogenic progenitors, to ensure tissue maintenance and repair. We discuss the molecular mechanisms that regulate the entry into, maintenance of, and exit from the quiescent state in mice. Recent studies revealed that quiescent stem cells have a discordance between RNA and protein levels, indicating the importance of post-transcriptional mechanisms, such as alternative polyadenylation, alternative splicing, and translation repression, in the control of stem cell quiescence. Understanding how these mechanisms guide stem cell function during homeostasis and regeneration has important implications for regenerative medicine.
Collapse
Affiliation(s)
- Antoine de Morree
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Thomas A Rando
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Yang BA, Larouche JA, Sabin KM, Fraczek PM, Parker SCJ, Aguilar CA. Three-dimensional chromatin re-organization during muscle stem cell aging. Aging Cell 2023; 22:e13789. [PMID: 36727578 PMCID: PMC10086523 DOI: 10.1111/acel.13789] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Age-related skeletal muscle atrophy or sarcopenia is a significant societal problem that is becoming amplified as the world's population continues to increase. The regeneration of damaged skeletal muscle is mediated by muscle stem cells, but in old age muscle stem cells become functionally attenuated. The molecular mechanisms that govern muscle stem cell aging encompass changes across multiple regulatory layers and are integrated by the three-dimensional organization of the genome. To quantitatively understand how hierarchical chromatin architecture changes during muscle stem cell aging, we generated 3D chromatin conformation maps (Hi-C) and integrated these datasets with multi-omic (chromatin accessibility and transcriptome) profiles from bulk populations and single cells. We observed that muscle stem cells display static behavior at global scales of chromatin organization during aging and extensive rewiring of local contacts at finer scales that were associated with variations in transcription factor binding and aberrant gene expression. These data provide insights into genome topology as a regulator of molecular function in stem cell aging.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Jacqueline A. Larouche
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Kaitlyn M. Sabin
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Paula M. Fraczek
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Stephen C. J. Parker
- Program in Cellular and Molecular BiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Computational Medicine & BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
- Department of Human GeneticsUniversity of MichiganAnn ArborMichiganUSA
| | - Carlos A. Aguilar
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
- Program in Cellular and Molecular BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
12
|
Yeh CJ, Sattler KM, Lepper C. Molecular regulation of satellite cells via intercellular signaling. Gene 2023; 858:147172. [PMID: 36621659 PMCID: PMC9928918 DOI: 10.1016/j.gene.2023.147172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Somatic stem cells are tissue-specific reserve cells tasked to sustain tissue homeostasis in adulthood and/or effect tissue regeneration after traumatic injury. The stem cells of skeletal muscle tissue are the satellite cells, which were originally described and named after their localization beneath the muscle fiber lamina and attached to the multi-nucleated muscle fibers. During adult homeostasis, satellite cells are maintained in quiescence, a state of reversible cell cycle arrest. Yet, upon injury, satellite cells are rapidly activated, becoming highly mitotically active to generate large numbers of myoblasts that differentiate and fuse to regenerate the injured muscle fibers. A subset self-renews to replenish the pool of muscle stem cells.Complex intrinsic gene regulatory networks maintain the quiescent state of satellite cells, or upon injury, direct their activation, proliferation, differentiation and self-renewal. Molecular cues from the satellite cells' environment provide the essential information as to when and where satellite cells are to stay quiescent or break quiescence and effect regenerative myogenesis. Predominantly, these cues are secreted, diffusible or membrane-bound ligands that bind to and activate their specific cognate receptors on the satellite cell to activate downstream signaling cascades and elicit context-specific cell behavior. This review aims to offer a concise overview of major intercellular signaling pathways regulating satellite cells during quiescence and in injury-induced skeletal muscle regeneration.
Collapse
Affiliation(s)
- Chung-Ju Yeh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Kristina M Sattler
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Christoph Lepper
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
13
|
Kubota M, Zhang L, Fukada SI. Flow Cytometer Analyses, Isolation, and Staining of Murine Muscle Satellite Cells. Methods Mol Biol 2023; 2640:3-11. [PMID: 36995583 DOI: 10.1007/978-1-0716-3036-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Fluorescence-activated cell sorting (FACS) is a powerful and requisite tool for the analysis and purification of adult stem cells. However, it is difficult to separate adult stem cells from solid organs than from immune-related tissues/organs. This is because of the presence of large amounts of debris, which increases noise in the FACS profiles. In particular, it is extremely difficult for unfamiliar researchers to identify muscle stem cell (also known as muscle satellite cell: MuSC) fraction because all myofibers, which are mainly composed of skeletal muscle tissues, become debris during cell preparation. This chapter describes our FACS protocol, which we have used for more than a decade, to identify and purify MuSCs.
Collapse
Affiliation(s)
- Manami Kubota
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Lidan Zhang
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| |
Collapse
|
14
|
Gioftsidi S, Relaix F, Mourikis P. The Notch signaling network in muscle stem cells during development, homeostasis, and disease. Skelet Muscle 2022; 12:9. [PMID: 35459219 PMCID: PMC9027478 DOI: 10.1186/s13395-022-00293-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/16/2022] [Indexed: 01/22/2023] Open
Abstract
Skeletal muscle stem cells have a central role in muscle growth and regeneration. They reside as quiescent cells in resting muscle and in response to damage they transiently amplify and fuse to produce new myofibers or self-renew to replenish the stem cell pool. A signaling pathway that is critical in the regulation of all these processes is Notch. Despite the major differences in the anatomical and cellular niches between the embryonic myotome, the adult sarcolemma/basement-membrane interphase, and the regenerating muscle, Notch signaling has evolved to support the context-specific requirements of the muscle cells. In this review, we discuss the diverse ways by which Notch signaling factors and other modifying partners are operating during the lifetime of muscle stem cells to establish an adaptive dynamic network.
Collapse
Affiliation(s)
- Stamatia Gioftsidi
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France
| | - Frederic Relaix
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France
- EnvA, IMRB, F-94700, Maisons-Alfort, France
- Etablissement Français du Sang (EFS), IMRB, F-94010, Creteil, France
- Assistance Publique-Hôpitaux de Paris, Hopital Mondor, Service d'Histologie, F-94010, Creteil, France
| | - Philippos Mourikis
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France.
| |
Collapse
|
15
|
Esteves de Lima J, Blavet C, Bonnin MA, Hirsinger E, Havis E, Relaix F, Duprez D. TMEM8C-mediated fusion is regionalized and regulated by NOTCH signalling during foetal myogenesis. Development 2022; 149:274065. [PMID: 35005776 DOI: 10.1242/dev.199928] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022]
Abstract
The location and regulation of fusion events within skeletal muscles during development remain unknown. Using the fusion marker myomaker (Mymk), named TMEM8C in chicken, as a readout of fusion, we identified a co-segregation of TMEM8C-positive cells and MYOG-positive cells in single-cell RNA-sequencing datasets of limbs from chicken embryos. We found that TMEM8C transcripts, MYOG transcripts and the fusion-competent MYOG-positive cells were preferentially regionalized in central regions of foetal muscles. We also identified a similar regionalization for the gene encoding the NOTCH ligand JAG2 along with an absence of NOTCH activity in TMEM8C+ fusion-competent myocytes. NOTCH function in myoblast fusion had not been addressed so far. We analysed the consequences of NOTCH inhibition for TMEM8C expression and myoblast fusion during foetal myogenesis in chicken embryos. NOTCH inhibition increased myoblast fusion and TMEM8C expression and released the transcriptional repressor HEYL from the TMEM8C regulatory regions. These results identify a regionalization of TMEM8C-dependent fusion and a molecular mechanism underlying the fusion-inhibiting effect of NOTCH in foetal myogenesis. The modulation of NOTCH activity in the fusion zone could regulate the flux of fusion events.
Collapse
Affiliation(s)
- Joana Esteves de Lima
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France.,Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, F-94010 Creteil, France
| | - Cédrine Blavet
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Marie-Ange Bonnin
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Estelle Hirsinger
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Emmanuelle Havis
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, F-94010 Creteil, France
| | - Delphine Duprez
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| |
Collapse
|
16
|
Gerrard JC, Hay JP, Adams RN, Williams JC, Huot JR, Weathers KM, Marino JS, Arthur ST. Current Thoughts of Notch's Role in Myoblast Regulation and Muscle-Associated Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312558. [PMID: 34886282 PMCID: PMC8657396 DOI: 10.3390/ijerph182312558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022]
Abstract
The evolutionarily conserved signaling pathway Notch is unequivocally essential for embryogenesis. Notch’s contribution to the muscle repair process in adult tissue is complex and obscure but necessary. Notch integrates with other signals in a functional antagonist manner to direct myoblast activity and ultimately complete muscle repair. There is profound recent evidence describing plausible mechanisms of Notch in muscle repair. However, the story is not definitive as evidence is slowly emerging that negates Notch’s importance in myoblast proliferation. The purpose of this review article is to examine the prominent evidence and associated mechanisms of Notch’s contribution to the myogenic repair phases. In addition, we discuss the emerging roles of Notch in diseases associated with muscle atrophy. Understanding the mechanisms of Notch’s orchestration is useful for developing therapeutic targets for disease.
Collapse
Affiliation(s)
- Jeffrey C. Gerrard
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Jamison P. Hay
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Ryan N. Adams
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - James C. Williams
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Joshua R. Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Kaitlin M. Weathers
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Joseph S. Marino
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Susan T. Arthur
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
- Correspondence:
| |
Collapse
|
17
|
Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix-Loop-Helix Transcription Factors. Int J Mol Sci 2021; 22:ijms222312855. [PMID: 34884664 PMCID: PMC8657788 DOI: 10.3390/ijms222312855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
The basic helix–loop–helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell’s fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.
Collapse
|
18
|
Fukada SI, Ito N. Regulation of muscle hypertrophy: Involvement of the Akt-independent pathway and satellite cells in muscle hypertrophy. Exp Cell Res 2021; 409:112907. [PMID: 34793776 DOI: 10.1016/j.yexcr.2021.112907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Skeletal muscles are composed of multinuclear cells called myofibers and have unique abilities, one of which is plasticity. In response to the mechanical load induced by physical activity, skeletal muscle exerts several local adaptations, including an increase in myofiber size and myonuclear number, known as muscle hypertrophy. Protein synthesis and muscle satellite cells (MuSCs) are mainly responsible for these adaptations. However, the upstream signaling pathways that promote protein synthesis remain controversial. Further, the necessity of MuSCs in muscle hypertrophy is also a highly debated issue. In this review, we summarized the insulin-like growth factor 1 (IGF-1)/Akt-independent activation of mammalian target of rapamycin (mTOR) signaling in muscle hypertrophy and the involvement of mTOR signaling in age-related loss of skeletal muscle function and mass and in sarcopenia. The roles and behaviors of MuSCs, characteristics of new myonuclei in muscle hypertrophy, and their relevance to sarcopenia have also been updated in this review.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| | - Naoki Ito
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| |
Collapse
|
19
|
Zhao L, Law NC, Gomez NA, Son J, Gao Y, Liu X, de Avila JM, Zhu M, Du M. Obesity Impairs Embryonic Myogenesis by Enhancing BMP Signaling within the Dermomyotome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102157. [PMID: 34647690 PMCID: PMC8596142 DOI: 10.1002/advs.202102157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/16/2021] [Indexed: 05/05/2023]
Abstract
Obesity during pregnancy leads to adverse health outcomes in offspring. However, the initial effects of maternal obesity (MO) on embryonic organogenesis have yet to be thoroughly examined. Using unbiased single-cell transcriptomic analyses (scRNA-seq), the effects of MO on the myogenic process is investigated in embryonic day 9.5 (E9.5) mouse embryos. The results suggest that MO induces systematic hypoxia, which is correlated with enhanced BMP signaling and impairs skeletal muscle differentiation within the dermomyotome (DM). The Notch-signaling effectors, HES1 and HEY1, which also act down-stream of BMP signaling, suppress myogenic differentiation through transcriptionally repressing the important myogenic regulator MEF2C. Moreover, the major hypoxia effector, HIF1A, enhances expression of HES1 and HEY1 and blocks myogenic differentiation in vitro. In summary, this data demonstrate that MO induces hypoxia and impairs myogenic differentiation by up-regulating BMP signaling within the DM, which may account for the disruptions of skeletal muscle development and function in progeny.
Collapse
Affiliation(s)
- Liang Zhao
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciencesand School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
- Department of Animal SciencesWashington State UniversityPullmanWA99164USA
| | - Nathan C. Law
- Department of Animal SciencesWashington State UniversityPullmanWA99164USA
- Center for Reproductive BiologyCollege of Veterinary MedicineWashington State UniversityPullmanWA99164USA
| | - Noe A. Gomez
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciencesand School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
- Department of Animal SciencesWashington State UniversityPullmanWA99164USA
| | - Junseok Son
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciencesand School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
- Department of Animal SciencesWashington State UniversityPullmanWA99164USA
| | - Yao Gao
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciencesand School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
- Department of Animal SciencesWashington State UniversityPullmanWA99164USA
| | - Xiangdong Liu
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciencesand School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
- Department of Animal SciencesWashington State UniversityPullmanWA99164USA
| | - Jeanene M. de Avila
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciencesand School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
- Department of Animal SciencesWashington State UniversityPullmanWA99164USA
| | - Mei‐Jun Zhu
- School of Food ScienceWashington State UniversityPullmanWA99164USA
| | - Min Du
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciencesand School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
- Department of Animal SciencesWashington State UniversityPullmanWA99164USA
| |
Collapse
|
20
|
Sultan SHA, Dyer C, Knight RD. Notch Signaling Regulates Muscle Stem Cell Homeostasis and Regeneration in a Teleost Fish. Front Cell Dev Biol 2021; 9:726281. [PMID: 34650976 PMCID: PMC8505724 DOI: 10.3389/fcell.2021.726281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Muscle regeneration is mediated by the activity of resident muscle satellite cells (muSCs) that express Pax7. In mouse Notch signaling regulates muSCs during quiescence and promotes muSC proliferation in regeneration. It is unclear if these roles of Notch in regulating muSC biology are conserved across vertebrates or are a mammalian specific feature. We have therefore investigated the role of Notch in regulating muSC homeostasis and regeneration in a teleost fish, the zebrafish. We have also tested whether muSCs show differential sensitivity to Notch during myotome development. In an absence of injury Notch is important for preventing muSC proliferation at the vertical myoseptum. In contrast, Notch signaling promotes proliferation and prevents differentiation in the context of injury. Notch is required for the proliferative response to injury at early and later larval stages, suggesting it plays a similar role in regulating muSCs at developing and adult stages. Our results reveal a conserved role for Notch signaling in regulating muSCs under homeostasis and for promoting proliferation during regeneration in teleost fish.
Collapse
Affiliation(s)
- Sami H A Sultan
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - Carlene Dyer
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Robert D Knight
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
21
|
Fukada SI, Nakamura A. Exercise/Resistance Training and Muscle Stem Cells. Endocrinol Metab (Seoul) 2021; 36:737-744. [PMID: 34372625 PMCID: PMC8419599 DOI: 10.3803/enm.2021.401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
Skeletal muscle has attracted attention as endocrine organ, because exercise-dependent cytokines called myokines/exerkines are released from skeletal muscle and are involved in systemic functions. While, local mechanical loading to skeletal muscle by exercise or resistance training alters myofiber type and size and myonuclear number. Skeletal muscle-resident stem cells, known as muscle satellite cells (MuSCs), are responsible for the increased number of myonuclei. Under steady conditions, MuSCs are maintained in a mitotically quiescent state but exit from that state and start to proliferate in response to high physical activity. Alterations in MuSC behavior occur when myofibers are damaged, but the lethal damage to myofibers does not seem to evoke mechanical loading-dependent MuSC activation and proliferation. Given that MuSCs proliferate without damage, it is unclear how the different behaviors of MuSCs are controlled by different physical activities. Recent studies demonstrated that myonuclear number reflects the size of myofibers; hence, it is crucial to know the properties of MuSCs and the mechanism of myonuclear accretion by MuSCs. In addition, the elucidation of mechanical load-dependent changes in muscle resident cells, including MuSCs, will be necessary for the discovery of new myokines/exerkines and understating skeletal muscle diseases.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Ayasa Nakamura
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
22
|
Time trajectories in the transcriptomic response to exercise - a meta-analysis. Nat Commun 2021; 12:3471. [PMID: 34108459 PMCID: PMC8190306 DOI: 10.1038/s41467-021-23579-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/28/2021] [Indexed: 01/07/2023] Open
Abstract
Exercise training prevents multiple diseases, yet the molecular mechanisms that drive exercise adaptation are incompletely understood. To address this, we create a computational framework comprising data from skeletal muscle or blood from 43 studies, including 739 individuals before and after exercise or training. Using linear mixed effects meta-regression, we detect specific time patterns and regulatory modulators of the exercise response. Acute and long-term responses are transcriptionally distinct and we identify SMAD3 as a central regulator of the exercise response. Exercise induces a more pronounced inflammatory response in skeletal muscle of older individuals and our models reveal multiple sex-associated responses. We validate seven of our top genes in a separate human cohort. In this work, we provide a powerful resource (www.extrameta.org) that expands the transcriptional landscape of exercise adaptation by extending previously known responses and their regulatory networks, and identifying novel modality-, time-, age-, and sex-associated changes. Regular exercise promotes overall health and prevents non-communicable diseases, but the adaptation mechanisms are unclear. Here, the authors perform a meta-analysis to reveal time-specific patterns of the acute and long-term exercise response in human skeletal muscle, and identify sex- and age-specific changes.
Collapse
|
23
|
Zmojdzian M, Jagla K. The relationship between muscle stem cells and motor neurons. Cell Mol Life Sci 2021; 78:5043-5049. [PMID: 33861361 PMCID: PMC11072985 DOI: 10.1007/s00018-021-03838-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Neuromuscular system is constituted of multi-fibrillar muscles, tendons, motor neurons and associated muscle stem cells. Stereotyped pattern of muscle innervation and muscle-specific interactions with tendon cells suggest that neuromuscular system develops in a coordinated way. Remarkably, upon regeneration, coordinated assembly of all neuromuscular components is also critical to rebuild functional muscle. Thus, to ensure muscle function, the neuromuscular system components need to interact both during development and regeneration. Over the last decades, interactions between muscles and tendons, muscles and motor neurons and between muscles and muscle stem cells have been extensively analysed and documented. However, only recent evidence indicates that muscle stem cells interact with motor neurons and that these interactions contribute to building functional muscle both during development and regeneration. From this perspective, we discuss here the relationship between muscle stem cells and motor neurons during Drosophila neuromuscular system development and adverse impact of affected muscle stem cell-motor neuron interactions in regenerating vertebrate muscle.
Collapse
Affiliation(s)
- Monika Zmojdzian
- GReD Institute-INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Krzysztof Jagla
- GReD Institute-INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France.
| |
Collapse
|
24
|
Blackburn DM, Lazure F, Soleimani VD. SMART approaches for genome-wide analyses of skeletal muscle stem and niche cells. Crit Rev Biochem Mol Biol 2021; 56:284-300. [PMID: 33823731 DOI: 10.1080/10409238.2021.1908950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Muscle stem cells (MuSCs) also called satellite cells are the building blocks of skeletal muscle, the largest tissue in the human body which is formed primarily of myofibers. While MuSCs are the principal cells that directly contribute to the formation of the muscle fibers, their ability to do so depends on critical interactions with a vast array of nonmyogenic cells within their niche environment. Therefore, understanding the nature of communication between MuSCs and their niche is of key importance to understand how the skeletal muscle is maintained and regenerated after injury. MuSCs are rare and therefore difficult to study in vivo within the context of their niche environment. The advent of single-cell technologies, such as switching mechanism at 5' end of the RNA template (SMART) and tagmentation based technologies using hyperactive transposase, afford the unprecedented opportunity to perform whole transcriptome and epigenome studies on rare cells within their niche environment. In this review, we will delve into how single-cell technologies can be applied to the study of MuSCs and muscle-resident niche cells and the impact this can have on our understanding of MuSC biology and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Darren M Blackburn
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| |
Collapse
|
25
|
Zhang L, Kubota M, Nakamura A, Kaji T, Seno S, Uezumi A, Andersen DC, Jensen CH, Fukada SI. Dlk1 regulates quiescence in calcitonin receptor-mutant muscle stem cells. Stem Cells 2021; 39:306-317. [PMID: 33295098 DOI: 10.1002/stem.3312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022]
Abstract
Muscle stem cells, also called muscle satellite cells (MuSCs), are responsible for skeletal muscle regeneration and are sustained in an undifferentiated and quiescent state under steady conditions. The calcitonin receptor (CalcR)-protein kinase A (PKA)-Yes-associated protein 1 (Yap1) axis is one pathway that maintains quiescence in MuSCs. Although CalcR signaling in MuSCs has been identified, the critical CalcR signaling targets are incompletely understood. Here, we show the relevance between the ectopic expression of delta-like non-canonical Notch ligand 1 (Dlk1) and the impaired quiescent state in CalcR-conditional knockout (cKO) MuSCs. Dlk1 expression was rarely detected in both quiescent and proliferating MuSCs in control mice, whereas Dlk1 expression was remarkably increased in CalcR-cKO MuSCs at both the mRNA and protein levels. It is noteworthy that all Ki67+ non-quiescent CalcR-cKO MuSCs express Dlk1, and non-quiescent CalcR-cKO MuSCs are enriched in the Dlk1+ fraction by cell sorting. Using mutant mice, we demonstrated that PKA-activation or Yap1-depletion suppressed Dlk1 expression in CalcR-cKO MuSCs, which suggests that the CalcR-PKA-Yap1 axis inhibits the expression of Dlk1 in quiescent MuSCs. Moreover, the loss of Dlk1 rescued the quiescent state in CalcR-cKO MuSCs, which indicates that the ectopic expression of Dlk1 disturbs quiescence in CalcR-cKO. Collectively, our results suggest that ectopically expressed Dlk1 is responsible for the impaired quiescence in CalcR-cKO MuSCs.
Collapse
Affiliation(s)
- Lidan Zhang
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Manami Kubota
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Ayasa Nakamura
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takayuki Kaji
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Itabashi, Tokyo, Japan
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
- Clinical Institute, University of Southern Denmark, Odense C, Denmark
| | - Charlotte Harken Jensen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
26
|
Harzer W, Augstein A, Juenger D, Keil C, Weiland B. Notch expression profile and satellite cell stimulation in masseter muscle before and after orthognathic surgery. J Craniomaxillofac Surg 2020; 49:93-97. [PMID: 33357968 DOI: 10.1016/j.jcms.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/19/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022] Open
Abstract
The aim of this prospective study was to compare the expression of the Notch receptor family with the biomarker for stimulation of satellite cells (SC), which are responsible for functional adaptation. Tissue samples from the masseter muscle were taken presurgically and 7 months later. Samples from controls came from the extraction of third molars. The expression of Notch 1 to 4 and the satellite cell markers CD34, Pax7, and MyoD1 were investigated. PCR was used for relative quantification of gene expression, which was calculated with the ΔΔCT method. The study involved 38 white patients - 10 prognathic, 18 retrognathic, and 10 orthognathic controls. The median value for Notch 1 was significantly reduced presurgically for prognathic (0.46, SD 0.45) and retrognathic (0.57, SD 0.35) patients compared with the controls. Postsurgically, Notch 2 was significantly upregulated in the prognathic group (0.55, SD 0.28/1.37, SD 0.85). Similarly, there was upregulation of Notch 3 in the prognathic group (0.33, SD 0.42/0.59, SD 1.37) and downregulation in retrognathic patients (0.59, SD 0.79/0.52, SD 0.97). Upregulations for the satellite cell markers CD34 and Pax7 were also found in prognathic patients. The significant upregulation of Notch 1-3 and CD34 in prognathics, but unchanged MyoD expression, signals high stimulation for SC and maintenance of the regeneration cell pool. A lower expression of Notch and SC in retrognathic patients could be responsible for weak functional adaptation.
Collapse
Affiliation(s)
- Winfried Harzer
- Department of Orthodontics, Technical University of Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Antje Augstein
- Center for Heart Diseases, Fetscherstr. 76, 01307, Dresden, Germany
| | - Diana Juenger
- Department of Oral and Maxillofacial Surgery, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Christiane Keil
- Department of Orthodontics, Technical University of Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Bernhard Weiland
- Department of Oral and Maxillofacial Surgery, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
27
|
Qi X, Hu M, Xiang Y, Wang D, Xu Y, Hou Y, Zhou H, Luan Y, Wang Z, Zhang W, Li X, Zhao S, Zhao Y. LncRNAs are regulated by chromatin states and affect the skeletal muscle cell differentiation. Cell Prolif 2020; 53:e12879. [PMID: 32770602 PMCID: PMC7507427 DOI: 10.1111/cpr.12879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Objective This study aims to clarify the mechanisms underlying transcriptional regulation and regulatory roles of lncRNAs in skeletal muscle cell differentiation. Methods We analysed the expression patterns of lncRNAs via time‐course RNA‐seq. Then, we further combined the ATAC‐seq and ChIP‐seq to investigate the governing mechanisms of transcriptional regulation of differentially expressed (DE) lncRNAs. Weighted correlation network analysis and GO analysis were conducted to identify the transcription factor (TF)‐lncRNA pairs related to skeletal muscle cell differentiation. Results We identified 385 DE lncRNAs during C2C12 differentiation, the transcription of which is determined by chromatin states around their transcriptional start sites. The TF‐lncRNA correlation network showed substantially concordant changes in DE lncRNAs between C2C12 differentiation and satellite cell rapid growth stages. Moreover, the up‐regulated lncRNAs showed a significant decrease following the differentiation capacity of satellite cells, which gradually declines during skeletal muscle development. Notably, inhibition of the lncRNA Atcayos and Trp53cor1 led to the delayed differentiation of satellite cells. Those lncRNAs were significantly up‐regulated during the rapid growth stage of satellite cells (4‐6 weeks) and down‐regulated with reduced differentiation capacity (8‐12 weeks). It confirms that these lncRNAs are positively associated with myogenic differentiation of satellite cells during skeletal muscle development. Conclusions This study extends the understanding of mechanisms governing transcriptional regulation of lncRNAs and provides a foundation for exploring their functions in skeletal muscle cell differentiation.
Collapse
Affiliation(s)
- Xiaolong Qi
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Mingyang Hu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yue Xiang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Daoyuan Wang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yueyuan Xu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Ye Hou
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Huanhuan Zhou
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yu Luan
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhangxu Wang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Weiya Zhang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yunxia Zhao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Androgen receptor in satellite cells is not essential for muscle regenerations. EXPERIMENTAL RESULTS 2020. [DOI: 10.1017/exp.2020.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AbstractThe anabolic effects of androgen on skeletal muscles are thought to be mediated by androgen receptor (AR). Although multiple studies concerning the effects of AR in males have been performed, the molecular mechanisms of AR in skeletal muscles remain unclear. Here we first confirmed that satellite cells from mouse hindlimb muscles express AR. We then generated satellite cell-specific AR knockout mice using Pax7CreERT2 and ARL2/Y mice to test whether AR in satellite cells is necessary for muscle regeneration. Surprisingly, we found that muscle regeneration was compromised in both Pax7CreERT2(Fan)/+ control mice and Pax7CreERT2(Fan)/+;ARL2/Y mice compared to ARL2/Y mice. However, Pax7CreERT2(Gaka)/+;ARL2/Y;R26tdTomato/+ mice showed no significant differences between control and mutant muscle regeneration. These findings indicate that AR in satellite cells is not essential for muscle regeneration. We propose that Pax7CreERT2(Fan)/+ control mice should be included in all experiments, because these mice negatively affect the muscle regeneration and show the mild regeneration phenotype.
Collapse
|
29
|
Liu H, Ni S, Wang H, Zhang Q, Weng W. Charactering tumor microenvironment reveals stromal-related transcription factors promote tumor carcinogenesis in gastric cancer. Cancer Med 2020; 9:5247-5257. [PMID: 32463580 PMCID: PMC7367614 DOI: 10.1002/cam4.3133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Transcription factors represent the crucial role of controlling gene transcription in cancer development and progression. However, their functions in gastric cancer have not been thoroughly characterized. For this study, we comprehensively evaluated the correlation between infiltration patterns of tumor microenvironment (TME) cells and TFs expression in the cohort of stomach adenocarcinoma (STAD) from TCGA database. We integrally explored differential expression panel and prognostic value of candidate TFs in TCGA‐STAD cohort. Notably, we found a key transcription factor named HEYL, which its expression level was correlated with stromal component transformation of TME. HEYL was regularly high expressed in gastric cancer and correlated with patients’ poor prognosis. Knockdown of HEYL prominently abrogated the tendency of cell proliferation, migration, and progression in gastric cancer. Consistently, overexpression of HEYL strikingly accelerated the gastric carcinoma development through activating oncogenic signaling pathways and transcriptional activation of cadherin 11 (CDH11). Our findings not only identified the close relationship between TFs and TME phenotype, but also emphasized the crucial importance of TFs, especially HEYL, which could be identified as a candidate biomarker to evaluate prognostic risk and therapeutic effect in gastric cancer.
Collapse
Affiliation(s)
- Haining Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Shujuan Ni
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hanbo Wang
- Jining Medical University, Jining, China
| | - Qiongyan Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiwei Weng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
30
|
Fukada SI, Akimoto T, Sotiropoulos A. Role of damage and management in muscle hypertrophy: Different behaviors of muscle stem cells in regeneration and hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118742. [PMID: 32417255 DOI: 10.1016/j.bbamcr.2020.118742] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is a dynamic tissue with two unique abilities; one is its excellent regenerative ability, due to the activity of skeletal muscle-resident stem cells named muscle satellite cells (MuSCs); and the other is the adaptation of myofiber size in response to external stimulation, intrinsic factors, or physical activity, which is known as plasticity. Low physical activity and some disease conditions lead to the reduction of myofiber size, called atrophy, whereas hypertrophy refers to the increase in myofiber size induced by high physical activity or anabolic hormones/drugs. MuSCs are essential for generating new myofibers during regeneration and the increase in new myonuclei during hypertrophy; however, there has been little investigation of the molecular mechanisms underlying MuSC activation, proliferation, and differentiation during hypertrophy compared to those of regeneration. One reason is that 'degenerative damage' to myofibers during muscle injury or upon hypertrophy (especially overloaded muscle) is believed to trigger similar activation/proliferation of MuSCs. However, evidence suggests that degenerative damage of myofibers is not necessary for MuSC activation/proliferation during hypertrophy. When considering MuSC-based therapy for atrophy, including sarcopenia, it will be indispensable to elucidate MuSC behaviors in muscles that exhibit non-degenerative damage, because degenerated myofibers are not present in the atrophied muscles. In this review, we summarize recent findings concerning the relationship between MuSCs and hypertrophy, and discuss what remains to be discovered to inform the development and application of relevant treatments for muscle atrophy.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| | | | - Athanassia Sotiropoulos
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France
| |
Collapse
|
31
|
Loss of the serine protease HTRA1 impairs smooth muscle cells maturation. Sci Rep 2019; 9:18224. [PMID: 31796853 PMCID: PMC6890777 DOI: 10.1038/s41598-019-54807-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/13/2019] [Indexed: 01/29/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) dysfunction is a hallmark of small vessel disease, a common cause of stroke and dementia. Two of the most frequently mutated genes in familial small vessel disease are HTRA1 and NOTCH3. The protease HTRA1 cleaves the NOTCH3 ligand JAG1 implying a mechanistic link between HTRA1 and Notch signaling. Here we report that HTRA1 is essential for VSMC differentiation into the contractile phenotype. Mechanistically, loss of HTRA1 increased JAG1 protein levels and NOTCH3 signaling activity in VSMC. In addition, the loss of HTRA1 enhanced TGFβ-SMAD2/3 signaling activity. Activation of either NOTCH3 or TGFβ signaling resulted in increased transcription of the HES and HEY transcriptional repressors and promoted the contractile VSMC phenotype. However, their combined over-activation led to an additive accumulation of HES and HEY proteins, which repressed the expression of contractile VSMC marker genes. As a result, VSMC adopted an immature phenotype with impaired arterial vasoconstriction in Htra1-deficient mice. These data demonstrate an essential role of HTRA1 in vascular maturation and homeostasis by controlling Notch and TGFβ signaling.
Collapse
|
32
|
Fukuda S, Kaneshige A, Kaji T, Noguchi YT, Takemoto Y, Zhang L, Tsujikawa K, Kokubo H, Uezumi A, Maehara K, Harada A, Ohkawa Y, Fukada SI. Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle. eLife 2019; 8:48284. [PMID: 31545169 PMCID: PMC6768661 DOI: 10.7554/elife.48284] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022] Open
Abstract
In overloaded and regenerating muscle, the generation of new myonuclei depends on muscle satellite cells (MuSCs). Because MuSC behaviors in these two environments have not been considered separately, MuSC behaviors in overloaded muscle remain unexamined. Here, we show that most MuSCs in overloaded muscle, unlike MuSCs in regenerating muscle, proliferate in the absence of MyoD expression. Mechanistically, MuSCs in overloaded muscle sustain the expression of Heyl, a Notch effector gene, to suppress MyoD expression, which allows effective MuSC proliferation on myofibers and beneath the basal lamina. Although Heyl-knockout mice show no impairment in an injury model, in a hypertrophy model, their muscles harbor fewer new MuSC-derived myonuclei due to increased MyoD expression and diminished proliferation, which ultimately causes blunted hypertrophy. Our results show that sustained HeyL expression is critical for MuSC proliferation specifically in overloaded muscle, and thus indicate that the MuSC-proliferation mechanism differs in overloaded and regenerating muscle.
Collapse
Affiliation(s)
- Sumiaki Fukuda
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, Takatsuki, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Akihiro Kaneshige
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, Takatsuki, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takayuki Kaji
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Yu-Taro Noguchi
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Yusei Takemoto
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Lidan Zhang
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Hiroki Kokubo
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
33
|
Abstract
A handful of core intercellular signaling pathways play pivotal roles in a broad variety of developmental processes. It has remained puzzling how so few pathways can provide the precision and specificity of cell-cell communication required for multicellular development. Solving this requires us to quantitatively understand how developmentally relevant signaling information is actively sensed, transformed and spatially distributed by signaling pathways. Recently, single cell analysis and cell-based reconstitution, among other approaches, have begun to reveal the 'communication codes' through which information is represented in the identities, concentrations, combinations and dynamics of extracellular ligands. They have also revealed how signaling pathways decipher these features and control the spatial distribution of signaling in multicellular contexts. Here, we review recent work reporting the discovery and analysis of communication codes and discuss their implications for diverse developmental processes.
Collapse
Affiliation(s)
- Pulin Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| |
Collapse
|