1
|
Niculovic KM, Vicente MM, Wittek V, Kats E, Albers I, Flächsig-Schulz K, Peters-Bernard U, Weiss AC, Thiesler H, Dräger LS, Taft MH, Jörns A, Bakker H, Hildebrandt H, Mühlenhoff M, Weinhold B, Abeln M, Münster-Kühnel AK. Polysialic acid regulates glomerular microvasculature formation by interaction with VEGF-A188 in mice. Angiogenesis 2025; 28:31. [PMID: 40411622 PMCID: PMC12103385 DOI: 10.1007/s10456-025-09984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 05/13/2025] [Indexed: 05/26/2025]
Abstract
Vascular endothelial growth factor A (VEGF-A) is a key signalling protein that stimulates blood vessel development and repair. Its tight control is essential for organ development and tissue homeostasis. However, the complex regulatory network for balanced bioavailability of VEGF-A is not fully understood. Here, we assessed the role of the glycocalyx component polysialic acid (polySia) for kidney development and its potential interactions with VEGF-A isoforms, in vitro and in vivo, using mouse models of polySia deficiency. PolySia acts as negative regulator of cell adhesion, but also may interact with extracellular components. In murine kidney, polySia was identified on nephron progenitor and endothelial cell subsets in developing nephrons with declining expression during maturation. Loss of polySia in Ncam-/- mice revealed the neural cell adhesion molecule NCAM as major protein carrier. Both polysialyltransferase-negative and Ncam-/- mice displayed impaired glomerular microvasculature development with reduced endothelial cell numbers, reminiscent to the phenotype of mice with impaired VEGF-A signalling. In vitro, immobilized polySia specifically interacted with the VEGF-A188 isoform demonstrating an isoform-specific direct interaction. Single cell RNA sequencing data analysis of newborn mouse kidneys implicated activation of VEGF-A-signalling in polysialyltransferase-positive endothelial cells. Consistently, loss of polySia resulted in diminished VEGFR2 activation in perinatal kidney and human endothelial cells. At transcriptional level, the expression of polysialyltransferases and known polySia carrier proteins is conserved in human developing kidney. Together, these data demonstrate a direct impact of polySia on VEGF-A signalling with the perspective that polysialylation could be a therapeutic target to ameliorate microvasculature repair after renal injury.
Collapse
Affiliation(s)
- Kristina M Niculovic
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Manuel M Vicente
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Vanessa Wittek
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Elina Kats
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Iris Albers
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kerstin Flächsig-Schulz
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ulrike Peters-Bernard
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Anna-Carina Weiss
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Laura S Dräger
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Herbert Hildebrandt
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Martina Mühlenhoff
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Birgit Weinhold
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Markus Abeln
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Anja K Münster-Kühnel
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
2
|
Huang J, Yan B, Wu H, Yang H, Luan S, Yu H, Shi W, Ye P, Yuan F, Yan Q, Liu F, Yin L, Tang D, Dai Y. Single cell transcription revealing key transcription factors in embryonic kidney development. Mol Cell Biochem 2025:10.1007/s11010-025-05307-x. [PMID: 40392427 DOI: 10.1007/s11010-025-05307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
The development of the kidney is a complex process involving the differentiation of renal progenitor cells into various specialized cell types, including renal tubular epithelial cells and podocytes. Understanding the molecular mechanisms that govern this differentiation process is crucial for unraveling the intricacies of kidney development. Recent advances in single-cell RNA sequencing technology have enabled researchers to explore the heterogeneity of renal progenitor cells at an unprecedented resolution, offering new insights into the distinct subpopulations and transcriptional landscapes within these cells. Our analysis revealed the presence of distinct subpopulations within renal progenitor cells. Furthermore, we identified key transcription factors that are crucial for the differentiation of these progenitors into renal tubular epithelial cells and podocytes. These findings provide new insights into the molecular mechanisms of kidney development, highlighting the role of specific transcription factors in the differentiation of renal progenitor cells. Although further research is needed to fully validate these findings and their therapeutic potential, this study provides a valuable foundation for future exploration of kidney regeneration strategies.
Collapse
Affiliation(s)
- Jingxian Huang
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
- Institute of Kidney Disease and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Bing Yan
- Institute of Kidney Disease and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Hongwei Wu
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
- Institute of Kidney Disease and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Hougang Yang
- Comprehensive Health Industry Research Center, Southern University of Science and Technology Taizhou Research Institute, Taizhou, 318000, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Haiyan Yu
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Wei Shi
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Pingping Ye
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Fang Yuan
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Qiang Yan
- Department of Organ Transplantation, The 924th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Guilin, 541002, China
| | - Fanna Liu
- Institute of Kidney Disease and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Lianghong Yin
- Institute of Kidney Disease and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Donge Tang
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China.
| | - Yong Dai
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China.
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
- Comprehensive Health Industry Research Center, Southern University of Science and Technology Taizhou Research Institute, Taizhou, 318000, China.
| |
Collapse
|
3
|
Sarami I, Hekman KE, Gupta AK, Snider JM, Ivancic D, Zec M, Kandpal M, Ben-Sahra I, Menon R, Otto EA, Chilton FH, Wertheim JA. Parallel multiOMIC analysis reveals glutamine deprivation enhances directed differentiation of renal organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640060. [PMID: 40060393 PMCID: PMC11888470 DOI: 10.1101/2025.02.27.640060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Metabolic pathways play a critical role in driving differentiation but remain poorly understood in the development of kidney organoids. In this study, parallel metabolite and transcriptome profiling of differentiating human pluripotent stem cells (hPSCs) to multicellular renal organoids revealed key metabolic drivers of the differentiation process. In the early stage, transitioning from hPSCs to nephron progenitor cells (NPCs), both the glutamine and the alanine-aspartate-glutamate pathways changed significantly, as detected by enrichment and pathway impact analyses. Intriguingly, hPSCs maintained their ability to generate NPCs, even when deprived of both glutamine and glutamate. Surprisingly, single cell RNA-Seq analysis detected enhanced maturation and enrichment for podocytes under glutamine-deprived conditions. Together, these findings illustrate a novel role of glutamine metabolism in regulating podocyte development.
Collapse
Affiliation(s)
- Iman Sarami
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Jesse Brown VA Medical Center, Chicago, IL
- Department of Hematopathology and Molecular Diagnostics Laboratory at the University of Texas MD, Anderson Cancer Center, Houston, TX
| | - Katherine E. Hekman
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Jesse Brown VA Medical Center, Chicago, IL
- Atlanta VA Healthcare System, Decatur, GA
- Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Ashwani Kumar Gupta
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ
- Southern Arizona VA Healthcare System, Tucson, AZ
| | - Justin M. Snider
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ
| | - David Ivancic
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Jesse Brown VA Medical Center, Chicago, IL
| | - Manja Zec
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Manoj Kandpal
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Clinical and Translational Science, Rockefeller University Hospital, New York, NY
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Edgar A. Otto
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Floyd H. Chilton
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ
| | - Jason A. Wertheim
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Jesse Brown VA Medical Center, Chicago, IL
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ
- Southern Arizona VA Healthcare System, Tucson, AZ
| |
Collapse
|
4
|
Zheng T, Yang R, Li X, Dai Z, Xiang H. Integrative transcriptome analysis reveals Serpine2 promotes glomerular mesangial cell proliferation and extracellular matrix accumulation via activating ERK1/2 signalling pathway in diabetic nephropathy. Diabetes Obes Metab 2025; 27:750-766. [PMID: 39557806 DOI: 10.1111/dom.16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the main causes of end-stage renal disease (ESRD), but its mechanism has not been clearly studied. We utilized integrative transcriptome analysis to explore the pathogenesis of DN. METHODS We conducted an analysis by combining bulk dataset and single-cell transcriptome dataset. Through this approach, we identified that Serpine2 may regulate the 'collagen-containing extracellular matrix' pathway involved in DN. Subsequently, we established DN animal and cell models using db/db mice and mesangial cells (MCs) to validate the role of Serpine2 in DN. In the animal model, we detected the expression level of Serpine2 in DN using western blotting (WB) and immunofluorescence (IF) assays. To further clarify the molecular mechanism of Serpine2 in DN, we knocked down Serpine2 and observed its effects on MCs proliferation and extracellular matrix (ECM) accumulation. RESULTS Our single-cell analysis of DN models highlighted a pivotal role for MCs in the disease's initiation. Next, through Cytoscape analysis of differentially expressed genes (DEGs) in MCs, we identified the following 10 hub genes: Acta2, Angpt2, Ccn1, Col4a1, Col4a2, Col8a1, Kdr, Thbs1, Tpm4 and Serpine2. Subsequently, we identified that Serpine2 and Kdr were also significantly DEGs in the bulk analysis of glomeruli. Additionally, our integrated gene set enrichment analysis of bulk dataset and single-cell RNA dataset revealed that the 'collagen-containing extracellular matrix' was a key pathway in DN progression. Serpine2 was one of the crucial genes involved in regulating this pathway. Therefore, we speculated that the regulation of the 'collagen-containing extracellular matrix' pathway by Serpine2 was an important mechanism. Importantly, WB and IF staining confirmed that Serpine2 expression was upregulated in the MCs of diabetic mice. Knockdown of Serpine2 in cultured MCs alleviated high-glucose-induced excessive MCs proliferation and ECM accumulation. Finally, we found that ERK agonist Ro 67-7476 eliminated the effect of Serpine2 siRNA. CONCLUSIONS In summary, Serpine2 regulates MCs proliferation and ECM synthesis through activation of the ERK1/2 pathway, which is an important pathogenesis mechanism of DN. These findings offer fresh perspectives on the mechanisms of glomerulosclerosis in DN pathogenesis and may provide new targets for treating DN.
Collapse
Affiliation(s)
- Ting Zheng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ruhao Yang
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Li
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongyu Xiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Tan W, Chen J, Wang Y, Xiang K, Lu X, Han Q, Hou M, Yang J. Single-cell RNA sequencing in diabetic kidney disease: a literature review. Ren Fail 2024; 46:2387428. [PMID: 39099183 DOI: 10.1080/0886022x.2024.2387428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD), and its pathogenesis has not been clarified. Current research suggests that DKD involves multiple cell types and extra-renal factors, and it is particularly important to clarify the pathogenesis and identify new therapeutic targets. Single-cell RNA sequencing (scRNA-seq) technology is high-throughput sequencing of the transcriptomes of individual cells at the single-cell level, which is an effective technology for exploring the development of diseases by comparing genetic information, reflecting the differences in genetic information between cells, and identifying different cell subpopulations. Accumulating evidence supports the role of scRNA-seq in revealing the pathogenesis of diabetes and strengthening our understanding of the molecular mechanisms of DKD. We reviewed the scRNA-seq data this time. Then, we analyzed and discussed the applications of scRNA-seq technology in DKD research, including annotation of cell types, identification of novel cell types (or subtypes), identification of intercellular communication, analysis of cell differentiation trajectories, gene expression detection, and analysis of gene regulatory networks, and lastly, we explored the future perspectives of scRNA-seq technology in DKD research.
Collapse
Affiliation(s)
- Wei Tan
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaoyan Chen
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunyan Wang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kui Xiang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xianqiong Lu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyu Han
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingyue Hou
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Sahara Y, Fukui C, Kuniyoshi Y, Takasato M. Proximal tubule cell maturation rate and function are controlled by PPARα signaling in kidney organoids. Commun Biol 2024; 7:1532. [PMID: 39604738 PMCID: PMC11603349 DOI: 10.1038/s42003-024-07069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
Human pluripotent stem cell-derived kidney organoids are expected to be a useful tool for new drug discoveries, however, the immaturation of kidney organoids causes difficulties in recapitulating renal pharmacokinetics using organoids. Here, we performed time-course single-cell RNA sequencing of kidney organoids and revealed cell heterogeneity in the maturation rate of the proximal tubule. An unbiased analysis to identify upstream targets of genes that are expressed differentially between cells with low and high maturation rates revealed a higher activation of PPARα signaling in rapidly maturing cells. Treatment with a combination of a PPARα agonist and an RXRα agonist induced genes related to proximal tubule maturation and increased the capacity for protein uptake as well as the sensitivity to nephrotoxicity by cisplatin. This method to promote the maturation rate of proximal tubule cells has the potential to be utilized in microphysiological systems to recapitulate proximal tubule functions and to screen nephrotoxic drugs.
Collapse
Affiliation(s)
- Yoshiki Sahara
- RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co. Ltd., Minoh, 562-0029, Japan
| | - Chie Fukui
- RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Yuki Kuniyoshi
- Office of Bioinformatics, Department of Drug Discovery Strategy, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co. Ltd., Minoh, 562-0029, Japan
| | - Minoru Takasato
- RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan.
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Department of Development and Regeneration, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
| |
Collapse
|
7
|
Kim S, Koppitch K, Parvez RK, Guo J, Achieng M, Schnell J, Lindström NO, McMahon AP. Comparative single-cell analyses identify shared and divergent features of human and mouse kidney development. Dev Cell 2024; 59:2912-2930.e7. [PMID: 39121855 DOI: 10.1016/j.devcel.2024.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
The mammalian kidney maintains fluid homeostasis through diverse epithelial cell types generated from nephron and ureteric progenitor cells. To extend a developmental understanding of the kidney's epithelial networks, we compared chromatin organization (single-nuclear assay for transposase-accessible chromatin sequencing [ATAC-seq]; 112,864 nuclei) and gene expression (single-cell/nuclear RNA sequencing [RNA-seq]; 109,477 cells/nuclei) in the developing human (10.6-17.6 weeks; n = 10) and mouse (post-natal day [P]0; n = 10) kidney, supplementing analysis with published mouse datasets from earlier stages. Single-cell/nuclear datasets were analyzed at a species level, and then nephron and ureteric cellular lineages were extracted and integrated into a common, cross-species, multimodal dataset. Comparative computational analyses identified conserved and divergent features of chromatin organization and linked gene activity, identifying species-specific and cell-type-specific regulatory programs. In situ validation of human-enriched gene activity points to human-specific signaling interactions in kidney development. Further, human-specific enhancer regions were linked to kidney diseases through genome-wide association studies (GWASs), highlighting the potential for clinical insight from developmental modeling.
Collapse
Affiliation(s)
- Sunghyun Kim
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - MaryAnne Achieng
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jack Schnell
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
8
|
Choi YJ, Richard G, Zhang G, Hodgin JB, Demeke DS, Yang Y, Schaub JA, Tamayo IM, Gurung BK, Naik AS, Nair V, Birznieks C, MacDonald A, Narongkiatikhun P, Gross S, Driscoll L, Flynn M, Tommerdahl K, Nadeau KJ, Shah VN, Vigers T, Snell-Bergeon JK, Kendrick J, van Raalte DH, Li LP, Prasad P, Ladd P, Chin BB, Cherney DZ, McCown PJ, Alakwaa F, Otto EA, Brosius FC, Saulnier PJ, Puelles VG, Goodrich JA, Street K, Venkatachalam MA, Ruiz A, de Boer IH, Nelson RG, Pyle L, Blondin DP, Sharma K, Kretzler M, Bjornstad P. Attenuated kidney oxidative metabolism in young adults with type 1 diabetes. J Clin Invest 2024; 134:e183984. [PMID: 39436695 PMCID: PMC11645151 DOI: 10.1172/jci183984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUNDIn type 1 diabetes (T1D), impaired insulin sensitivity may contribute to the development of diabetic kidney disease (DKD) through alterations in kidney oxidative metabolism.METHODSYoung adults with T1D (n = 30) and healthy controls (HCs) (n = 20) underwent hyperinsulinemic-euglycemic clamp studies, MRI, 11C-acetate PET, kidney biopsies, single-cell RNA-Seq, and spatial metabolomics to assess this relationship.RESULTSParticipants with T1D had significantly higher glomerular basement membrane (GBM) thickness compared with HCs. T1D participants exhibited lower insulin sensitivity and cortical oxidative metabolism, correlating with higher insulin sensitivity. Proximal tubular transcripts of TCA cycle and oxidative phosphorylation enzymes were lower in T1D. Spatial metabolomics showed reductions in tubular TCA cycle intermediates, indicating mitochondrial dysfunction. The Slingshot algorithm identified a lineage of proximal tubular cells progressing from stable to adaptive/maladaptive subtypes, using pseudotime trajectory analysis, which computationally orders cells along a continuum of states. This analysis revealed distinct distribution patterns between T1D and HCs, with attenuated oxidative metabolism in T1D attributed to a greater proportion of adaptive/maladaptive subtypes with low expression of TCA cycle and oxidative phosphorylation transcripts. Pseudotime progression associated with higher HbA1c, BMI, and GBM, and lower insulin sensitivity and cortical oxidative metabolism.CONCLUSIONThese early structural and metabolic changes in T1D kidneys may precede clinical DKD.TRIAL REGISTRATIONClinicalTrials.gov NCT04074668.FUNDINGUniversity of Michigan O'Brien Kidney Translational Core Center grant (P30 DK081943); CROCODILE studies by National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (P30 DK116073), Juvenile Diabetes Research Foundation (JDRF) (2-SRA-2019-845-S-B), Boettcher Foundation, Intramural Research Program at NIDDK and Centers for Disease Control and Prevention (CKD Initiative) under Inter-Agency Agreement #21FED2100157DPG.
Collapse
Affiliation(s)
- Ye Ji Choi
- Department of Biostatistics and Informatics and
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Gabriel Richard
- Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Fecherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Québec, Canada
| | - Guanshi Zhang
- Center for Renal Precision Medicine, University of Texas Health–San Antonio, San Antonio, Texas, USA
| | - Jeffrey B. Hodgin
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Dawit S. Demeke
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yingbao Yang
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer A. Schaub
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian M. Tamayo
- Center for Renal Precision Medicine, University of Texas Health–San Antonio, San Antonio, Texas, USA
| | - Bhupendra K. Gurung
- Center for Renal Precision Medicine, University of Texas Health–San Antonio, San Antonio, Texas, USA
| | - Abhijit S. Naik
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Viji Nair
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Carissa Birznieks
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexis MacDonald
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Phoom Narongkiatikhun
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Susan Gross
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lynette Driscoll
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Maureen Flynn
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kalie Tommerdahl
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kristen J. Nadeau
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Viral N. Shah
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tim Vigers
- Department of Biostatistics and Informatics and
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Janet K. Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jessica Kendrick
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel H. van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUmc, Amsterdam, Netherlands
| | - Lu-Ping Li
- Radiology Department, Endeavor Health, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Pottumarthi Prasad
- Radiology Department, Endeavor Health, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Patricia Ladd
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Bennett B. Chin
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David Z. Cherney
- Department of Medicine, Division of Nephrology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Phillip J. McCown
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Fadhl Alakwaa
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Edgar A. Otto
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank C. Brosius
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Nephrology, The University of Arizona College of Medicine Tucson, Tucson, Arizona, USA
| | - Pierre Jean Saulnier
- University of Poitiers, INSERM, CHU Poitiers, Clinical Investigation Center CIC 1402, Poitiers, France
| | - Victor G. Puelles
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- III. Department of Medicine, University Medical Center Hamburg–Eppendorf, Hamburg, Germany
| | | | - Kelly Street
- Department of Biostatistics, University of Southern California, Los Angeles, California, USA
| | | | - Aaron Ruiz
- Center for Renal Precision Medicine, University of Texas Health–San Antonio, San Antonio, Texas, USA
- SygnaMap, Inc., San Antonio, Texas, USA
| | - Ian H. de Boer
- Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Laura Pyle
- Department of Biostatistics and Informatics and
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Denis P. Blondin
- Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Fecherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Québec, Canada
| | - Kumar Sharma
- Center for Renal Precision Medicine, University of Texas Health–San Antonio, San Antonio, Texas, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Petter Bjornstad
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
9
|
Labat-de-Hoz L, Fernández-Martín L, Correas I, Alonso MA. INF2 formin variants linked to human inherited kidney disease reprogram the transcriptome, causing mitotic chaos and cell death. Cell Mol Life Sci 2024; 81:279. [PMID: 38916773 PMCID: PMC11335204 DOI: 10.1007/s00018-024-05323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Laura Fernández-Martín
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
10
|
Tsujimoto H, Hoshina A, Mae SI, Araoka T, Changting W, Ijiri Y, Nakajima-Koyama M, Sakurai S, Okita K, Mizuta K, Niwa A, Saito MK, Saitou M, Yamamoto T, Graneli C, Woollard KJ, Osafune K. Selective induction of human renal interstitial progenitor-like cell lineages from iPSCs reveals development of mesangial and EPO-producing cells. Cell Rep 2024; 43:113602. [PMID: 38237600 DOI: 10.1016/j.celrep.2023.113602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/13/2023] [Accepted: 12/05/2023] [Indexed: 03/02/2024] Open
Abstract
Recent regenerative studies using human pluripotent stem cells (hPSCs) have developed multiple kidney-lineage cells and organoids. However, to further form functional segments of the kidney, interactions of epithelial and interstitial cells are required. Here we describe a selective differentiation of renal interstitial progenitor-like cells (IPLCs) from human induced pluripotent stem cells (hiPSCs) by modifying our previous induction method for nephron progenitor cells (NPCs) and analyzing mouse embryonic interstitial progenitor cell (IPC) development. Our IPLCs combined with hiPSC-derived NPCs and nephric duct cells form nephrogenic niche- and mesangium-like structures in vitro. Furthermore, we successfully induce hiPSC-derived IPLCs to differentiate into mesangial and erythropoietin-producing cell lineages in vitro by screening differentiation-inducing factors and confirm that p38 MAPK, hypoxia, and VEGF signaling pathways are involved in the differentiation of mesangial-lineage cells. These findings indicate that our IPC-lineage induction method contributes to kidney regeneration and developmental research.
Collapse
Affiliation(s)
- Hiraku Tsujimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Rege Nephro Co., Ltd., Med-Pharm Collaboration Building, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Azusa Hoshina
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Wang Changting
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshihiro Ijiri
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - May Nakajima-Koyama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Satoko Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazusa Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ken Mizuta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Akira Niwa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Megumu K Saito
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mitinori Saitou
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Cecilia Graneli
- BioPharmaceuticals R&D Cell Therapy, Research and Early Development, Cardiovascular, Renal and Metabolic (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Kevin J Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
11
|
Bhayana S, Dougherty JA, Kamigaki Y, Agrawal S, Wijeratne S, Fitch J, Waller AP, Wolfgang KJ, White P, Kerlin BA, Smoyer WE. Glucocorticoid- and pioglitazone-induced proteinuria reduction in experimental NS both correlate with glomerular ECM modulation. iScience 2024; 27:108631. [PMID: 38188512 PMCID: PMC10770536 DOI: 10.1016/j.isci.2023.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Idiopathic nephrotic syndrome (NS) is a common glomerular disease. Although glucocorticoids (GC) are the primary treatment, the PPARγ agonist pioglitazone (Pio) also reduces proteinuria in patients with NS and directly protects podocytes from injury. Because both drugs reduce proteinuria, we hypothesized these effects result from overlapping transcriptional patterns. Systems biology approaches compared glomerular transcriptomes from rats with PAN-induced NS treated with GC vs. Pio and identified 29 commonly regulated genes-of-interest, primarily involved in extracellular matrix (ECM) remodeling. Correlation with clinical idiopathic NS patient datasets confirmed glomerular ECM dysregulation as a potential mechanism of injury. Cellular deconvolution in silico revealed GC- and Pio-induced amelioration of altered genes primarily within podocytes and mesangial cells. While validation studies are indicated, these analyses identified molecular pathways involved in the early stages of NS (prior to scarring), suggesting that targeting glomerular ECM dysregulation may enable a future non-immunosuppressive approach for proteinuria reduction in idiopathic NS.
Collapse
Affiliation(s)
- Sagar Bhayana
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Julie A. Dougherty
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Yu Kamigaki
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Shipra Agrawal
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Saranga Wijeratne
- Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - James Fitch
- Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Amanda P. Waller
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Katelyn J. Wolfgang
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Peter White
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Bryce A. Kerlin
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - William E. Smoyer
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Davis SN, Grindel SH, Viola JM, Liu GY, Liu J, Qian G, Porter CM, Hughes AJ. Nephron progenitors rhythmically alternate between renewal and differentiation phases that synchronize with kidney branching morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.568157. [PMID: 38045273 PMCID: PMC10690271 DOI: 10.1101/2023.11.21.568157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The mammalian kidney achieves massive parallelization of function by exponentially duplicating nephron-forming niches during development. Each niche caps a tip of the ureteric bud epithelium (the future urinary collecting duct tree) as it undergoes branching morphogenesis, while nephron progenitors within niches balance self-renewal and differentiation to early nephron cells. Nephron formation rate approximately matches branching rate over a large fraction of mouse gestation, yet the nature of this apparent pace-maker is unknown. Here we correlate spatial transcriptomics data with branching 'life-cycle' to discover rhythmically alternating signatures of nephron progenitor differentiation and renewal across Wnt, Hippo-Yap, retinoic acid (RA), and other pathways. We then find in human stem-cell derived nephron progenitor organoids that Wnt/β-catenin-induced differentiation is converted to a renewal signal when it temporally overlaps with YAP activation. Similar experiments using RA activation indicate a role in setting nephron progenitor exit from the naive state, the spatial extent of differentiation, and nephron segment bias. Together the data suggest that nephron progenitor interpretation of consistent Wnt/β-catenin differentiation signaling in the niche may be modified by rhythmic activity in ancillary pathways to set the pace of nephron formation. This would synchronize nephron formation with ureteric bud branching, which creates new sites for nephron condensation. Our data bring temporal resolution to the renewal vs. differentiation balance in the nephrogenic niche and inform new strategies to achieve self-sustaining nephron formation in synthetic human kidney tissues.
Collapse
Affiliation(s)
- Sachin N Davis
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Samuel H Grindel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - John M Viola
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Grace Y Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Grace Qian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Catherine M Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| |
Collapse
|
13
|
Zhang K, Aung T, Yao E, Chuang PT. Lung patterning: Is a distal-to-proximal gradient of cell allocation and fate decision a general paradigm?: A gradient of distal-to-proximal distribution and differentiation of tip progenitors produces distinct compartments in the lung. Bioessays 2024; 46:e2300083. [PMID: 38010492 DOI: 10.1002/bies.202300083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
Recent studies support a model in which the progeny of SOX9+ epithelial progenitors at the distal tip of lung branches undergo cell allocation and differentiation sequentially along the distal-to-proximal axis. Concomitant with the elongation and ramification of lung branches, the descendants of the distal SOX9+ progenitors are distributed proximally, express SOX2, and differentiate into cell types in the conducting airways. Amid subsequent sacculation, the distal SOX9+ progenitors generate alveolar epithelial cells to form alveoli. Sequential cell allocation and differentiation are integrated with the branching process to generate a functional branching organ. This review focuses on the roles of SOX9+ cells as precursors for new branches, as the source of various cell types in the conducting airways, and as progenitors of the alveolar epithelium. All of these processes are controlled by multiple signaling pathways. Many mouse mutants with defective lung branching contain underlying defects in one or more steps of cell allocation and differentiation of SOX9+ progenitors. This model provides a framework to understand the molecular basis of lung phenotypes and to elucidate the molecular mechanisms of lung patterning. It builds a foundation on which comparing and contrasting the mechanisms employed by different branching organs in diverse species can be made.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| |
Collapse
|
14
|
Zhou D, Li D, Nie H, Duan J, Liu S, Wang Y, Zuo W. Generation of renal tubular organoids from adult SOX9 + kidney progenitor cells. LIFE MEDICINE 2023; 2:lnad047. [PMID: 39872058 PMCID: PMC11749593 DOI: 10.1093/lifemedi/lnad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/22/2023] [Indexed: 01/29/2025]
Abstract
The pathogenesis of several kidney diseases results in the eventual destruction of the renal tubular system, which can progress to end-stage renal disease. Previous studies have demonstrated the involvement of a population of SOX9-positive cells in kidney regeneration and repair process following kidney injury. However, the ability of these cells to autonomously generate kidney organoids has never been investigated. Here, we isolated SOX9+ kidney progenitor cells (KPCs) from both mice and humans and tested their differentiation potential in vitro. The data showed that the human SOX9+ KPC could self-assemble into organoids with kidney-like morphology. We also used single-cell RNA sequencing to characterize the organoid cell populations and identified four distinct types of renal tubular cells. Compared to the induced pluripotent stem cell-derived kidney organoids, KPC demonstrated more tubular differentiation potential but failed to differentiate into glomerular cells. KPC-derived organoid formation involved the expression of genes related to metanephric development and followed a similar mechanism to renal injury repair in acute kidney injury patients. Altogether, our study provided a potentially useful approach to generating kidney tubular organoids for future application.
Collapse
Affiliation(s)
- Dewei Zhou
- Laboratory of Transplant Engineering and Transplant Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Dandan Li
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hao Nie
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jun Duan
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Sarah Liu
- Super Organ R&D Center, Regend Therapeutics, Shanghai 201210, China
| | - Yujia Wang
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Super Organ R&D Center, Regend Therapeutics, Shanghai 201210, China
| | - Wei Zuo
- Laboratory of Transplant Engineering and Transplant Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Super Organ R&D Center, Regend Therapeutics, Shanghai 201210, China
| |
Collapse
|
15
|
Tsuyuzaki K, Ishii M, Nikaido I. Sctensor detects many-to-many cell-cell interactions from single cell RNA-sequencing data. BMC Bioinformatics 2023; 24:420. [PMID: 37936079 PMCID: PMC10631077 DOI: 10.1186/s12859-023-05490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Complex biological systems are described as a multitude of cell-cell interactions (CCIs). Recent single-cell RNA-sequencing studies focus on CCIs based on ligand-receptor (L-R) gene co-expression but the analytical methods are not appropriate to detect many-to-many CCIs. RESULTS In this work, we propose scTensor, a novel method for extracting representative triadic relationships (or hypergraphs), which include ligand-expression, receptor-expression, and related L-R pairs. CONCLUSIONS Through extensive studies with simulated and empirical datasets, we have shown that scTensor can detect some hypergraphs that cannot be detected using conventional CCI detection methods, especially when they include many-to-many relationships. scTensor is implemented as a freely available R/Bioconductor package.
Collapse
Affiliation(s)
- Koki Tsuyuzaki
- Laboratory for Bioinformatics Research RIKEN Center for Biosystems Dynamics Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Japan Science and Technology Agency, PRESTO, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.
| | - Manabu Ishii
- Laboratory for Bioinformatics Research RIKEN Center for Biosystems Dynamics Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research RIKEN Center for Biosystems Dynamics Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
16
|
Sen T, Ju W, Nair V, Ladd P, Menon R, Otto EA, Pyle L, Vigers T, Nelson RG, Arnott C, Neal B, Hansen MK, Kretzler M, Bjornstad P, Heerspink HJL. Sodium glucose co-transporter 2 inhibition increases epidermal growth factor expression and improves outcomes in patients with type 2 diabetes. Kidney Int 2023; 104:828-839. [PMID: 37543256 DOI: 10.1016/j.kint.2023.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023]
Abstract
Underlying molecular mechanisms of the kidney protective effects of sodium glucose co-transporter 2 (SGLT2) inhibitors are not fully elucidated. Therefore, we studied the association between urinary epidermal growth factor (uEGF), a mitogenic factor involved in kidney repair, and kidney outcomes in patients with type 2 diabetes (T2D). The underlying molecular mechanisms of the SGLT2 inhibitor canagliflozin on EGF using single-cell RNA sequencing from kidney tissue were examined. Urinary EGF-to-creatinine ratio (uEGF/Cr) was measured in 3521 CANagliflozin cardioVascular Assessment Study (CANVAS) participants at baseline and week 52. Associations of uEGF/Cr with kidney outcome were assessed using multivariable-adjusted Cox regression models. Single-cell RNA sequencing was performed using protocol kidney biopsy tissue from ten young patients with T2D on SGLT2i, six patients with T2D on standard care only, and six healthy controls (HCs). In CANVAS, each doubling in baseline uEGF/Cr was associated with a 12% (95% confidence interval 1-22) decreased risk of kidney outcome. uEGF/Cr decreased after 52 weeks with placebo and remained stable with canagliflozin (between-group difference +7.3% (2.0-12.8). In young persons with T2D, EGF mRNA was primarily expressed in the thick ascending loop of Henle. Expression in biopsies from T2D without SGLT2i was significantly lower compared to HCs, whereas treatment with SGLT2i increased EGF levels closer to the healthy state. In young persons with T2D without SGLT2i, endothelin-1 emerged as a key regulator of the EGF co-expression network. SGLT2i treatment was associated with a shift towards normal EGF expression. Thus, decreased uEGF represents increased risk of kidney disease progression in patients with T2D. Canagliflozin increased kidney tissue expression of EGF and was associated with a downstream signaling cascade linked to tubular repair and reversal of tubular injury.
Collapse
Affiliation(s)
- Taha Sen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Patricia Ladd
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rajasree Menon
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Edgar A Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura Pyle
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA; Section of Endocrinology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Tim Vigers
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA; Section of Endocrinology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Clare Arnott
- The George Institute for Global Health, University New South Wales (UNSW), Sydney, New South Wales, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Bruce Neal
- The George Institute for Global Health, University New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Michael K Hansen
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.
| | - Petter Bjornstad
- Section of Endocrinology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA; Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA.
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands; The George Institute for Global Health, University New South Wales (UNSW), Sydney, New South Wales, Australia.
| |
Collapse
|
17
|
Schierbaum LM, Schneider S, Buerger F, Halawi AA, Seltzsam S, Wang C, Zheng B, Wu CHW, Dai R, Connaughton DM, Salmanullah D, Nakayama M, Mann N, Shril S, Hildebrandt F. Prioritization of Monogenic Congenital Anomalies of the Kidney and Urinary Tract Candidate Genes with Existing Single-Cell Transcriptomics Data of the Human Fetal Kidney. Nephron Clin Pract 2023; 147:685-692. [PMID: 37499630 PMCID: PMC11018365 DOI: 10.1159/000531770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/05/2023] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first 3 decades of life. Over 40 genes have been identified as causative for isolated human CAKUT. However, many genes remain unknown, and the prioritization of potential CAKUT candidate genes is challenging. To develop an independent approach to prioritize CAKUT candidate genes, we hypothesized that monogenic CAKUT genes are most likely co-expressed along a temporal axis during kidney development and that genes with coinciding high expression may represent strong novel CAKUT candidate genes. METHODS We analyzed single-cell mRNA (sc-mRNA) transcriptomics data of human fetal kidney for temporal sc-mRNA co-expression of 40 known CAKUT genes. A maximum of high expression in consecutive timepoints of kidney development was found for four of the 40 genes (EYA1, SIX1, SIX2, and ITGA8) in nephron progenitor cells a, b, c, d (NPCa-d). We concluded that NPCa-d are relevant for CAKUT pathogenesis and intersected two lists of CAKUT candidate genes resulting from unbiased whole-exome sequencing (WES) with the 100 highest expressed genes in NPCa-d. RESULTS Intersection of the 100 highest expressed genes in NPCa-d with WES-derived CAKUT candidate genes identified an overlap with the candidate genes KIF19, TRIM36, USP35, CHTF18, in each of which a biallelic variant was detected in different families with CAKUT. CONCLUSION Sc-mRNA expression data of human fetal kidney can be utilized to prioritize WES-derived CAKUT candidate genes. KIF19, TRIM36, USP35, and CHTF18 may represent strong novel candidate genes for CAKUT.
Collapse
Affiliation(s)
- Luca M Schierbaum
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA,
| | - Sophia Schneider
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Florian Buerger
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abdul Aziz Halawi
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Steve Seltzsam
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chunyan Wang
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bixia Zheng
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chen-Han Wilfried Wu
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Urology and Genetics, Case Western Reserve University and University Hospitals, Cleveland, Ohio, USA
| | - Rufeng Dai
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dervla M Connaughton
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daanya Salmanullah
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Makiko Nakayama
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina Mann
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Dasargyri A, González Rodríguez D, Rehrauer H, Reichmann E, Biedermann T, Moehrlen U. scRNA-Seq of Cultured Human Amniotic Fluid from Fetuses with Spina Bifida Reveals the Origin and Heterogeneity of the Cellular Content. Cells 2023; 12:1577. [PMID: 37371048 DOI: 10.3390/cells12121577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Amniotic fluid has been proposed as an easily available source of cells for numerous applications in regenerative medicine and tissue engineering. The use of amniotic fluid cells in biomedical applications necessitates their unequivocal characterization; however, the exact cellular composition of amniotic fluid and the precise tissue origins of these cells remain largely unclear. Using cells cultured from the human amniotic fluid of fetuses with spina bifida aperta and of a healthy fetus, we performed single-cell RNA sequencing to characterize the tissue origin and marker expression of cultured amniotic fluid cells at the single-cell level. Our analysis revealed nine different cell types of stromal, epithelial and immune cell phenotypes, and from various fetal tissue origins, demonstrating the heterogeneity of the cultured amniotic fluid cell population at a single-cell resolution. It also identified cell types of neural origin in amniotic fluid from fetuses with spina bifida aperta. Our data provide a comprehensive list of markers for the characterization of the various progenitor and terminally differentiated cell types in cultured amniotic fluid. This study highlights the relevance of single-cell analysis approaches for the characterization of amniotic fluid cells in order to harness their full potential in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Athanasia Dasargyri
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Daymé González Rodríguez
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Zurich Center for Fetal Diagnosis and Therapy, University of Zurich, 8006 Zurich, Switzerland
- Pediatric Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
19
|
Theodoris CV, Xiao L, Chopra A, Chaffin MD, Al Sayed ZR, Hill MC, Mantineo H, Brydon EM, Zeng Z, Liu XS, Ellinor PT. Transfer learning enables predictions in network biology. Nature 2023; 618:616-624. [PMID: 37258680 PMCID: PMC10949956 DOI: 10.1038/s41586-023-06139-9] [Citation(s) in RCA: 249] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Mapping gene networks requires large amounts of transcriptomic data to learn the connections between genes, which impedes discoveries in settings with limited data, including rare diseases and diseases affecting clinically inaccessible tissues. Recently, transfer learning has revolutionized fields such as natural language understanding1,2 and computer vision3 by leveraging deep learning models pretrained on large-scale general datasets that can then be fine-tuned towards a vast array of downstream tasks with limited task-specific data. Here, we developed a context-aware, attention-based deep learning model, Geneformer, pretrained on a large-scale corpus of about 30 million single-cell transcriptomes to enable context-specific predictions in settings with limited data in network biology. During pretraining, Geneformer gained a fundamental understanding of network dynamics, encoding network hierarchy in the attention weights of the model in a completely self-supervised manner. Fine-tuning towards a diverse panel of downstream tasks relevant to chromatin and network dynamics using limited task-specific data demonstrated that Geneformer consistently boosted predictive accuracy. Applied to disease modelling with limited patient data, Geneformer identified candidate therapeutic targets for cardiomyopathy. Overall, Geneformer represents a pretrained deep learning model from which fine-tuning towards a broad range of downstream applications can be pursued to accelerate discovery of key network regulators and candidate therapeutic targets.
Collapse
Affiliation(s)
- Christina V Theodoris
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School Genetics Training Program, Boston, USA.
| | - Ling Xiao
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Anant Chopra
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, USA
| | - Mark D Chaffin
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zeina R Al Sayed
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew C Hill
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Helene Mantineo
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Zexian Zeng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
20
|
Kim S, Koppitch K, Parvez RK, Guo J, Achieng M, Schnell J, Lindström NO, McMahon AP. Comparative single-cell analyses identify shared and divergent features of human and mouse kidney development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540880. [PMID: 37293066 PMCID: PMC10245679 DOI: 10.1101/2023.05.16.540880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mammalian kidneys maintain fluid homeostasis through the cellular activity of nephrons and the conjoined collecting system. Each epithelial network originates from distinct progenitor cell populations that reciprocally interact during development. To extend our understanding of human and mouse kidney development, we profiled chromatin organization (ATAC-seq) and gene expression (RNA-seq) in developing human and mouse kidneys. Data were analyzed at a species level and then integrated into a common, cross-species multimodal data set. Comparative analysis of cell types and developmental trajectories identified conserved and divergent features of chromatin organization and linked gene activity, revealing species- and cell-type specific regulatory programs. Identification of human-specific enhancer regions linked through GWAS studies to kidney disease highlights the potential of developmental modeling to provide clinical insight.
Collapse
|
21
|
Bronstein R, Pace J, Gowthaman Y, Salant DJ, Mallipattu SK. Podocyte-Parietal Epithelial Cell Interdependence in Glomerular Development and Disease. J Am Soc Nephrol 2023; 34:737-750. [PMID: 36800545 PMCID: PMC10125654 DOI: 10.1681/asn.0000000000000104] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Podocytes and parietal epithelial cells (PECs) are among the few principal cell types within the kidney glomerulus, the former serving as a crucial constituent of the kidney filtration barrier and the latter representing a supporting epithelial layer that adorns the inner wall of Bowman's capsule. Podocytes and PECs share a circumscript developmental lineage that only begins to diverge during the S-shaped body stage of nephron formation-occurring immediately before the emergence of the fully mature nephron. These two cell types, therefore, share a highly conserved gene expression program, evidenced by recently discovered intermediate cell types occupying a distinct spatiotemporal gene expression zone between podocytes and PECs. In addition to their homeostatic functions, podocytes and PECs also have roles in kidney pathogenesis. Rapid podocyte loss in diseases, such as rapidly progressive GN and collapsing and cellular subtypes of FSGS, is closely allied with PEC proliferation and migration toward the capillary tuft, resulting in the formation of crescents and pseudocrescents. PECs are thought to contribute to disease progression and severity, and the interdependence between these two cell types during development and in various manifestations of kidney pathology is the primary focus of this review.
Collapse
Affiliation(s)
- Robert Bronstein
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Jesse Pace
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Yogesh Gowthaman
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - David J. Salant
- Division of Nephrology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Sandeep K. Mallipattu
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
- Renal Section, Northport VA Medical Center, Northport, New York
| |
Collapse
|
22
|
Treacy NJ, Clerkin S, Davis JL, Kennedy C, Miller AF, Saiani A, Wychowaniec JK, Brougham DF, Crean J. Growth and differentiation of human induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully synthetic peptide hydrogels. Bioact Mater 2023; 21:142-156. [PMID: 36093324 PMCID: PMC9420433 DOI: 10.1016/j.bioactmat.2022.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/27/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived kidney organoids have prospective applications ranging from basic disease modelling to personalised medicine. However, there remains a necessity to refine the biophysical and biochemical parameters that govern kidney organoid formation. Differentiation within fully-controllable and physiologically relevant 3D growth environments will be critical to improving organoid reproducibility and maturation. Here, we matured hiPSC-derived kidney organoids within fully synthetic self-assembling peptide hydrogels (SAPHs) of variable stiffness (storage modulus, G'). The resulting organoids contained complex structures comparable to those differentiated within the animal-derived matrix, Matrigel. Single-cell RNA sequencing (scRNA-seq) was then used to compare organoids matured within SAPHs to those grown within Matrigel or at the air-liquid interface. A total of 13,179 cells were analysed, revealing 14 distinct clusters. Organoid compositional analysis revealed a larger proportion of nephron cell types within Transwell-derived organoids, while SAPH-derived organoids were enriched for stromal-associated cell populations. Notably, differentiation within a higher G' SAPH generated podocytes with more mature gene expression profiles. Additionally, maturation within a 3D microenvironment significantly reduced the derivation of off-target cell types, which are a known limitation of current kidney organoid protocols. This work demonstrates the utility of synthetic peptide-based hydrogels with a defined stiffness, as a minimally complex microenvironment for the selected differentiation of kidney organoids.
Collapse
Affiliation(s)
- Niall J Treacy
- Diabetes Complications Research Centre, University College Dublin (UCD) Conway Institute of Biomolecular and Biomedical Research and Belfield, Dublin 4, Ireland.,UCD School of Biomolecular and Biomedical Science, Belfield, Dublin 4, Ireland
| | - Shane Clerkin
- Diabetes Complications Research Centre, University College Dublin (UCD) Conway Institute of Biomolecular and Biomedical Research and Belfield, Dublin 4, Ireland.,UCD School of Biomolecular and Biomedical Science, Belfield, Dublin 4, Ireland
| | - Jessica L Davis
- Diabetes Complications Research Centre, University College Dublin (UCD) Conway Institute of Biomolecular and Biomedical Research and Belfield, Dublin 4, Ireland.,UCD School of Biomolecular and Biomedical Science, Belfield, Dublin 4, Ireland
| | - Ciarán Kennedy
- Diabetes Complications Research Centre, University College Dublin (UCD) Conway Institute of Biomolecular and Biomedical Research and Belfield, Dublin 4, Ireland.,UCD School of Biomolecular and Biomedical Science, Belfield, Dublin 4, Ireland
| | - Aline F Miller
- Department of Materials & Manchester Institute of Biotechnology (MIB), School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, UK
| | - Alberto Saiani
- Department of Materials & Manchester Institute of Biotechnology (MIB), School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, UK
| | - Jacek K Wychowaniec
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dermot F Brougham
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - John Crean
- Diabetes Complications Research Centre, University College Dublin (UCD) Conway Institute of Biomolecular and Biomedical Research and Belfield, Dublin 4, Ireland.,UCD School of Biomolecular and Biomedical Science, Belfield, Dublin 4, Ireland
| |
Collapse
|
23
|
Abstract
Vascular endothelial cells form the inner layer of blood vessels where they have a key role in the development and maintenance of the functional circulatory system and provide paracrine support to surrounding non-vascular cells. Technical advances in the past 5 years in single-cell genomics and in in vivo genetic labelling have facilitated greater insights into endothelial cell development, plasticity and heterogeneity. These advances have also contributed to a new understanding of the timing of endothelial cell subtype differentiation and its relationship to the cell cycle. Identification of novel tissue-specific gene expression patterns in endothelial cells has led to the discovery of crucial signalling pathways and new interactions with other cell types that have key roles in both tissue maintenance and disease pathology. In this Review, we describe the latest findings in vascular endothelial cell development and diversity, which are often supported by large-scale, single-cell studies, and discuss the implications of these findings for vascular medicine. In addition, we highlight how techniques such as single-cell multimodal omics, which have become increasingly sophisticated over the past 2 years, are being utilized to study normal vascular physiology as well as functional perturbations in disease.
Collapse
Affiliation(s)
- Emily Trimm
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
24
|
Schaub JA, AlAkwaa FM, McCown PJ, Naik AS, Nair V, Eddy S, Menon R, Otto EA, Demeke D, Hartman J, Fermin D, O’Connor CL, Subramanian L, Bitzer M, Harned R, Ladd P, Pyle L, Pennathur S, Inoki K, Hodgin JB, Brosius FC, Nelson RG, Kretzler M, Bjornstad P. SGLT2 inhibitors mitigate kidney tubular metabolic and mTORC1 perturbations in youth-onset type 2 diabetes. J Clin Invest 2023; 133:e164486. [PMID: 36637914 PMCID: PMC9974101 DOI: 10.1172/jci164486] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023] Open
Abstract
The molecular mechanisms of sodium-glucose cotransporter-2 (SGLT2) inhibitors (SGLT2i) remain incompletely understood. Single-cell RNA sequencing and morphometric data were collected from research kidney biopsies donated by young persons with type 2 diabetes (T2D), aged 12 to 21 years, and healthy controls (HCs). Participants with T2D were obese and had higher estimated glomerular filtration rates and mesangial and glomerular volumes than HCs. Ten T2D participants had been prescribed SGLT2i (T2Di[+]) and 6 not (T2Di[-]). Transcriptional profiles showed SGLT2 expression exclusively in the proximal tubular (PT) cluster with highest expression in T2Di(-) patients. However, transcriptional alterations with SGLT2i treatment were seen across nephron segments, particularly in the distal nephron. SGLT2i treatment was associated with suppression of transcripts in the glycolysis, gluconeogenesis, and tricarboxylic acid cycle pathways in PT, but had the opposite effect in thick ascending limb. Transcripts in the energy-sensitive mTORC1-signaling pathway returned toward HC levels in all tubular segments in T2Di(+), consistent with a diabetes mouse model treated with SGLT2i. Decreased levels of phosphorylated S6 protein in proximal and distal tubules in T2Di(+) patients confirmed changes in mTORC1 pathway activity. We propose that SGLT2i treatment benefits the kidneys by mitigating diabetes-induced metabolic perturbations via suppression of mTORC1 signaling in kidney tubules.
Collapse
Affiliation(s)
| | | | | | | | - Viji Nair
- Department of Internal Medicine, Division of Nephrology
| | - Sean Eddy
- Department of Internal Medicine, Division of Nephrology
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, and
| | - Edgar A. Otto
- Department of Internal Medicine, Division of Nephrology
| | - Dawit Demeke
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - John Hartman
- Department of Internal Medicine, Division of Nephrology
| | - Damian Fermin
- Department of Internal Medicine, Division of Nephrology
| | | | | | - Markus Bitzer
- Department of Internal Medicine, Division of Nephrology
| | | | | | - Laura Pyle
- Department of Biostatistics and Informatics, and
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine, Division of Nephrology
- Department of Molecular and Integrative Physiology and
| | - Ken Inoki
- Department of Internal Medicine, Division of Nephrology
- Department of Molecular and Integrative Physiology and
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey B. Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank C. Brosius
- Department of Internal Medicine, Division of Nephrology
- Division of Nephrology, The University of Arizona College of Medicine Tucson, Tucson, Arizona, USA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Phoenix, Arizona, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology
- Department of Computational Medicine and Bioinformatics, and
| | - Petter Bjornstad
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
25
|
Drummond BE, Ercanbrack WS, Wingert RA. Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish. J Dev Biol 2023; 11:9. [PMID: 36810461 PMCID: PMC9944608 DOI: 10.3390/jdb11010009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.
Collapse
Affiliation(s)
| | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
26
|
Klämbt V, Buerger F, Wang C, Naert T, Richter K, Nauth T, Weiss AC, Sieckmann T, Lai E, Connaughton DM, Seltzsam S, Mann N, Majmundar AJ, Wu CHW, Onuchic-Whitford AC, Shril S, Schneider S, Schierbaum L, Dai R, Bekheirnia MR, Joosten M, Shlomovitz O, Vivante A, Banne E, Mane S, Lifton RP, Kirschner KM, Kispert A, Rosenberger G, Fischer KD, Lienkamp SS, Zegers MM, Hildebrandt F. Genetic Variants in ARHGEF6 Cause Congenital Anomalies of the Kidneys and Urinary Tract in Humans, Mice, and Frogs. J Am Soc Nephrol 2023; 34:273-290. [PMID: 36414417 PMCID: PMC10103091 DOI: 10.1681/asn.2022010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND About 40 disease genes have been described to date for isolated CAKUT, the most common cause of childhood CKD. However, these genes account for only 20% of cases. ARHGEF6, a guanine nucleotide exchange factor that is implicated in biologic processes such as cell migration and focal adhesion, acts downstream of integrin-linked kinase (ILK) and parvin proteins. A genetic variant of ILK that causes murine renal agenesis abrogates the interaction of ILK with a murine focal adhesion protein encoded by Parva , leading to CAKUT in mice with this variant. METHODS To identify novel genes that, when mutated, result in CAKUT, we performed exome sequencing in an international cohort of 1265 families with CAKUT. We also assessed the effects in vitro of wild-type and mutant ARHGEF6 proteins, and the effects of Arhgef6 deficiency in mouse and frog models. RESULTS We detected six different hemizygous variants in the gene ARHGEF6 (which is located on the X chromosome in humans) in eight individuals from six families with CAKUT. In kidney cells, overexpression of wild-type ARHGEF6 -but not proband-derived mutant ARHGEF6 -increased active levels of CDC42/RAC1, induced lamellipodia formation, and stimulated PARVA-dependent cell spreading. ARHGEF6-mutant proteins showed loss of interaction with PARVA. Three-dimensional Madin-Darby canine kidney cell cultures expressing ARHGEF6-mutant proteins exhibited reduced lumen formation and polarity defects. Arhgef6 deficiency in mouse and frog models recapitulated features of human CAKUT. CONCLUSIONS Deleterious variants in ARHGEF6 may cause dysregulation of integrin-parvin-RAC1/CDC42 signaling, thereby leading to X-linked CAKUT.
Collapse
Affiliation(s)
- Verena Klämbt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Florian Buerger
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chunyan Wang
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Thomas Naert
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Karin Richter
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Theresa Nauth
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Tobias Sieckmann
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translatationale Physiologie, Berlin, Germany
| | - Ethan Lai
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dervla M. Connaughton
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Steve Seltzsam
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nina Mann
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amar J. Majmundar
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chen-Han W. Wu
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Departments of Genetics and Urology, Case Western Reserve University School of Medicine and University Hospitals, Cleveland, Ohio
| | - Ana C. Onuchic-Whitford
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shirlee Shril
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sophia Schneider
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Luca Schierbaum
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rufeng Dai
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mir Reza Bekheirnia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Marieke Joosten
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Omer Shlomovitz
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Asaf Vivante
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ehud Banne
- The Genetics Institute, Kaplan Medical Center—Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
- Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut
| | - Richard P. Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
- Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
| | - Karin M. Kirschner
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translatationale Physiologie, Berlin, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Georg Rosenberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus-Dieter Fischer
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Soeren S. Lienkamp
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Mirjam M.P. Zegers
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Liu S, Zhao Y, Lu S, Zhang T, Lindenmeyer MT, Nair V, Gies SE, Wu G, Nelson RG, Czogalla J, Aypek H, Zielinski S, Liao Z, Schaper M, Fermin D, Cohen CD, Delic D, Krebs CF, Grahammer F, Wiech T, Kretzler M, Meyer-Schwesinger C, Bonn S, Huber TB. Single-cell transcriptomics reveals a mechanosensitive injury signaling pathway in early diabetic nephropathy. Genome Med 2023; 15:2. [PMID: 36627643 PMCID: PMC9830686 DOI: 10.1186/s13073-022-01145-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, and histopathologic glomerular lesions are among the earliest structural alterations of DN. However, the signaling pathways that initiate these glomerular alterations are incompletely understood. METHODS To delineate the cellular and molecular basis for DN initiation, we performed single-cell and bulk RNA sequencing of renal cells from type 2 diabetes mice (BTBR ob/ob) at the early stage of DN. RESULTS Analysis of differentially expressed genes revealed glucose-independent responses in glomerular cell types. The gene regulatory network upstream of glomerular cell programs suggested the activation of mechanosensitive transcriptional pathway MRTF-SRF predominantly taking place in mesangial cells. Importantly, activation of MRTF-SRF transcriptional pathway was also identified in DN glomeruli in independent patient cohort datasets. Furthermore, ex vivo kidney perfusion suggested that the regulation of MRTF-SRF is a common mechanism in response to glomerular hyperfiltration. CONCLUSIONS Overall, our study presents a comprehensive single-cell transcriptomic landscape of early DN, highlighting mechanosensitive signaling pathways as novel targets of diabetic glomerulopathy.
Collapse
Affiliation(s)
- Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Yu Zhao
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shun Lu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tianran Zhang
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viji Nair
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney E Gies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guochao Wu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Jan Czogalla
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hande Aypek
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Zielinski
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Zhouning Liao
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Schaper
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Damian Fermin
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG, Translational Medicine & Clinical Pharmacology, Birkendorferstr. 65, 88397, Biberach, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Christian F Krebs
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Catherine Meyer-Schwesinger
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
28
|
Corkins ME, Achieng M, DeLay BD, Krneta-Stankic V, Cain MP, Walker BL, Chen J, Lindström NO, Miller RK. A comparative study of cellular diversity between the Xenopus pronephric and mouse metanephric nephron. Kidney Int 2023; 103:77-86. [PMID: 36055600 PMCID: PMC9822858 DOI: 10.1016/j.kint.2022.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 01/11/2023]
Abstract
The kidney is an essential organ that ensures bodily fluid homeostasis and removes soluble waste products from the organism. Nephrons, the functional units of the kidney, comprise a blood filter, the glomerulus or glomus, and an epithelial tubule that processes the filtrate from the blood or coelom and selectively reabsorbs solutes, such as sugars, proteins, ions, and water, leaving waste products to be eliminated in the urine. Genes coding for transporters are segmentally expressed, enabling the nephron to sequentially process the filtrate. The Xenopus embryonic kidney, the pronephros, which consists of a single large nephron, has served as a valuable model to identify genes involved in nephron formation and patterning. Therefore, the developmental patterning program that generates these segments is of great interest. Prior work has defined the gene expression profiles of Xenopus nephron segments via in situ hybridization strategies, but a comprehensive understanding of the cellular makeup of the pronephric kidney remains incomplete. Here, we carried out single-cell mRNA sequencing of the functional Xenopus pronephric nephron and evaluated its cellular composition through comparative analyses with previous Xenopus studies and single-cell mRNA sequencing of the adult mouse kidney. This study reconstructs the cellular makeup of the pronephric kidney and identifies conserved cells, segments, and associated gene expression profiles. Thus, our data highlight significant conservation in podocytes, proximal and distal tubule cells, and divergence in cellular composition underlying the capacity of each nephron to remove wastes in the form of urine, while emphasizing the Xenopus pronephros as a model for physiology and disease.
Collapse
Affiliation(s)
- Mark E Corkins
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA.
| | - MaryAnne Achieng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Bridget D DeLay
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA; Program in Genes and Development, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Margo P Cain
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brandy L Walker
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA; Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rachel K Miller
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA; Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Program in Biochemistry and Cell Biology, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
29
|
Knight-Schrijver VR, Davaapil H, Bayraktar S, Ross ADB, Kanemaru K, Cranley J, Dabrowska M, Patel M, Polanski K, He X, Vallier L, Teichmann S, Gambardella L, Sinha S. A single-cell comparison of adult and fetal human epicardium defines the age-associated changes in epicardial activity. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1215-1229. [PMID: 36938497 PMCID: PMC7614330 DOI: 10.1038/s44161-022-00183-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
Re-activating quiescent adult epicardium represents a potential therapeutic approach for human cardiac regeneration. However, the exact molecular differences between inactive adult and active fetal epicardium are not known. In this study, we combined fetal and adult human hearts using single-cell and single-nuclei RNA sequencing and compared epicardial cells from both stages. We found that a migratory fibroblast-like epicardial population only in the fetal heart and fetal epicardium expressed angiogenic gene programs, whereas the adult epicardium was solely mesothelial and immune responsive. Furthermore, we predicted that adult hearts may still receive fetal epicardial paracrine communication, including WNT signaling with endocardium, reinforcing the validity of regenerative strategies that administer or reactivate epicardial cells in situ. Finally, we explained graft efficacy of our human embryonic stem-cell-derived epicardium model by noting its similarity to human fetal epicardium. Overall, our study defines epicardial programs of regenerative angiogenesis absent in adult hearts, contextualizes animal studies and defines epicardial states required for effective human heart regeneration.
Collapse
Affiliation(s)
- Vincent R. Knight-Schrijver
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Hongorzul Davaapil
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Semih Bayraktar
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Alexander D. B. Ross
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | | | - James Cranley
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Monika Dabrowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Xiaoling He
- John van Geest Centre for Brain Repair, Cambridge University, Cambridge, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Berlin Institute of Health (BIH), BIH Centre for Regenerative Therapies (BCRT), Charité - Universitätsmedizin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sarah Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Laure Gambardella
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- These authors jointly supervised this work: Laure Gambardella, Sanjay Sinha
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- These authors jointly supervised this work: Laure Gambardella, Sanjay Sinha
| |
Collapse
|
30
|
Davis JL, Kennedy C, Clerkin S, Treacy NJ, Dodd T, Moss C, Murphy A, Brazil DP, Cagney G, Brougham DF, Murad R, Finlay D, Vuori K, Crean J. Single-cell multiomics reveals the complexity of TGFβ signalling to chromatin in iPSC-derived kidney organoids. Commun Biol 2022; 5:1301. [PMID: 36435939 PMCID: PMC9701233 DOI: 10.1038/s42003-022-04264-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 11/11/2022] [Indexed: 11/28/2022] Open
Abstract
TGFβ1 plays a regulatory role in the determination of renal cell fate and the progression of renal fibrosis. Here we show an association between SMAD3 and the histone methyltransferase, EZH2, during cell differentiation; ChIP-seq revealed that SMAD3 and EZH2 co-occupy the genome in iPSCs and in iPSC-derived nephron progenitors. Through integration of single cell gene expression and epigenome profiling, we identified de novo ACTA2+ve/POSTN+ve myofibroblasts in kidney organoids treated with TGFβ1, characterised by increased SMAD3-dependent cis chromatin accessibility and gene expression associated with fibroblast activation. We have identified fibrosis-associated regulons characterised by enrichment of SMAD3, AP1, the ETS family of transcription factors, and NUAK1, CREB3L1, and RARG, corresponding to enriched motifs at accessible loci identified by scATACseq. Treatment with the EZH2 specific inhibitor GSK343, blocked SMAD3-dependent cis co-accessibility and inhibited myofibroblast activation. This mechanism, through which TGFβ signals directly to chromatin, represents a critical determinant of fibrotic, differentiated states.
Collapse
Affiliation(s)
- Jessica L. Davis
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Ciaran Kennedy
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Shane Clerkin
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Niall J. Treacy
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Thomas Dodd
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Catherine Moss
- grid.7886.10000 0001 0768 2743UCD Genomics Core Facility, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Alison Murphy
- grid.7886.10000 0001 0768 2743UCD Genomics Core Facility, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Derek P. Brazil
- grid.4777.30000 0004 0374 7521Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, BT9 7BL Northern Ireland, UK
| | - Gerard Cagney
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Dermot F. Brougham
- grid.7886.10000 0001 0768 2743UCD School of Chemistry, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Rabi Murad
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Institute for Medical Discovery, La Jolla, CA 92037 USA
| | - Darren Finlay
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Institute for Medical Discovery, La Jolla, CA 92037 USA
| | - Kristiina Vuori
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Institute for Medical Discovery, La Jolla, CA 92037 USA
| | - John Crean
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4, Ireland.
| |
Collapse
|
31
|
Schnell J, Achieng M, Lindström NO. Principles of human and mouse nephron development. Nat Rev Nephrol 2022; 18:628-642. [PMID: 35869368 DOI: 10.1038/s41581-022-00598-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 12/17/2022]
Abstract
The mechanisms underlying kidney development in mice and humans is an area of intense study. Insights into kidney organogenesis have the potential to guide our understanding of the origin of congenital anomalies and enable the assembly of genetic diagnostic tools. A number of studies have delineated signalling nodes that regulate positional identities and cell fates of nephron progenitor and precursor cells, whereas cross-species comparisons have markedly enhanced our understanding of conserved and divergent features of mammalian kidney organogenesis. Greater insights into the complex cellular movements that occur as the proximal-distal axis is established have challenged our understanding of nephron patterning and provided important clues to the elaborate developmental context in which human kidney diseases can arise. Studies of kidney development in vivo have also facilitated efforts to recapitulate nephrogenesis in kidney organoids in vitro, by providing a detailed blueprint of signalling events, cell movements and patterning mechanisms that are required for the formation of correctly patterned nephrons and maturation of physiologically functional apparatus that are responsible for maintaining human health.
Collapse
Affiliation(s)
- Jack Schnell
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at University of Southern California, Los Angeles, CA, USA
| | - MaryAnne Achieng
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at University of Southern California, Los Angeles, CA, USA
| | - Nils Olof Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Safi W, Marco A, Moya D, Prado P, Garreta E, Montserrat N. Assessing kidney development and disease using kidney organoids and CRISPR engineering. Front Cell Dev Biol 2022; 10:948395. [PMID: 36120564 PMCID: PMC9479189 DOI: 10.3389/fcell.2022.948395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
Abstract
The differentiation of human pluripotent stem cells (hPSCs) towards organoids is one of the biggest scientific advances in regenerative medicine. Kidney organoids have not only laid the groundwork for various organ-like tissue systems but also provided insights into kidney embryonic development. Thus, several protocols for the differentiation of renal progenitors or mature cell types have been established. Insights into the interplay of developmental pathways in nephrogenesis and determination of different cell fates have enabled the in vitro recapitulation of nephrogenesis. Here we first provide an overview of kidney morphogenesis and patterning in the mouse model in order to dissect signalling pathways that are key to define culture conditions sustaining renal differentiation from hPSCs. Secondly, we also highlight how genome editing approaches have provided insights on the specific role of different genes and molecular pathways during renal differentiation from hPSCs. Based on this knowledge we further review how CRISPR/Cas9 technology has enabled the recapitulation and correction of cellular phenotypes associated with human renal disease. Last, we also revise how the field has positively benefited from emerging technologies as single cell RNA sequencing and discuss current limitations on kidney organoid technology that will take advantage from bioengineering solutions to help standardizing the use of this model systems to study kidney development and disease.
Collapse
Affiliation(s)
- Wajima Safi
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| | - Andrés Marco
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | | | - Patricia Prado
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Elena Garreta
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| |
Collapse
|
33
|
Fink EE, Sona S, Tran U, Desprez PE, Bradley M, Qiu H, Eltemamy M, Wee A, Wolkov M, Nicolas M, Min B, Haber GP, Wessely O, Lee BH, Ting AH. Single-cell and spatial mapping Identify cell types and signaling Networks in the human ureter. Dev Cell 2022; 57:1899-1916.e6. [PMID: 35914526 PMCID: PMC9381170 DOI: 10.1016/j.devcel.2022.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/18/2022] [Accepted: 07/05/2022] [Indexed: 01/16/2023]
Abstract
Tissue engineering offers a promising treatment strategy for ureteral strictures, but its success requires an in-depth understanding of the architecture, cellular heterogeneity, and signaling pathways underlying tissue regeneration. Here, we define and spatially map cell populations within the human ureter using single-cell RNA sequencing, spatial gene expression, and immunofluorescence approaches. We focus on the stromal and urothelial cell populations to enumerate the distinct cell types composing the human ureter and infer potential cell-cell communication networks underpinning the bi-directional crosstalk between these compartments. Furthermore, we analyze and experimentally validate the importance of the sonic hedgehog (SHH) signaling pathway in adult progenitor cell maintenance. The SHH-expressing basal cells support organoid generation in vitro and accurately predict the differentiation trajectory from basal progenitor cells to terminally differentiated umbrella cells. Our results highlight the essential processes involved in adult ureter tissue homeostasis and provide a blueprint for guiding ureter tissue engineering.
Collapse
Affiliation(s)
- Emily E Fink
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Surbhi Sona
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Uyen Tran
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Pierre-Emmanuel Desprez
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Urology, CHU Lille, Claude Huriez Hospital, Université Lille, 59000 Lille, France
| | - Matthew Bradley
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hong Qiu
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mohamed Eltemamy
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alvin Wee
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Madison Wolkov
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Marlo Nicolas
- Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Georges-Pascal Haber
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Oliver Wessely
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Byron H Lee
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Angela H Ting
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
34
|
Westerling-Bui AD, Fast EM, Soare TW, Venkatachalan S, DeRan M, Fanelli AB, Kyrychenko S, Hoang H, Corriea GM, Zhang W, Yu M, Daniels M, Malojcic G, Pan-Zhou XR, Ledeboer MW, Harmange JC, Emani M, Tibbitts TT, Reilly JF, Mundel P. Transplanted organoids empower human preclinical assessment of drug candidate for the clinic. SCIENCE ADVANCES 2022; 8:eabj5633. [PMID: 35857479 PMCID: PMC9258952 DOI: 10.1126/sciadv.abj5633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pharmacodynamic (PD) studies are an essential component of preclinical drug discovery. Current approaches for PD studies, including the analysis of novel kidney disease targeting therapeutic agents, are limited to animal models with unclear translatability to the human condition. To address this challenge, we developed a novel approach for PD studies using transplanted, perfused human kidney organoids. We performed pharmacokinetic (PK) studies with GFB-887, an investigational new drug now in phase 2 trials. Orally dosed GFB-887 to athymic rats that had undergone organoid transplantation resulted in measurable drug exposure in transplanted organoids. We established the efficacy of orally dosed GFB-887 in PD studies, where quantitative analysis showed significant protection of kidney filter cells in human organoids and endogenous rat host kidneys. This widely applicable approach demonstrates feasibility of using transplanted human organoids in preclinical PD studies with an investigational new drug, empowering organoids to revolutionize drug discovery.
Collapse
Affiliation(s)
- Amy D. Westerling-Bui
- Goldfinch Bio Inc., Cambridge, MA 02142, USA
- Corresponding author. (A.D.W.-B.); (P.M.)
| | | | | | | | | | | | | | - Hien Hoang
- Goldfinch Bio Inc., Cambridge, MA 02142, USA
| | | | - Wei Zhang
- Goldfinch Bio Inc., Cambridge, MA 02142, USA
| | - Maolin Yu
- Goldfinch Bio Inc., Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | - Peter Mundel
- Goldfinch Bio Inc., Cambridge, MA 02142, USA
- Corresponding author. (A.D.W.-B.); (P.M.)
| |
Collapse
|
35
|
Tran T, Song CJ, Nguyen T, Cheng SY, McMahon JA, Yang R, Guo Q, Der B, Lindström NO, Lin DCH, McMahon AP. A scalable organoid model of human autosomal dominant polycystic kidney disease for disease mechanism and drug discovery. Cell Stem Cell 2022; 29:1083-1101.e7. [PMID: 35803227 PMCID: PMC11088748 DOI: 10.1016/j.stem.2022.06.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/28/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022]
Abstract
Human pluripotent stem-cell-derived organoids are models for human development and disease. We report a modified human kidney organoid system that generates thousands of similar organoids, each consisting of 1-2 nephron-like structures. Single-cell transcriptomic profiling and immunofluorescence validation highlighted patterned nephron-like structures utilizing similar pathways, with distinct morphogenesis, to human nephrogenesis. To examine this platform for therapeutic screening, the polycystic kidney disease genes PKD1 and PKD2 were inactivated by gene editing. PKD1 and PKD2 mutant models exhibited efficient and reproducible cyst formation. Cystic outgrowths could be propagated for months to centimeter-sized cysts. To shed new light on cystogenesis, 247 protein kinase inhibitors (PKIs) were screened in a live imaging assay identifying compounds blocking cyst formation but not overall organoid growth. Scaling and further development of the organoid platform will enable a broader capability for kidney disease modeling and high-throughput drug screens.
Collapse
Affiliation(s)
- Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Cheng Jack Song
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Amgen Research, Cardiometabolic Disorders, 1120 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Trang Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shun-Yang Cheng
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Rui Yang
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel C-H Lin
- Amgen Research, Cardiometabolic Disorders, 1120 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
36
|
Hilliard S, Tortelote G, Liu H, Chen CH, El-Dahr SS. Single-Cell Chromatin and Gene-Regulatory Dynamics of Mouse Nephron Progenitors. J Am Soc Nephrol 2022; 33:1308-1322. [PMID: 35383123 PMCID: PMC9257825 DOI: 10.1681/asn.2021091213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/22/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND We reasoned that unraveling the dynamic changes in accessibility of genomic regulatory elements and gene expression at single-cell resolution will inform the basic mechanisms of nephrogenesis. METHODS We performed single-cell ATAC-seq and RNA-seq both individually (singleomes; Six2GFP cells) and jointly in the same cells (multiomes; kidneys) to generate integrated chromatin and transcriptional maps in mouse embryonic and neonatal nephron progenitor cells. RESULTS We demonstrate that singleomes and multiomes are comparable in assigning most cell states, identification of new cell type markers, and defining the transcription factors driving cell identity. However, multiomes are more precise in defining the progenitor population. Multiomes identified a "pioneer" bHLH/Fox motif signature in nephron progenitor cells. Moreover, we identified a subset of Fox factors exhibiting high chromatin activity in podocytes. One of these Fox factors, Foxp1, is important for nephrogenesis. Key nephrogenic factors are distinguished by strong correlation between linked gene regulatory elements and gene expression. CONCLUSION Mapping the regulatory landscape at single-cell resolution informs the regulatory hierarchy of nephrogenesis. Paired single-cell epigenomes and transcriptomes of nephron progenitors should provide a foundation to understand prenatal programming, regeneration after injury, and ex vivo nephrogenesis.
Collapse
Affiliation(s)
- Sylvia Hilliard
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Giovane Tortelote
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hongbing Liu
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chao-Hui Chen
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Samir S. El-Dahr
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
37
|
Röck R, Rizzo L, Lienkamp SS. Kidney Development: Recent Insights from Technological Advances. Physiology (Bethesda) 2022; 37:0. [PMID: 35253460 DOI: 10.1152/physiol.00041.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The kidney is a complex organ, and how it forms is a fascinating process. New technologies, such as single-cell transcriptomics, and enhanced imaging modalities are offering new approaches to understand the complex and intertwined processes during embryonic kidney development.
Collapse
Affiliation(s)
- Ruth Röck
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Swiss National Centres of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland
| | - Ludovica Rizzo
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Swiss National Centres of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland.,PhD program "Molecular and Translational Biomedicine," Life Science Zurich Graduate School, Zurich, Switzerland
| | - Soeren S Lienkamp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Swiss National Centres of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland
| |
Collapse
|
38
|
Lendahl U, Muhl L, Betsholtz C. Identification, discrimination and heterogeneity of fibroblasts. Nat Commun 2022; 13:3409. [PMID: 35701396 PMCID: PMC9192344 DOI: 10.1038/s41467-022-30633-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/04/2022] [Indexed: 12/14/2022] Open
Abstract
Fibroblasts, the principal cell type of connective tissue, secrete extracellular matrix components during tissue development, homeostasis, repair and disease. Despite this crucial role, the identification and distinction of fibroblasts from other cell types are challenging and laden with caveats. Rapid progress in single-cell transcriptomics now yields detailed molecular portraits of fibroblasts and other cell types in our bodies, which complement and enrich classical histological and immunological descriptions, improve cell class definitions and guide further studies on the functional heterogeneity of cell subtypes and states, origins and fates in physiological and pathological processes. In this review, we summarize and discuss recent advances in the understanding of fibroblast identification and heterogeneity and how they discriminate from other cell types. In this review, the authors look at how recent progress in single-cell transcriptomics complement and enrich the classical, largely morphological, portraits of fibroblasts. The detailed molecular information now available provides new insights into fibroblast identity, heterogeneity and function.
Collapse
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Neurobiology, Care sciences and Society, Karolinska Institutet, SE-14183, Huddinge, Sweden
| | - Lars Muhl
- Department of Medicine, Huddinge, Karolinska Institutet, Blickagången 16, SE-141 57, Huddinge, Sweden
| | - Christer Betsholtz
- Department of Medicine, Huddinge, Karolinska Institutet, Blickagången 16, SE-141 57, Huddinge, Sweden. .,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
39
|
Wu H, Liu F, Shangguan Y, Yang Y, Shi W, Hu W, Zeng Z, Hu N, Zhang X, Hocher B, Tang D, Yin L, Dai Y. Integrating spatial transcriptomics with single-cell transcriptomics reveals a spatiotemporal gene landscape of the human developing kidney. Cell Biosci 2022; 12:80. [PMID: 35659756 PMCID: PMC9164720 DOI: 10.1186/s13578-022-00801-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Research on spatiotemporal gene landscape can provide insights into the spatial characteristics of human kidney development and facilitate kidney organoid cultivation. Here, we profiled the spatiotemporal gene programs of the human embryonic kidneys at 9 and 18 post-conception weeks (PCW) by integrating the application of microarray-based spatial transcriptomics and single-cell transcriptomics. RESULTS We mapped transcriptomic signatures of scRNA-seq cell types upon the 9 and 18 PCW kidney sections based on cell-type deconvolution and multimodal intersection analyses, depicting a spatial landscape of developing cell subpopulations. We established the gene characteristics in the medullary regions and revealed a strong mitochondrial oxidative phosphorylation and glycolysis activity in the deeper medullary region. We also built a regulatory network centered on GDNF-ETV4 for nephrogenic niche development based on the weighted gene co-expression network analysis and highlighted the key roles of Wnt, FGF, and JAG1-Notch2 signaling in maintaining renal branching morphogenesis. CONCLUSIONS Our findings obtained by this spatiotemporal gene program are expected to improve the current understanding of kidney development.
Collapse
Affiliation(s)
- Hongwei Wu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China.,Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Fanna Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Yu Shangguan
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Yane Yang
- Shenzhen Far East Women & Children Hospital, Shenzhen, 518000, Guangdong, China
| | - Wei Shi
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Wenlong Hu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Nan Hu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Xinzhou Zhang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Berthold Hocher
- Department of Medicine Nephrology, Medical Faculty, Mannheim Heidelberg University, 68167, Mannheim, Germany
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China.
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China.
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China. .,Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China. .,Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory of Guilin NO. 924 Hospital, Guilin, 541002, China.
| |
Collapse
|
40
|
Vanslambrouck JM, Wilson SB, Tan KS, Groenewegen E, Rudraraju R, Neil J, Lawlor KT, Mah S, Scurr M, Howden SE, Subbarao K, Little MH. Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.10.14.464320. [PMID: 35665006 PMCID: PMC9164445 DOI: 10.1101/2021.10.14.464320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.
Collapse
Affiliation(s)
- Jessica M. Vanslambrouck
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Sean B. Wilson
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Ker Sin Tan
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Ella Groenewegen
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Jessica Neil
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Kynan T. Lawlor
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Sophia Mah
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Michelle Scurr
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Sara E. Howden
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Melissa H. Little
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC, Australia
- Author for correspondence: M.H.L.: +61 3 9936 6206;
| |
Collapse
|
41
|
Comparative whole-genome transcriptome analysis in renal cell populations reveals high tissue specificity of MAPK/ERK targets in embryonic kidney. BMC Biol 2022; 20:112. [PMID: 35550069 PMCID: PMC9102746 DOI: 10.1186/s12915-022-01309-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Background MAPK/ERK signaling is a well-known mediator of extracellular stimuli controlling intracellular responses to growth factors and mechanical cues. The critical requirement of MAPK/ERK signaling for embryonic stem cell maintenance is demonstrated, but specific functions in progenitor regulation during embryonic development, and in particular kidney development remain largely unexplored. We previously demonstrated MAPK/ERK signaling as a key regulator of kidney growth through branching morphogenesis and normal nephrogenesis where it also regulates progenitor expansion. Here, we performed RNA sequencing-based whole-genome expression analysis to identify transcriptional MAPK/ERK targets in two distinct renal populations: the ureteric bud epithelium and the nephron progenitors. Results Our analysis revealed a large number (5053) of differentially expressed genes (DEGs) in nephron progenitors and significantly less (1004) in ureteric bud epithelium, reflecting likely heterogenicity of cell types. The data analysis identified high tissue-specificity, as only a fraction (362) of MAPK/ERK targets are shared between the two tissues. Tissue-specific MAPK/ERK targets participate in the regulation of mitochondrial energy metabolism in nephron progenitors, which fail to maintain normal mitochondria numbers in the MAPK/ERK-deficient tissue. In the ureteric bud epithelium, a dramatic decline in progenitor-specific gene expression was detected with a simultaneous increase in differentiation-associated genes, which was not observed in nephron progenitors. Our experiments in the genetic model of MAPK/ERK deficiency provide evidence that MAPK/ERK signaling in the ureteric bud maintains epithelial cells in an undifferentiated state. Interestingly, the transcriptional targets shared between the two tissues studied are over-represented by histone genes, suggesting that MAPK/ERK signaling regulates cell cycle progression and stem cell maintenance through chromosome condensation and nucleosome assembly. Conclusions Using tissue-specific MAPK/ERK inactivation and RNA sequencing in combination with experimentation in embryonic kidneys, we demonstrate here that MAPK/ERK signaling maintains ureteric bud tip cells, suggesting a regulatory role in collecting duct progenitors. We additionally deliver new mechanistic information on how MAPK/ERK signaling regulates progenitor maintenance through its effects on chromatin accessibility and energy metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01309-z.
Collapse
|
42
|
Ma Z, Hu X, Ding HF, Zhang M, Huo Y, Dong Z. Single-Nucleus Transcriptional Profiling of Chronic Kidney Disease after Cisplatin Nephrotoxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:613-628. [PMID: 35092726 PMCID: PMC8978211 DOI: 10.1016/j.ajpath.2021.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
Abstract
Cisplatin induces both acute and chronic nephrotoxicity during chemotherapy in patients with cancer. Presented here is the first study of single-nucleus RNA sequencing (snRNA-seq) of cisplatin-induced nephrotoxicity. Repeated low-dose cisplatin treatment (RLDC) led to decreases in renal function and kidney weight in mice at 9 weeks. The kidneys of these mice showed tubular degeneration and dilation. snRNA-seq identified 16 cell types and 17 cell clusters in these kidneys. Cluster-by-cluster comparison demonstrated cell type-specific changes in gene expression and identified a unique proximal tubule (PT) injury/repair cluster that co-expressed the injury marker kidney injury molecule-1 (Kim1) and the proliferation marker Ki-67. Compared with control, post-RLDC kidneys had 424 differentially expressed genes in PT cells, including tubular transporters and cytochrome P450 enzymes involved in lipid metabolism. snRNA-seq also revealed transcriptional changes in potential PT injury markers (Krt222, Eda2r, Ltbp2, and Masp1) and repair marker (Bex4). RLDC induced inflammation and proinflammatory cytokines (RelB, TNF-α, Il7, Ccl2, and Cxcl2) and the expression of fibrosis markers (fibronectin, collagen I, connective tissue growth factor, vimentin, and α-smooth muscle actin). Together, these results provide new insights into RLDC-induced transcriptional changes at the single-cell level that may contribute to the development of chronic kidney problems in patients with cancer after cisplatin chemotherapy.
Collapse
Affiliation(s)
- Zhengwei Ma
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Augusta, Georgia.
| | - Xiaoru Hu
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Augusta, Georgia; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Han-Fei Ding
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Augusta, Georgia
| | - Yuqing Huo
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Augusta, Georgia; Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Augusta, Georgia; Charlie Norwood VA Medical Center, Augusta, Georgia.
| |
Collapse
|
43
|
Abstract
The field of single-cell genomics and spatial technologies is rapidly evolving and has already provided unprecedented insights into complex tissues. Major advances have been made in dissecting the cellular composition and spatiotemporal interactions that mediate developmental processes in the fetal kidney. Single-cell technologies have also provided detailed insights into the heterogeneity of cell types within the healthy adult and shed light on the complex cellular mechanisms that contribute to kidney disease. The in-depth characterization of specific cell types associated with acute kidney injury and glomerular diseases has potential for the development of prognostic biomarkers and new therapeutics. Analyses of pathway activity in clear-cell renal cell carcinoma can predict the sensitivity of tumour cells to specific inhibitors. The identification of the cell of origin of renal cell carcinoma and of new cell types within the tumour microenvironment also has implications for the development of targeted therapeutics. Similarly, single-cell sequencing has provided new insights into the mechanisms underlying kidney fibrosis, specifically our understanding of myofibroblast origins and the contribution of cell crosstalk within the fibrotic niche to disease progression. These and future studies will enable the creation of a map to aid our understanding of the cellular processes and interactions in the developing, healthy and diseased kidney.
Collapse
|
44
|
Wilson SB, Howden SE, Vanslambrouck JM, Dorison A, Alquicira-Hernandez J, Powell JE, Little MH. DevKidCC allows for robust classification and direct comparisons of kidney organoid datasets. Genome Med 2022. [PMID: 35189942 DOI: 10.1101/2021.01.20.427346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND While single-cell transcriptional profiling has greatly increased our capacity to interrogate biology, accurate cell classification within and between datasets is a key challenge. This is particularly so in pluripotent stem cell-derived organoids which represent a model of a developmental system. Here, clustering algorithms and selected marker genes can fail to accurately classify cellular identity while variation in analyses makes it difficult to meaningfully compare datasets. Kidney organoids provide a valuable resource to understand kidney development and disease. However, direct comparison of relative cellular composition between protocols has proved challenging. Hence, an unbiased approach for classifying cell identity is required. METHODS The R package, scPred, was trained on multiple single cell RNA-seq datasets of human fetal kidney. A hierarchical model classified cellular subtypes into nephron, stroma and ureteric epithelial elements. This model, provided in the R package DevKidCC ( github.com/KidneyRegeneration/DevKidCC ), was then used to predict relative cell identity within published kidney organoid datasets generated using distinct cell lines and differentiation protocols, interrogating the impact of such variations. The package contains custom functions for the display of differential gene expression within cellular subtypes. RESULTS DevKidCC was used to directly compare between distinct kidney organoid protocols, identifying differences in relative proportions of cell types at all hierarchical levels of the model and highlighting variations in stromal and unassigned cell types, nephron progenitor prevalence and relative maturation of individual epithelial segments. Of note, DevKidCC was able to distinguish distal nephron from ureteric epithelium, cell types with overlapping profiles that have previously confounded analyses. When applied to a variation in protocol via the addition of retinoic acid, DevKidCC identified a consequential depletion of nephron progenitors. CONCLUSIONS The application of DevKidCC to kidney organoids reproducibly classifies component cellular identity within distinct single-cell datasets. The application of the tool is summarised in an interactive Shiny application, as are examples of the utility of in-built functions for data presentation. This tool will enable the consistent and rapid comparison of kidney organoid protocols, driving improvements in patterning to kidney endpoints and validating new approaches.
Collapse
Affiliation(s)
- Sean B Wilson
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | | | - Aude Dorison
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
| | - Jose Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Parkville, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, Copenhagen, Denmark.
| |
Collapse
|
45
|
Wilson SB, Howden SE, Vanslambrouck JM, Dorison A, Alquicira-Hernandez J, Powell JE, Little MH. DevKidCC allows for robust classification and direct comparisons of kidney organoid datasets. Genome Med 2022; 14:19. [PMID: 35189942 PMCID: PMC8862535 DOI: 10.1186/s13073-022-01023-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background While single-cell transcriptional profiling has greatly increased our capacity to interrogate biology, accurate cell classification within and between datasets is a key challenge. This is particularly so in pluripotent stem cell-derived organoids which represent a model of a developmental system. Here, clustering algorithms and selected marker genes can fail to accurately classify cellular identity while variation in analyses makes it difficult to meaningfully compare datasets. Kidney organoids provide a valuable resource to understand kidney development and disease. However, direct comparison of relative cellular composition between protocols has proved challenging. Hence, an unbiased approach for classifying cell identity is required. Methods The R package, scPred, was trained on multiple single cell RNA-seq datasets of human fetal kidney. A hierarchical model classified cellular subtypes into nephron, stroma and ureteric epithelial elements. This model, provided in the R package DevKidCC (github.com/KidneyRegeneration/DevKidCC), was then used to predict relative cell identity within published kidney organoid datasets generated using distinct cell lines and differentiation protocols, interrogating the impact of such variations. The package contains custom functions for the display of differential gene expression within cellular subtypes. Results DevKidCC was used to directly compare between distinct kidney organoid protocols, identifying differences in relative proportions of cell types at all hierarchical levels of the model and highlighting variations in stromal and unassigned cell types, nephron progenitor prevalence and relative maturation of individual epithelial segments. Of note, DevKidCC was able to distinguish distal nephron from ureteric epithelium, cell types with overlapping profiles that have previously confounded analyses. When applied to a variation in protocol via the addition of retinoic acid, DevKidCC identified a consequential depletion of nephron progenitors. Conclusions The application of DevKidCC to kidney organoids reproducibly classifies component cellular identity within distinct single-cell datasets. The application of the tool is summarised in an interactive Shiny application, as are examples of the utility of in-built functions for data presentation. This tool will enable the consistent and rapid comparison of kidney organoid protocols, driving improvements in patterning to kidney endpoints and validating new approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01023-z.
Collapse
Affiliation(s)
- Sean B Wilson
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | | | - Aude Dorison
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
| | - Jose Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.,UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia. .,Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Parkville, Australia. .,Novo Nordisk Foundation Centre for Stem Cell Medicine, Copenhagen, Denmark.
| |
Collapse
|
46
|
Alpert A, Nahman O, Starosvetsky E, Hayun M, Curiel TJ, Ofran Y, Shen-Orr SS. Alignment of single-cell trajectories by tuMap enables high-resolution quantitative comparison of cancer samples. Cell Syst 2022; 13:71-82.e8. [PMID: 34624253 PMCID: PMC8776581 DOI: 10.1016/j.cels.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/20/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023]
Abstract
Single-cell technologies allow characterization of cancer samples as continuous developmental trajectories. Yet, the obtained temporal resolution cannot be leveraged for a comparative analysis due to the large phenotypic heterogeneity existing between patients. Here, we present the tuMap algorithm that exploits high-dimensional single-cell data of cancer samples exhibiting an underlying developmental structure to align them with the healthy development, yielding the tuMap pseudotime axis that allows their systematic, meaningful comparison. We applied tuMap on single-cell mass cytometry data of acute lymphoblastic and myeloid leukemia to reveal associations between the tuMap pseudotime axis and clinics that outperform cellular assignment into developmental populations. Application of the tuMap algorithm on single-cell RNA sequencing data further identified gene signatures of stem cells residing at the very-early parts of the cancer trajectories. The quantitative framework provided by tuMap allows generation of metrics for cancer patients evaluation.
Collapse
Affiliation(s)
- Ayelet Alpert
- Department of Immunology, Faculty of Medicine, Technion Israel Institute of Technology, Haifa 3525422, Israel
| | - Ornit Nahman
- Department of Immunology, Faculty of Medicine, Technion Israel Institute of Technology, Haifa 3525422, Israel
| | - Elina Starosvetsky
- Department of Immunology, Faculty of Medicine, Technion Israel Institute of Technology, Haifa 3525422, Israel
| | - Michal Hayun
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Tyler J Curiel
- Department of Medicine/Hematology & Medical Oncology, School of Medicine, the University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yishai Ofran
- Department of Immunology, Faculty of Medicine, Technion Israel Institute of Technology, Haifa 3525422, Israel; Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa 3109601, Israel; Department of Hematology, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9103102, Israel.
| | - Shai S Shen-Orr
- Department of Immunology, Faculty of Medicine, Technion Israel Institute of Technology, Haifa 3525422, Israel.
| |
Collapse
|
47
|
Rasmussen M, Reddy M, Nolan R, Camunas-Soler J, Khodursky A, Scheller NM, Cantonwine DE, Engelbrechtsen L, Mi JD, Dutta A, Brundage T, Siddiqui F, Thao M, Gee EPS, La J, Baruch-Gravett C, Santillan MK, Deb S, Ame SM, Ali SM, Adkins M, DePristo MA, Lee M, Namsaraev E, Gybel-Brask DJ, Skibsted L, Litch JA, Santillan DA, Sazawal S, Tribe RM, Roberts JM, Jain M, Høgdall E, Holzman C, Quake SR, Elovitz MA, McElrath TF. RNA profiles reveal signatures of future health and disease in pregnancy. Nature 2022; 601:422-427. [PMID: 34987224 PMCID: PMC8770117 DOI: 10.1038/s41586-021-04249-w] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/16/2021] [Indexed: 11/08/2022]
Abstract
Maternal morbidity and mortality continue to rise, and pre-eclampsia is a major driver of this burden1. Yet the ability to assess underlying pathophysiology before clinical presentation to enable identification of pregnancies at risk remains elusive. Here we demonstrate the ability of plasma cell-free RNA (cfRNA) to reveal patterns of normal pregnancy progression and determine the risk of developing pre-eclampsia months before clinical presentation. Our results centre on comprehensive transcriptome data from eight independent prospectively collected cohorts comprising 1,840 racially diverse pregnancies and retrospective analysis of 2,539 banked plasma samples. The pre-eclampsia data include 524 samples (72 cases and 452 non-cases) from two diverse independent cohorts collected 14.5 weeks (s.d., 4.5 weeks) before delivery. We show that cfRNA signatures from a single blood draw can track pregnancy progression at the placental, maternal and fetal levels and can robustly predict pre-eclampsia, with a sensitivity of 75% and a positive predictive value of 32.3% (s.d., 3%), which is superior to the state-of-the-art method2. cfRNA signatures of normal pregnancy progression and pre-eclampsia are independent of clinical factors, such as maternal age, body mass index and race, which cumulatively account for less than 1% of model variance. Further, the cfRNA signature for pre-eclampsia contains gene features linked to biological processes implicated in the underlying pathophysiology of pre-eclampsia.
Collapse
Affiliation(s)
| | | | - Rory Nolan
- Mirvie, Inc., South San Francisco, CA, USA
| | | | | | - Nikolai M Scheller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Line Engelbrechtsen
- Department of Obstetrics and Gynecology, Herlev University Hospital, Herlev, Denmark
| | - Jia Dai Mi
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, St Thomas' Hospital Campus, London, UK
| | - Arup Dutta
- Center for Public Health Kinetics, New Delhi, India
| | | | | | | | | | - Johnny La
- Mirvie, Inc., South San Francisco, CA, USA
| | | | - Mark K Santillan
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Saikat Deb
- Center for Public Health Kinetics, New Delhi, India
- Public Health Laboratory-Idc, Pemba, Zanzibar, Tanzania
| | - Shaali M Ame
- Public Health Laboratory-Idc, Pemba, Zanzibar, Tanzania
| | - Said M Ali
- Public Health Laboratory-Idc, Pemba, Zanzibar, Tanzania
| | | | | | | | | | - Dorte Jensen Gybel-Brask
- Department of Obstetrics, Zealand University Hospital, Roskilde, Denmark
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
| | - Lillian Skibsted
- Department of Obstetrics, Zealand University Hospital, Roskilde, Denmark
| | - James A Litch
- Global Alliance to Prevent Prematurity and Stillbirth (GAPPS), Lynnwood, WA, USA
| | - Donna A Santillan
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | | | - Rachel M Tribe
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, St Thomas' Hospital Campus, London, UK
| | - James M Roberts
- Magee-Womens Research Institute, Department of Obstetrics and Gynecology and Reproductive Sciences, Epidemiology and Clinical and Translational Research University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Estrid Høgdall
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
| | | | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Michal A Elovitz
- Mirvie, Inc., South San Francisco, CA, USA.
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
48
|
Caza TN, Al-Rabadi LF, Beck LH. How Times Have Changed! A Cornucopia of Antigens for Membranous Nephropathy. Front Immunol 2021; 12:800242. [PMID: 34899763 PMCID: PMC8662735 DOI: 10.3389/fimmu.2021.800242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The identification of the major target antigen phospholipase A2 receptor (PLA2R) in the majority of primary (idiopathic) cases of membranous nephropathy (MN) has been followed by the rapid identification of numerous minor antigens that appear to define phenotypically distinct forms of disease. This article serves to review all the known antigens that have been shown to localize to subepithelial deposits in MN, as well as the distinctive characteristics associated with each subtype of MN. We will also shed light on the novel proteomic approaches that have allowed identification of the most recent antigens. The paradigm of an antigen normally expressed on the podocyte cell surface leading to in-situ immune complex formation, complement activation, and subsequent podocyte injury will be discussed and challenged in light of the current repertoire of multiple MN antigens. Since disease phenotypes associated with each individual target antigens can often blur the distinction between primary and secondary disease, we encourage the use of antigen-based classification of membranous nephropathy.
Collapse
Affiliation(s)
| | - Laith F. Al-Rabadi
- Department of Internal Medicine (Nephrology & Hypertension), University of Utah, Salt Lake City, UT, United States
| | - Laurence H. Beck
- Department of Medicine (Nephrology), Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| |
Collapse
|
49
|
Bais AS, Cerqueira DM, Clugston A, Bodnar AJ, Ho J, Kostka D. Single-cell RNA sequencing reveals differential cell cycle activity in key cell populations during nephrogenesis. Sci Rep 2021; 11:22434. [PMID: 34789782 PMCID: PMC8599654 DOI: 10.1038/s41598-021-01790-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/27/2021] [Indexed: 02/08/2023] Open
Abstract
The kidney is a complex organ composed of more than 30 terminally differentiated cell types that all are required to perform its numerous homeostatic functions. Defects in kidney development are a significant cause of chronic kidney disease in children, which can lead to kidney failure that can only be treated by transplant or dialysis. A better understanding of molecular mechanisms that drive kidney development is important for designing strategies to enhance renal repair and regeneration. In this study, we profiled gene expression in the developing mouse kidney at embryonic day 14.5 at single-cell resolution. Consistent with previous studies, clusters with distinct transcriptional signatures clearly identify major compartments and cell types of the developing kidney. Cell cycle activity distinguishes between the "primed" and "self-renewing" sub-populations of nephron progenitors, with increased expression of the cell cycle-related genes Birc5, Cdca3, Smc2 and Smc4 in "primed" nephron progenitors. In addition, augmented expression of cell cycle related genes Birc5, Cks2, Ccnb1, Ccnd1 and Tuba1a/b was detected in immature distal tubules, suggesting cell cycle regulation may be required for early events of nephron patterning and tubular fusion between the distal nephron and collecting duct epithelia.
Collapse
Affiliation(s)
- Abha S Bais
- Department of Developmental Biology, Rangos Research Center 8117, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
| | - Débora M Cerqueira
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Division of Nephrology, Department of Pediatrics, Rangos Research Center 5127, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
| | - Andrew Clugston
- Department of Developmental Biology, Rangos Research Center 8117, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Division of Nephrology, Department of Pediatrics, Rangos Research Center 5127, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
| | - Andrew J Bodnar
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Division of Nephrology, Department of Pediatrics, Rangos Research Center 5127, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
| | - Jacqueline Ho
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Division of Nephrology, Department of Pediatrics, Rangos Research Center 5127, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA.
| | - Dennis Kostka
- Department of Developmental Biology, Rangos Research Center 8117, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA.
- Department of Computational and Systems Biology and Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
50
|
Abstract
The postnatal kidney is predominantly composed of nephron epithelia with the interstitial components representing a small proportion of the final organ, except in the diseased state. This is in stark contrast to the developing organ, which arises from the mesoderm and comprises an expansive stromal population with distinct regional gene expression. In many organs, the identity and ultimate function of an epithelium is tightly regulated by the surrounding stroma during development. However, although the presence of a renal stromal stem cell population has been demonstrated, the focus has been on understanding the process of nephrogenesis whereas the role of distinct stromal components during kidney morphogenesis is less clear. In this Review, we consider what is known about the role of the stroma of the developing kidney in nephrogenesis, where these cells come from as well as their heterogeneity, and reflect on how this information may improve human kidney organoid models.
Collapse
Affiliation(s)
- Sean B. Wilson
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Melissa H. Little
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|