1
|
Piskobulu V, Athanasouli M, Witte H, Feldhaus C, Streit A, Sommer RJ. High Nutritional Conditions Influence Feeding Plasticity in Pristionchus pacificus and Render Worms Non-Predatory. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:94-111. [PMID: 39822045 PMCID: PMC11788882 DOI: 10.1002/jez.b.23284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Developmental plasticity, the ability of a genotype to produce different phenotypes in response to environmental conditions, has been subject to intense studies in the last four decades. The self-fertilising nematode Pristionchus pacificus has been developed as a genetic model system for studying developmental plasticity due to its mouth-form polyphenism that results in alternative feeding strategies with a facultative predatory and non-predatory mouth form. Many studies linked molecular aspects of the regulation of mouth-form polyphenism with investigations of its evolutionary and ecological significance. Also, several environmental factors influencing P. pacificus feeding structure expression were identified including temperature, culture condition and population density. However, the nutritional plasticity of the mouth form has never been properly investigated although polyphenisms are known to be influenced by changes in nutritional conditions. For instance, studies in eusocial insects and scarab beetles have provided significant mechanistic insights into the nutritional regulation of polyphenisms but also other forms of plasticity. Here, we study the influence of nutrition on mouth-form polyphenism in P. pacificus through experiments with monosaccharide and fatty acid supplementation. We show that in particular glucose supplementation renders worms non-predatory. Subsequent transcriptomic and mutant analyses indicate that de novo fatty acid synthesis and peroxisomal beta-oxidation pathways play an important role in the mediation of this plastic response. Finally, the analysis of fitness consequences through fecundity counts suggests that non-predatory animals have an advantage over predatory animals grown in the glucose-supplemented condition.
Collapse
Affiliation(s)
- Veysi Piskobulu
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Marina Athanasouli
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Hanh Witte
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Christian Feldhaus
- Max‐Planck Institute for Biology Tübingen, BioOptics FacilityTübingenGermany
| | - Adrian Streit
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| |
Collapse
|
2
|
Wighard S, Sommer RJ. The Role of Epigenetic Switches in Polyphenism Control: Implications from a Nematode Model for the Developmental Regulation of Alternative Phenotypes. BIOLOGY 2024; 13:922. [PMID: 39596877 PMCID: PMC11591871 DOI: 10.3390/biology13110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Polyphenisms, the capability of organisms to form two or more alternative phenotypes in response to environmental variation, are prevalent in nature. However, associated molecular mechanisms and potential general principles of polyphenisms among major organismal groups remain currently unknown. This review focuses on an emerging model system for developmental plasticity and polyphenism research, the nematode Pristionchus pacificus and explores mechanistic insight obtained through unbiased genetic, experimental and natural variation studies. Resulting findings identify a central role for epigenetic switches in the environmental control of alternative phenotypes and their micro-and macroevolution. Several features observed in P. pacificus are shared with insects and plants and might become general principles for the control of polyphenisms during development.
Collapse
Affiliation(s)
- Sara Wighard
- Max Planck Institute for Biology Tuebingen, Department for Integrative Evolutionary Biology, 72076 Tuebingen, Germany;
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Ralf J. Sommer
- Max Planck Institute for Biology Tuebingen, Department for Integrative Evolutionary Biology, 72076 Tuebingen, Germany;
| |
Collapse
|
3
|
Reich S, Loschko T, Jung J, Nestel S, Sommer RJ, Werner MS. Developmental transcriptomics in Pristionchus reveals the logic of a plasticity gene regulatory network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612712. [PMID: 39345445 PMCID: PMC11429705 DOI: 10.1101/2024.09.12.612712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Developmental plasticity enables the production of alternative phenotypes in response to different environmental conditions. While significant advances in understanding the ecological and evolutionary implications of plasticity have been made, understanding its genetic basis has lagged. However, a decade of genetic screens in the model nematode Pristionchus pacificus has culminated in 30 genes which affect mouth-form plasticity. We also recently reported the critical window of environmental sensitivity, and therefore have clear expectations for when differential gene expression should matter. Here, we collated previous data into a gene-regulatory network (GRN), and performed developmental transcriptomics across different environmental conditions, genetic backgrounds, and mouth-form mutants to assess the regulatory logic of plasticity. We found that only two genes in the GRN (eud-1 and seud-1/sult-1) are sensitive to the environment during the critical window. Interestingly, the time points of their sensitivity differ, suggesting that they act as sequential checkpoints. We also observed temporal constraint upon the transcriptional effects of mutating the GRN and revealed unexpected feedback between mouth-form genes. Surprisingly, expression of seud-1/sult-1, but not eud-1, correlated with mouth form biases across different strains and species. Finally, a comprehensive analysis of all samples identified metabolism as a shared pathway for regulating mouth-form plasticity. These data are presented in a Shiny app to facilitate gene-expression comparisons across development in up to 14 different conditions. Collectively, our results suggest that mouth-form plasticity evolved a constrained, two-tiered logic to integrate environmental information leading up to the final developmental decision.
Collapse
Affiliation(s)
- Shelley Reich
- School of Biological Sciences, University of Utah; Salt Lake City, Utah, USA
| | - Tobias Loschko
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology; Tübingen, Germany
| | - Julie Jung
- School of Biological Sciences, University of Utah; Salt Lake City, Utah, USA
| | - Samantha Nestel
- School of Biological Sciences, University of Utah; Salt Lake City, Utah, USA
| | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology; Tübingen, Germany
| | - Michael S. Werner
- School of Biological Sciences, University of Utah; Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Nicholson RM, Levis NA, Ragsdale EJ. Genetic regulators of a resource polyphenism interact to couple predatory morphology and behaviour. Proc Biol Sci 2024; 291:20240153. [PMID: 38835272 DOI: 10.1098/rspb.2024.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Phenotypic plasticity often requires the coordinated response of multiple traits observed individually as morphological, physiological or behavioural. The integration, and hence functionality, of this response may be influenced by whether and how these component traits share a genetic basis. In the case of polyphenism, or discrete plasticity, at least part of the environmental response is categorical, offering a simple readout for determining whether and to what degree individual components of a plastic response can be decoupled. Here, we use the nematode Pristionchus pacificus, which has a resource polyphenism allowing it to be a facultative predator of other nematodes, to understand the genetic integration of polyphenism. The behavioural and morphological consequences of perturbations to the polyphenism's genetic regulatory network show that both predatory activity and ability are strongly influenced by morphology, different axes of morphological variation are associated with different aspects of predatory behaviour, and rearing environment can decouple predatory morphology from behaviour. Further, we found that interactions between some polyphenism-modifying genes synergistically affect predatory behaviour. Our results show that the component traits of an integrated polyphenic response can be decoupled and, in principle, selected upon individually, and they suggest that multiple routes to functionally comparable phenotypes are possible.
Collapse
Affiliation(s)
- Rose M Nicholson
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Nicholas A Levis
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Erik J Ragsdale
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Wighard S, Witte H, Sommer RJ. Conserved switch genes that arose via whole-genome duplication regulate a cannibalistic nematode morph. SCIENCE ADVANCES 2024; 10:eadk6062. [PMID: 38598624 PMCID: PMC11006230 DOI: 10.1126/sciadv.adk6062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Experimental genetics in a nematode reveals a key role for developmental plasticity in the evolution of nutritional diversity.
Collapse
Affiliation(s)
- Sara Wighard
- Max Planck institute for Biology, Tübingen, 72076, Germany
| | - Hanh Witte
- Max Planck institute for Biology, Tübingen, 72076, Germany
| | - Ralf J. Sommer
- Max Planck institute for Biology, Tübingen, 72076, Germany
| |
Collapse
|
6
|
Abstract
Numerous examples of different phenotypic outcomes in response to varying environmental conditions have been described across phyla, from plants to mammals. Here, we examine the impact of the environment on different developmental traits, focusing in particular on one key environmental variable, nutrient availability. We present advances in our understanding of developmental plasticity in response to food variation using the nematode Caenorhabditis elegans, which provides a near-isogenic context while permitting lab-controlled environments and analysis of wild isolates. We discuss how this model has allowed investigators not only to describe developmental plasticity events at the organismal level but also to zoom in on the tissues involved in translating changes in the environment into a plastic response, as well as the underlying molecular pathways, and sometimes associated changes in behaviour. Lastly, we also discuss how early life starvation experiences can be logged to later impact adult physiological traits, and how such memory could be wired.
Collapse
Affiliation(s)
- Sophie Jarriault
- Université de Strasbourg, CNRS, Inserm, IGBMC, Development and Stem Cells Department, UMR 7104 - UMR-S 1258, F-67400 Illkirch, France
| | - Christelle Gally
- Université de Strasbourg, CNRS, Inserm, IGBMC, Development and Stem Cells Department, UMR 7104 - UMR-S 1258, F-67400 Illkirch, France
| |
Collapse
|
7
|
Theska T, Sommer RJ. Feeding-structure morphogenesis in "rhabditid" and diplogastrid nematodes is not controlled by a conserved genetic module. Evol Dev 2024; 26:e12471. [PMID: 38356318 DOI: 10.1111/ede.12471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Disentangling the evolution of the molecular processes and genetic networks that facilitate the emergence of morphological novelties is one of the main objectives in evolutionary developmental biology. Here, we investigated the evolutionary history of a gene regulatory network controlling the development of novel tooth-like feeding structures in diplogastrid nematodes. Focusing on NHR-1 and NHR-40, the two transcription factors that regulate the morphogenesis of these feeding structures in Pristionchus pacificus, we sought to determine whether they have a similar function in Caenorhabditis elegans, an outgroup species to the Diplogastridae which has typical "rhabditid" flaps instead of teeth. Contrary to our initial expectations, we found that they do not have a similar function. While both receptors are co-expressed in the tissues that produce the feeding structures in the two nematodes, genetic inactivation of either receptor had no impact on feeding-structure morphogenesis in C. elegans. Transcriptomic experiments revealed that NHR-1 and NHR-40 have highly species-specific regulatory targets. These results suggest two possible evolutionary scenarios: either the genetic module responsible for feeding-structure morphogenesis in Diplogastridae already existed in the last common ancestor of C. elegans and P. pacificus, and subsequently disintegrated in the former as NHR-1 and NHR-40 acquired new targets, or it evolved in conjunction with teeth in Diplogastridae. These findings indicate that feeding-structure morphogenesis is regulated by different genetic programs in P. pacificus and C. elegans, hinting at developmental systems drift during the flap-to-tooth transformation. Further research in other "rhabditid" species is needed to fully reconstruct the developmental genetic changes which facilitated the evolution of novel feeding structures in Diplogastridae.
Collapse
Affiliation(s)
- Tobias Theska
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen (MPI-B), Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen (MPI-B), Tübingen, Germany
| |
Collapse
|
8
|
Deem KD, Gregory LE, Liu X, Ziabari OS, Brisson JA. Evolution and molecular mechanisms of wing plasticity in aphids. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101142. [PMID: 37979724 PMCID: PMC10843803 DOI: 10.1016/j.cois.2023.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/06/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Aphids present a fascinating example of phenotypic plasticity, in which a single genotype can produce dramatically different winged and wingless phenotypes that are specialized for dispersal versus reproduction, respectively. Recent work has examined many aspects of this plasticity, including its evolution, molecular control mechanisms, and genetic variation underlying the trait. In particular, exciting discoveries have been made about the signaling pathways that are responsible for controlling the production of winged versus wingless morphs, including ecdysone, dopamine, and insulin signaling, and about how specific genes such as REPTOR2 and vestigial are regulated to control winglessness. Future work will likely focus on the role of epigenetic mechanisms, as well as developing transgenic tools for more thoroughly dissecting the role of candidate plasticity-related genes.
Collapse
Affiliation(s)
- Kevin D Deem
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Lauren E Gregory
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Xiaomi Liu
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Omid S Ziabari
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Jennifer A Brisson
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
9
|
Kalirad A, Sommer RJ. The role of plasticity and stochasticity in coexistence. Ecol Lett 2024; 27:e14370. [PMID: 38348631 DOI: 10.1111/ele.14370] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024]
Abstract
Species coexistence in ecological communities is a central feature of biodiversity. Different concepts, i.e., contemporary niche theory, modern coexistence theory, and the unified neutral theory, have identified many building blocks of such ecological assemblies. However, other factors, such as phenotypic plasticity and stochastic inter-individual variation, have received little attention, in particular in animals. For example, how resource polyphenisms resulting in predator-prey interactions affect coexistence is currently unknown. Here, we present an integrative theoretical-experimental framework using the nematode plasticity model Pristionchus pacificus with its well-studied mouth-form dimorphism resulting in cannibalism. We develop an individual-based model that relies upon synthetic data based on our empirical measurements of fecundity and polyphenism to preserve demographic heterogeneity. We demonstrate how the interplay between plasticity and individual stochasticity result in all-or-nothing outcomes at the local level. Coexistence is made possible when spatial structure is introduced.
Collapse
Affiliation(s)
- Ata Kalirad
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Kalirad A, Sommer RJ. Spatial and temporal heterogeneity alter the cost of plasticity in Pristionchus pacificus. PLoS Comput Biol 2024; 20:e1011823. [PMID: 38289972 PMCID: PMC10857712 DOI: 10.1371/journal.pcbi.1011823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 02/09/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Phenotypic plasticity, the ability of a single genotype to produce distinct phenotypes under different environmental conditions, has become a leading concept in ecology and evolutionary biology, with the most extreme examples being the formation of alternative phenotypes (polyphenisms). However, several aspects associated with phenotypic plasticity remain controversial, such as the existence of associated costs. While already predicted by some of the pioneers of plasticity research, i.e. Schmalhausen and Bradshaw, experimental and theoretical approaches have provided limited support for the costs of plasticity. In experimental studies, one common restriction is the measurement of all relevant parameters over long time periods. Similarly, theoretical studies rarely use modelling approaches that incorporate specific experimentally-derived fitness parameters. Therefore, the existence of the costs of plasticity remains disputed. Here, we provide an integrative approach to understand the cost of adaptive plasticity and its ecological ramifications, by combining laboratory data from the nematode plasticity model system Pristionchus pacificus with a stage-structured population model. Taking advantage of measurements of two isogenic strains grown on two distinct diets, we illustrate how spatial and temporal heterogeneity with regard to the distribution of resources on a metapopulation can alter the outcome of the competition and alleviate the realized cost of plasticity.
Collapse
Affiliation(s)
- Ata Kalirad
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Ishita Y, Onodera A, Ekino T, Chihara T, Okumura M. Co-option of an Astacin Metalloprotease Is Associated with an Evolutionarily Novel Feeding Morphology in a Predatory Nematode. Mol Biol Evol 2023; 40:msad266. [PMID: 38105444 PMCID: PMC10753534 DOI: 10.1093/molbev/msad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Animals consume a wide variety of food sources to adapt to different environments. However, the genetic mechanisms underlying the acquisition of evolutionarily novel feeding morphology remain largely unknown. While the nematode Caenorhabditis elegans feeds on bacteria, the satellite species Pristionchus pacificus exhibits predatory feeding behavior toward other nematodes, which is an evolutionarily novel feeding habit. Here, we found that the astacin metalloprotease Ppa-NAS-6 is required for the predatory killing by P. pacificus. Ppa-nas-6 mutants were defective in predation-associated characteristics, specifically the tooth morphogenesis and tooth movement during predation. Comparison of expression patterns and rescue experiments of nas-6 in P. pacificus and C. elegans suggested that alteration of the spatial expression patterns of NAS-6 may be vital for acquiring predation-related traits. Reporter analysis of the Ppa-nas-6 promoter in C. elegans revealed that the alteration in expression patterns was caused by evolutionary changes in cis- and trans-regulatory elements. This study suggests that the co-option of a metalloprotease is involved in an evolutionarily novel feeding morphology.
Collapse
Affiliation(s)
- Yuuki Ishita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ageha Onodera
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Taisuke Ekino
- School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
12
|
Athanasouli M, Akduman N, Röseler W, Theam P, Rödelsperger C. Thousands of Pristionchus pacificus orphan genes were integrated into developmental networks that respond to diverse environmental microbiota. PLoS Genet 2023; 19:e1010832. [PMID: 37399201 DOI: 10.1371/journal.pgen.1010832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Adaptation of organisms to environmental change may be facilitated by the creation of new genes. New genes without homologs in other lineages are known as taxonomically-restricted orphan genes and may result from divergence or de novo formation. Previously, we have extensively characterized the evolution and origin of such orphan genes in the nematode model organism Pristionchus pacificus. Here, we employ large-scale transcriptomics to establish potential functional associations and to measure the degree of transcriptional plasticity among orphan genes. Specifically, we analyzed 24 RNA-seq samples from adult P. pacificus worms raised on 24 different monoxenic bacterial cultures. Based on coexpression analysis, we identified 28 large modules that harbor 3,727 diplogastrid-specific orphan genes and that respond dynamically to different bacteria. These coexpression modules have distinct regulatory architecture and also exhibit differential expression patterns across development suggesting a link between bacterial response networks and development. Phylostratigraphy revealed a considerably high number of family- and even species-specific orphan genes in certain coexpression modules. This suggests that new genes are not attached randomly to existing cellular networks and that integration can happen very fast. Integrative analysis of protein domains, gene expression and ortholog data facilitated the assignments of biological labels for 22 coexpression modules with one of the largest, fast-evolving module being associated with spermatogenesis. In summary, this work presents the first functional annotation for thousands of P. pacificus orphan genes and reveals insights into their integration into environmentally responsive gene networks.
Collapse
Affiliation(s)
- Marina Athanasouli
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Nermin Akduman
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Penghieng Theam
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| |
Collapse
|
13
|
Lenuzzi M, Witte H, Riebesell M, Rödelsperger C, Hong RL, Sommer RJ. Influence of environmental temperature on mouth-form plasticity in Pristionchus pacificus acts through daf-11-dependent cGMP signaling. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:214-224. [PMID: 34379868 DOI: 10.1002/jez.b.23094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Mouth-form plasticity in the nematode Pristionchus pacificus has become a powerful system to identify the genetic and molecular mechanisms associated with developmental (phenotypic) plasticity. In particular, the identification of developmental switch genes that can sense environmental stimuli and reprogram developmental processes has confirmed long-standing evolutionary theory. However, how these genes are involved in the direct sensing of the environment, or if the switch genes act downstream of another, primary environmental sensing mechanism, remains currently unknown. Here, we study the influence of environmental temperature on mouth-form plasticity. We find that environmental temperature does influence mouth-form plasticity in most of the 10 wild isolates of P. pacificus tested in this study. We used one of these strains, P. pacificus RSA635, for detailed molecular analysis. Using forward and reverse genetic technology including CRISPR/Cas9, we show that mutations in the guanylyl cyclase Ppa-daf-11, the Ppa-daf-25/AnkMy2, and the cyclic nucleotide-gated channel Ppa-tax-2 eliminate the response to elevated temperatures. Together, our study indicates that DAF-11, DAF-25, and TAX-2 have been co-opted for environmental sensing during mouth-form plasticity regulation in P. pacificus.
Collapse
Affiliation(s)
- Maša Lenuzzi
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Metta Riebesell
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ray L Hong
- Department of Biology, California State University, Northridge, California, USA
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
14
|
Dardiry M, Piskobulu V, Kalirad A, Sommer RJ. Experimental and theoretical support for costs of plasticity and phenotype in a nematode cannibalistic trait. Evol Lett 2023; 7:48-57. [PMID: 37065436 PMCID: PMC10091500 DOI: 10.1093/evlett/qrac001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/01/2022] [Accepted: 12/06/2022] [Indexed: 02/04/2023] Open
Abstract
Developmental plasticity is the ability of a genotype to express multiple phenotypes under different environmental conditions and has been shown to facilitate the evolution of novel traits. However, while the associated cost of plasticity, i.e., the loss in fitness due to the ability to express plasticity in response to environmental change, and the cost of phenotype, i.e., the loss of fitness due to expressing a fixed phenotype across environments, have been theoretically predicted, empirically such costs remain poorly documented and little understood. Here, we use a plasticity model system, hermaphroditic nematode Pristionchus pacificus, to experimentally measure these costs in wild isolates under controlled laboratory conditions. P. pacificus can develop either a bacterial feeding or predatory mouth morph in response to different external stimuli, with natural variation of mouth-morph ratios between strains. We first demonstrated the cost of phenotype by analyzing fecundity and developmental speed in relation to mouth morphs across the P. pacificus phylogenetic tree. Then, we exposed P. pacificus strains to two distinct microbial diets that induce strain-specific mouth-form ratios. Our results indicate that the plastic strain does shoulder a cost of plasticity, i.e., the diet-induced predatory mouth morph is associated with reduced fecundity and slower developmental speed. In contrast, the non-plastic strain suffers from the cost of phenotype since its phenotype does not change to match the unfavorable bacterial diet but shows increased fitness and higher developmental speed on the favorable diet. Furthermore, using a stage-structured population model based on empirically derived life history parameters, we show how population structure can alleviate the cost of plasticity in P. pacificus. The results of the model illustrate the extent to which the costs associated with plasticity and its effect on competition depend on ecological factors. This study provides support for costs of plasticity and phenotype based on empirical and modeling approaches.
Collapse
Affiliation(s)
- Mohannad Dardiry
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Veysi Piskobulu
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ata Kalirad
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Igreja C, Loschko T, Schäfer A, Sharma R, Quiobe SP, Aloshy E, Witte H, Sommer RJ. Application of ALFA-Tagging in the Nematode Model Organisms Caenorhabditis elegans and Pristionchus pacificus. Cells 2022; 11:3875. [PMID: 36497133 PMCID: PMC9740511 DOI: 10.3390/cells11233875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The detection, manipulation and purification of proteins is key in modern life sciences studies. To achieve this goal, a plethora of epitope tags have been employed in model organisms from bacteria to humans. Recently, the introduction of the rationally designed ALFA-tag resulted in a highly versatile tool with a very broad spectrum of potential applications. ALFA-tagged proteins can be detected by nanobodies, the single-domain antibodies of camelids, allowing for super-resolution microscopy and immunoprecipitation in biochemical applications. Here, we introduce ALFA-tagging into the two nematode model organisms Caenorhabditis elegans and Pristionchus pacificus. We show that the introduction of the DNA sequence, corresponding to the 13 amino acid sequence of the ALFA-tag, can easily be accommodated by CRISPR engineering. We provide examples of high-resolution protein expression in both nematodes. Finally, we use the GW182 ortholog Ppa-ain-1 to show successful pulldowns in P. pacificus. Thus, the ALFA-tag represents a novel epitope tag for nematode research with a broad spectrum of applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Röseler W, Collenberg M, Yoshida K, Lanz C, Sommer RJ, Rödelsperger C. The improved genome of the nematode Parapristionchus giblindavisi provides insights into lineage-specific gene family evolution. G3 (BETHESDA, MD.) 2022; 12:jkac215. [PMID: 35980151 PMCID: PMC9526060 DOI: 10.1093/g3journal/jkac215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
Nematodes such as Caenorhabditis elegans and Pristionchus pacificus are extremely successful model organisms for comparative biology. Several studies have shown that phenotypic novelty but also conserved processes are controlled by taxon-restricted genes. To trace back the evolution of such new or rapidly evolving genes, a robust phylogenomic framework is indispensable. Here, we present an improved version of the genome of Parapristionchus giblindavisi which is the only known member of the sister group of Pristionchus. Relative to the previous short-read assembly, the new genome is based on long reads and displays higher levels of contiguity, completeness, and correctness. Specifically, the number of contigs dropped from over 7,303 to 735 resulting in an N50 increase from 112 to 791 kb. We made use of the new genome to revisit the evolution of multiple gene families. This revealed Pristionchus-specific expansions of several environmentally responsive gene families and a Pristionchus-specific loss of the de novo purine biosynthesis pathway. Focusing on the evolution of sulfatases and sulfotransferases, which control the mouth form plasticity in P. pacificus, reveals differences in copy number and genomic configurations between the genera Pristionchus and Parapristionchus. Altogether, this demonstrates the utility of the P. giblindavisi genome to date and polarizes lineage-specific patterns.
Collapse
Affiliation(s)
- Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Maximilian Collenberg
- Department for Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Kohta Yoshida
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Christa Lanz
- Department for Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| |
Collapse
|
17
|
Athanasouli M, Rödelsperger C. Analysis of repeat elements in the Pristionchus pacificus genome reveals an ancient invasion by horizontally transferred transposons. BMC Genomics 2022; 23:523. [PMID: 35854227 PMCID: PMC9297572 DOI: 10.1186/s12864-022-08731-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Repetitive sequences and mobile elements make up considerable fractions of individual genomes. While transposition events can be detrimental for organismal fitness, repetitive sequences form an enormous reservoir for molecular innovation. In this study, we aim to add repetitive elements to the annotation of the Pristionchus pacificus genome and assess their impact on novel gene formation. RESULTS Different computational approaches define up to 24% of the P. pacificus genome as repetitive sequences. While retroelements are more frequently found at the chromosome arms, DNA transposons are distributed more evenly. We found multiple DNA transposons, as well as LTR and LINE elements with abundant evidence of expression as single-exon transcripts. When testing whether transposons disproportionately contribute towards new gene formation, we found that roughly 10-20% of genes across all age classes overlap transposable elements with the strongest trend being an enrichment of low complexity regions among the oldest genes. Finally, we characterized a horizontal gene transfer of Zisupton elements into diplogastrid nematodes. These DNA transposons invaded nematodes from eukaryotic donor species and experienced a recent burst of activity in the P. pacificus lineage. CONCLUSIONS The comprehensive annotation of repetitive elements in the P. pacificus genome builds a resource for future functional genomic analyses as well as for more detailed investigations of molecular innovations.
Collapse
Affiliation(s)
- Marina Athanasouli
- Max Planck Institute for Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Christian Rödelsperger
- Max Planck Institute for Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany.
| |
Collapse
|
18
|
Prabh N, Rödelsperger C. Multiple Pristionchus pacificus genomes reveal distinct evolutionary dynamics between de novo candidates and duplicated genes. Genome Res 2022; 32:1315-1327. [PMID: 35618417 PMCID: PMC9341508 DOI: 10.1101/gr.276431.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/20/2022] [Indexed: 01/03/2023]
Abstract
The birth of new genes is a major molecular innovation driving phenotypic diversity across all domains of life. Although repurposing of existing protein-coding material by duplication is considered the main process of new gene formation, recent studies have discovered thousands of transcriptionally active sequences as a rich source of new genes. However, differential loss rates have to be assumed to reconcile the high birth rates of these incipient de novo genes with the dominance of ancient gene families in individual genomes. Here, we test this rapid turnover hypothesis in the context of the nematode model organism Pristionchus pacificus We extended the existing species-level phylogenomic framework by sequencing the genomes of six divergent P. pacificus strains. We used these data to study the evolutionary dynamics of different age classes and categories of origin at a population level. Contrasting de novo candidates with new families that arose by duplication and divergence from known genes, we find that de novo candidates are typically shorter, show less expression, and are overrepresented on the sex chromosome. Although the contribution of de novo candidates increases toward young age classes, multiple comparisons within the same age class showed significantly higher attrition in de novo candidates than in known genes. Similarly, young genes remain under weak evolutionary constraints with de novo candidates representing the fastest evolving subcategory. Altogether, this study provides empirical evidence for the rapid turnover hypothesis and highlights the importance of the evolutionary timescale when quantifying the contribution of different mechanisms toward new gene formation.
Collapse
Affiliation(s)
- Neel Prabh
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Harry CJ, Messar SM, Ragsdale EJ. Comparative reconstruction of the predatory feeding structures of the polyphenic nematode Pristionchus pacificus. Evol Dev 2022; 24:16-36. [PMID: 35239990 PMCID: PMC9286642 DOI: 10.1111/ede.12397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/06/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
Abstract
Pristionchus pacificus is a nematode model for the developmental genetics of morphological polyphenism, especially at the level of individual cells. Morphological polyphenism in this species includes an evolutionary novelty, moveable teeth, which have enabled predatory feeding in this species and others in its family (Diplogastridae). From transmission electron micrographs of serial thin sections through an adult hermaphrodite of P. pacificus, we three‐dimensionally reconstructed all epithelial and myoepithelial cells and syncytia, corresponding to 74 nuclei, of its face, mouth, and pharynx. We found that the epithelia that produce the predatory morphology of P. pacificus are identical to Caenorhabditis elegans in the number of cell classes and nuclei. However, differences in cell form, spatial relationships, and nucleus position correlate with gross morphological differences from C. elegans and outgroups. Moreover, we identified fine‐structural features, especially in the anteriormost pharyngeal muscles, that underlie the conspicuous, left‐right asymmetry that characterizes the P. pacificus feeding apparatus. Our reconstruction provides an anatomical map for studying the genetics of polyphenism, feeding behavior, and the development of novel form in a satellite model to C. elegans. All cells making the dimorphic, novel form of an animal with cell constancy were identified. Although the number of cells is fully conserved, divergence in form and connectivity—including fixed asymmetries—sheds light on the origins of this trait.
Collapse
Affiliation(s)
- Clayton J Harry
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Sonia M Messar
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
20
|
Igreja C, Sommer RJ. The Role of Sulfation in Nematode Development and Phenotypic Plasticity. Front Mol Biosci 2022; 9:838148. [PMID: 35223994 PMCID: PMC8869759 DOI: 10.3389/fmolb.2022.838148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
Sulfation is poorly understood in most invertebrates and a potential role of sulfation in the regulation of developmental and physiological processes of these organisms remains unclear. Also, animal model system approaches did not identify many sulfation-associated mechanisms, whereas phosphorylation and ubiquitination are regularly found in unbiased genetic and pharmacological studies. However, recent work in the two nematodes Caenorhabditis elegans and Pristionchus pacificus found a role of sulfatases and sulfotransferases in the regulation of development and phenotypic plasticity. Here, we summarize the current knowledge about the role of sulfation in nematodes and highlight future research opportunities made possible by the advanced experimental toolkit available in these organisms.
Collapse
Affiliation(s)
- Catia Igreja
- *Correspondence: Catia Igreja, ; Ralf J. Sommer,
| | | |
Collapse
|
21
|
Levis NA, Ragsdale EJ. Linking Molecular Mechanisms and Evolutionary Consequences of Resource Polyphenism. Front Integr Neurosci 2022; 16:805061. [PMID: 35210995 PMCID: PMC8861301 DOI: 10.3389/fnint.2022.805061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Resource polyphenism-the occurrence of environmentally induced, discrete, and intraspecific morphs showing differential niche use-is taxonomically widespread and fundamental to the evolution of ecological function where it has arisen. Despite longstanding appreciation for the ecological and evolutionary significance of resource polyphenism, only recently have its proximate mechanisms begun to be uncovered. Polyphenism switches, especially those influencing and influenced by trophic interactions, offer a route to integrating proximate and ultimate causation in studies of plasticity, and its potential influence on evolution more generally. Here, we use the major events in generalized polyphenic development as a scaffold for linking the molecular mechanisms of polyphenic switching with potential evolutionary outcomes of polyphenism and for discussing challenges and opportunities at each step in this process. Not only does the study of resource polyphenism uncover interesting details of discrete plasticity, it also illuminates and informs general principles at the intersection of development, ecology, and evolution.
Collapse
Affiliation(s)
- Nicholas A. Levis
- Department of Biology, Indiana University, Bloomington, IN, United States
| | | |
Collapse
|
22
|
Hiraga H, Ishita Y, Chihara T, Okumura M. Efficient visual screening of CRISPR/Cas9 genome editing in the nematode Pristionchus pacificus. Dev Growth Differ 2021; 63:488-500. [PMID: 34813661 DOI: 10.1111/dgd.12761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022]
Abstract
CRISPR/Cas9 genome editing has been applied to a wide variety of organisms, including nematodes such as Caenorhabditis elegans and Pristionchus pacificus. In these nematodes, genome editing is achieved by microinjection of Cas9 protein and guide RNA into the hermaphrodite gonads. However, P. pacificus is less efficient in CRISPR/Cas9 genome editing and exogenous gene expression. Therefore, it takes considerable time and effort to screen for target mutants if there are no visual markers that indicate successful injection. To overcome this problem, co-injection markers (gRNA for Ppa-prl-1, which induces the roller phenotype, and Ppa-egl-20p::turboRFP, a plasmid expressing a fluorescent protein) have been developed in P. pacificus. By selecting worms with the roller phenotype or turboRFP expression, screening efficiency is substantially increased to obtain worms with desired mutations. Here, we describe a step-by-step protocol for the visual screening system for CRISPR/Cas9 genome editing in P. pacificus. We also describe technical tips for microinjection, which is difficult for beginners. This protocol will facilitate genome editing in P. pacificus and may be applied to other nematode species.
Collapse
Affiliation(s)
- Hirokuni Hiraga
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yuuki Ishita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
23
|
Casasa S, Biddle JF, Koutsovoulos GD, Ragsdale EJ. Polyphenism of a Novel Trait Integrated Rapidly Evolving Genes into Ancestrally Plastic Networks. Mol Biol Evol 2021; 38:331-343. [PMID: 32931588 PMCID: PMC7826178 DOI: 10.1093/molbev/msaa235] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Developmental polyphenism, the ability to switch between phenotypes in response to environmental variation, involves the alternating activation of environmentally sensitive genes. Consequently, to understand how a polyphenic response evolves requires a comparative analysis of the components that make up environmentally sensitive networks. Here, we inferred coexpression networks for a morphological polyphenism, the feeding-structure dimorphism of the nematode Pristionchus pacificus. In this species, individuals produce alternative forms of a novel trait—moveable teeth, which in one morph enable predatory feeding—in response to environmental cues. To identify the origins of polyphenism network components, we independently inferred coexpression modules for more conserved transcriptional responses, including in an ancestrally nonpolyphenic nematode species. Further, through genome-wide analyses of these components across the nematode family (Diplogastridae) in which the polyphenism arose, we reconstructed how network components have changed. To achieve this, we assembled and resolved the phylogenetic context for five genomes of species representing the breadth of Diplogastridae and a hypothesized outgroup. We found that gene networks instructing alternative forms arose from ancestral plastic responses to environment, specifically starvation-induced metabolism and the formation of a conserved diapause (dauer) stage. Moreover, loci from rapidly evolving gene families were integrated into these networks with higher connectivity than throughout the rest of the P. pacificus transcriptome. In summary, we show that the modular regulatory outputs of a polyphenic response evolved through the integration of conserved plastic responses into networks with genes of high evolutionary turnover.
Collapse
Affiliation(s)
- Sofia Casasa
- Department of Biology, Indiana University, Bloomington, Bloomington, IN
| | - Joseph F Biddle
- Department of Biology, Indiana University, Bloomington, Bloomington, IN
| | | | - Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, Bloomington, IN
| |
Collapse
|
24
|
Quach KT, Chalasani SH. Intraguild predation between Pristionchus pacificus and Caenorhabditis elegans: a complex interaction with the potential for aggressive behaviour. J Neurogenet 2020; 34:404-419. [PMID: 33054476 PMCID: PMC7836027 DOI: 10.1080/01677063.2020.1833004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
The related nematodes Pristionchus pacificus and Caenorhabditis elegans both eat bacteria for nutrition and are therefore competitors when they exploit the same bacterial resource. In addition to competing with each other, P. pacificus is a predator of C. elegans larval prey. These two relationships together form intraguild predation, which is the killing and sometimes eating of potential competitors. In killing C. elegans, the intraguild predator P. pacificus may achieve dual benefits of immediate nutrition and reduced competition for bacteria. Recent studies of P. pacificus have characterized many aspects of its predatory biting behaviour as well as underlying molecular and genetic mechanisms. However, little has been explored regarding the potentially competitive aspect of P. pacificus biting C. elegans. Moreover, aggression may also be implicated if P. pacificus intentionally bites C. elegans with the goal of reducing competition for bacteria. The aim of this review is to broadly outline how aggression, predation, and intraguild predation relate to each other, as well as how these concepts may be applied to future studies of P. pacificus in its interactions with C. elegans.
Collapse
Affiliation(s)
- Kathleen T. Quach
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sreekanth H. Chalasani
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
25
|
The genome of the marine monogonont rotifer Brachionus rotundiformis and insight into species-specific detoxification components in Brachionus spp. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100714. [PMID: 32784096 DOI: 10.1016/j.cbd.2020.100714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 11/20/2022]
Abstract
The monogonont rotifer Brachionus spp. have been widely used for ecotoxicological studies because of their advantages as one of the most suitable laboratory experimental species. In the present study, we obtained and assembled the whole genome sequence of the rotifer Brachionus rotundiformis, consisting of 13,612 annotated genes with 213 scaffolds and 58 Mb in total length. Focusing on ecotoxicological aspects, we conducted a comparative genome analysis on the gene families involved in detoxification, including four to six sulfotransferase gene families, seven uridine 5'-diphospho-glucuronosyltransferase gene families, and 58, 61, or 70 ATP-binding cassette genes in the genus Brachionus including Brachionus koreanus and Brachionus plicatilis. Our results suggest that these gene families have undergone a species- and/or lineage-specific evolution in response to the surrounding environmental pressure. Our genome resource for B. rotundiformis would be highly useful for future ecotoxicological studies and also provides a better understanding on the view of evolutionary mechanism of detoxification in the genus Brachionus spp.
Collapse
|
26
|
Theska T, Sieriebriennikov B, Wighard SS, Werner MS, Sommer RJ. Geometric morphometrics of microscopic animals as exemplified by model nematodes. Nat Protoc 2020; 15:2611-2644. [PMID: 32632318 DOI: 10.1038/s41596-020-0347-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
While a host of molecular techniques are utilized by evolutionary developmental (evo-devo) biologists, tools for quantitative evaluation of morphology are still largely underappreciated, especially in studies on microscopic animals. Here, we provide a standardized protocol for geometric morphometric analyses of 2D landmark data sets using a combination of the geomorph and Morpho R packages. Furthermore, we integrate clustering approaches to identify group structures within such datasets. We demonstrate our protocol by performing exemplary analyses on stomatal shapes in the model nematodes Caenorhabditis and Pristionchus. Image acquisition for 80 worms takes 3-4 d, while the entire data analysis requires 10-30 min. In theory, this approach is adaptable to all microscopic model organisms to facilitate a thorough quantification of shape differences within and across species, adding to the methodological toolkit of evo-devo studies on morphological evolution and novelty.
Collapse
Affiliation(s)
- Tobias Theska
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.,Department of Biology, New York University, New York, NY, USA
| | - Sara S Wighard
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Michael S Werner
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
27
|
Nakayama KI, Ishita Y, Chihara T, Okumura M. Screening for CRISPR/Cas9-induced mutations using a co-injection marker in the nematode Pristionchus pacificus. Dev Genes Evol 2020; 230:257-264. [PMID: 32030512 DOI: 10.1007/s00427-020-00651-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/28/2020] [Indexed: 01/09/2023]
Abstract
CRISPR/Cas9 genome-editing methods are used to reveal functions of genes and molecular mechanisms underlying biological processes in many species, including nematodes. In evolutionary biology, the nematode Pristionchus pacificus is a satellite model and has been used to understand interesting phenomena such as phenotypic plasticity and self-recognition. In P. pacificus, CRISPR/Cas9-mediated mutations are induced by microinjecting a guide RNA (gRNA) and Cas9 protein into the gonads. However, mutant screening is laborious and time-consuming due to the absence of visual markers. In this study, we established a Co-CRISPR strategy by using a dominant roller marker in P. pacificus. We found that heterozygous mutations in Ppa-prl-1 induced the roller phenotype, which can be used as an injection marker. After the co-injection of Ppa-prl-1 gRNA, target gRNA, and the Cas9 protein, roller progeny and their siblings were examined using the heteroduplex mobility assay and DNA sequencing. We found that some of the roller and non-roller siblings had mutations at the target site. We used varying Cas9 concentrations and found that a higher concentration of Cas9 did not increase genome-editing events. The Co-CRISPR strategy promotes the screening for genome-editing events and will facilitate the development of new genome-editing methods in P. pacificus.
Collapse
Affiliation(s)
- Ken-Ichi Nakayama
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Yuuki Ishita
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
28
|
Sieriebriennikov B, Sun S, Lightfoot JW, Witte H, Moreno E, Rödelsperger C, Sommer RJ. Conserved nuclear hormone receptors controlling a novel plastic trait target fast-evolving genes expressed in a single cell. PLoS Genet 2020; 16:e1008687. [PMID: 32282814 PMCID: PMC7179942 DOI: 10.1371/journal.pgen.1008687] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/23/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Environment shapes development through a phenomenon called developmental plasticity. Deciphering its genetic basis has potential to shed light on the origin of novel traits and adaptation to environmental change. However, molecular studies are scarce, and little is known about molecular mechanisms associated with plasticity. We investigated the gene regulatory network controlling predatory vs. non-predatory dimorphism in the nematode Pristionchus pacificus and found that it consists of genes of extremely different age classes. We isolated mutants in the conserved nuclear hormone receptor nhr-1 with previously unseen phenotypic effects. They disrupt mouth-form determination and result in animals combining features of both wild-type morphs. In contrast, mutants in another conserved nuclear hormone receptor nhr-40 display altered morph ratios, but no intermediate morphology. Despite divergent modes of control, NHR-1 and NHR-40 share transcriptional targets, which encode extracellular proteins that have no orthologs in Caenorhabditis elegans and result from lineage-specific expansions. An array of transcriptional reporters revealed co-expression of all tested targets in the same pharyngeal gland cell. Major morphological changes in this gland cell accompanied the evolution of teeth and predation, linking rapid gene turnover with morphological innovations. Thus, the origin of feeding plasticity involved novelty at the level of genes, cells and behavior.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shuai Sun
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - James W. Lightfoot
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eduardo Moreno
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
29
|
Biddle JF, Ragsdale EJ. Regulators of an ancient polyphenism evolved through episodic protein divergence and parallel gene radiations. Proc Biol Sci 2020; 287:20192595. [PMID: 32098612 PMCID: PMC7062019 DOI: 10.1098/rspb.2019.2595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
Polyphenism is a form of developmental plasticity that transduces environmental cues into discontinuous, often disparate phenotypes. In some cases, polyphenism has been attributed to facilitating morphological diversification and even the evolution of novel traits. However, this process is predicated on the origins and evolutionary maintenance of genetic mechanisms that specify alternate developmental networks. When and how regulatory loci arise and change, specifically before and throughout the history of a polyphenism, is little understood. Here, we establish a phylogenetic and comparative molecular context for two dynamically evolving genes, eud-1 and seud-1, which regulate polyphenism in the nematode Pristionchus pacificus. This species is dimorphic in its adult feeding-structures, allowing individuals to become microbivores or facultative predators depending on the environment. Although polyphenism regulation is increasingly well understood in P. pacificus, the polyphenism is far older than this species and has diversified morphologically to enable an array of ecological functions across polyphenic lineages. To bring this taxonomic diversity into a comparative context, we reconstructed the histories of eud-1 and seud-1 relative to the origin and diversification of polyphenism, finding that homologues of both genes have undergone lineage-specific radiations across polyphenic taxa. Further, we detected signatures of episodic diversifying selection on eud-1, particularly in early diplogastrid lineages. Lastly, transgenic rescue experiments suggest that the gene's product has functionally diverged from its orthologue's in a non-polyphenic outgroup. In summary, we provide a comparative framework for the molecular components of a plasticity switch, enabling studies of how polyphenism, its regulation, and ultimately its targets evolve.
Collapse
Affiliation(s)
| | - Erik J. Ragsdale
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
30
|
Rödelsperger C, Athanasouli M, Lenuzzi M, Theska T, Sun S, Dardiry M, Wighard S, Hu W, Sharma DR, Han Z. Crowdsourcing and the feasibility of manual gene annotation: A pilot study in the nematode Pristionchus pacificus. Sci Rep 2019; 9:18789. [PMID: 31827189 PMCID: PMC6906410 DOI: 10.1038/s41598-019-55359-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/20/2019] [Indexed: 01/15/2023] Open
Abstract
Nematodes such as Caenorhabditis elegans are powerful systems to study basically all aspects of biology. Their species richness together with tremendous genetic knowledge from C. elegans facilitate the evolutionary study of biological functions using reverse genetics. However, the ability to identify orthologs of candidate genes in other species can be hampered by erroneous gene annotations. To improve gene annotation in the nematode model organism Pristionchus pacificus, we performed a genome-wide screen for C. elegans genes with potentially incorrectly annotated P. pacificus orthologs. We initiated a community-based project to manually inspect more than two thousand candidate loci and to propose new gene models based on recently generated Iso-seq and RNA-seq data. In most cases, misannotation of C. elegans orthologs was due to artificially fused gene predictions and completely missing gene models. The community-based curation raised the gene count from 25,517 to 28,036 and increased the single copy ortholog completeness level from 86% to 97%. This pilot study demonstrates how even small-scale crowdsourcing can drastically improve gene annotations. In future, similar approaches can be used for other species, gene sets, and even larger communities thus making manual annotation of large parts of the genome feasible.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany.
| | - Marina Athanasouli
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Maša Lenuzzi
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Tobias Theska
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Shuai Sun
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Mohannad Dardiry
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Sara Wighard
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Wen Hu
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Devansh Raj Sharma
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Ziduan Han
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| |
Collapse
|
31
|
Moreno E, Lightfoot JW, Lenuzzi M, Sommer RJ. Cilia drive developmental plasticity and are essential for efficient prey detection in predatory nematodes. Proc Biol Sci 2019; 286:20191089. [PMID: 31575374 PMCID: PMC6790756 DOI: 10.1098/rspb.2019.1089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/16/2019] [Indexed: 01/08/2023] Open
Abstract
Cilia are complex organelles involved in a broad array of functions in eukaryotic organisms. Nematodes employ cilia for environmental sensing, which shapes developmental decisions and influences morphologically plastic traits and adaptive behaviours. Here, we assess the role of cilia in the nematode Pristionchus pacificus, and determine their importance in regulating the developmentally plastic mouth-form decision in addition to predatory feeding and self-recognition behaviours, all of which are not present in Caenorhabditis elegans. An analysis of a multitude of cilia-related mutants including representatives of the six protein subcomplexes required in intraflagellar transport (IFT) plus the regulatory factor X transcription factor daf-19 revealed that cilia are essential for processing the external cues influencing the mouth-form decision and for the efficient detection of prey. Surprisingly, we observed that loss-of-function mutations in the different IFT components resulted in contrasting mouth-form phenotypes and different degrees of predation deficiencies. This observation supports the idea that perturbing different IFT subcomplexes has different effects on signalling downstream of the cilium. Finally, self-recognition was maintained in the cilia deficient mutants tested, indicating that the mechanisms triggering self-recognition in P. pacificus may not require the presence of fully functional cilia.
Collapse
Affiliation(s)
| | | | | | - Ralf J. Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
32
|
Feeding Dimorphism in a Mycophagous Nematode, Bursaphelenchus sinensis. Sci Rep 2019; 9:13956. [PMID: 31562356 PMCID: PMC6765002 DOI: 10.1038/s41598-019-50462-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/09/2019] [Indexed: 02/03/2023] Open
Abstract
Phenotypic plasticity has been widely reported in animals and can drive investment in new biological characters that engender ecological adaptability. The nematode family Diplogastridae, especially Pristionchus pacificus with its dramatic stomatal (feeding) dimorphism, has become an important model system to analyze the evolutionary and developmental aspects of polyphenism. However, this plasticity has not been confirmed in other nematode groups. In the present study, we experimentally examined the feeding dimorphism of a fungal feeding free-living nematode, Bursaphelenchus sinensis. In a laboratory culturing experiment, the nematode expressed dimorphism, i.e., a small proportion of the population manifested as a predatory form. This form only occurred in females and was not clearly influenced by the presence of potential prey species. In addition, the ratio of the predatory form to the mycophagous form varied among different fungal food species grown in monoculture on different culture media. The predatory form of B. sinensis was typologically similar to the monomorphic (specialized) predators belonging to the same family. However, some essential morphological characters were slightly different from the specialized predators, and their behaviours were clearly disparate, suggesting that predation in B. sinensis is derived from a different phylogenetic origin than that of the specialized predators.
Collapse
|
33
|
Bui LT, Ragsdale EJ. Multiple plasticity regulators reveal targets specifying an induced predatory form in nematodes. Mol Biol Evol 2019; 36:2387-2399. [PMID: 31364718 DOI: 10.1093/molbev/msz171] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/19/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
The ability to translate a single genome into multiple phenotypes, or developmental plasticity, defines how phenotype derives from more than just genes. However, to study the evolutionary targets of plasticity and their evolutionary fates, we need to understand how genetic regulators of plasticity control downstream gene expression. Here, we have identified a transcriptional response specific to polyphenism (i.e., discrete plasticity) in the nematode Pristionchus pacificus. This species produces alternative resource-use morphs - microbivorous and predatory forms, differing in the form of their teeth, a morphological novelty - as influenced by resource availability. Transcriptional profiles common to multiple polyphenism-controlling genes in P. pacificus reveal a suite of environmentally sensitive loci, or ultimate target genes, that make up an induced developmental response. Additionally, in vitro assays show that one polyphenism regulator, the nuclear receptor (NR) NHR-40, physically binds to promoters with putative HNF4⍺ (the NR class including NHR-40) binding sites, suggesting this receptor may directly regulate genes that describe alternative morphs. Among differentially expressed genes were morph-limited genes, highlighting factors with putative "on-off" function in plasticity regulation. Further, predatory morph-biased genes included candidates - namely, all four P. pacificus homologs of Hsp70, which have HNF4⍺ motifs - whose natural variation in expression matches phenotypic differences among P. pacificus wild isolates. In summary, our study links polyphenism regulatory loci to the transcription producing alternative forms of a morphological novelty. Consequently, our findings establish a platform for determining how specific regulators of morph-biased genes may influence selection on plastic phenotypes.
Collapse
Affiliation(s)
- Linh T Bui
- Department of Biology, Indiana University, Bloomington, IN
| | | |
Collapse
|
34
|
Abstract
Sulfur is present in the amino acids cysteine and methionine and in a large range of essential coenzymes and cofactors and is therefore essential for all organisms. It is also a constituent of sulfate esters in proteins, carbohydrates, and numerous cellular metabolites. The sulfation and desulfation reactions modifying a variety of different substrates are commonly known as sulfation pathways. Although relatively little is known about the function of most sulfated metabolites, the synthesis of activated sulfate used in sulfation pathways is essential in both animal and plant kingdoms. In humans, mutations in the genes encoding the sulfation pathway enzymes underlie a number of developmental aberrations, and in flies and worms, their loss-of-function is fatal. In plants, a lower capacity for synthesizing activated sulfate for sulfation reactions results in dwarfism, and a complete loss of activated sulfate synthesis is also lethal. Here, we review the similarities and differences in sulfation pathways and associated processes in animals and plants, and we point out how they diverge from bacteria and yeast. We highlight the open questions concerning localization, regulation, and importance of sulfation pathways in both kingdoms and the ways in which findings from these "red" and "green" experimental systems may help reciprocally address questions specific to each of the systems.
Collapse
Affiliation(s)
- Süleyman Günal
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| | - Rebecca Hardman
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany.
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom.
| |
Collapse
|
35
|
Sieriebriennikov B, Sommer RJ. Developmental Plasticity and Robustness of a Nematode Mouth-Form Polyphenism. Front Genet 2018; 9:382. [PMID: 30254664 PMCID: PMC6141628 DOI: 10.3389/fgene.2018.00382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/27/2018] [Indexed: 11/23/2022] Open
Abstract
In the last decade, case studies in plants and animals provided increasing insight into the molecular mechanisms of developmental plasticity. When complemented with evolutionary and ecological analyses, these studies suggest that plasticity represents a mechanism facilitating adaptive change, increasing diversity and fostering the evolution of novelty. Here, we summarize genetic, molecular and evolutionary studies on developmental plasticity of feeding structures in nematodes, focusing on the model organism Pristionchus pacificus and its relatives. Like its famous cousin Caenorhabditis elegans, P. pacificus reproduces as a self-fertilizing hermaphrodite and can be cultured in the laboratory on E. coli indefinitely with a four-day generation time. However, in contrast to C. elegans, Pristionchus worms show more complex feeding structures in adaptation to their life history. Pristionchus nematodes live in the soil and are reliably found in association with scarab beetles, but only reproduce after the insects’ death. Insect carcasses usually exist only for a short time period and their turnover is partially unpredictable. Strikingly, Pristionchus worms can have two alternative mouth-forms; animals are either stenostomatous (St) with a single tooth resulting in strict bacterial feeding, or alternatively, they are eurystomatous (Eu) with two teeth allowing facultative predation. Laboratory-based studies revealed a regulatory network that controls the irreversible decision of individual worms to adopt the St or Eu form. These studies revealed that a developmental switch controls the mouth-form decision, confirming long-standing theory about the role of switch genes in developmental plasticity. Here, we describe the current understanding of P. pacificus mouth-form regulation. In contrast to plasticity, robustness describes the property of organisms to produce unchanged phenotypes despite environmental perturbations. While largely opposite in principle, the relationship between developmental plasticity and robustness has only rarely been tested in particular study systems. Based on a study of the Hsp90 chaperones in nematodes, we suggest that robustness and plasticity are indeed complementary concepts. Genetic switch networks regulating plasticity require robustness to produce reproducible responses to the multitude of environmental inputs and the phenotypic output requires robustness because the range of possible phenotypic outcomes is constrained. Thus, plasticity and robustness are actually not mutually exclusive, but rather complementary concepts.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Max Planck Institute for Developmental Biology, Department of Integrative Evolutionary Biology, Tübingen, Germany
| | - Ralf J Sommer
- Max Planck Institute for Developmental Biology, Department of Integrative Evolutionary Biology, Tübingen, Germany
| |
Collapse
|