1
|
Cha J, Zeng P, Zong H, Zhao J, Chen J, Zuo H, Zhang B, Shi C, Li J, Hua Q, Wang Z, Hou Y, Zhang R. Single-cell RNA sequencing of neonatal cortical astrocytes reveals versatile cell clusters during astrocyte-neuron conversion. Mol Biol Rep 2025; 52:189. [PMID: 39899158 DOI: 10.1007/s11033-025-10309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Astrocytes are extensively utilized as starting cells for neuronal conversion. Our previous study discovered that a portion of primary cultured mouse neonatal cortical astrocytes can be directly converted into neurons after exposure to a neurogenic induction condition. Recent in vivo studies have demonstrated astrocyte heterogeneity in terms of their developmental origin, molecular profile, physiology, and functional outputs. We hypothesized that the heterogeneity of primary astrocytes in our study could influence their conversion potential. METHODS AND RESULTS We performed single-cell RNA sequencing on cells harvested at key time points during in vitro astrocyte-to-neuron conversion, specifically on Day 1 and Day 9. Through single-cell RNA sequencing analysis, we identified several subpopulations of astrocytes, labeled as Astrocyte 1 to Astrocyte 3, based on distinct gene expression patterns. Pseudotime trajectory analysis predicted the existence of three distinct cell states throughout the conversion process. Astrocyte 3 exhibited a higher propensity for neuronal conversion, with proliferation genes like Mki67 being highly expressed. Additionally, several candidate genes were identified as potentially crucial in the conversion process. Astrocyte 3 is considered a unique subtype population of astrocytes. CONCLUSIONS Our investigation underscores the diversity of primary neonatal cortical astrocytes and provides critical insights into the potential for astrocyte-to-neuron conversion, which may be harnessed to enhance the efficiency of this astrocyte-neuron conversion process.
Collapse
Affiliation(s)
- Jiaxue Cha
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Peng Zeng
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hui Zong
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiayi Zhao
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiayao Chen
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Haowei Zuo
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bowen Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Changjie Shi
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jing Li
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiuhong Hua
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zixin Wang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yujun Hou
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Ru Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Murtaj V, Butti E, Martino G, Panina-Bordignon P. Endogenous neural stem cells characterization using omics approaches: Current knowledge in health and disease. Front Cell Neurosci 2023; 17:1125785. [PMID: 37091923 PMCID: PMC10113633 DOI: 10.3389/fncel.2023.1125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Neural stem cells (NSCs), an invaluable source of neuronal and glial progeny, have been widely interrogated in the last twenty years, mainly to understand their therapeutic potential. Most of the studies were performed with cells derived from pluripotent stem cells of either rodents or humans, and have mainly focused on their potential in regenerative medicine. High-throughput omics technologies, such as transcriptomics, epigenetics, proteomics, and metabolomics, which exploded in the past decade, represent a powerful tool to investigate the molecular mechanisms characterizing the heterogeneity of endogenous NSCs. The transition from bulk studies to single cell approaches brought significant insights by revealing complex system phenotypes, from the molecular to the organism level. Here, we will discuss the current literature that has been greatly enriched in the “omics era”, successfully exploring the nature and function of endogenous NSCs and the process of neurogenesis. Overall, the information obtained from omics studies of endogenous NSCs provides a sharper picture of NSCs function during neurodevelopment in healthy and in perturbed environments.
Collapse
Affiliation(s)
- Valentina Murtaj
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Erica Butti
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Paola Panina-Bordignon
| |
Collapse
|
3
|
Tang C, Wang Q, Shen J, Wang C, Ding H, Wen S, Yang F, Jiao R, Wu X, Li J, Kong L. Neuron stem cell NLRP6 sustains hippocampal neurogenesis to resist stress-induced depression. Acta Pharm Sin B 2023; 13:2017-2038. [DOI: 10.1016/j.apsb.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
|
4
|
Ruggiero C, Durand N, Jarjat M, Barhanin J, Ghirardello EJ, Dack MR, Williams GR, Bassett JD, Lalli E. The secreted protein augurin is a novel modulator of canonical Wnt signalling involved in osteoblast differentiation. CLINICAL AND TRANSLATIONAL DISCOVERY 2022; 2. [DOI: 10.1002/ctd2.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/02/2022] [Indexed: 01/21/2025]
Abstract
AbstractBackgroundECRG4/C2ORF40 is a tumour suppressor gene downregulated in several cancer types, which encodes the secreted protein augurin. A wide number of functions in health and disease have been assigned to augurin, but the signalling pathways it regulates are still poorly characterized. Augurin expression is strongly upregulated during in vitro differentiation of neonatal mouse osteoblasts.MethodsIn vitro differentiation assays of calvarial osteoblasts isolated from Ecrg4 ‐/‐ and wild‐type mice; transient transfection assays using reporters activated by Wnt signalling and other signal transduction pathways; Real‐time quantitative polymerase chain reaction for measurement of gene expression; protein expression in Chinese hamster ovary cells and Escherichia coli; in situ binding assays of proteins expressed as fusions to alkaline phosphatase with cells expressing various membrane receptors.ResultsOsteoblasts from Ecrg4 ‐/‐ mice have an accelerated differentiation compared to wild‐type and upregulation of Wnt markers. Augurin is a specific repressor of Wnt‐stimulated transcriptional activity, both when coexpressed together with the reporter and when added to the culture medium as a soluble protein. We confirmed the previously described binding of augurin to LOX1, a scavenger receptor, but an inhibitor of this molecule did not impair augurin repression of Wnt‐stimulated transcription specifically. Genome‐wide association studies showed an association of ECRG4 genomic variation with body height and osteoarthritis.ConclusionsOur study sheds new light on the wide spectrum of functions previously ascribed to augurin in brain function, stem cell biology, inflammation/immunity and cancer. Furthermore, our discovery paves the way to further characterization of the mechanisms involved in augurin repression of Wnt signalling and the development of agonists and antagonists for this protein, which have a wide array of potential applications in the clinic.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275 Valbonne France
- Université Côte d'Azur Valbonne France
| | - Nelly Durand
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275 Valbonne France
- Université Côte d'Azur Valbonne France
| | - Marielle Jarjat
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275 Valbonne France
- Université Côte d'Azur Valbonne France
| | - Jacques Barhanin
- Université Côte d'Azur Valbonne France
- LP2M CNRS UMR 7370 Nice France
| | - Elena J. Ghirardello
- Molecular Endocrinology Laboratory Department of Metabolism Digestion and Reproduction Imperial College London London UK
| | - Michael R.G. Dack
- Molecular Endocrinology Laboratory Department of Metabolism Digestion and Reproduction Imperial College London London UK
| | - Graham R. Williams
- Molecular Endocrinology Laboratory Department of Metabolism Digestion and Reproduction Imperial College London London UK
| | - J.H. Duncan Bassett
- Molecular Endocrinology Laboratory Department of Metabolism Digestion and Reproduction Imperial College London London UK
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275 Valbonne France
- Université Côte d'Azur Valbonne France
- Inserm Valbonne France
| |
Collapse
|
5
|
Ding Y, Meng W, Kong W, He Z, Chai R. The Role of FoxG1 in the Inner Ear. Front Cell Dev Biol 2020; 8:614954. [PMID: 33344461 PMCID: PMC7744801 DOI: 10.3389/fcell.2020.614954] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Sensorineural deafness is mainly caused by damage to the tissues of the inner ear, and hearing impairment has become an increasingly serious global health problem. When the inner ear is abnormally developed or is damaged by inflammation, ototoxic drugs, or blood supply disorders, auditory signal transmission is inhibited resulting in hearing loss. Forkhead box G1 (FoxG1) is an important nuclear transcriptional regulator, which is related to the differentiation, proliferation, development, and survival of cells in the brain, telencephalon, inner ear, and other tissues. Previous studies have shown that when FoxG1 is abnormally expressed, the development and function of inner ear hair cells is impaired. This review discusses the role and regulatory mechanism of FoxG1 in inner ear tissue from various aspects – such as the effect on inner ear development, the maintenance of inner ear structure and function, and its role in the inner ear when subjected to various stimulations or injuries – in order to explain the potential significance of FoxG1 as a new target for the treatment of hearing loss.
Collapse
Affiliation(s)
- Yanyan Ding
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Meng
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuhong He
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Dang X, Coimbra R, Mao L, Podvin S, Li X, Yu H, Costantini TW, Zeng X, Larocca D, Eliceiri BP, Baird A. Open reading frame mining identifies a TLR4 binding domain in the primary sequence of ECRG4. Cell Mol Life Sci 2019; 76:5027-5039. [PMID: 31190084 PMCID: PMC11105628 DOI: 10.1007/s00018-019-03159-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 01/22/2023]
Abstract
The embedding of small peptide ligands within large inactive pre-pro-precursor proteins encoded by orphan open reading frames (ORFs) makes them difficult to identify and study. To address this problem, we generated oligonucleotide (< 100-400 base pair) combinatorial libraries from either the epidermal growth factor (EGF) ORF that encodes the > 1200 amino acid EGF precursor protein or the orphan ECRG4 ORF, that encodes a 148 amino acid Esophageal Cancer Related Gene 4 (ECRG4), a putative cytokine precursor protein of up to eight ligands. After phage display and 3-4 rounds of biopanning for phage internalization into prostate cancer epithelial cells, sequencing identified the 53-amino acid EGF ligand encoded by the 5' region of the EGF ORF and three distinct domains within the primary sequence of ECRG4: its membrane targeting hydrophobic signal peptide, an unanticipated amino terminus domain at ECRG437-63 and a C-terminus ECRG4133-148 domain. Using HEK-blue cells transfected with the innate immunity receptor complex, we show that both ECRG437-63 and ECRG4133-148 enter cells by interaction with the TLR4 immune complex but neither stimulate NFkB. Taken together, the results help establish that phage display can be used to identify cryptic domains within ORFs of the human secretome and identify a novel TLR4-targeted internalization domain in the amino terminus of ECRG4 that may contribute to its effects on cell migration, immune cell activation and tumor suppression.
Collapse
Affiliation(s)
- Xitong Dang
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Raul Coimbra
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Liang Mao
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Sonia Podvin
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Xue Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Hua Yu
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Todd W Costantini
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Xiaorong Zeng
- The Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | | | - Brian P Eliceiri
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Andrew Baird
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA.
- Department of Surgery, University of California San Diego, La Jolla, San Diego, CA, 98896, USA.
| |
Collapse
|
7
|
Potential functions of esophageal cancer-related gene-4 in the cardiovascular system. Front Med 2019; 13:639-645. [PMID: 31468282 DOI: 10.1007/s11684-019-0701-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Esophageal cancer-related gene-4 (Ecrg4) is cloned from the normal epithelium of the esophagus. It is constitutively expressed in quiescent epithelial cells and downregulated during tumorigenesis, and Ecrg4 expression levels are inversely correlated with the malignant phenotype of tumor cells, validating that Ecrg4 is a real tumor suppressor gene. Unlike other tumor suppressor genes that usually encode membrane or intracellular proteins, Ecrg4 encodes a 148-amino acid pre-pro-peptide that is tethered on the cell surface in epithelial cells, specialized epithelial cells, and human leukocytes, where it can be processed tissue dependently into several small peptides upon cell activation. Ecrg4 is expressed in a wide variety of other cells/tissues, including cardiomyocytes and conduction system of the heart, the glomus cells of the carotid body, adrenal glands, choroid plexus, and leukocytes among others, where it exerts distinct functions, such as promoting/suppressing inflammation, inducing neuron senescence, stimulating the hypothalamus-pituitary-adrenal axis, maintaining the stemness of stem cells, participating in the rhythm and rate control of the heart, and possibly gauging the responsiveness of the cardiovascular system (CVS) to hypoxia, in addition to tumor suppression. Here, we briefly review the latest discoveries on Ecrg4 and its underlying molecular mechanisms as a tumor suppressor and focus on the emerging roles of Ecrg4 in the CVS.
Collapse
|