1
|
Li R, Dai Q, Yu T, Sun Y, Li Y, Zhao T, Xu H, Wang L, Wang Y, Gao X, Liu X. Adolescent marginal zinc deficiency upregulated BDNF and TrkB expression, impaired hippocampal and cortical development, and induced abnormal behaviors in male mice. Comp Biochem Physiol C Toxicol Pharmacol 2025; 294:110197. [PMID: 40154589 DOI: 10.1016/j.cbpc.2025.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Zinc deficiency during adolescence poses a significant yet understudied risk to brain development. The study aimed to investigate the effects of marginal zinc deficiency during adolescence on emotion and cognition, morphological changes and neuronal arrangement of hippocampus and cortical, and proBDNF, mBDNF and TrkB expression levels. The emotion was assessed using the open-field test and three-chamber test. Additionally, cognition was evaluated using the Morris water maze test and novel object recognition test. Morphological changes were evaluated using H&E staining, while Nissl staining was employed to analyze neuronal arrangement. Additionally, proBDNF, mBDNF and TrkB expression levels were quantified by western blot. The results showed that adolescent marginal zinc deficiency induced risk-taking behavior, impaired spatial learning and memory, and caused new object recognition deficits without affecting sociability. Moreover, marginal zinc deficiency critically disrupted hippocampal and cortical development, and aberrant neuronal arrangement. The expression levels of BDNF for both form states were not statistically significant upregulation in marginal zinc deficiency mice compared to controls, along with significantly increased TrkB expression. These findings suggested that adolescent marginal zinc deficiency increased the expression of BDNF and TrkB, as well as abnormal hippocampal and cortical development. These alterations may explain the observed abnormal behavior, including risk-taking behavior, impaired spatial learning and memory, and new object recognition decay.
Collapse
Affiliation(s)
- Rou Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China; Central Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, PR China
| | - Qiwei Dai
- Department of Stroke Center, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Tian Yu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Central Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, PR China
| | - Yajing Sun
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin 300450, PR China
| | - Yanxia Li
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, PR China; Tianjin Key Laboratory of Epigenetic for Organ Development of Preterm Infants, Tianjin Fifth Central Hospital, Tianjin 300450, PR China
| | - Tianyang Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hongbin Xu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Liang Wang
- Neurosurgery department, Tianjin Fifth Central Hospital, Tianjin 300450, PR China
| | - Yuxiang Wang
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, PR China; Tianjin Key Laboratory of Epigenetic for Organ Development of Preterm Infants, Tianjin Fifth Central Hospital, Tianjin 300450, PR China; School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, PR China.
| | - Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetic for Organ Development of Preterm Infants, Tianjin Fifth Central Hospital, Tianjin 300450, PR China; The Emergency Center, Tianjin Fifth Central Hospital, Tianjin 300450, PR China; Tianjin Binhai Huangnan Plateau Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People's Hospital, Huangnan Prefecture 811399, Qinghai Province, PR China.
| |
Collapse
|
2
|
Zhu Q, Zhang T, Sun Y, Liu J, Liu Z, Wei F, Jin Y. Association of metallic elements with telomere length in children with autism spectrum disorder. PeerJ 2025; 13:e19174. [PMID: 40191747 PMCID: PMC11970416 DOI: 10.7717/peerj.19174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Background Imbalances in metal elements have been identified as a potential risk factor for autism spectrum disorder (ASD), and shortened telomere length (TL) is commonly observed in children with ASD. Metal elements may influence telomere homeostasis through oxidative stress, which could contribute to the pathogenesis of autism. However, studies examining the combined effects of metal elements on TL in children with ASD are limited. To fill the gaps in the current literature, this study aimed to investigate the relationship between six metallic elements: manganese (Mn), copper (Cu), zinc (Zn), calcium (Ca), magnesium (Mg), and iron (Fe), and TL in the whole blood of children with ASD. Methods A total of 83 children with ASD and 95 typically developing children were recruited. TL was measured using digital PCR, while metal concentrations were assessed using inductively coupled plasma mass spectrometry (ICP-MS). Linear regression analysis was first conducted to explore the correlations between metal elements and TL in both groups. Additionally, Bayesian Kernel Machine Regression (BKMR) was used to further examine the combined effects and potential interactions of these metals on TL in the ASD group. Results In the ASD group, Ca was found to have a protective effect on TL (β = 0.07, 95% CI [0.01-0.13], P = 0.027). In contrast, Mg showed a protective effect on TL in the control group (β = 0.10, 95% CI [0.01-0.18], P = 0.027). The BKMR model revealed a significant positive combined effect of the metal mixtures on TL in the ASD group, with Ca having the largest individual effect (PIP = 0.45). Further analysis indicated that increases in Zn and Mn concentrations from the 25th to the 75th percentile were negatively correlated with TL, while higher concentrations of Cu, Ca, Mg, and Fe were positively associated with TL. No significant interactions among the metals were observed. Conclusions This study suggests a potential link between metallic elements and TL in children with ASD, with Ca having the greatest effect. Our findings highlight the potential benefits of appropriate calcium supplementation as a protective strategy for lengthening telomeres in children with ASD, emphasizing the importance of early nutritional interventions to improve their overall health.
Collapse
Affiliation(s)
- Qiuyan Zhu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Tong Zhang
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Yanan Sun
- Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Jinming Liu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zizi Liu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Fengxiang Wei
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Yu Jin
- Department of Maternal and Child Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Bhasker A, Veleri S. Fundamental origins of neural tube defects with a basis in genetics and nutrition. Exp Brain Res 2025; 243:79. [PMID: 40025180 DOI: 10.1007/s00221-025-07016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Neural tube defects (NTDs) are leading congenital malformations. Its global prevalence is one in 1000 pregnancies and it has high morbidity and mortality. It has multiple risk factors like genetic errors and environmental stressors like maternal malnutrition and in utero exposure to pollutants like chemicals. The genetic program determines neural tube development based on timely expression of many genes involved in developmental signaling pathways like BMP, PCP and SHH. BMP expression defines ectoderm. SOX represses BMP in ectoderm and convertes to the neuroectoderm. Subsequently, PCP molecules define the tissue patterning for convergent-extension, a critical step in neural tube genesis. Further, SHH sets spatial patterning of the neural tube. Nutrients are the essential major environmental input for embryogenesis. But it may also carry risk factors. Malnutrition, especially folate deficiency, during embryogenesis is a major cause for NTDs. Folate is integral in the One Carbon metabolic pathway. Its deficiency and error in the pathway are implicated in NTDs. Folate supplementation alone is insufficient to prevent NTDs. Thus, a comprehensive understanding of the various risk factors is necessary to strategize reduction of NTDs. We review the current knowledge of various risk factors, like genetic, metabolic, nutritional, and drugs causing NTDs and discuss the steps required to identify them in the early embryogenesis to avoid NTDs.
Collapse
Affiliation(s)
- Anjusha Bhasker
- Drug Safety Division, ICMR-National Institute of Nutrition, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Hyderabad, 500007, India
| | - Shobi Veleri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Rehmani T, Dias AP, Applin BD, Salih M, Tuana BS. SLMAP3 is essential for neurulation through mechanisms involving cytoskeletal elements, ABP, and PCP. Life Sci Alliance 2024; 7:e202302545. [PMID: 39366759 PMCID: PMC11452652 DOI: 10.26508/lsa.202302545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
SLMAP3 is a tail-anchored membrane protein that targets subcellular organelles and is believed to regulate Hippo signaling. The global loss of SLMAP3 causes late embryonic lethality in mice, with some embryos exhibiting neural tube defects such as craniorachischisis. We show here that SLMAP3 -/- embryos display reduced length and increased width of neural plates, signifying arrested convergent extension. The expression of planar cell polarity (PCP) components Dvl2/3 and the activity of the downstream targets ROCK2, cofilin, and JNK1/2 were dysregulated in SLMAP3 -/- E12.5 brains. Furthermore, the cytoskeletal proteins (γ-tubulin, actin, and nestin) and apical components (PKCζ and ZO-1) were mislocalized in neural tubes of SLMAP3 -/- embryos, with a subsequent decrease in colocalization of PCP proteins (Fzd6 and pDvl2). However, no changes in PCP or cytoskeleton proteins were found in cultured neuroepithelial cells depleted of SLMAP3, suggesting an essential requirement for SLMAP3 for these processes in vivo for neurulation. The loss of SLMAP3 had no impact on Hippo signaling in SLMAP3 -/- embryos, brains, and neural tubes. Proteomic analysis revealed SLMAP3 in an interactome with cytoskeletal components, including nestin, tropomyosin 4, intermediate filaments, plectin, the PCP protein SCRIB, and STRIPAK members in embryonic brains. These results reveal a crucial role of SLMAP3 in neural tube development by regulating the cytoskeleton organization and PCP pathway.
Collapse
Affiliation(s)
- Taha Rehmani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Ana Paula Dias
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Balwant S Tuana
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
5
|
Huang L, Chen Y, Sun J, Xu L. Exploring the correlation between dietary zinc intake and stroke risk in adults based on NHANES database. Neurol Res 2024; 46:1113-1121. [PMID: 39510981 DOI: 10.1080/01616412.2024.2403858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/08/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE To explore the relationship between dietary zinc intake and stroke. METHODS Subjects from the National Health and Nutrition Examination Survey (NHANES) database (2015 to 2020) were included. Zinc intake was determined using two 24-h dietary recall interviews, and stroke was determined using the Medical Condition Questionnaire (MCQ). Logistic analysis was used to analyze the association between zinc intake and stroke risk. 1:1 nearest neighbor propensity score matching (PSM) was used to reduce selection bias. RESULTS 4705 subjects were included in the study. Multivariate logistic regression analysis before and after matching showed that increased zinc intake was associated with a reduced risk of stroke. And as zinc intake increases, the risk of stroke shows a gradually decreasing trend. Compared with the Q1 group, the risk of stroke in the Q2, Q3, and Q4 groups was reduced by approximately 0.27 times, 0.29 times, and 0.31 times respectively. And there is no interaction between dietary zinc intake and gender in stroke patients. CONCLUSION Dietary zinc intake may be a protective factor against stroke, and increasing its intake may prevent or reduce the symptoms of stroke and related diseases.
Collapse
Affiliation(s)
- Lingyun Huang
- Department of Neurology, Yiyang Central Hospital, Yiyang, Hunan Province, China
| | - Yongjun Chen
- Depatment of Neurology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan Province, China
| | - Juanchan Sun
- Department of Operations Management, Yiyang Central Hospital, Yiyang, Hunan Province, China
| | - Li Xu
- Department of Neurology, Hunan Provincial Institute of Schistosomasis Control and Prevention (The Third People's Hospital of Hunan Province), Yueyang, China
| |
Collapse
|
6
|
Singh NK, Choudhary S, Rai S, Yadav AK, Singh R. Association between the MTHFR (rs1801133) gene variation and serum trace elements levels (Copper and Zinc) in individuals diagnosed with neural tube defects. Clin Chim Acta 2024; 562:119856. [PMID: 38977170 DOI: 10.1016/j.cca.2024.119856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/29/2024] [Accepted: 07/06/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND AND AIMS Neural tube defects (NTDs) occur when the neural tube fails to close within 28 days of human embryonic development. This results in central nervous system disorders like anencephaly, spina bifida, and encephalocele. Early diagnosis and treatment are crucial to minimize their impact on an individual's health and well-being. The present study aims to define the association between prenatal exposure to trace elements (Cu and Zn) and the single nucleotide polymorphism (SNP) of the MTHFR gene involved in folate metabolism pathways in neural tube defects in children and their mothers. MATERIAL AND METHODS A cross-sectional study involving 331 participants (90 NTD cases, 88 healthy mothers, 85 NTD children, and 68 healthy children) from antenatal check-ups in Obstetrics and Gynaecology and Pediatric Surgery for Neural Tube Defects in the Outpatient Department (OPD) and Inpatient Department (IPD). Assessed Cu and Zn concentrations and their associations. Genomic DNA was extracted, and real-time PCR was used to determine genotypes. Atomic absorption spectrophotometry measured trace elements. Statistical analyses included Chi-Square tests, odds ratios, and Mann-Whitney U tests. RESULTS Significant associations were found between MTHFR C677T genotypes and NTD risk in mothers (p = 0.0491) and children (p = 0.0297). Allelic frequency analysis indicated a T allele association with NTD risk in children (p = 0.0107). Recessive models showed significant associations in mothers (p = 0.0169) and children (p = 0.1678). Cu levels differed significantly between NTD cases and controls (p < 0.0001), with MTHFR genotypes influencing Cu levels. Zinc levels also varied significantly (p < 0.0001). CONCLUSION This study reveals complex associations between MTHFR C677T genotypes, trace element concentrations, and NTD risk in mothers and children. This targeted approach allows healthcare providers to identify at-risk pregnancies early, enabling personalised interventions like folic acid supplementation and counselling to moderate neural tube defect (NTD) risk in a future pregnancy.
Collapse
Affiliation(s)
- Nitish Kumar Singh
- Department of Anatomy, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Sarita Choudhary
- Department of Pediatric Surgery, Institute of Medical Science, Banaras Hindu University Varanasi, India
| | - Sangeeta Rai
- Department of Obstetrics & Gynaecology, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Abhay Kumar Yadav
- Department of Anatomy, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Royana Singh
- Department of Anatomy, Institute of Medical Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
7
|
Chen Y, Guo Y, Wang C, Liu J, Jin L, Li Z, Ren A, Wang L. Chromium levels in placental tissue and neural tube defects: Association and mechanistic study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124126. [PMID: 38735460 DOI: 10.1016/j.envpol.2024.124126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Human exposure to chromium (Cr) is common but little is known about its adverse effects on pregnancy outcomes. This study aimed to explore the association between Cr exposure and the risk of neural tube defects (NTDs) and the underlying mechanisms of Cr-induced NTDs. 593 controls and 408 NTD cases with placentas were included in this study. Chromium trichloride (Cr(III)) and potassium dichromate (Cr(VI)) were intragastrically administered to pregnant mice and the number of NTDs was recorded. The odds ratio for total NTDs in the highest exposure group in placenta was 4.18 (95% confidence interval (CI), 1.97-8.84). The incidence of fetal NTDs in mice administered with Cr(III) showed a dose-response relationship. Cr(VI) didn't show teratogenicity of NTDs whereas increased the stillbirth rate. Prenatal exposure to Cr(III) increased levels of oxidative stress and apoptosis in fetal mice. RNA-sequencing results indicated significant enrichment of the MAPK pathway. RT-qPCR and Western blot analysis revealed that Cr(III) induced increased expression of p-JNK, p-P38, and Casp3. Toxicological effects can be partly antagonized by antioxidant supplementation. High chromium exposure was associated with increased human NTD risks. Excessive Cr(III) exposure can induce NTDs in fetal mice by increasing apoptosis through upgrading oxidative stress and then activating JNK/P38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Yongyan Chen
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yingnan Guo
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Chengrong Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Jufen Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China.
| |
Collapse
|
8
|
Zhang J, Li H, Niswander LA. m 5C methylated lncRncr3-MeCP2 interaction restricts miR124a-initiated neurogenesis. Nat Commun 2024; 15:5136. [PMID: 38879605 PMCID: PMC11180186 DOI: 10.1038/s41467-024-49368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/03/2024] [Indexed: 06/19/2024] Open
Abstract
Coordination of neuronal differentiation with expansion of the neuroepithelial/neural progenitor cell (NEPC/NPC) pool is essential in early brain development. Our in vitro and in vivo studies identify independent and opposing roles for two neural-specific and differentially expressed non-coding RNAs derived from the same locus: the evolutionarily conserved lncRNA Rncr3 and the embedded microRNA miR124a-1. Rncr3 regulates NEPC/NPC proliferation and controls the biogenesis of miR124a, which determines neuronal differentiation. Rncr3 conserved exons 2/3 are cytosine methylated and bound by methyl-CpG binding protein MeCP2, which restricts expression of miR124a embedded in exon 4 to prevent premature neuronal differentiation, and to orchestrate proper brain growth. MeCP2 directly binds cytosine-methylated Rncr3 through previously unrecognized lysine residues and suppresses miR124a processing by recruiting PTBP1 to block access of DROSHA-DGCR8. Thus, miRNA processing is controlled by lncRNA m5C methylation along with the defined m5C epitranscriptomic RNA reader protein MeCP2 to coordinate brain development.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Huili Li
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
9
|
Dovolou E, Nanas I, Giannoulis T, Fytsilli A, Ntemka A, Anifandis G, Tsakmakidis I, Amiridis GS. The effects of a glyphosate-based herbicide on the bovine gametes during an in vitro embryo production model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123967. [PMID: 38631452 DOI: 10.1016/j.envpol.2024.123967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Roundup® (R), while it is the most used herbicide globally, and its residues are ubiquitous in urban and suburban areas, its impact on vertebrates' safety remains highly debated. Here, in three in vitro experiments, we investigated the effects of a very low dose (1 ppm) of R on the fertilization capacity and embryo development in cattle. In the first experiment, frozen-thawed bull semen exposed to R for 1 h exhibited reduced motility parameters but unaffected fertilization ability. However, after in vitro fertilization, the rates of embryo formation were significantly lower compared to the untreated controls. In the second experiment, oocytes exposed to R during in vitro maturation showed reduced cleavage rates, and the embryo yield on days 7, 8, and 9 of embryo culture was significantly lower than that of the controls. In the third experiment, oocytes were matured in the presence of R and in a medium containing both R and Zinc, chosen to offer antioxidant protection to the oocytes. Day-7 blastocysts were analyzed for the expression of genes associated with oxidative stress, apoptosis, and epigenetic reprogramming. Exposure to R markedly suppressed embryo formation rates compared to the controls. The combination of R with Zinc restored the blastocyst yield, which on days 8 and 9 was comparable to that of the controls and higher than the groups exposed only to R on all days. The gene expression analysis revealed that R promotes oxidative stress development, triggers apoptosis, and induces epigenetic changes in developing embryos, while zinc presence alleviates these adverse effects of R. These findings imply that even at very low doses, R could be highly toxic, leading to functional abnormalities in both gametes, potentially affecting fertility in both genders.
Collapse
Affiliation(s)
- E Dovolou
- Department of Animal Science, University of Thessaly, Larissa, Greece.
| | - I Nanas
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, Karditsa, Greece
| | - T Giannoulis
- Department of Animal Science, University of Thessaly, Larissa, Greece
| | - A Fytsilli
- Department of Biochemistry & Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, Larissa, Greece
| | - A Ntemka
- Department of Animal Science, University of Thessaly, Larissa, Greece; Clinic of Farm Animals, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - G Anifandis
- Department of Obstetrics and Gynaecology, ART Unit, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - I Tsakmakidis
- Clinic of Farm Animals, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - G S Amiridis
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, Karditsa, Greece
| |
Collapse
|
10
|
Wang X, Wei K, Wang M, Zhang L. Identification of potential key ferroptosis- and autophagy-related genes in myelomeningocele through bioinformatics analysis. Heliyon 2024; 10:e29654. [PMID: 38660270 PMCID: PMC11040124 DOI: 10.1016/j.heliyon.2024.e29654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Myelomeningocele is a common congenital anomaly associated with polygenic disorders worldwide. However, the intricate molecular mechanisms underlying myelomeningocele remain elusive. To investigate whether ferroptosis and ferritinophagy contribute to the pathomechanism of myelomeningocele, differentially expressed genes (DEGs) were identified as novel biomarker and potential treatment agents. The GSE101141 dataset from Gene Expression Omnibus (GEO) was analyzed using GEO2R web tool to obtain DEGs based on |log2 fold change (FC)|≥1.5 and p < 0.05. Two datasets from the Ferroptosis Database (481 genes) and Autophagy Database (551 genes) were intersected with the DEGs from the GSE101141 dataset to identify ferroptosis- and autophagy-related DEGs using Venn diagrams. Functional and pathway enrichment, protein-protein interaction (PPI) network analyses were performed, and candidate genes were selected. Transcription factors (TFs), microRNAs (miRNAs), diseases and chemicals interacting with the candidate genes were identified. Receiver operating characteristic (ROC) curve analysis was performed to validate the diagnostic value of the candidate genes. Sixty ferroptosis-related and 74 autophagy-related DEGs were identified. These DEGs are involved in FoxO signaling pathway. Six candidate genes (EGFR, KRAS, IL1B, SIRT1, ATM, and MAPK8) were selected. miRNAs such as hsa-miR-27a-3p, hsa-miR-877-5p, and hsa-miR-892b, and TFs including P53, POU3F2, TATA are involved in regulation of candidate genes. Diseases such as schizophrenia, fibrosis, and neoplasms are the most relevant to the candidate genes. Chemicals, such as resveratrol, curcumin, and quercetin may have significant implications in the treatment of myelomeningocele. The candidate genes, especially MAPK8, also showed a high diagnostic value for myelomeningocele. These results help to shed light on the molecular mechanism of myelomeningocele and may provide new insights into diagnostic biomarker in the amniotic fluid and potential therapeutic agents of myelomeningocele.
Collapse
Affiliation(s)
- Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Kaixin Wei
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Min Wang
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Li Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
11
|
Zhu S, Li X, Dai X, Li J. Prenatal cadmium exposure impairs neural tube closure via inducing excessive apoptosis in neuroepithelium. J Environ Sci (China) 2024; 138:572-584. [PMID: 38135421 DOI: 10.1016/j.jes.2023.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 12/24/2023]
Abstract
Birth defects have become a public health concern. The hazardous environmental factors exposure to embryos could increase the risk of birth defects. Cadmium, a toxic environmental factor, can cross the placental barrier during pregnancy. Pregnant woman may be subjected to cadmium before taking precautionary protective actions. However, the link between birth defects and cadmium remains obscure. Cadmium exposure can induce excessive apoptosis in neuroepithelium during embryonic development progresses. Cadmium exposure activated the p53 via enhancing the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and reactive oxygen species' (ROS) level. And cadmium decreases the level of Paired box 3 (Pax3) and murine double minute 2 (Mdm2), disrupting the process of p53 ubiquitylation. And p53 accumulation induced excessive apoptosis in neuroepithelium during embryonic development progresses. Excessive apoptosis led to the failure of neural tube closure. The study emphasizes that environmental materials may increase the health risk for embryos. Cadmium caused the failure of neural tube closure during early embryotic day. Pregnant women may be exposed by cadmium before taking precautionary protective actions, because of cadmium concentration-containing foods and environmental tobacco smoking. This suggests that prenatal cadmium exposure is a threatening risk factor for birth defects.
Collapse
Affiliation(s)
- Shiyong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuenan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xueyan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jinlong Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Liu X, Adamo AM, Oteiza PI. Marginal Zinc Deficiency during Gestation and Lactation in Rats Affects Oligodendrogenesis, Motor Performance, and Behavior in the Offspring. J Nutr 2023; 153:2778-2796. [PMID: 37648111 DOI: 10.1016/j.tjnut.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Oligodendrocytes are responsible for myelin production in the central nervous system (CNS). Hypomyelination may slow saltatory nerve signal conduction and affect motor performance and behavior in adults. Gestational marginal zinc deficiency in rats significantly decreases proliferation of neural stem cells (NSCs) in the offspring brain. OBJECTIVES Given that NSCs are precursors of oligodendrocytes, this study investigated if marginal zinc deficiency during early development in rats affects oligodendrogenesis in the offspring's CNS. METHODS Rat dams were fed an adequate (25 μg zinc/g diet) (C) or a marginal zinc diet (MZD) (10 μg zinc/g diet), from gestation day zero until postnatal day (P) 20, and subsequently all offspring was fed the control diet until P60. Oligodendrogenesis was evaluated in the offspring at P2, P5, P10, P20, and P60, by measuring parameters of oligodendrocyte progenitor cells (OPCs) proliferation, differentiation, maturation, and of myelination. RESULTS The expression of 1) proteins that regulate OPC proliferation (Shh, Sox10, Olig2); 2) OPC markers (NG2, PDGFRα); 3) myelin proteins (MBP, MAG, MOG, PLP) were lower in the brain cortex from MZD than C offspring at various stages in development. The amount of myelin after zinc replenishment continued to be low in the MZD young adult at P60. Accordingly, parameters of motor performance and behavior [grip strength, rotarod, elevated T-maze (ETM), and open-field tests] were impaired in the MZD offspring at P60. CONCLUSIONS Results support the concept that maternal and early postnatal exposure to MZD affects oligodendrogenesis causing long-lasting effects on myelination and on motor performance in the young adult offspring.
Collapse
Affiliation(s)
- Xiuzhen Liu
- Department of Nutrition, University of California, Davis, CA, United States; Department of Environmental Toxicology, University of California, Davis, CA, United States
| | - Ana M Adamo
- Departamento de Quimica Biologica, Facultad de Farmacia y Bioquímica, IQUIFIB, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, United States; Department of Environmental Toxicology, University of California, Davis, CA, United States.
| |
Collapse
|
13
|
Chen J, Ren C, Yao C, Baruscotti M, Wang Y, Zhao L. Identification of the natural chalcone glycoside hydroxysafflor yellow A as a suppressor of P53 overactivation-associated hematopoietic defects. MedComm (Beijing) 2023; 4:e352. [PMID: 37638339 PMCID: PMC10449056 DOI: 10.1002/mco2.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Enhanced P53 signaling may lead to hematopoietic disorders, yet an effective therapeutic strategy is still lacking. Our study, along with previous research, suggests that P53 overactivation and hematopoietic defects are major consequences of zinc deficiency. However, the relationship between these two pathological processes remains unclear. In this study, we observed a severe reduction in the number of hematopoietic stem cells (HSCs) and multi-lineage progenitor cells in zebrafish treated with the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine and showed the indispensable role of P53 signaling in the process. Next, we took advantage of HSCs-labeled transgenic zebrafish and conducted a highly efficient phenotypic screening for small molecules against P53-dependent hematopoietic disorders. Hydroxysafflor yellow A (HSYA), a natural chalcone glycoside, exhibited potent protection against hematopoietic failure in zinc-deficient zebrafish and strongly inhibited the P53 pathway. We confirmed the protective effect of HSYA in zinc-deficient mice bone marrow nucleated cells, which showed a significant suppression of P53 signaling and oxidative stress. Furthermore, the hematopoietic-protective activity of HSYA was validated using a mice model of myelotoxicity induced by 5-FU. In summary, our work provides an effective phenotypic screening strategy for identifying hematopoietic-protective agents and reveals the novel role of HSYA as a promising lead compound in rescuing hematopoietic disorders associated with P53 overactivation.
Collapse
Affiliation(s)
- Jing Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Can Ren
- Pharmaceutical Informatics Institute, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Chong Yao
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | | | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityHangzhouChina
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
14
|
Huang W, Fu J, Yuan Z, Gu H. Impact of prenatal exposure to metallic elements on neural tube defects: Insights from human investigations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114815. [PMID: 36948008 DOI: 10.1016/j.ecoenv.2023.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Metallic elements play a pivotal role in maternal and fetal health. Metals can cross the placental barrier and be absorbed by fetuses, where they may affect closure of the neural tube during embryonic development. Neural tube defects (NTDs), which result from aberrant closure of the neural tube three to four weeks post-conception, have a multifactorial and complex etiology that combines genetic variants and environmental exposure. Recent advances in population-level association studies have investigated the link between maternal environmental exposure and NTDs, particularly the influence of metals on the incidence of NTDs. Herein, we present a broad and qualitative review of current literature on the association between maternal and prenatal metal exposure via the maternal peripheral blood, amniotic fluid, placenta, umbilical cord, and maternal hair, and the risk of developing NTDs. Specifically, we identify the various aggravating or attenuating effects of metallic exposure on the risk of NTD formation. This review provides novel insights into the association between environmental metals and NTDs and has important applications for NTD prevention and mitigating environmental exposure to metals.
Collapse
Affiliation(s)
- Wanqi Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jialin Fu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
15
|
Cai H, Bao Y, Cheng H, Ge X, Zhang M, Feng X, Zheng Y, He J, Wei Y, Liu C, Li L, Huang L, Wang F, Chen X, Chen P, Yang X. Zinc homeostasis may reverse the synergistic neurotoxicity of heavy metal mixtures in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161699. [PMID: 36682567 DOI: 10.1016/j.scitotenv.2023.161699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Heavy metal mixtures can cause nerve damage. However, the combined effects of metal mixtures are extremely complex and rarely studied. Zinc (Zn) homeostasis plays an integral role in neural function, but the role of Zn homeostasis in the toxicity of metal mixtures is not well understood. Here, we investigated the combined effects of manganese (Mn), lead (Pb) and arsenic (As) on nerves and the effect of Zn homeostasis on metal toxicity. Caenorhabditis elegans (Maupas, 1900) were exposed to single and multiple metals for 8 days, their movement, behavior, neurons and metal concentration were detected to evaluate the combined effect of metal mixtures. After nematodes were co-treated with metal mixtures and Zn, the nerve function, Zn concentration and redox balance were detected to evaluate the effect of Zn homeostasis on metal toxicity. The results showed that Mn + Pb and Pb + As mixtures induced synergistic toxicity for nematode nerves, which damaged movement, behavior and neurons, and decreased Zn concentration. While Zn supplementation recovered Zn homeostasis and promoted redox balance on nematodes, and then improved the nerve function. Our study demonstrated the combined effects of metal mixtures and the neuroprotective effect of Zn homeostasis. Therefore, assessment of metal mixtures toxicity should consider their interaction and the impacts of essential metals homeostasis.
Collapse
Affiliation(s)
- Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Ge
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China; Guangxi Key Laboratory of Research on Medical Engineering Integration and Innovation, Liuzhou, Guangxi, China
| | - Mengdi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuming Feng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuan Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Junxiu He
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Longman Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
16
|
Wang F, Cheng H, Zhang Q, Guo J. Genetic mutations in ribosomal biogenesis gene TCOF1 identified in human neural tube defects. Mol Genet Genomic Med 2023; 11:e2150. [PMID: 36808708 PMCID: PMC10178795 DOI: 10.1002/mgg3.2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Rare mutations in multiple genes have been associated with human neural tube defects (NTDs), but their causative roles in NTDs disease are poorly understood. Insufficiency of the ribosomal biogenesis gene treacle ribosome biogenesis factor 1(Tcof1) results in cranial NTDs and craniofacial malformations in mice. Here, we aimed to identify genetic association of TCOF1 with human NTDs. METHODS High-throughput sequencing targeted on TCOF1 was performed on samples from 355 human cases affected by NTDs and 225 controls from a Han Chinese population. RESULTS Four novel missense variants were found in the NTD cohort. Cell-based assays indicated that the p.(A491G) variant carried by an individual, who shows anencephaly and single-nostril abnormality, attenuates production of total proteins, suggesting a loss-of-function mutation in ribosomal biogenesis. Importantly, this variant promotes nucleolar disruption and stabilizes p53 protein, highlighting an unbalancing effect on cell apoptosis. CONCLUSIONS This study explored the functional impact of a missense variant in TCOF1, implicating a set of novel causative biological factors involved in the pathogenicity of human NTDs, particularly whom combined with craniofacial abnormality.
Collapse
Affiliation(s)
- Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Haiqin Cheng
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China.,Department of Biochemistry and Molecular Biology, Ministry of Education Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
17
|
Lin S, Wang C, Li Z, Qiu X. Distinct H3K27me3 and H3K27ac Modifications in Neural Tube Defects Induced by Benzo[a]pyrene. Brain Sci 2023; 13:brainsci13020334. [PMID: 36831877 PMCID: PMC9954656 DOI: 10.3390/brainsci13020334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
The pathological mechanisms of neural tube defects (NTDs) are not yet fully understood. Although the dysregulation of histone modification in NTDs is recognized, it remains to be fully elucidated on a genome-wide level. We profiled genome-wide H3K27me3 and H3K27ac occupancy by CUT&Tag in neural tissues from ICR mouse embryos with benzo[a]pyrene (BaP)-induced NTDs (250 mg kg-1) at E9.5. Furthermore, we performed RNA sequencing (RNA-seq) to investigate the regulation of histone modifications on gene expressions. Gene ontology and KEGG analysis were conducted to predict pathways involved in the development of NTDs. Our analysis of histone 3 lysine 27 modification in BaP-NTD neural tissues compared to BaP-nonNTD revealed 6045 differentially trimethylated regions and 3104 acetylated regions throughout the genome, respectively. The functional analysis identified a number of pathways uniquely enriched for BaP-NTD embryos, including known neurodevelopment related pathways such as anterior/posterior pattern specification, ephrin receptor signaling pathway, neuron migration and neuron differentiation. RNA-seq identified 423 differentially expressed genes (DEGs) between BaP-NTD and BaP-nonNTD group. The combination analysis of CUT&Tag and RNA-seq found that 55 DEGs were modified by H3K27me3 and 25 by H3K27ac in BaP-NTD, respectively. In the transcriptional regulatory network, transcriptional factors including Srsf1, Ume6, Zbtb7b, and Cad were predicated to be involved in gene expression regulation. In conclusion, our results provide an overview of histone modifications during neural tube closure and demonstrate a key role of genome-wide alterations in H3K27me3 and H3K27ac in NTDs corresponding with changes in transcription profiles.
Collapse
Affiliation(s)
- Shanshan Lin
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Chengrui Wang
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhiwen Li
- Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, National Health Commission of the China, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Correspondence: (Z.L.); or (X.Q.); Tel.: +86-010-82801760 (Z.L.); Tel./Fax: +86-020-38367160 (X.Q.)
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Department of Women’s Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Disease and Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Correspondence: (Z.L.); or (X.Q.); Tel.: +86-010-82801760 (Z.L.); Tel./Fax: +86-020-38367160 (X.Q.)
| |
Collapse
|
18
|
Hegde R, Hegde S, Kulkarni S, Kulkarni SS, Pandurangi A, Kariduraganavar MY, Das KK, Gai PB. Total Reflection X-ray Fluorescence Analysis of Plasma Elements in Autistic Children from India. Biol Trace Elem Res 2023; 201:644-654. [PMID: 35338449 DOI: 10.1007/s12011-022-03199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 01/21/2023]
Abstract
Trace elements are essential for the human body's various physiological processes but if they are present in higher concentration, these elements turn to be toxic and cause adverse effect on physiological processes. Similarly, deficiency of these essential elements also affects physiological processes and leads to abnormal metabolic activities. There is a lot of interest in recent years to know the mystery behind the involvement of trace elements in the metabolic activities of autistic children suspecting that it may be a risk factor in the aetiology of autism. The present study aims to analyse the plasma trace elements in autistic children using the total reflection X-ray fluorescence (TXRF) technique. Plasma samples from 70 autistic children (mean age: 11.5 ± 3.1) were analysed with 70 age- and sex-matched healthy children as controls (mean age: 12 ± 2.5). TXRF analysis revealed the higher concentration of copper (1227.8 ± 17.8), chromium (7.1 ± 2.5), bromine (2695.1 ± 24) and arsenic (126.3 ± 10) and lower concentration of potassium (440.1 ± 25), iron (1039.6 ± 28), zinc (635.7 ± 21), selenium (52.3 ± 8.5), rubidium (1528.9 ± 28) and molybdenum (162,800.8 ± 14) elements in the plasma of autistic children in comparison to healthy controls. Findings of the first study from India suggest these altered concentrations in elements in autistic children over normal healthy children affect the physiological processes and metabolism. Further studies are needed to clarify the association between the altered element concentration and physiology of autism in the North Karnataka population in India.
Collapse
Affiliation(s)
- Rajat Hegde
- Laboratory of Vascular Physiology and Medicine, Department of Physiology, Shri B.M Medical College, Hospital and Research Centre, BLDE (Deemed To Be University), Vijayapura, 586101, India
- Karnataka Institute for DNA Research (KIDNAR), Dharwad, 580003, India
| | - Smita Hegde
- Karnataka Institute for DNA Research (KIDNAR), Dharwad, 580003, India
- Human Genetics Laboratory, Department of Anatomy, Shri B.M Medical College, Hospital and Research Centre, BLDE (Deemed To Be University), Vijayapura, 586101, India
| | - Sujayendra Kulkarni
- Human Genetics Laboratory, Department of Anatomy, Shri B.M Medical College, Hospital and Research Centre, BLDE (Deemed To Be University), Vijayapura, 586101, India
- Division of Human Genetics (Central Research Lab), S. Nijaliangappa Medical College, HSK Hospital and Research Center, Bagalkot, 587102, India
| | | | - Aditya Pandurangi
- Department of Psychiatry, Dharwad Institute of Mental Health and Neurosciences, Dharwad, 580008, India
| | | | - Kusal K Das
- Laboratory of Vascular Physiology and Medicine, Department of Physiology, Shri B.M Medical College, Hospital and Research Centre, BLDE (Deemed To Be University), Vijayapura, 586101, India
| | - Pramod B Gai
- Karnataka Institute for DNA Research (KIDNAR), Dharwad, 580003, India.
- Karnatak University Dharwad, Dharwad, 580003, India.
| |
Collapse
|
19
|
Engelhardt DM, Martyr CA, Niswander L. Pathogenesis of neural tube defects: The regulation and disruption of cellular processes underlying neural tube closure. WIREs Mech Dis 2022; 14:e1559. [PMID: 35504597 PMCID: PMC9605354 DOI: 10.1002/wsbm.1559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/08/2022]
Abstract
Neural tube closure (NTC) is crucial for proper development of the brain and spinal cord and requires precise morphogenesis from a sheet of cells to an intact three-dimensional structure. NTC is dependent on successful regulation of hundreds of genes, a myriad of signaling pathways, concentration gradients, and is influenced by epigenetic and environmental cues. Failure of NTC is termed a neural tube defect (NTD) and is a leading class of congenital defects in the United States and worldwide. Though NTDs are all defined as incomplete closure of the neural tube, the pathogenesis of an NTD determines the type, severity, positioning, and accompanying phenotypes. In this review, we survey pathogenesis of NTDs relating to disruption of cellular processes arising from genetic mutations, altered epigenetic regulation, and environmental influences by micronutrients and maternal condition. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Engelhardt
- Molecular Cellular Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Cara A Martyr
- Molecular Cellular Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Lee Niswander
- Molecular Cellular Developmental Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
20
|
Skou ST, Mair FS, Fortin M, Guthrie B, Nunes BP, Miranda JJ, Boyd CM, Pati S, Mtenga S, Smith SM. Multimorbidity. Nat Rev Dis Primers 2022; 8:48. [PMID: 35835758 PMCID: PMC7613517 DOI: 10.1038/s41572-022-00376-4] [Citation(s) in RCA: 463] [Impact Index Per Article: 154.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
Multimorbidity (two or more coexisting conditions in an individual) is a growing global challenge with substantial effects on individuals, carers and society. Multimorbidity occurs a decade earlier in socioeconomically deprived communities and is associated with premature death, poorer function and quality of life and increased health-care utilization. Mechanisms underlying the development of multimorbidity are complex, interrelated and multilevel, but are related to ageing and underlying biological mechanisms and broader determinants of health such as socioeconomic deprivation. Little is known about prevention of multimorbidity, but focusing on psychosocial and behavioural factors, particularly population level interventions and structural changes, is likely to be beneficial. Most clinical practice guidelines and health-care training and delivery focus on single diseases, leading to care that is sometimes inadequate and potentially harmful. Multimorbidity requires person-centred care, prioritizing what matters most to the individual and the individual's carers, ensuring care that is effectively coordinated and minimally disruptive, and aligns with the patient's values. Interventions are likely to be complex and multifaceted. Although an increasing number of studies have examined multimorbidity interventions, there is still limited evidence to support any approach. Greater investment in multimorbidity research and training along with reconfiguration of health care supporting the management of multimorbidity is urgently needed.
Collapse
Affiliation(s)
- Søren T Skou
- Research Unit for Musculoskeletal Function and Physiotherapy, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
- The Research Unit PROgrez, Department of Physiotherapy and Occupational Therapy, Næstved-Slagelse-Ringsted Hospitals, Region Zealand, Slagelse, Denmark.
| | - Frances S Mair
- Institute of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Martin Fortin
- Department of Family Medicine and Emergency Medicine, Université de Sherbrooke, Quebec, Canada
| | - Bruce Guthrie
- Advanced Care Research Centre, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Bruno P Nunes
- Postgraduate Program in Nursing, Faculty of Nursing, Universidade Federal de Pelotas, Pelotas, Brazil
| | - J Jaime Miranda
- CRONICAS Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Medicine, School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
- The George Institute for Global Health, UNSW, Sydney, New South Wales, Australia
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Cynthia M Boyd
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Epidemiology and Health Policy & Management, Johns Hopkins University, Baltimore, MD, USA
| | - Sanghamitra Pati
- ICMR Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Sally Mtenga
- Department of Health System Impact Evaluation and Policy, Ifakara Health Institute (IHI), Dar Es Salaam, Tanzania
| | - Susan M Smith
- Discipline of Public Health and Primary Care, Institute of Population Health, Trinity College Dublin, Russell Building, Tallaght Cross, Dublin, Ireland
| |
Collapse
|
21
|
Willekens J, Runnels LW. Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients 2022; 14:2526. [PMID: 35745255 PMCID: PMC9231024 DOI: 10.3390/nu14122526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in humans has a profound effect on development and in adults later in life, particularly in the brain, where Zn deficiency is linked to several neurological disorders. In this review, we will summarize the importance of Zn during development through a description of the outcomes of both genetic and early dietary Zn deficiency, focusing on the pathological consequences on the whole body and brain. The epidemiology and the symptomology of Zn deficiency in humans will be described, including the most studied inherited Zn deficiency disease, Acrodermatitis enteropathica. In addition, we will give an overview of the different forms and animal models of Zn deficiency, as well as the 24 Zn transporters, distributed into two families: the ZIPs and the ZnTs, which control the balance of Zn throughout the body. Lastly, we will describe the TRPM7 ion channel, which was recently shown to contribute to intestinal Zn absorption and has its own significant impact on early embryonic development.
Collapse
Affiliation(s)
| | - Loren W. Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
22
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [PMID: 35079164 DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Mammalian development demands precision. Millions of molecules must be properly located in temporal order, and their function regulated, to orchestrate important steps in cell cycle progression, apoptosis, migration and differentiation, to shape developing embryos. Ubiquitin and its associated enzymes act as cellular guardians to ensure precise spatio-temporal control of key molecules during each of these important cellular processes. Loss of precision results in numerous examples of embryological disorders or even cancer. This Review discusses the crucial roles of E3 ubiquitin ligases during key steps of early mammalian development and their roles in human disease, and considers how new methods to manipulate and exploit the ubiquitin regulatory machinery - for example, the development of molecular glues and PROTACs - might facilitate clinical therapy.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Zhuoyao Chen
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Alex N Bullock
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
McElroy GS, Chakrabarty RP, D'Alessandro KB, Hu YS, Vasan K, Tan J, Stoolman JS, Weinberg SE, Steinert EM, Reyfman PA, Singer BD, Ladiges WC, Gao L, Lopéz-Barneo J, Ridge K, Budinger GRS, Chandel NS. Reduced expression of mitochondrial complex I subunit Ndufs2 does not impact healthspan in mice. Sci Rep 2022; 12:5196. [PMID: 35338200 PMCID: PMC8956724 DOI: 10.1038/s41598-022-09074-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/16/2022] [Indexed: 01/01/2023] Open
Abstract
Aging in mammals leads to reduction in genes encoding the 45-subunit mitochondrial electron transport chain complex I. It has been hypothesized that normal aging and age-related diseases such as Parkinson’s disease are in part due to modest decrease in expression of mitochondrial complex I subunits. By contrast, diminishing expression of mitochondrial complex I genes in lower organisms increases lifespan. Furthermore, metformin, a putative complex I inhibitor, increases healthspan in mice and humans. In the present study, we investigated whether loss of one allele of Ndufs2, the catalytic subunit of mitochondrial complex I, impacts healthspan and lifespan in mice. Our results indicate that Ndufs2 hemizygous mice (Ndufs2+/−) show no overt impairment in aging-related motor function, learning, tissue histology, organismal metabolism, or sensitivity to metformin in a C57BL6/J background. Despite a significant reduction of Ndufs2 mRNA, the mice do not demonstrate a significant decrease in complex I function. However, there are detectable transcriptomic changes in individual cell types and tissues due to loss of one allele of Ndufs2. Our data indicate that a 50% decline in mRNA of the core mitochondrial complex I subunit Ndufs2 is neither beneficial nor detrimental to healthspan.
Collapse
Affiliation(s)
- Gregory S McElroy
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ram P Chakrabarty
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karis B D'Alessandro
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuan-Shih Hu
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karthik Vasan
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jerica Tan
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua S Stoolman
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel E Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth M Steinert
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paul A Reyfman
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin D Singer
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Warren C Ladiges
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José Lopéz-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Karen Ridge
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G R Scott Budinger
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S Chandel
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
24
|
Fame RM, Lehtinen MK. Mitochondria in Early Forebrain Development: From Neurulation to Mid-Corticogenesis. Front Cell Dev Biol 2021; 9:780207. [PMID: 34888312 PMCID: PMC8650308 DOI: 10.3389/fcell.2021.780207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Function of the mature central nervous system (CNS) requires a substantial proportion of the body’s energy consumption. During development, the CNS anlage must maintain its structure and perform stage-specific functions as it proceeds through discrete developmental stages. While key extrinsic signals and internal transcriptional controls over these processes are well appreciated, metabolic and mitochondrial states are also critical to appropriate forebrain development. Specifically, metabolic state, mitochondrial function, and mitochondrial dynamics/localization play critical roles in neurulation and CNS progenitor specification, progenitor proliferation and survival, neurogenesis, neural migration, and neurite outgrowth and synaptogenesis. With the goal of integrating neurodevelopmental biologists and mitochondrial specialists, this review synthesizes data from disparate models and processes to compile and highlight key roles of mitochondria in the early development of the CNS with specific focus on forebrain development and corticogenesis.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
25
|
Ravi KS, Divasha, Hassan SB, Pasi R, Mittra S, Kumar R. Neural tube defects: Different types and brief review of neurulation process and its clinical implication. J Family Med Prim Care 2021; 10:4383-4390. [PMID: 35280642 PMCID: PMC8884297 DOI: 10.4103/jfmpc.jfmpc_904_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/12/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED Neural Tube Defects are the most typical congenital malformations, with almost 300,000 cases annually worldwide. The incidence varies amongst geographical ranges from 0.2 to up to 11 per 1000 live births. In India, incidence is reportedly higher in north than south and can be attributable to diet and genetic variances. Etiology is multifactorial. Severe forms of whitethorn are allied with syndromes. Primary neurulation and secondary neurulation are the most crucial steps in the formation and closure of the neural tube; any interruption can lead to mild to severe NTDs depending on the level of insult during embryogenesis. Various molecular and cellular events take place simultaneously for neural tube bending and closure of the neural tube. Neurological deficit in the newborn is contingent on the level of defect and severity of the structures affected. Survival of the newborn also depends on the severity of the lesion. Folic acid supplementation in all prospective mothers, preferably 4 weeks before conception and at least 12 weeks after conception, can prevent NTDs in folic responsive groups. But there is a significant number of other causes leading to neural tube defects apart from folic acid. Hydrocephalus is the commonest abnormality allied with NTDs in syndromic cases. CONCLUSION NTDs are a frequent cause of stillbirths, infant mortality, and palsies in children. There are various reasons for NTDs, but the process of neurulation points towards some factors of NTC, which can be taken care of to lessen the burden of NTDs.
Collapse
Affiliation(s)
- Kumar S. Ravi
- Departments of Anatomy, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Divasha
- Departments of Anatomy, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Sameeullah B. Hassan
- Departments of Anatomy, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Rachna Pasi
- Department of Pediatrics, All India Institute of Medical Sciences, Mangalagiri, Andhra Pradesh, India
| | - Sangh Mittra
- Department of Obstetrics and Gynaecology Avanti Bai Hospital, Balram Pur, Lucknow, Uttar Pradesh, India
| | - Raj Kumar
- Department of Neurosurgery, Uttar Pradesh University of Medical Sciences, Saifai, Uttar Pradesh, India
| |
Collapse
|
26
|
Tindula G, Mukherjee SK, Ekramullah SM, Arman DM, Biswas SK, Islam J, Obrycki JF, Christiani DC, Liang L, Warf BC, Mazumdar M. Parental metal exposures as potential risk factors for spina bifida in Bangladesh. ENVIRONMENT INTERNATIONAL 2021; 157:106800. [PMID: 34358915 PMCID: PMC9008873 DOI: 10.1016/j.envint.2021.106800] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 06/11/2023]
Abstract
BACKGROUND Neural tube defects are a pressing public health concern despite advances in prevention from folic acid-based strategies. Numerous chemicals, in particular arsenic, have been associated with neural tube defects in animal models and could influence risk in humans. OBJECTIVES We investigated the relationship between parental exposure to arsenic and 17 metals and risk of neural tube defects (myelomeningocele and meningocele) in a case control study in Bangladesh. METHODS Exposure assessment included analysis of maternal and paternal toenail samples using inductively coupled plasma mass spectrometry (ICP-MS). A total of 278 participants (155 cases and 123 controls) with data collected from 2016 to 2020 were included in the analysis. RESULTS In the paternal models, a one-unit increase in the natural logarithm of paternal toenail arsenic was associated with a 74% (odds ratio: 1.74, 95% confidence interval: 1.26-2.42) greater odds of having a child with spina bifida, after adjusting for relevant covariates. Additionally, paternal exposure to aluminum, cobalt, chromium, iron, selenium, and vanadium was associated with increased odds of having a child with spina bifida in the adjusted models. In the maternal models, a one-unit increase in the natural logarithm of maternal toenail selenium and zinc levels was related to a 382% greater (odds ratio: 4.82, 95% confidence interval: 1.32-17.60) and 89% lower (odds ratio: 0.11, 95% confidence interval: 0.03-0.42) odds of having a child with spina bifida in the adjusted models, respectively. Results did not suggest an interaction between parental toenail metals and maternal serum folate. DISCUSSION Parental toenail levels of numerous metals were associated with increased risk of spina bifida in Bangladeshi infants. Paternal arsenic exposure was positively associated with neural tube defects in children and is of particular concern given the widespread arsenic poisoning of groundwater resources in Bangladesh and the lack of nutritional interventions aimed to mitigate paternal arsenic exposure. The findings add to the growing body of literature of the impact of metals, especially paternal environmental factors, on child health.
Collapse
Affiliation(s)
- Gwen Tindula
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States; Department of Neurology, Harvard Medical School, 25 Shattuck St, Boston, MA, United States
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - D M Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - Subrata Kumar Biswas
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka 1000, Bangladesh
| | - Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - John F Obrycki
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States; Department of Neurology, Harvard Medical School, 25 Shattuck St, Boston, MA, United States
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States
| | - Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States; Department of Neurology, Harvard Medical School, 25 Shattuck St, Boston, MA, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States.
| |
Collapse
|
27
|
Kakebeen AD, Niswander L. Micronutrient imbalance and common phenotypes in neural tube defects. Genesis 2021; 59:e23455. [PMID: 34665506 PMCID: PMC8599664 DOI: 10.1002/dvg.23455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
Neural tube defects (NTDs) are among the most common birth defects, with a prevalence of close to 19 per 10,000 births worldwide. The etiology of NTDs is complex involving the interplay of genetic and environmental factors. Since nutrient deficiency is a risk factor and dietary changes are the major preventative measure to reduce the risk of NTDs, a more detailed understanding of how common micronutrient imbalances contribute to NTDs is crucial. While folic acid has been the most discussed environmental factor due to the success that population-wide fortification has had on prevention of NTDs, folic acid supplementation does not prevent all NTDs. The imbalance of several other micronutrients has been implicated as risks for NTDs by epidemiological studies and in vivo studies in animal models. In this review, we highlight recent literature deciphering the multifactorial mechanisms underlying NTDs with an emphasis on mouse and human data. Specifically, we focus on advances in our understanding of how too much or too little retinoic acid, zinc, and iron alter gene expression and cellular processes contributing to the pathobiology of NTDs. Synthesis of the discussed literature reveals common cellular phenotypes found in embryos with NTDs resulting from several micronutrient imbalances. The goal is to combine knowledge of these common cellular phenotypes with mechanisms underlying micronutrient imbalances to provide insights into possible new targets for preventative measures against NTDs.
Collapse
Affiliation(s)
- Anneke Dixie Kakebeen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lee Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
28
|
Fish EW, Tucker SK, Peterson RL, Eberhart JK, Parnell SE. Loss of tumor protein 53 protects against alcohol-induced facial malformations in mice and zebrafish. Alcohol Clin Exp Res 2021; 45:1965-1979. [PMID: 34581462 DOI: 10.1111/acer.14688] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Alcohol exposure during the gastrulation stage of development causes the craniofacial and brain malformations that define fetal alcohol syndrome. These malformations, such as a deficient philtrum, are exemplified by a loss of midline tissue and correspond, at least in part, to regionally selective cell death in the embryo. The tumor suppressor protein Tp53 is an important mechanism for cell death, but the role of Tp53 in the consequences of alcohol exposure during the gastrulation stage has yet to be examined. The current studies used mice and zebrafish to test whether genetic loss of Tp53 is a conserved mechanism to protect against the effects of early developmental stage alcohol exposure. METHODS Female mice, heterozygous for a mutation in the Tp53 gene, were mated with Tp53 heterozygous males, and the resulting embryos were exposed during gastrulation on gestational day 7 (GD 7) to alcohol (two maternal injections of 2.9 g/kg, i.p., 4 h apart) or a vehicle control. Zebrafish mutants or heterozygotes for the tp53zdf1 M214K mutation and their wild-type controls were exposed to alcohol (1.5% or 2%) beginning 6 h postfertilization (hpf), the onset of gastrulation. RESULTS Examination of GD 17 mice revealed that eye defects were the most common phenotype among alcohol-exposed fetuses, occurring in nearly 75% of the alcohol-exposed wild-type fetuses. Tp53 gene deletion reduced the incidence of eye defects in both the heterozygous and mutant fetuses (to about 35% and 20% of fetuses, respectively) and completely protected against alcohol-induced facial malformations. Zebrafish (4 days postfertilization) also demonstrated alcohol-induced reductions of eye size and trabeculae length that were less common and less severe in tp53 mutants, indicating a protective effect of tp53 deletion. CONCLUSIONS These results identify an evolutionarily conserved role of Tp53 as a pathogenic mechanism for alcohol-induced teratogenesis.
Collapse
Affiliation(s)
- Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott K Tucker
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, Texas, USA
| | - Rachel L Peterson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Johann K Eberhart
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, Texas, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
29
|
Stanton JE, Malijauskaite S, McGourty K, Grabrucker AM. The Metallome as a Link Between the "Omes" in Autism Spectrum Disorders. Front Mol Neurosci 2021; 14:695873. [PMID: 34290588 PMCID: PMC8289253 DOI: 10.3389/fnmol.2021.695873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022] Open
Abstract
Metal dyshomeostasis plays a significant role in various neurological diseases such as Alzheimer's disease, Parkinson's disease, Autism Spectrum Disorders (ASD), and many more. Like studies investigating the proteome, transcriptome, epigenome, microbiome, etc., for years, metallomics studies have focused on data from their domain, i.e., trace metal composition, only. Still, few have considered the links between other "omes," which may together result in an individual's specific pathologies. In particular, ASD have been reported to have multitudes of possible causal effects. Metallomics data focusing on metal deficiencies and dyshomeostasis can be linked to functions of metalloenzymes, metal transporters, and transcription factors, thus affecting the proteome and transcriptome. Furthermore, recent studies in ASD have emphasized the gut-brain axis, with alterations in the microbiome being linked to changes in the metabolome and inflammatory processes. However, the microbiome and other "omes" are heavily influenced by the metallome. Thus, here, we will summarize the known implications of a changed metallome for other "omes" in the body in the context of "omics" studies in ASD. We will highlight possible connections and propose a model that may explain the so far independently reported pathologies in ASD.
Collapse
Affiliation(s)
- Janelle E Stanton
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland
| | - Sigita Malijauskaite
- Bernal Institute, University of Limerick, Limerick, Ireland.,Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Kieran McGourty
- Bernal Institute, University of Limerick, Limerick, Ireland.,Department of Chemical Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
30
|
Tran TQ, Kioussi C. Pitx genes in development and disease. Cell Mol Life Sci 2021; 78:4921-4938. [PMID: 33844046 PMCID: PMC11073205 DOI: 10.1007/s00018-021-03833-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Homeobox genes encode sequence-specific transcription factors (SSTFs) that recognize specific DNA sequences and regulate organogenesis in all eukaryotes. They are essential in specifying spatial and temporal cell identity and as a result, their mutations often cause severe developmental defects. Pitx genes belong to the PRD class of the highly evolutionary conserved homeobox genes in all animals. Vertebrates possess three Pitx paralogs, Pitx1, Pitx2, and Pitx3 while non-vertebrates have only one Pitx gene. The ancient role of regulating left-right (LR) asymmetry is conserved while new functions emerge to afford more complex body plan and functionalities. In mouse, Pitx1 regulates hindlimb tissue patterning and pituitary development. Pitx2 is essential for the development of the oral cavity and abdominal wall while regulates the formation and symmetry of other organs including pituitary, heart, gut, lung among others by controlling growth control genes upon activation of the Wnt/ß-catenin signaling pathway. Pitx3 is essential for lens development and migration and survival of the dopaminergic neurons of the substantia nigra. Pitx gene mutations are linked to various congenital defects and cancers in humans. Pitx gene family has the potential to offer a new approach in regenerative medicine and aid in identifying new drug targets.
Collapse
Affiliation(s)
- Thai Q Tran
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Chrissa Kioussi
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
31
|
Gonzalez-Vazquez A, Aguilar-Peralta AK, Tomas-Sanchez C, Blanco-Alvarez VM, Martinez-Fong D, Gonzalez-Barrios JA, Treviño S, Millán-Perez Peña L, Alatriste V, Soto-Rodriguez G, Brambila E, Leon-Chavez BA. Taurine Increases Zinc Preconditioning-Induced Prevention of Nitrosative Stress, Metabolic Alterations, and Motor Deficits in Young Rats following Intrauterine Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6696538. [PMID: 34040692 PMCID: PMC8121588 DOI: 10.1155/2021/6696538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Oxygen deprivation in newborns leads to hypoxic-ischemic encephalopathy, whose hallmarks are oxidative/nitrosative stress, energetic metabolism alterations, nutrient deficiency, and motor behavior disability. Zinc and taurine are known to protect against hypoxic-ischemic brain damage in adults and neonates. However, the combined effect of prophylactic zinc administration and therapeutic taurine treatment on intrauterine ischemia- (IUI-) induced cerebral damage remains unknown. The present work evaluated this issue in male pups subjected to transient IUI (10 min) at E17 and whose mothers received zinc from E1 to E16 and taurine from E17 to postnatal day 15 (PND15) via drinking water. We assessed motor alterations, nitrosative stress, lipid peroxidation, and the antioxidant system comprised of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Enzymes of neuronal energetic pathways, such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), were also evaluated. The hierarchization score of the protective effect of pharmacological strategies (HSPEPS) was used to select the most effective treatment. Compared with the IUI group, zinc, alone or combined with taurine, improved motor behavior and reduced nitrosative stress by increasing SOD, CAT, and GPx activities and decreasing the GSSG/GSH ratio in the cerebral cortex and hippocampus. Taurine alone increased the AST/ALT, LDH/ALT, and AST/LDH ratios in the cerebral cortex, showing improvement of the neural bioenergetics system. This result suggests that taurine improves pyruvate, lactate, and glutamate metabolism, thus decreasing IUI-caused cerebral damage and relieving motor behavior impairment. Our results showed that taurine alone or in combination with zinc provides neuroprotection in the IUI rat model.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Vazquez
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Ana-Karina Aguilar-Peralta
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Constantino Tomas-Sanchez
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Victor-Manuel Blanco-Alvarez
- Facultad de enfermería, Benemérita Universidad Autónoma de Puebla, 27 sur 1304, Col. Volcanes, Puebla, 72410 Puebla, Mexico
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 sur 2702, Col. Volcanes, Puebla, 72410 Puebla, Mexico
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 México, DF, Mexico
| | - Juan-Antonio Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional 1° de Octubre, ISSSTE, Avenida, Instituto Politécnico Nacional #1669, 07760 México DF, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Lourdes Millán-Perez Peña
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Victorino Alatriste
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Guadalupe Soto-Rodriguez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 sur 2702, Col. Volcanes, Puebla, 72410 Puebla, Mexico
| | - Eduardo Brambila
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Bertha Alicia Leon-Chavez
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| |
Collapse
|
32
|
Kucuk IG, Eser U, Cevik M, Ongel K. Awareness of Neural Tube Defects in Family Physicians. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2021. [DOI: 10.29333/jcei/9707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Behl S, Mehta S, Pandey MK. Abnormal Levels of Metal Micronutrients and Autism Spectrum Disorder: A Perspective Review. Front Mol Neurosci 2020; 13:586209. [PMID: 33362464 PMCID: PMC7759187 DOI: 10.3389/fnmol.2020.586209] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of the present review is to summarize the prevalence of abnormal levels of various metal micronutrients including copper (Cu), iron (Fe), magnesium (Mg), zinc (Zn), and selenium (Se) in Autism Spectrum Disorder (ASD) using hair, nail and serum samples. A correlation of selected abnormal metal ions with known neurodevelopmental processes using Gene Ontology (GO) term was also conducted. Data included in this review are derived from ASD clinical studies performed globally. Metal ion disparity data is also analyzed and discussed based on gender (Male/Female) to establish any gender dependent correlation. Finally, a rational perspective and possible path to better understand the role of metal micronutrients in ASD is suggested.
Collapse
Affiliation(s)
- Supriya Behl
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Sunil Mehta
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mukesh K Pandey
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
34
|
Seruggia D, Fernández A, Cantero M, Fernández-Miñán A, Gomez-Skarmeta JL, Pelczar P, Montoliu L. Boundary sequences flanking the mouse tyrosinase locus ensure faithful pattern of gene expression. Sci Rep 2020; 10:15494. [PMID: 32968154 PMCID: PMC7511308 DOI: 10.1038/s41598-020-72543-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
Control of gene expression is dictated by cell-type specific regulatory sequences that physically organize the structure of chromatin, including promoters, enhancers and insulators. While promoters and enhancers convey cell-type specific activating signals, insulators prevent the cross-talk of regulatory elements within adjacent loci and safeguard the specificity of action of promoters and enhancers towards their targets in a tissue specific manner. Using the mouse tyrosinase (Tyr) locus as an experimental model, a gene whose mutations are associated with albinism, we described the chromatin structure in cells at two distinct transcriptional states. Guided by chromatin structure, through the use of Chromosome Conformation Capture (3C), we identified sequences at the 5' and 3' boundaries of this mammalian gene that function as enhancers and insulators. By CRISPR/Cas9-mediated chromosomal deletion, we dissected the functions of these two regulatory elements in vivo in the mouse, at the endogenous chromosomal context, and proved their mechanistic role as genomic insulators, shielding the Tyr locus from the expression patterns of adjacent genes.
Collapse
Affiliation(s)
- Davide Seruggia
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
- CIBERER-ISCIII, Madrid, Spain
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Almudena Fernández
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
- CIBERER-ISCIII, Madrid, Spain
| | - Marta Cantero
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
- CIBERER-ISCIII, Madrid, Spain
| | - Ana Fernández-Miñán
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - José Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain.
- CIBERER-ISCIII, Madrid, Spain.
| |
Collapse
|
35
|
Xiong Y, Zhang Y, Xiong S, Williams-Villalobo AE. A Glance of p53 Functions in Brain Development, Neural Stem Cells, and Brain Cancer. BIOLOGY 2020; 9:biology9090285. [PMID: 32932978 PMCID: PMC7564678 DOI: 10.3390/biology9090285] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022]
Abstract
p53 is one of the most intensively studied tumor suppressors. It transcriptionally regulates a broad range of genes to modulate a series of cellular events, including DNA damage repair, cell cycle arrest, senescence, apoptosis, ferroptosis, autophagy, and metabolic remodeling, which are fundamental for both development and cancer. This review discusses the role of p53 in brain development, neural stem cell regulation and the mechanisms of inactivating p53 in gliomas. p53 null or p53 mutant mice show female biased exencephaly, potentially due to X chromosome inactivation failure and/or hormone-related gene expression. Oxidative cellular status, increased PI3K/Akt signaling, elevated ID1, and metabolism are all implicated in p53-loss induced neurogenesis. However, p53 has also been shown to promote neuronal differentiation. In addition, p53 mutations are frequently identified in brain tumors, especially glioblastomas. Mechanisms underlying p53 inactivation in brain tumor cells include disruption of p53 protein stability, gene expression and transactivation potential as well as p53 gene loss or mutation. Loss of p53 function and gain-of-function of mutant p53 are both implicated in brain development and tumor genesis. Further understanding of the role of p53 in the brain may provide therapeutic insights for brain developmental syndromes and cancer.
Collapse
Affiliation(s)
- Yuqing Xiong
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
| | - Yun Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA;
- Correspondence: ; Tel.: +1-713-313-7557
| | - Shunbin Xiong
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Abie E. Williams-Villalobo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA;
| |
Collapse
|
36
|
Strong MD, Hart MD, Tang TZ, Ojo BA, Wu L, Nacke MR, Agidew WT, Hwang HJ, Hoyt PR, Bettaieb A, Clarke SL, Smith BJ, Stoecker BJ, Lucas EA, Lin D, Chowanadisai W. Role of zinc transporter ZIP12 in susceptibility-weighted brain magnetic resonance imaging (MRI) phenotypes and mitochondrial function. FASEB J 2020; 34:10702-12725. [PMID: 32716562 DOI: 10.1096/fj.202000772r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022]
Abstract
Brain zinc dysregulation is linked to many neurological disorders. However, the mechanisms regulating brain zinc homeostasis are poorly understood. We performed secondary analyses of brain MRI GWAS and exome sequencing data from adults in the UK Biobank. Coding ZIP12 polymorphisms in zinc transporter ZIP12 (SLC39A12) were associated with altered brain susceptibility weighted MRI (swMRI). Conditional and joint association analyses revealed independent GWAS signals in linkage disequilibrium with 2 missense ZIP12 polymorphisms, rs10764176 and rs72778328, with reduced zinc transport activity. ZIP12 rare coding variants predicted to be deleterious were associated with similar impacts on brain swMRI. In Neuro-2a cells, ZIP12 deficiency by short hairpin RNA (shRNA) depletion or CRISPR/Cas9 genome editing resulted in impaired mitochondrial function, increased superoxide presence, and detectable protein carbonylation. Inhibition of Complexes I and IV of the electron transport chain reduced neurite outgrowth in ZIP12 deficient cells. Transcriptional coactivator PGC-1α, mitochondrial superoxide dismutase (SOD2), and chemical antioxidants α-tocopherol, MitoTEMPO, and MitoQ restored neurite extension impaired by ZIP12 deficiency. Mutant forms of α-synuclein and tau linked to familial Parkinson's disease and frontotemporal dementia, respectively, reduced neurite outgrowth in cells deficient in ZIP12. Zinc and ZIP12 may confer resilience against neurological diseases or premature aging of the brain.
Collapse
Affiliation(s)
- Morgan D Strong
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Matthew D Hart
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Tony Z Tang
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Babajide A Ojo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Mariah R Nacke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Workneh T Agidew
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Hong J Hwang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Peter R Hoyt
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee, Knoxville, TN, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Barbara J Stoecker
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
37
|
Zou J, Wang F, Yang X, Wang H, Niswander L, Zhang T, Li H. Association between rare variants in specific functional pathways and human neural tube defects multiple subphenotypes. Neural Dev 2020; 15:8. [PMID: 32650820 PMCID: PMC7353782 DOI: 10.1186/s13064-020-00145-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are failure of neural tube closure, which includes multiple central nervous system phenotypes. More than 300 mouse mutant strains exhibits NTDs phenotypes and give us some clues to establish association between biological functions and subphenotypes. However, the knowledge about association in human remains still very poor. METHODS High throughput targeted genome DNA sequencing were performed on 280 neural tube closure-related genes in 355 NTDs cases and 225 ethnicity matched controls, RESULTS: We explored that potential damaging rare variants in genes functioning in chromatin modification, apoptosis, retinoid metabolism and lipid metabolism are associated with human NTDs. Importantly, our data indicate that except for planar cell polarity pathway, craniorachischisis is also genetically related with chromatin modification and retinoid metabolism. Furthermore, single phenotype in cranial or spinal regions displays significant association with specific biological function, such as anencephaly is associated with potentially damaging rare variants in genes functioning in chromatin modification, encephalocele is associated with apoptosis, retinoid metabolism and one carbon metabolism, spina bifida aperta and spina bifida cystica are associated with apoptosis; lumbar sacral spina bifida aperta and spina bifida occulta are associated with lipid metabolism. By contrast, complex phenotypes in both cranial and spinal regions display association with various biological functions given the different phenotypes. CONCLUSIONS Our study links genetic variant to subphenotypes of human NTDs and provides a preliminary but direct clue to investigate pathogenic mechanism for human NTDs.
Collapse
Affiliation(s)
- Jizhen Zou
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xueyan Yang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, Key Lab of Reproduction Regulation of NPFPC in SIPPR, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Lee Niswander
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Huili Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China. .,Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, 80309, USA.
| |
Collapse
|
38
|
Yin S, Wang C, Wei J, Wang D, Jin L, Liu J, Wang L, Li Z, Ren A, Yin C. Essential trace elements in placental tissue and risk for fetal neural tube defects. ENVIRONMENT INTERNATIONAL 2020; 139:105688. [PMID: 32244100 DOI: 10.1016/j.envint.2020.105688] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
This study examined the associations between concentrations of cobalt (Co), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), and zinc (Zn) in placental tissue and risks for NTDs with a case-control design consisting of 408 fetuses or newborns with neural tube defects (NTDs) and 593 non-malformed fetuses or newborns. The concentrations of Zn and Fe were determined by inductively coupled plasma-emission spectrometer and the other four elements by inductively coupled plasma-mass spectrometer. Element concentrations were presented in ng/g or µg/g dry weight of placental tissue. The associations between the levels of each of the six ETEs and risk for NTDs were evaluated using multivariable logistic regression, and the associations between overall levels of all six ETEs and risk for NTDs were examined using Bayesian kernel machine regression (BKMR). Concentrations above the median concentration of all participants for an individual element were associated with increased risk for NTDs: Mn, 3.17-fold (95% CI 2.35-4.28); Mo, 3.73-fold (95% CI 2.74-5.07); Se, 3.28-fold (95% CI 2.44-4.42); and Zn, 2.85-fold (95% CI 2.13-3.83), and a decreased risk for Co [OR, 0.18 (95% CI 0.14-0.25)]. The risk for NTDs increased with the increase in the concentrations of Mn, Mo, Se, and Zn, but decreased for Co, in the second, third, and fourth quartiles, respectively, compared to their lowest quartile (all Pstrend < 0.01). In BKMR model, the risk for NTDs increased constantly when the overall exposure levels were higher than the median of the six ETEs as a co-exposure mixture, and the associations between Co, Mn, Se, and Zn and NTD risk remained when the remaining five elements were taken into consideration simultaneously. Taken together, when evaluated individually, higher levels of Mn, Se, and Zn in placental tissue are associated with increased risk for NTDs, while higher levels of Co are associated with decreased risk for NTDs; when examined collectively, the risk of NTDs increases continuously when exposure levels are higher than the median of the six ETE mixture.
Collapse
Affiliation(s)
- Shengju Yin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chengrong Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jing Wei
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Di Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jufen Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| | - Chenghong Yin
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China.
| |
Collapse
|
39
|
Sudiwala S, Palmer A, Massa V, Burns AJ, Dunlevy LPE, de Castro SCP, Savery D, Leung KY, Copp AJ, Greene NDE. Cellular mechanisms underlying Pax3-related neural tube defects and their prevention by folic acid. Dis Model Mech 2019; 12:dmm042234. [PMID: 31636139 PMCID: PMC6899032 DOI: 10.1242/dmm.042234] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/16/2019] [Indexed: 01/03/2023] Open
Abstract
Neural tube defects (NTDs), including spina bifida and anencephaly, are among the most common birth defects worldwide, but their underlying genetic and cellular causes are not well understood. Some NTDs are preventable by supplemental folic acid. However, despite widespread use of folic acid supplements and implementation of food fortification in many countries, the protective mechanism is unclear. Pax3 mutant (splotch; Sp2H ) mice provide a model in which NTDs are preventable by folic acid and exacerbated by maternal folate deficiency. Here, we found that cell proliferation was diminished in the dorsal neuroepithelium of mutant embryos, corresponding to the region of abolished Pax3 function. This was accompanied by premature neuronal differentiation in the prospective midbrain. Contrary to previous reports, we did not find evidence that increased apoptosis could underlie failed neural tube closure in Pax3 mutant embryos, nor that inhibition of apoptosis could prevent NTDs. These findings suggest that Pax3 functions to maintain the neuroepithelium in a proliferative, undifferentiated state, allowing neurulation to proceed. NTDs in Pax3 mutants were not associated with abnormal abundance of specific folates and were not prevented by formate, a one-carbon donor to folate metabolism. Supplemental folic acid restored proliferation in the cranial neuroepithelium. This effect was mediated by enhanced progression of the cell cycle from S to G2 phase, specifically in the Pax3 mutant dorsal neuroepithelium. We propose that the cell-cycle-promoting effect of folic acid compensates for the loss of Pax3 and thereby prevents cranial NTDs.
Collapse
Affiliation(s)
- Sonia Sudiwala
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Alexandra Palmer
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Valentina Massa
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Alan J Burns
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Louisa P E Dunlevy
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sandra C P de Castro
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Dawn Savery
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Kit-Yi Leung
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
40
|
Fame RM, Shannon ML, Chau KF, Head JP, Lehtinen MK. A concerted metabolic shift in early forebrain alters the CSF proteome and depends on MYC downregulation for mitochondrial maturation. Development 2019; 146:dev.182857. [PMID: 31575649 DOI: 10.1242/dev.182857] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022]
Abstract
Massive, coordinated cellular changes accompany the transition of central nervous system (CNS) progenitors from forebrain neurectodermal cells to specified neuroepithelial cells. We have previously found that MYC regulates the changing ribosomal and proteostatic landscapes in mouse forebrain precursors at embryonic days E8.5 and E10.5 (before and after neural tube closure; NTC) (Chau et al., 2018). Here, we demonstrate parallel coordinated transcriptional changes in metabolic machinery during this same stage of forebrain specification. Progenitors showed striking mitochondrial structural changes transitioning from glycolytic cristae at E8.5, to more traditional mitochondria at E10.5. Accordingly, glucose use shifted in progenitors such that E8.5 progenitors relied on glycolysis, and after NTC increasingly used oxidative phosphorylation. This metabolic shift was matched by changes in surrounding amniotic and cerebrospinal fluid proteomes. Importantly, these mitochondrial morphological shifts depend on MYC downregulation. Together, our findings demonstrate that metabolic shifting accompanies dynamic organelle and proteostatic remodeling of progenitor cells during the earliest stages of forebrain development.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Morgan L Shannon
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kevin F Chau
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua P Head
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA .,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|