1
|
McGovern MM, Cox BC. Hearing restoration through hair cell regeneration: A review of recent advancements and current limitations. Hear Res 2025; 461:109256. [PMID: 40157114 PMCID: PMC12052480 DOI: 10.1016/j.heares.2025.109256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Hearing loss is extremely common, yet limited treatment options are available to restore hearing, and those that are available provide incomplete recovery of hearing detection. For patients who are born with normal hearing, the most common cause of hearing loss is the loss of the sensory hair cells located in the cochlea of the inner ear. Non-mammals, including birds, fish, and amphibians, naturally regenerate new hair cells after damage and this natural process results in functional recovery. While some limited hair cell regeneration also occurs in the immature cochlea of mice, the mature mammalian cochlea does not naturally produce replacement hair cells, and thus hearing loss is permanent. Since the late 1980s, researchers have been investigating mechanisms to convert supporting cells, the cells that remain once hair cells have been killed, into new replacement hair cells. Here we review the current status of hair cell regeneration in the adult cochlea, highlighting recent achievements, as well as challenges that have yet to be resolved.
Collapse
Affiliation(s)
- Melissa M McGovern
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Brandon C Cox
- Departments of Pharmacology and Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| |
Collapse
|
2
|
Xiao H, Wu J, Huang L, Ma Y, Wu L, Lin Y, Ye Z, Tan X, Tang X, Tong W, Dai M, Wang Y, Sheng X, Chai R, Zhang S. Conditional Overexpression of Serpine2 Promotes Hair Cell Regeneration from Lgr5+ Progenitors in the Neonatal Mouse Cochlea. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412653. [PMID: 40091489 PMCID: PMC12079390 DOI: 10.1002/advs.202412653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/06/2025] [Indexed: 03/19/2025]
Abstract
Neonatal cochlear Lgr5+ progenitors retain limited hair cells (HCs) regenerative capacity, but the regulatory network remains incompletely defined. Serpin family E member 2 (Serpine2) is shown to participate in regulating proliferation and differentiation of cochlear Lgr5+ progenitors in the previous in vitro study. Here, the expression pattern and in vivo roles of Serpine2 in HC regeneration are explored by transgenic mice. It is found that Serpine2 is expressed in the mouse cochlea after birth with a downward trend as the mice age. In addition, Serpine2 conditional overexpression in vivo in Lgr5+ progenitors of neonatal mice cochlea results in an increased number of ectopic HCs in a dose-dependent manner. Serpine2 knockdown ex vivo and in vivo can inhibit HC regeneration. EdU assay and lineage tracing assay demonstrate these ectopic HCs likely originate from Lgr5+ progenitors through direct transdifferentiation rather than through mitotic regeneration. Moreover, single-nucleus RNA sequencing analysis and mRNA level validation reveal that conditionally overexpressed Serpine2 likely induces HC regeneration via inhibiting sonic hedgehog (SHH) signal pathway and inducing Atoh1 and Pou4f3 transcription factor. In brief, these data indicate that Serpine2 plays a pivotal role in HC regeneration from Lgr5+ progenitors in the neonatal mouse cochlea, and this suggests a new avenue for future research into HC regeneration.
Collapse
Affiliation(s)
- Hairong Xiao
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| | - Jiheng Wu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Lixuan Huang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Ying Ma
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Leilei Wu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Yanqin Lin
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| | - Zixuan Ye
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xin Tan
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xujun Tang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Wei Tong
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Mingchen Dai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Yintao Wang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xia Sheng
- School of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Environmental HealthSchool of Environmental Science and EngineeringHainan UniversityHaikou570228China
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Southeast University Shenzhen Research InstituteShenzhen518063China
- Institute for Stem Cells and RegenerationChinese Academy of ScienceBeijing100081China
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Shasha Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| |
Collapse
|
3
|
Lin Y, Zhang Q, Tong W, Wang Y, Wu L, Xiao H, Tang X, Dai M, Ye Z, Chai R, Zhang S. Conditional Overexpression of Net1 Enhances the Trans-Differentiation of Lgr5 + Progenitors into Hair Cells in the Neonatal Mouse Cochlea. Cell Prolif 2025; 58:e13787. [PMID: 39675772 PMCID: PMC11969244 DOI: 10.1111/cpr.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Sensorineural hearing loss is mainly caused by damage to hair cells (HC), which cannot be regenerated spontaneously in adult mammals once damaged. Cochlear Lgr5+ progenitors are characterised by HC regeneration capacity in neonatal mice, and we previously screened several new genes that might induce HC regeneration from Lgr5+ progenitors. Net1, a guanine nucleotide exchange factor, is one of the screened new genes and is particularly active in cancer cells and is involved in cell proliferation and differentiation. Here, to explore in vivo roles of Net1 in HC regeneration, Net1 loxp/loxp mice were constructed and crossed with Lgr5 CreER/+ mice to conditionally overexpress (cOE) Net1 in cochlear Lgr5+ progenitors. We observed a large number of ectopic HCs in Lgr5 CreER/+ Net1 loxp/loxp mouse cochlea, which showed a dose-dependent effect. Moreover, the EdU assay was unable to detect any EdU+/Sox2+ supporting cells, while lineage tracing showed significantly more regenerated tdTomato+ HCs in Lgr5 CreER/+ Net1 loxp/loxp tdTomato mice, which indicated that Net1 cOE enhanced HC regeneration by inducing the direct trans-differentiation of Lgr5+ progenitors rather than mitotic HC regeneration. Additionally, qPCR results showed that the transcription factors related to HC regeneration, including Atoh1, Gfi1 and Pou4f3, were significantly upregulated and are probably the mechanism behind the HC regeneration induced by Net1. In conclusion, our study provides new evidence for the role of Net1 in enhancing HC regeneration in the neonatal mouse cochlea.
Collapse
Affiliation(s)
- Yanqin Lin
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Qiuyue Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Wei Tong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Yintao Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Leilei Wu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Hairong Xiao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Xujun Tang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Mingchen Dai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Zixuan Ye
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- Institute for Stem Cell and RegenerationChinese Academy of ScienceBeijingChina
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shasha Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
4
|
Ding D, Chen GD, Zhang C, Ye M, Adler HJ, Sharaf R, Naldrett K, Mittal T, Hu BH. Supporting cell involvement in cochlear damage and repair: Novel insights from a quantitative analysis of cyclodextrin-induced ototoxicity in mice. Hear Res 2025; 459:109201. [PMID: 39946964 PMCID: PMC11930607 DOI: 10.1016/j.heares.2025.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 03/24/2025]
Abstract
The cochlea is vulnerable to various pathological conditions, with sensory cells typically being the primary targets of damage. However, supporting cells also experience significant impacts. Despite their critical role in maintaining the structural and functional integrity of the sensory epithelium, the supporting cell involvement in cochlear damage remains poorly understood. This study aimed to elucidate the susceptibility of supporting cells in cochlear damage and their role in structural repair, using a mouse model of ototoxicity induced by cyclodextrin-a cyclic oligomer of glucose that is known to preferentially damage outer hair cells at high doses. A morphological examination of the cochlea showed that cyclodextrin exposure caused significant sensory cell loss, particularly affecting outer hair cells across the cochlear spiral, except at the apex. Despite extensive hair cell damage, most supporting cells in the apical and middle cochlear regions survived. In the basal end, where substantial supporting cell loss occurred, certain Deiters' cells survived even after losing their phalangeal processes. Additionally, our observations indicate that Hensen's cells contribute to forming an epithelial layer over the basilar membrane when the organ of Corti collapses. Further quantitative analysis revealed location-dependent susceptibility among supporting cell types. Deiters' cells demonstrated greater resilience than pillar cells. Notably, the three rows of Deiters' cells displayed differential susceptibility: the third row showed a more significant loss in regions with sporadic Deiters' cell loss, while the first row exhibited an increased loss in areas adjacent to regions of complete Deiters' cell depletion. The reduction of Hensen's cells started in the middle section of the cochlea, occurring at a greater level than the reduction observed in Deiters' and pillar cells. However, in the extreme base, where both pillar and Deiters' cells were largely or completely absent, some Hensen's cells were still present. Together, these findings provide new insights into the varying vulnerability of supporting cells to cochlear damage and underscore their essential role in structural repair.
Collapse
Affiliation(s)
- Dalian Ding
- Department of Communicative Disorders and Sciences, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Guang Di Chen
- Department of Communicative Disorders and Sciences, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Celia Zhang
- Department of Audiology, School of Health Sciences, University of the Pacific, 155 5th Street, San Francisco, CA 94103, USA
| | - Mengxiao Ye
- Department of Communicative Disorders and Sciences, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Henry J Adler
- Department of Communicative Disorders and Sciences, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Rania Sharaf
- Department of Communicative Disorders and Sciences, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Kayla Naldrett
- Department of Communicative Disorders and Sciences, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Tanisi Mittal
- Department of Communicative Disorders and Sciences, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Bo Hua Hu
- Department of Communicative Disorders and Sciences, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
5
|
Wang H, Zhang X, Gui F, Sun X, Chen R, Yin G, Hong Y, Huang J, Yang L. In vitro effects of recombinant human Neuritin on hair cell recovery post-gentamicin injury in SC lineage-tracing models: Involvement of notch and FGFR signaling. Neurochem Int 2025; 183:105935. [PMID: 39827939 DOI: 10.1016/j.neuint.2025.105935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Hair cell (HC) loss, frequently induced by ototoxic agents such as gentamicin, leads to irreversible hearing loss. Because of the restricted regenerative capabilities of the mammalian inner ear, the exploration of therapeutic strategies to restore damaged HCs is critically needed. Recombinant human Neuritin (rhNeuritin), a neurotrophic factor with established roles in promoting cell survival and regeneration across various systems, presents itself as a promising therapeutic candidate for HC repair. In this study, we elucidate the protective effects of rhNeuritin on injured HCs and its capacity to facilitate HC regeneration post-damage. Through the use of cochlear Supporting Cell (SC) lineage-tracing models in neonatal mice, we demonstrate that SC trans-differentiation serves as the origin of HC regeneration following damage. Simultaneously, we uncover that rhNeuritin potentiates the proliferation of SC precursor cells. Mechanistic insights reveal that rhNeuritin-induced cochleae exhibit downregulation of the critical Notch pathway mediator, Hes1, and upregulation of the essential FGFR pathway component Erm, which together may underpin HC regeneration and the proliferation of SC precursors. Notably, rhNeuritin demonstrates significant preservation of HC structural integrity. These findings collectively highlight the therapeutic potential of rhNeuritin in addressing hearing loss resulting from HC damage, thereby opening a new avenue for the restoration of auditory function.
Collapse
Affiliation(s)
- Haiyan Wang
- Laboratory Animal Center, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xue Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Fei Gui
- Laboratory Animal Center, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaopin Sun
- Laboratory Animal Center, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Guanwu Yin
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Jin Huang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, District 32, Shihezi, 832002, PR China.
| | - Lei Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
6
|
Jiang L, Hu SW, Wang Z, Zhou Y, Tang H, Chen Y, Wang D, Fan X, Han L, Li H, Shi D, He Y, Shu Y. Hearing restoration by gene replacement therapy for a multisite-expressed gene in a mouse model of human DFNB111 deafness. Am J Hum Genet 2024; 111:2253-2264. [PMID: 39241775 PMCID: PMC11480802 DOI: 10.1016/j.ajhg.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
Gene therapy has made significant progress in the treatment of hereditary hearing loss. However, most research has focused on deafness-related genes that are primarily expressed in hair cells with less attention given to multisite-expressed deafness genes. MPZL2, the second leading cause of mild-to-moderate hereditary deafness, is widely expressed in different inner ear cells. We generated a mouse model with a deletion in the Mpzl2 gene, which displayed moderate and slowly progressive hearing loss, mimicking the phenotype of individuals with DFNB111. We developed a gene replacement therapy system mediated by AAV-ie for efficient transduction in various types of cochlear cells. AAV-ie-Mpzl2 administration significantly lowered the auditory brainstem response and distortion product otoacoustic emission thresholds of Mpzl2-/- mice for at least seven months. AAV-ie-Mpzl2 delivery restored the structural integrity in both outer hair cells and Deiters cells. This study suggests the potential of gene therapy for MPZL2-related deafness and provides a proof of concept for gene therapy targeting other deafness-related genes that are expressed in different cell populations in the cochlea.
Collapse
Affiliation(s)
- Luoying Jiang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shao Wei Hu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zijing Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yi Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Honghai Tang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuxin Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Daqi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xintai Fan
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huawei Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Dazhi Shi
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
McGovern MM, Ghosh S, Dupuis C, Walters BJ, Groves AK. Reprogramming with Atoh1, Gfi1, and Pou4f3 promotes hair cell regeneration in the adult organ of Corti. PNAS NEXUS 2024; 3:pgae445. [PMID: 39411090 PMCID: PMC11477985 DOI: 10.1093/pnasnexus/pgae445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Cochlear hair cells can be killed by loud noises, ototoxic drugs, and natural aging. Once lost, mammalian hair cells do not naturally regenerate, leading to permanent hearing loss. Since the mammalian cochlea lacks any intrinsic ability to regenerate, genetic reprogramming of cochlear supporting cells that lie adjacent to hair cells is a potential option for hearing restoration therapies. We targeted cochlear supporting cells with three hair cell transcription factors: Atoh1, or Atoh1 + Gfi1, or Atoh1 + Gfi1 + Pou4f3 and found that 1- and 2-factor reprogramming is not sufficient to reprogram adult supporting cells into hair cells. However, activation of all three hair cell transcription factors reprogrammed some adult supporting cells into hair cell-like cells. We found that killing endogenous hair cells significantly improved the ability of supporting cells to be reprogrammed and regenerated numerous hair cell-like cells throughout the length of the cochlea. These regenerated hair cell-like cells expressed myosin VIIa and parvalbumin, as well as the mature outer hair cell protein prestin, were innervated, expressed proteins associated with ribbon synapses, and formed rudimentary stereociliary bundles. Finally, we demonstrate that supporting cells remained responsive to transcription factor reprogramming for at least 6 weeks after hair cell damage, suggesting that hair cell reprogramming may be effective in the chronically deafened cochlea.
Collapse
Affiliation(s)
- Melissa M McGovern
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sumana Ghosh
- Department of Otolaryngology—Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Colleen Dupuis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bradley J Walters
- Department of Otolaryngology—Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Maraslioglu-Sperber A, Blanc F, Heller S. Murine cochlear damage models in the context of hair cell regeneration research. Hear Res 2024; 447:109021. [PMID: 38703432 DOI: 10.1016/j.heares.2024.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Understanding the complex pathologies associated with hearing loss is a significant motivation for conducting inner ear research. Lifelong exposure to loud noise, ototoxic drugs, genetic diversity, sex, and aging collectively contribute to human hearing loss. Replicating this pathology in research animals is challenging because hearing impairment has varied causes and different manifestations. A central aspect, however, is the loss of sensory hair cells and the inability of the mammalian cochlea to replace them. Researching therapeutic strategies to rekindle regenerative cochlear capacity, therefore, requires the generation of animal models in which cochlear hair cells are eliminated. This review discusses different approaches to ablate cochlear hair cells in adult mice. We inventoried the cochlear cyto- and histo-pathology caused by acoustic overstimulation, systemic and locally applied drugs, and various genetic tools. The focus is not to prescribe a perfect damage model but to highlight the limitations and advantages of existing approaches and identify areas for further refinement of damage models for use in regenerative studies.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fabian Blanc
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Otolaryngology - Head & Neck Surgery, University Hospital Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Kalmanson O, Takeda H, Anderson SR, Dondzillo A, Gubbels S. Nestin-expressing cells are mitotically active in the mammalian inner ear. Hear Res 2024; 443:108962. [PMID: 38295585 PMCID: PMC10922748 DOI: 10.1016/j.heares.2024.108962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 02/02/2024]
Abstract
Nestin expression is associated with pluripotency. Growing evidence suggests nestin is involved in hair cell development. The objective of this study was to investigate the morphology and role of nestin-expressing cells residing in the early postnatal murine inner ear. A lineage-tracing nestin reporter mouse line was used to further characterize these cells. Their cochleae and vestibular organs were immunostained and whole-mounted for cell counting. We found Nestin-expressing cells present in low numbers throughout the inner ear. Three morphotypes were observed: bipolar, unipolar, and globular. Mitotic activity was noted in nestin-expressing cells in the cochlea, utricle, saccule, and crista. Nestin-expressing cell characteristics were then observed after hair cell ablation in two mouse models. First, a reporter model demonstrated nestin expression in a significantly higher proportion of hair cells after hair cell ablation than in control cochleae. However, in a lineage tracing nestin reporter mouse, none of the new hair cells which repopulated the organ of Corti after hair cell ablation expressed nestin, nor did the nestin-expressing cells change in morphotype. In conclusion, Nestin-expressing cells were identified in the cochlea and vestibular organs. After hair cell ablation, nestin-expressing cells did not react to the insult. However, a small number of nestin-expressing cells in all inner ear tissues exhibited mitotic activity, supporting progenitor cell potential, though perhaps not involved in hair cell regeneration.
Collapse
Affiliation(s)
- Olivia Kalmanson
- University of Colorado School of Medicine, Dept of Otolaryngology - Head and Neck Surgery, 12631 E 17th Avenue, Aurora, CO 80045, USA.
| | - Hiroki Takeda
- Kumamoto University Graduate School of Medicine, Dept of Otolaryngology - Head and Neck Surgery, Kumamoto University Graduate School of Medicine, Kumamoto City, Japan
| | - Sean R Anderson
- University of Colorado School of Medicine, Dept of Biophysics & Physiology, Aurora, CO 80045, USA
| | - Anna Dondzillo
- University of Colorado School of Medicine, Dept of Otolaryngology - Head and Neck Surgery, 12631 E 17th Avenue, Aurora, CO 80045, USA
| | - Samuel Gubbels
- University of Colorado School of Medicine, Dept of Otolaryngology - Head and Neck Surgery, 12631 E 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Choi SW, Abitbol JM, Cheng AG. Hair Cell Regeneration: From Animals to Humans. Clin Exp Otorhinolaryngol 2024; 17:1-14. [PMID: 38271988 PMCID: PMC10933805 DOI: 10.21053/ceo.2023.01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Cochlear hair cells convert sound into electrical signals that are relayed via the spiral ganglion neurons to the central auditory pathway. Hair cells are vulnerable to damage caused by excessive noise, aging, and ototoxic agents. Non-mammals can regenerate lost hair cells by mitotic regeneration and direct transdifferentiation of surrounding supporting cells. However, in mature mammals, damaged hair cells are not replaced, resulting in permanent hearing loss. Recent studies have uncovered mechanisms by which sensory organs in non-mammals and the neonatal mammalian cochlea regenerate hair cells, and outlined possible mechanisms why this ability declines rapidly with age in mammals. Here, we review similarities and differences between avian, zebrafish, and mammalian hair cell regeneration. Moreover, we discuss advances and limitations of hair cell regeneration in the mature cochlea and their potential applications to human hearing loss.
Collapse
Affiliation(s)
- Sung-Won Choi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Otorhinolaryngology-Head and Neck Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Busan, Korea
| | - Julia M. Abitbol
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
11
|
McGovern MM, Hosamani IV, Niu Y, Nguyen KY, Zong C, Groves AK. Expression of Atoh1, Gfi1, and Pou4f3 in the mature cochlea reprograms nonsensory cells into hair cells. Proc Natl Acad Sci U S A 2024; 121:e2304680121. [PMID: 38266052 PMCID: PMC10835112 DOI: 10.1073/pnas.2304680121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/08/2023] [Indexed: 01/26/2024] Open
Abstract
Mechanosensory hair cells of the mature mammalian organ of Corti do not regenerate; consequently, loss of hair cells leads to permanent hearing loss. Although nonmammalian vertebrates can regenerate hair cells from neighboring supporting cells, many humans with severe hearing loss lack both hair cells and supporting cells, with the organ of Corti being replaced by a flat epithelium of nonsensory cells. To determine whether the mature cochlea can produce hair cells in vivo, we reprogrammed nonsensory cells adjacent to the organ of Corti with three hair cell transcription factors: Gfi1, Atoh1, and Pou4f3. We generated numerous hair cell-like cells in nonsensory regions of the cochlea and new hair cells continued to be added over a period of 9 wk. Significantly, cells adjacent to reprogrammed hair cells expressed markers of supporting cells, suggesting that transcription factor reprogramming of nonsensory cochlear cells in adult animals can generate mosaics of sensory cells like those seen in the organ of Corti. Generating such sensory mosaics by reprogramming may represent a potential strategy for hearing restoration in humans.
Collapse
Affiliation(s)
| | - Ishwar V. Hosamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Yichi Niu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Ken Y. Nguyen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Andrew K. Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
12
|
You D, Ni W, Huang Y, Zhou Q, Zhang Y, Jiang T, Chen Y, Li W. The proper timing of Atoh1 expression is pivotal for hair cell subtype differentiation and the establishment of inner ear function. Cell Mol Life Sci 2023; 80:349. [PMID: 37930405 PMCID: PMC10628023 DOI: 10.1007/s00018-023-04947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/07/2023]
Abstract
Atoh1 overexpression is essential for hair cell (HC) regeneration in the sensory epithelium of mammalian auditory and vestibular organs. However, Atoh1 overexpression alone cannot induce fully mature and functional HCs in the mammalian inner ear. In the current study, we investigated the effect of Atoh1 constitutive overexpression in native HCs by manipulating Atoh1 expression at different developmental stages. We demonstrated that constitutive overexpression of Atoh1 in native vestibular HCs did not affect cell survival but did impair vestibular function by interfering with the subtype differentiation of HCs and hair bundle development. In contrast, Atoh1 overexpression in cochlear HCs impeded their maturation, eventually leading to gradual HC loss in the cochlea and hearing dysfunction. Our study suggests that time-restricted Atoh1 expression is essential for the differentiation and survival of HCs in the inner ear, and this is pivotal for both hearing and vestibular function re-establishment through Atoh1 overexpression-induced HC regeneration strategies.
Collapse
Affiliation(s)
- Dan You
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Wenli Ni
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Yikang Huang
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Qin Zhou
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Yanping Zhang
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Tao Jiang
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Yan Chen
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China.
| | - Wenyan Li
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China.
| |
Collapse
|
13
|
Tisi A, Palaniappan S, Maccarrone M. Advanced Omics Techniques for Understanding Cochlear Genome, Epigenome, and Transcriptome in Health and Disease. Biomolecules 2023; 13:1534. [PMID: 37892216 PMCID: PMC10605747 DOI: 10.3390/biom13101534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Advanced genomics, transcriptomics, and epigenomics techniques are providing unprecedented insights into the understanding of the molecular underpinnings of the central nervous system, including the neuro-sensory cochlea of the inner ear. Here, we report for the first time a comprehensive and updated overview of the most advanced omics techniques for the study of nucleic acids and their applications in cochlear research. We describe the available in vitro and in vivo models for hearing research and the principles of genomics, transcriptomics, and epigenomics, alongside their most advanced technologies (like single-cell omics and spatial omics), which allow for the investigation of the molecular events that occur at a single-cell resolution while retaining the spatial information.
Collapse
Affiliation(s)
- Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Sakthimala Palaniappan
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| |
Collapse
|
14
|
Sun Y, Liu Z. Recent advances in molecular studies on cochlear development and regeneration. Curr Opin Neurobiol 2023; 81:102745. [PMID: 37356371 DOI: 10.1016/j.conb.2023.102745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/06/2023] [Accepted: 05/25/2023] [Indexed: 06/27/2023]
Abstract
The auditory organ cochlea harbors two types of sound receptors, inner hair cells (IHCs) and outer hair cells (OHCs), which are innervated by spiral (auditory) ganglion neurons (SGNs). Recent transcriptomic, epigenetic, and genetic studies have started to reveal various aspects of cochlear development, including how prosensory progenitors are specified and diversified into IHCs or OHCs, as well as the heterogeneity among SGNs and how SGN subtypes are formed. Here, we primarily review advances in this line of research over the past five years and discuss a few key studies (from the past two years) to elucidate (1) how prosensory progenitors are specified; (2) the cis-regulatory control of Atoh1 expression and the synergistic interaction between Atoh1 and Pou4f3; and (3) the essential roles of Insm1 and Ikzf2 in OHC development and Tbx2 in IHC development. Moreover, we highlight the contribution of recent molecular studies on cochlear development toward the goal of regenerating IHCs and OHCs, which holds considerable potential for application in treating human deafness. Lastly, we briefly summarize the most recent progress on uncovering when and how SGN diversity is generated.
Collapse
Affiliation(s)
- Yuwei Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
15
|
Generation of p27icreER transgenic mice: A tool for inducible gene expression in supporting cells in the cochlea. Hear Res 2023; 431:108727. [PMID: 36905855 DOI: 10.1016/j.heares.2023.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
The loss of cochlear hair cells (HCs) is an important cause of sensorineural hearing loss, and finding ways to regenerate HCs would be the ideal way forward for restoring hearing. In this research field, tamoxifen-inducible Cre recombinase (iCreER) transgenic mice and the Cre-loxp system are widely used to manipulate gene expression in supporting cells (SCs), which lie beneath the sensory HCs and are a natural source for HC regeneration. However, many iCreER transgenic lines are of limited utility because they cannot target all subtypes of SCs or they cannot be used in the adult stage. In this study, a new line of iCreER transgenic mice, the p27-P2A-iCreERT2 knock-in mouse strain, was generated by inserting the P2A-iCreERT2 cassette immediately in front of the stop codon of p27, which kept the endogenous expression and function of p27 intact. Using a reporter mouse line with tdTomato fluorescence, we showed that the p27iCreER transgenic line can target all subtypes of cochlear SCs, including Claudius cells. p27-CreER activity in SCs was observed in both the postnatal and the adult stage, suggesting that this mouse strain can be useful for research work in adult cochlear HC regeneration. We then overexpressed Gfi1, Pou4f3, and Atoh1 in p27+ SCs of P6/7 mice using this strain and successfully induced many new Myo7a/tdTomato double-positive cells, further confirming that the p27-P2A-iCreERT2 mouse strain is a new and reliable tool for cochlear HC regeneration and hearing restoration.
Collapse
|
16
|
Chen X, Wan H, Bai Y, Zhang Y, Hua Q. Advances in Understanding the Notch Signaling Pathway in the Cochlea. Curr Pharm Des 2023; 29:3266-3273. [PMID: 37990430 DOI: 10.2174/0113816128273532231103110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/17/2023] [Indexed: 11/23/2023]
Abstract
The cochlear structure is highly complex and specific, and its development is regulated by multiple signaling pathways. Abnormalities in cochlear development can lead to different degrees of loss of function. Hair cells (HCs), which are difficult to regenerate in the mature mammalian cochlea, are susceptible to damage from noise and ototoxic drugs, and damage to HCs can cause hearing loss to varying degrees. Notch, a classical developmental signaling molecule, has been shown to be closely associated with embryonic cochlear development and plays an important role in HC regeneration in mammals, suggesting that the Notch signaling pathway may be a potential therapeutic target for cochlear development and hearing impairment due to HC damage. In recent years, the important role of the Notch signaling pathway in the cochlea has received increasing attention. In this paper, we review the role of Notch signaling in cochlear development and HC regeneration, with the aim of providing new research ideas for the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yutong Bai
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuanyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
17
|
Nist-Lund C, Kim J, Koehler KR. Advancements in inner ear development, regeneration, and repair through otic organoids. Curr Opin Genet Dev 2022; 76:101954. [PMID: 35853286 PMCID: PMC10425989 DOI: 10.1016/j.gde.2022.101954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022]
Abstract
The vertebrate inner ear contains a diversity of unique cell types arranged in a particularly complex 3D cytoarchitecture. Both of these features are integral to the proper development, function, and maintenance of hearing and balance. Since the elucidation of the timing and delivery of signaling molecules to produce inner ear sensory cells, supporting cells, and neurons from human induced pluripotent stem cells, we have entered a revolution using organ-like 'otic organoid' cultures to explore inner ear specific genetic programs, developmental rules, and potential therapeutics. This review aims to highlight a selection of reviews and primary research papers from the past two years of particular merit that use otic organoids to investigate the broadly defined topics of cell reprogramming, regeneration, and repair.
Collapse
Affiliation(s)
- Carl Nist-Lund
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Department of Otolaryngology, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
| | - Jin Kim
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, 02115, USA
| |
Collapse
|
18
|
Wan H, Zhang Y, Hua Q. Cellular autophagy, the compelling roles in hearing function and dysfunction. Front Cell Neurosci 2022; 16:966202. [PMID: 36246522 PMCID: PMC9561951 DOI: 10.3389/fncel.2022.966202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is currently a major health issue. As one of the most common neurodegenerative diseases, SNHL is associated with the degradation of hair cells (HCs), spiral ganglion neurons (SGNs), the stria vascularis, supporting cells and central auditory system cells. Autophagy is a highly integrated cellular system that eliminates impaired components and replenishes energy to benefit cellular homeostasis. Etiological links between autophagy alterations and neurodegenerative diseases, such as SNHL, have been established. The hearing pathway is complex and depends on the comprehensive functions of many types of tissues and cells in auditory system. In this review, we discuss the roles of autophagy in promoting and inhibiting hearing, paying particular attention to specific cells in the auditory system, as discerned through research. Hence, our review provides enlightening ideas for the role of autophagy in hearing development and impairment.
Collapse
Affiliation(s)
- Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yuanyuan Zhang,
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Qingquan Hua,
| |
Collapse
|
19
|
Heuermann ML, Matos S, Hamilton D, Cox BC. Regenerated hair cells in the neonatal cochlea are innervated and the majority co-express markers of both inner and outer hair cells. Front Cell Neurosci 2022; 16:841864. [PMID: 36187289 PMCID: PMC9524252 DOI: 10.3389/fncel.2022.841864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
After a damaging insult, hair cells can spontaneously regenerate from cochlear supporting cells within the first week of life. While the regenerated cells express several markers of immature hair cells and have stereocilia bundles, their capacity to differentiate into inner or outer hair cells, and ability to form new synaptic connections has not been well-described. In addition, while multiple supporting cell subtypes have been implicated as the source of the regenerated hair cells, it is unclear if certain subtypes have a greater propensity to form one hair cell type over another. To investigate this, we used two CreER mouse models to fate-map either the supporting cells located near the inner hair cells (inner phalangeal and border cells) or outer hair cells (Deiters’, inner pillar, and outer pillar cells) along with immunostaining for markers that specify the two hair cell types. We found that supporting cells fate-mapped by both CreER lines responded early to hair cell damage by expressing Atoh1, and are capable of producing regenerated hair cells that express terminal differentiation markers of both inner and outer hair cells. The majority of regenerated hair cells were innervated by neuronal fibers and contained synapses. Unexpectedly, we also found that the majority of the laterally positioned regenerated hair cells aberrantly expressed both the outer hair cell gene, oncomodulin, and the inner hair cell gene, vesicular glutamate transporter 3 (VGlut3). While this work demonstrates that regenerated cells can express markers of both inner and outer hair cells after damage, VGlut3 expression appears to lack the tight control present during embryogenesis, which leads to its inappropriate expression in regenerated cells.
Collapse
Affiliation(s)
- Mitchell L. Heuermann
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Sophia Matos
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Deborah Hamilton
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Brandon C. Cox
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- *Correspondence: Brandon C. Cox,
| |
Collapse
|
20
|
Elliott KL, Fritzsch B, Yamoah EN, Zine A. Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence. Front Aging Neurosci 2022; 14:814528. [PMID: 35250542 PMCID: PMC8891613 DOI: 10.3389/fnagi.2022.814528] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Age-related hearing loss (ARHL) is a common, increasing problem for older adults, affecting about 1 billion people by 2050. We aim to correlate the different reductions of hearing from cochlear hair cells (HCs), spiral ganglion neurons (SGNs), cochlear nuclei (CN), and superior olivary complex (SOC) with the analysis of various reasons for each one on the sensory deficit profiles. Outer HCs show a progressive loss in a basal-to-apical gradient, and inner HCs show a loss in a apex-to-base progression that results in ARHL at high frequencies after 70 years of age. In early neonates, SGNs innervation of cochlear HCs is maintained. Loss of SGNs results in a considerable decrease (~50% or more) of cochlear nuclei in neonates, though the loss is milder in older mice and humans. The dorsal cochlear nuclei (fusiform neurons) project directly to the inferior colliculi while most anterior cochlear nuclei reach the SOC. Reducing the number of neurons in the medial nucleus of the trapezoid body (MNTB) affects the interactions with the lateral superior olive to fine-tune ipsi- and contralateral projections that may remain normal in mice, possibly humans. The inferior colliculi receive direct cochlear fibers and second-order fibers from the superior olivary complex. Loss of the second-order fibers leads to hearing loss in mice and humans. Although ARHL may arise from many complex causes, HC degeneration remains the more significant problem of hearing restoration that would replace the cochlear implant. The review presents recent findings of older humans and mice with hearing loss.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Bernd Fritzsch
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, Montpellier, France
| |
Collapse
|
21
|
Rai V, Tu S, Frank JR, Zuo J. Molecular Pathways Modulating Sensory Hair Cell Regeneration in Adult Mammalian Cochleae: Progress and Perspectives. Int J Mol Sci 2021; 23:ijms23010066. [PMID: 35008497 PMCID: PMC8745006 DOI: 10.3390/ijms23010066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
Noise-induced, drug-related, and age-related disabling hearing loss is a major public health problem and affect approximately 466 million people worldwide. In non-mammalian vertebrates, the death of sensory hair cells (HCs) induces the proliferation and transdifferentiation of adjacent supporting cells into new HCs; however, this capacity is lost in juvenile and adult mammalian cochleae leading to permanent hearing loss. At present, cochlear implants and hearing devices are the only available treatments and can help patients to a certain extent; however, no biological approach or FDA-approved drug is effective to treat disabling hearing loss and restore hearing. Recently, regeneration of mammalian cochlear HCs by modulating molecular pathways or transcription factors has offered some promising results, although the immaturity of the regenerated HCs remains the biggest concern. Furthermore, most of the research done is in neonates and not in adults. This review focuses on critically summarizing the studies done in adult mammalian cochleae and discusses various strategies to elucidate novel transcription factors for better therapeutics.
Collapse
Affiliation(s)
| | | | | | - Jian Zuo
- Correspondence: ; Tel.: +1-(402)-280-2916
| |
Collapse
|
22
|
Udagawa T, Atkinson PJ, Milon B, Abitbol JM, Song Y, Sperber M, Huarcaya Najarro E, Scheibinger M, Elkon R, Hertzano R, Cheng AG. Lineage-tracing and translatomic analysis of damage-inducible mitotic cochlear progenitors identifies candidate genes regulating regeneration. PLoS Biol 2021; 19:e3001445. [PMID: 34758021 PMCID: PMC8608324 DOI: 10.1371/journal.pbio.3001445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/22/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Cochlear supporting cells (SCs) are glia-like cells critical for hearing function. In the neonatal cochlea, the greater epithelial ridge (GER) is a mitotically quiescent and transient organ, which has been shown to nonmitotically regenerate SCs. Here, we ablated Lgr5+ SCs using Lgr5-DTR mice and found mitotic regeneration of SCs by GER cells in vivo. With lineage tracing, we show that the GER houses progenitor cells that robustly divide and migrate into the organ of Corti to replenish ablated SCs. Regenerated SCs display coordinated calcium transients, markers of the SC subtype inner phalangeal cells, and survive in the mature cochlea. Via RiboTag, RNA-sequencing, and gene clustering algorithms, we reveal 11 distinct gene clusters comprising markers of the quiescent and damaged GER, and damage-responsive genes driving cell migration and mitotic regeneration. Together, our study characterizes GER cells as mitotic progenitors with regenerative potential and unveils their quiescent and damaged translatomes.
Collapse
Affiliation(s)
- Tomokatsu Udagawa
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Patrick J. Atkinson
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Beatrice Milon
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Julia M. Abitbol
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michal Sperber
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elvis Huarcaya Najarro
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mirko Scheibinger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Liu Q, Zhang L, Zhu MS, Wan G. High-throughput screening on cochlear organoids identifies VEGFR-MEK-TGFB1 signaling promoting hair cell reprogramming. Stem Cell Reports 2021; 16:2257-2273. [PMID: 34525385 PMCID: PMC8452601 DOI: 10.1016/j.stemcr.2021.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/06/2023] Open
Abstract
Hair cell degeneration is a major cause of sensorineural hearing loss. Hair cells in mammalian cochlea do not spontaneously regenerate, posing a great challenge for restoration of hearing. Here, we establish a robust, high-throughput cochlear organoid platform that facilitates 3D expansion of cochlear progenitor cells and differentiation of hair cells in a temporally regulated manner. High-throughput screening of the FDA-approved drug library identified regorafenib, a VEGFR inhibitor, as a potent small molecule for hair cell differentiation. Regorafenib also promotes reprogramming and maturation of hair cells in both normal and neomycin-damaged cochlear explants. Mechanistically, inhibition of VEGFR suppresses TGFB1 expression via the MEK pathway and TGFB1 downregulation directly mediates the effect of regorafenib on hair cell reprogramming. Our study not only demonstrates the power of a cochlear organoid platform in high-throughput analyses of hair cell physiology but also highlights VEGFR-MEK-TGFB1 signaling crosstalk as a potential target for hair cell regeneration and hearing restoration. Cochlear organoids can be derived from both LGR5+ and LGR5– supporting cells HTS using cochlear organoids identifies regorafenib for hair cell differentiation Regorafenib promotes hair cell reprogramming and maturation in cochlear explants Regorafenib acts via a NOTCH-independent and VEGFR-MEK-TGFB1-dependent mechanism
Collapse
Affiliation(s)
- Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing 210032, China
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing 210032, China
| | - Min-Sheng Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing 210032, China
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing 210032, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, 210008 Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210032, China; Institute for Brain Sciences, Nanjing University, Nanjing 210032, China.
| |
Collapse
|
24
|
A nonsense TMEM43 variant leads to disruption of connexin-linked function and autosomal dominant auditory neuropathy spectrum disorder. Proc Natl Acad Sci U S A 2021; 118:2019681118. [PMID: 34050020 PMCID: PMC8179140 DOI: 10.1073/pnas.2019681118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genes that are primarily expressed in cochlear glia-like supporting cells (GLSs) have not been clearly associated with progressive deafness. Herein, we present a deafness locus mapped to chromosome 3p25.1 and an auditory neuropathy spectrum disorder (ANSD) gene, TMEM43, mainly expressed in GLSs. We identify p.(Arg372Ter) of TMEM43 by linkage analysis and exome sequencing in two large Asian families segregating ANSD, which is characterized by inability to discriminate speech despite preserved sensitivity to sound. The knock-in mouse with the p.(Arg372Ter) variant recapitulates a progressive hearing loss with histological abnormalities in GLSs. Mechanistically, TMEM43 interacts with the Connexin26 and Connexin30 gap junction channels, disrupting the passive conductance current in GLSs in a dominant-negative fashion when the p.(Arg372Ter) variant is introduced. Based on these mechanistic insights, cochlear implant was performed on three subjects, and speech discrimination was successfully restored. Our study highlights a pathological role of cochlear GLSs by identifying a deafness gene and its causal relationship with ANSD.
Collapse
|
25
|
Reijntjes DOJ, Breitzler JL, Persic D, Pyott SJ. Preparation of the intact rodent organ of Corti for RNAscope and immunolabeling, confocal microscopy, and quantitative analysis. STAR Protoc 2021; 2:100544. [PMID: 34195667 PMCID: PMC8233256 DOI: 10.1016/j.xpro.2021.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This protocol describes the preparation of the mouse organ of Corti for RNAscope, immunolabeling, confocal microscopy, and quantitative image analysis to examine transcript and protein localization, sensory hair cells, and synapses. This protocol can be applied to mice and other rodents (juvenile and adult) and can be adapted for other techniques, including electrophysiology and RNA sequencing. This protocol features minimal tissue processing to preserve viability for downstream assays, while isolating the organ of Corti is the most challenging step. For additional details on the use and execution of this protocol, please refer to McLean et al. (2009); Schuth et al. (2014); Lingle et al. (2019); Pyott et al. (2020).
Collapse
Affiliation(s)
- Daniel O J Reijntjes
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MA 21201, USA
| | - J Lukas Breitzler
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| | - Dora Persic
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| | - Sonja J Pyott
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| |
Collapse
|
26
|
Gao J, Fan L, Zhao L, Su Y. The interaction of Notch and Wnt signaling pathways in vertebrate regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:11. [PMID: 33791915 PMCID: PMC8012441 DOI: 10.1186/s13619-020-00072-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Regeneration is an evolutionarily conserved process in animal kingdoms, however, the regenerative capacities differ from species and organ/tissues. Mammals possess very limited regenerative potential to replace damaged organs, whereas non-mammalian species usually have impressive abilities to regenerate organs. The regeneration process requires proper spatiotemporal regulation from key signaling pathways. The canonical Notch and Wnt signaling pathways, two fundamental signals guiding animal development, have been demonstrated to play significant roles in the regeneration of vertebrates. In recent years, increasing evidence has implicated the cross-talking between Notch and Wnt signals during organ regeneration. In this review, we summarize the roles of Notch signaling and Wnt signaling during several representative organ regenerative events, emphasizing the functions and molecular bases of their interplay in these processes, shedding light on utilizing these two signaling pathways to enhance regeneration in mammals and design legitimate therapeutic strategies.
Collapse
Affiliation(s)
- Junying Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China.,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Lixia Fan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China.,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Long Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China. .,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Ying Su
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China. .,College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
27
|
Chen Y, Gu Y, Li Y, Li GL, Chai R, Li W, Li H. Generation of mature and functional hair cells by co-expression of Gfi1, Pou4f3, and Atoh1 in the postnatal mouse cochlea. Cell Rep 2021; 35:109016. [PMID: 33882317 DOI: 10.1016/j.celrep.2021.109016] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
The mammalian cochlea cannot regenerate functional hair cells (HCs) spontaneously. Atoh1 overexpression as well as other strategies are unable to generate functional HCs. Here, we simultaneously upregulated the expression of Gfi1, Pou4f3, and Atoh1 in postnatal cochlear supporting cells (SCs) in vivo, which efficiently converted SCs into HCs. The newly regenerated HCs expressed HC markers Myo7a, Calbindin, Parvalbumin, and Ctbp2 and were innervated by neurites. Importantly, many new HCs expressed the mature and terminal marker Prestin or vesicular glutamate transporter 3 (vGlut3), depending on the subtypes of the source SCs. Finally, our patch-clamp analysis showed that the new HCs in the medial region acquired a large K+ current, fired spikes transiently, and exhibited signature refinement of ribbon synapse functions, in close resemblance to native wild-type inner HCs. We demonstrated that co-upregulating Gfi1, Pou4f3, and Atoh1 enhances the efficiency of HC generation and promotes the functional maturation of new HCs.
Collapse
Affiliation(s)
- Yan Chen
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yuyan Gu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yige Li
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Geng-Lin Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
| | - Wenyan Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China.
| | - Huawei Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
28
|
Bankoti K, Generotti C, Hwa T, Wang L, O'Malley BW, Li D. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:209-236. [PMID: 33850952 PMCID: PMC8010215 DOI: 10.1016/j.omtm.2021.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is growing attention and effort focused on treating the root cause of sensorineural hearing loss rather than managing associated secondary characteristic features. With recent substantial advances in understanding sensorineural hearing-loss mechanisms, gene delivery has emerged as a promising strategy for the biological treatment of hearing loss associated with genetic dysfunction. There are several successful and promising proof-of-principle examples of transgene deliveries in animal models; however, there remains substantial further progress to be made in these avenues before realizing their clinical application in humans. Herein, we review different aspects of development, ongoing preclinical studies, and challenges to the clinical transition of transgene delivery of the inner ear toward the restoration of lost auditory and vestibular function.
Collapse
Affiliation(s)
- Kamakshi Bankoti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Generotti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiffany Hwa
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Wang
- Department of Medicine, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bert W O'Malley
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daqing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Janesick A, Scheibinger M, Benkafadar N, Kirti S, Ellwanger DC, Heller S. Cell-type identity of the avian cochlea. Cell Rep 2021; 34:108900. [PMID: 33761346 DOI: 10.1016/j.celrep.2021.108900] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/22/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
In contrast to mammals, birds recover naturally from acquired hearing loss, which makes them an ideal model for inner ear regeneration research. Here, we present a validated single-cell RNA sequencing resource of the avian cochlea. We describe specific markers for three distinct types of sensory hair cells, including a previously unknown subgroup, which we call superior tall hair cells. We identify markers for the supporting cells associated with tall hair cells, which represent the facultative stem cells of the avian inner ear. Likewise, we present markers for supporting cells that are located below the short cochlear hair cells. We further infer spatial expression gradients of hair cell genes along the tonotopic axis of the cochlea. This resource advances neurobiology, comparative biology, and regenerative medicine by providing a basis for comparative studies with non-regenerating mammalian cochleae and for longitudinal studies of the regenerating avian cochlea.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| | - Mirko Scheibinger
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Nesrine Benkafadar
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Sakin Kirti
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel C Ellwanger
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Genome Analysis Unit, Amgen Research, Amgen, Inc., South San Francisco, CA 94080, USA
| | - Stefan Heller
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| |
Collapse
|
30
|
Wu M, Xia M, Li W, Li H. Single-Cell Sequencing Applications in the Inner Ear. Front Cell Dev Biol 2021; 9:637779. [PMID: 33644075 PMCID: PMC7907461 DOI: 10.3389/fcell.2021.637779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/21/2021] [Indexed: 01/29/2023] Open
Abstract
Genomics studies face specific challenges in the inner ear due to the multiple types and limited amounts of inner ear cells that are arranged in a very delicate structure. However, advances in single-cell sequencing (SCS) technology have made it possible to analyze gene expression variations across different cell types as well as within specific cell groups that were previously considered to be homogeneous. In this review, we summarize recent advances in inner ear research brought about by the use of SCS that have delineated tissue heterogeneity, identified unknown cell subtypes, discovered novel cell markers, and revealed dynamic signaling pathways during development. SCS opens up new avenues for inner ear research, and the potential of the technology is only beginning to be explored.
Collapse
Affiliation(s)
- Mingxuan Wu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Mingyu Xia
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Wenyan Li
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Huawei Li
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,The Institutes of Brain Science and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
31
|
White PM. Perspectives on Human Hearing Loss, Cochlear Regeneration, and the Potential for Hearing Restoration Therapies. Brain Sci 2020; 10:E756. [PMID: 33092183 PMCID: PMC7589617 DOI: 10.3390/brainsci10100756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
Most adults who acquire hearing loss find it to be a disability that is poorly corrected by current prosthetics. This gap drives current research in cochlear mechanosensory hair cell regeneration and in hearing restoration. Birds and fish can spontaneously regenerate lost hair cells through a process that has become better defined in the last few years. Findings from these studies have informed new research on hair cell regeneration in the mammalian cochlea. Hair cell regeneration is one part of the greater problem of hearing restoration, as hearing loss can stem from a myriad of causes. This review discusses these issues and recent findings, and places them in the greater social context of need and community.
Collapse
Affiliation(s)
- Patricia M White
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| |
Collapse
|
32
|
Sadler E, Ryals MM, May LA, Martin D, Welsh N, Boger ET, Morell RJ, Hertzano R, Cunningham LL. Cell-Specific Transcriptional Responses to Heat Shock in the Mouse Utricle Epithelium. Front Cell Neurosci 2020; 14:123. [PMID: 32528249 PMCID: PMC7247426 DOI: 10.3389/fncel.2020.00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
Sensory epithelia of the inner ear contain mechanosensory hair cells (HCs) and glia-like supporting cells (SCs), both of which are required for hearing and balance functions. Each of these cell types has unique responses to ototoxic and cytoprotective stimuli. Non-lethal heat stress in the mammalian utricle induces heat shock proteins (HSPs) and protects against ototoxic drug-induced hair cell death. Induction of HSPs in the utricle demonstrates cell-type specificity at the protein level, with HSP70 induction occurring primarily in SCs, while HSP32 (also known as heme oxygenase 1, HMOX1) is induced primarily in resident macrophages. Neither of these HSPs are robustly induced in HCs, suggesting that HCs may have little capacity for induction of stress-induced protective responses. To determine the transcriptional responses to heat shock of these different cell types, we performed cell-type-specific transcriptional profiling using the RiboTag method, which allows for immunoprecipitation (IP) of actively translating mRNAs from specific cell types. RNA-Seq differential gene expression analyses demonstrated that the RiboTag method identified known cell type-specific markers as well as new markers for HCs and SCs. Gene expression differences suggest that HCs and SCs exhibit differential transcriptional heat shock responses. The chaperonin family member Cct8 was significantly enriched only in heat-shocked HCs, while Hspa1l (HSP70 family), and Hspb1 and Cryab (HSP27 and HSP20 families, respectively) were enriched only in SCs. Together our data indicate that HCs exhibit a limited but unique heat shock response, and SCs exhibit a broader and more robust transcriptional response to protective heat stress.
Collapse
Affiliation(s)
- Erica Sadler
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Matthew M Ryals
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States.,Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lindsey A May
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States.,Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Nora Welsh
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Erich T Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Lisa L Cunningham
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
33
|
Yamoah EN, Li M, Shah A, Elliott KL, Cheah K, Xu PX, Phillips S, Young SM, Eberl DF, Fritzsch B. Using Sox2 to alleviate the hallmarks of age-related hearing loss. Ageing Res Rev 2020; 59:101042. [PMID: 32173536 PMCID: PMC7261488 DOI: 10.1016/j.arr.2020.101042] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory deficit. ARHL reduces the quality of life of the growing population, setting seniors up for the enhanced mental decline. The size of the needy population, the structural deficit, and a likely research strategy for effective treatment of chronic neurosensory hearing in the elderly are needed. Although there has been profound advancement in auditory regenerative research, there remain multiple challenges to restore hearing loss. Thus, additional investigations are required, using novel tools. We propose how the (1) flat epithelium, remaining after the organ of Corti has deteriorated, can be converted to the repaired-sensory epithelium, using Sox2. This will include (2) developing an artificial gene regulatory network transmitted by (3) large viral vectors to the flat epithelium to stimulate remnants of the organ of Corti to restore hair cells. We hope to unite with our proposal toward the common goal, eventually restoring a functional human hearing organ by transforming the flat epithelial cells left after the organ of Corti loss.
Collapse
Affiliation(s)
- Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, USA
| | - Mark Li
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA
| | - Anit Shah
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA
| | - Karen L Elliott
- Department of Biology, CLAS, University of Iowa, Iowa City, USA
| | - Kathy Cheah
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Pin-Xian Xu
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Stacia Phillips
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Samuel M Young
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA; Department of Otolaryngology, Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
| | - Daniel F Eberl
- Department of Biology, CLAS, University of Iowa, Iowa City, USA
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, USA.
| |
Collapse
|
34
|
Hoa M, Olszewski R, Li X, Taukulis I, Gu S, DeTorres A, Lopez IA, Linthicum FH, Ishiyama A, Martin D, Morell RJ, Kelley MW. Characterizing Adult Cochlear Supporting Cell Transcriptional Diversity Using Single-Cell RNA-Seq: Validation in the Adult Mouse and Translational Implications for the Adult Human Cochlea. Front Mol Neurosci 2020; 13:13. [PMID: 32116546 PMCID: PMC7012811 DOI: 10.3389/fnmol.2020.00013] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Hearing loss is a problem that impacts a significant proportion of the adult population. Cochlear hair cell (HC) loss due to loud noise, chemotherapy and aging is the major underlying cause. A significant proportion of these individuals are dissatisfied with available treatment options which include hearing aids and cochlear implants. An alternative approach to restore hearing would be to regenerate HCs. Such therapy would require a recapitulation of the complex architecture of the organ of Corti, necessitating regeneration of both mature HCs and supporting cells (SCs). Transcriptional profiles of the mature cell types in the cochlea are necessary to can provide a metric for eventual regeneration therapies. To assist in this effort, we sought to provide the first single-cell characterization of the adult cochlear SC transcriptome. We performed single-cell RNA-Seq on FACS-purified adult cochlear SCs from the LfngEGFP adult mouse, in which SCs express GFP. We demonstrate that adult cochlear SCs are transcriptionally distinct from their perinatal counterparts. We establish cell-type-specific adult cochlear SC transcriptome profiles, and we validate these expression profiles through a combination of both fluorescent immunohistochemistry and in situ hybridization co-localization and quantitative polymerase chain reaction (qPCR) of adult cochlear SCs. Furthermore, we demonstrate the relevance of these profiles to the adult human cochlea through immunofluorescent human temporal bone histopathology. Finally, we demonstrate cell cycle regulator expression in adult SCs and perform pathway analyses to identify potential mechanisms for facilitating mitotic regeneration (cell proliferation, differentiation, and eventually regeneration) in the adult mammalian cochlea. Our findings demonstrate the importance of characterizing mature as opposed to perinatal SCs.
Collapse
Affiliation(s)
- Michael Hoa
- Auditory Restoration and Development Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Rafal Olszewski
- Auditory Restoration and Development Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Xiaoyi Li
- Auditory Restoration and Development Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Ian Taukulis
- Auditory Restoration and Development Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Shoujun Gu
- Auditory Restoration and Development Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Alvin DeTorres
- Auditory Restoration and Development Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Ivan A Lopez
- National Temporal Bone Laboratory at UCLA, UCLA School of Medicine, Los Angeles, CA, United States.,Cellular and Molecular Biology of the Inner Ear Laboratory, UCLA School of Medicine, Los Angeles, CA, United States
| | - Fred H Linthicum
- National Temporal Bone Laboratory at UCLA, UCLA School of Medicine, Los Angeles, CA, United States.,Cellular and Molecular Biology of the Inner Ear Laboratory, UCLA School of Medicine, Los Angeles, CA, United States
| | - Akira Ishiyama
- National Temporal Bone Laboratory at UCLA, UCLA School of Medicine, Los Angeles, CA, United States.,Cellular and Molecular Biology of the Inner Ear Laboratory, UCLA School of Medicine, Los Angeles, CA, United States
| | - Daniel Martin
- Biomedical Research Informatics Office, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, United States
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| |
Collapse
|
35
|
Berekméri E, Fekete Á, Köles L, Zelles T. Postnatal Development of the Subcellular Structures and Purinergic Signaling of Deiters' Cells along the Tonotopic Axis of the Cochlea. Cells 2019; 8:cells8101266. [PMID: 31627326 PMCID: PMC6830339 DOI: 10.3390/cells8101266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 01/04/2023] Open
Abstract
Exploring the development of the hearing organ helps in the understanding of hearing and hearing impairments and it promotes the development of the regenerative approaches-based therapeutic efforts. The role of supporting cells in the development of the organ of Corti is much less elucidated than that of the cochlear sensory receptor cells. The use of our recently published method of single-cell electroporation loading of a fluorescent Ca2+ probe in the mouse hemicochlea preparation provided an appropriate means to investigate the Deiters’ cells at the subcellular level in two different cochlear turns (apical, middle). Deiters’ cell’s soma and process elongated, and the process became slimmer by maturation without tonotopic preference. The tonotopically heterogeneous spontaneous Ca2+ activity less frequently occurred by maturation and implied subcellular difference. The exogenous ATP- and UTP-evoked Ca2+ responses were maturation-dependent and showed P2Y receptor dominance in the apical turn. By monitoring the basic structural dimensions of this supporting cell type as well as its spontaneous and evoked purinergic Ca2+ signaling in the hemicochlea preparation in different stages in the critical postnatal P5-25 developmental period for the first time, we showed that the soma and the phalangeal process of the Deiters’ cells go through age- and tonotopy-dependent changes in the morphometric parameters and purinergic signaling.
Collapse
Affiliation(s)
- Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.
- Department of Ecology, University of Veterinary Medicine, Rottenbiller u. 50., 1077 Budapest, Hungary.
| | - Ádám Fekete
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada.
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43., 1083 Budapest, Hungary.
| |
Collapse
|