1
|
Soares JB, Ribeiro ECDO, Do Nascimento JJC, Da Silva Neto EJ. There are no deciduous molars: A comment on human molariform dental terminology. Anat Rec (Hoboken) 2025; 308:1529-1535. [PMID: 39323083 DOI: 10.1002/ar.25581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
|
2
|
Nicklin EF, Cohen KE, Cooper RL, Mitchell G, Fraser GJ. Evolution, development, and regeneration of tooth-like epithelial appendages in sharks. Dev Biol 2024; 516:221-236. [PMID: 39154741 DOI: 10.1016/j.ydbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Sharks and their relatives are typically covered in highly specialized epithelial appendages embedded in the skin called dermal denticles; ancient tooth-like units (odontodes) composed of dentine and enamel-like tissues. These 'skin teeth' are remarkably similar to oral teeth of vertebrates and share comparable morphological and genetic signatures. Here we review the histological and morphological data from embryonic sharks to uncover characters that unite all tooth-like elements (odontodes), including teeth and skin denticles in sharks. In addition, we review the differences between the skin and oral odontodes that reflect their varied capacity for renewal. Our observations have begun to decipher the developmental and genetic shifts that separate these seemingly similar dental units, including elements of the regenerative nature in both oral teeth and the emerging skin denticles from the small-spotted catshark (Scyliorhinus canicula) and other chondrichthyan models. Ultimately, we ask what defines a tooth at both the molecular and morphological level. These insights aim to help us understand how nature makes, replaces and evolves a vast array of odontodes.
Collapse
Affiliation(s)
- Ella F Nicklin
- Department of Biology, University of Florida, Gainesville, USA
| | - Karly E Cohen
- Department of Biology, University of Florida, Gainesville, USA; Department of Biology, California State University Fullerton, Fullerton, USA
| | - Rory L Cooper
- Department of Genetics and Evolution, University of Geneva, Switzerland
| | - Gianna Mitchell
- Department of Biology, University of Florida, Gainesville, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, USA.
| |
Collapse
|
3
|
Zhu S, Huo S, Wang Z, Huang C, Li C, Song H, Yang X, He R, Ding C, Qiu M, Zhu XJ. Follistatin controls the number of murine teeth by limiting TGF-β signaling. iScience 2024; 27:110785. [PMID: 39286503 PMCID: PMC11403059 DOI: 10.1016/j.isci.2024.110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Supernumerary teeth are common developmental anomalies of dentition. However, the factors and mechanisms driving their formation remain largely unknown. Here, we report that conditional knockout of Fst, encoding an antagonist for the transforming growth factor β (TGF-β) signaling pathway, in both oral epithelium and mesenchyme of mice (Fst CKO ) led to supernumerary upper incisor teeth, arising from the lingual dental epithelium of the native teeth and preceded by an enlarged and split lingual cervical loop. Fst-deficiency greatly activated TGF-β signaling in developing maxillary incisor teeth, associated with increased epithelium cell proliferation. Moreover, Fst CKO teeth exhibited increased expression of Tbx1, Sp6, and Sox2, which were identified as direct targets of TGF-β/SMAD2 signaling. Finally, we show that upregulation of Tbx1 in response to Fst-deficiency was largely responsible for the formation of extra teeth in Fst CKO mice. Taken together, our investigation indicates a novel role for Fst in controlling murine tooth number by restricting TGF-β signaling.
Collapse
Affiliation(s)
- Shicheng Zhu
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Suman Huo
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhongzheng Wang
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Caiyan Huang
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chuanxu Li
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hanjing Song
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xueqin Yang
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Rui He
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Cheng Ding
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Mengsheng Qiu
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao-Jing Zhu
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
4
|
Square TA, Mackey EJ, Sundaram S, Weksler NC, Chen ZZ, Narayanan SN, Miller CT. Modulation of tooth regeneration through opposing responses to Wnt and BMP signals in teleosts. Development 2023; 150:dev202168. [PMID: 38059590 PMCID: PMC10730089 DOI: 10.1242/dev.202168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
Most vertebrate species undergo tooth replacement throughout adult life. This process is marked by the shedding of existing teeth and the regeneration of tooth organs. However, little is known about the genetic circuitry regulating tooth replacement. Here, we tested whether fish orthologs of genes known to regulate mammalian hair regeneration have effects on tooth replacement. Using two fish species that demonstrate distinct modes of tooth regeneration, threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio), we found that transgenic overexpression of four different genes changed tooth replacement rates in the direction predicted by a hair regeneration model: Wnt10a and Grem2a increased tooth replacement rate, whereas Bmp6 and Dkk2 strongly inhibited tooth formation. Thus, similar to known roles in hair regeneration, Wnt and BMP signals promote and inhibit regeneration, respectively. Regulation of total tooth number was separable from regulation of replacement rates. RNA sequencing of stickleback dental tissue showed that Bmp6 overexpression resulted in an upregulation of Wnt inhibitors. Together, these data support a model in which different epithelial organs, such as teeth and hair, share genetic circuitry driving organ regeneration.
Collapse
Affiliation(s)
- Tyler A. Square
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Emma J. Mackey
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Shivani Sundaram
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Naama C. Weksler
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Zoe Z. Chen
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Sujanya N. Narayanan
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Craig T. Miller
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Fang Z, Atukorallaya D. Count Me in, Count Me out: Regulation of the Tooth Number via Three Directional Developmental Patterns. Int J Mol Sci 2023; 24:15061. [PMID: 37894742 PMCID: PMC10606784 DOI: 10.3390/ijms242015061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Tooth number anomalies, including hyperdontia and hypodontia, are common congenital dental problems in the dental clinic. The precise number of teeth in a dentition is essential for proper speech, mastication, and aesthetics. Teeth are ectodermal organs that develop from the interaction of a thickened epithelium (dental placode) with the neural-crest-derived ectomesenchyme. There is extensive histological, molecular, and genetic evidence regarding how the tooth number is regulated in this serial process, but there is currently no universal classification for tooth number abnormalities. In this review, we propose a novel regulatory network for the tooth number based on the inherent dentition formation process. This network includes three intuitive directions: the development of a single tooth, the formation of a single dentition with elongation of the continual lamina, and tooth replacement with the development of the successional lamina. This article summarizes recent reports on early tooth development and provides an analytical framework to classify future relevant experiments.
Collapse
Affiliation(s)
| | - Devi Atukorallaya
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W2, Canada;
| |
Collapse
|
6
|
Kyomen S, Murillo-Rincón AP, Kaucká M. Evolutionary mechanisms modulating the mammalian skull development. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220080. [PMID: 37183900 PMCID: PMC10184257 DOI: 10.1098/rstb.2022.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Mammals possess impressive craniofacial variation that mirrors their adaptation to diverse ecological niches, feeding behaviour, physiology and overall lifestyle. The spectrum of craniofacial geometries is established mainly during embryonic development. The formation of the head represents a sequence of events regulated on genomic, molecular, cellular and tissue level, with each step taking place under tight spatio-temporal control. Even minor variations in timing, position or concentration of the molecular drivers and the resulting events can affect the final shape, size and position of the skeletal elements and the geometry of the head. Our knowledge of craniofacial development increased substantially in the last decades, mainly due to research using conventional vertebrate model organisms. However, how developmental differences in head formation arise specifically within mammals remains largely unexplored. This review highlights three evolutionary mechanisms acknowledged to modify ontogenesis: heterochrony, heterotopy and heterometry. We present recent research that links changes in developmental timing, spatial organization or gene expression levels to the acquisition of species-specific skull morphologies. We highlight how these evolutionary modifications occur on the level of the genes, molecules and cellular processes, and alter conserved developmental programmes to generate a broad spectrum of skull shapes characteristic of the class Mammalia. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Stella Kyomen
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| | - Andrea P Murillo-Rincón
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| | - Markéta Kaucká
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| |
Collapse
|
7
|
Qiu T, Tucker AS. Mechanisms driving vestibular lamina formation and opening in the mouse. J Anat 2022; 242:224-234. [PMID: 36181694 PMCID: PMC9877475 DOI: 10.1111/joa.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 02/01/2023] Open
Abstract
The vestibular lamina (VL) forms as an epithelial outgrowth parallel to the dental lamina (DL) in the oral cavity. During late development, it opens to create a furrow that divides the dental tissue from the cheeks and lips and is known as the vestibule. Defects in this process lead to failure in the separation of the teeth from the lips and cheeks, including the presence of multiple frenula. In this paper, the development of the VL is followed in the mouse, from epithelial placode in the embryo to postnatal opening and vestibule formation. During early outgrowth, differential proliferation controls the curvature of the VL as it extends under the forming incisors. Apoptosis plays a role in thinning the deepest part of the lamina, while terminal differentiation of the epithelium, highlighted by the expression of loricrin and flattening of the nuclei, predates the division of the VL into two to create the vestibule. Development in the mouse is compared to the human VL, with respect to the relationship of the VL to the DL, VL morphology and mechanisms of opening. Overall, this paper provides insight into an understudied part of the oral anatomy, shedding light on how defects could form in this region.
Collapse
Affiliation(s)
- Tengyang Qiu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial SciencesKing's College LondonLondonUK
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial SciencesKing's College LondonLondonUK
| |
Collapse
|
8
|
Gruenhagen GW, Mubeen T, Patil C, Stockert J, Streelman JT. Single Cell RNA Sequencing Reveals Deep Homology of Dental Cell Types Across Vertebrates. FRONTIERS IN DENTAL MEDICINE 2022; 3. [DOI: 10.3389/fdmed.2022.845449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Like most mammals, humans replace their teeth once throughout their lives and have limited regenerative capabilities. In contrast, mice continually renew tissues lost due to gnawing through a well characterized population of stem cells on the labial surface of the incisor. Most non-mammalian vertebrates replace teeth throughout life; the cellular and molecular mechanisms of successional tooth replacement are largely unknown. Here we use single nuclei RNA sequencing (snRNA-seq) of replacement teeth and adjacent oral lamina in Lake Malawi cichlids, species with lifelong whole–tooth replacement, to make two main discoveries. First, despite hundreds of millions of years of evolution, we demonstrate conservation of cell type gene expression across vertebrate teeth (fish, mouse, human). Second, we used an approach that combines marker gene expression and developmental potential of dental cells to uncover the transcriptional signature of stem-like cells in regenerating teeth. Our work underscores the importance of a comparative framework in the study of vertebrate oral and regenerative biology.
Collapse
|
9
|
Hermans F, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front Cell Dev Biol 2021; 9:758203. [PMID: 34778267 PMCID: PMC8586510 DOI: 10.3389/fcell.2021.758203] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Teeth play essential roles in life. Their development relies on reciprocal interactions between the ectoderm-derived dental epithelium and the underlying neural crest-originated mesenchyme. This odontogenic process serves as a prototype model for the development of ectodermal appendages. In the mouse, developing teeth go through distinct morphological phases that are tightly controlled by epithelial signaling centers. Crucial molecular regulators of odontogenesis include the evolutionarily conserved Wnt, BMP, FGF and sonic hedgehog (Shh) pathways. These signaling modules do not act on their own, but are closely intertwined during tooth development, thereby outlining the path to be taken by specific cell populations including the resident dental stem cells. Recently, pivotal Wnt-Shh interaction and feedback loops have been uncovered during odontogenesis, showing conservation in other developing ectodermal appendages. This review provides an integrated overview of the interplay between canonical Wnt and Shh throughout mouse tooth formation stages, extending from the initiation of dental placode to the fully formed adult tooth.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium.,Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
10
|
Mao C, Lai Y, Liao C, Chen J, Hong Y, Ren C, Wang C, Lu M, Chen W. Revitalizing mouse diphyodontic dentition formation by inhibiting the sonic hedgehog signaling pathway. Dev Dyn 2021; 251:759-776. [PMID: 34719835 DOI: 10.1002/dvdy.436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/24/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tooth regeneration depends on the longevity of the dental epithelial lamina. However, the exact mechanism of dental lamina regression has not yet been clarified. To explore the role of the Sonic hedgehog (Shh) signaling pathway in regression process of the rudimentary successional dental lamina (RSDL) in mice, we orally administered a single dose of a Shh signaling pathway inhibitor to pregnant mice between embryonic day 13.0 (E13.0) and E17.0. RESULTS We observed that the Shh signaling pathway inhibitor effectively inhibited the expression of Shh signaling pathway components and revitalized RSDL during E15.0-E17.0 by promoting cell proliferation. In addition, mRNA-seq, reverse transcription plus polymerase chain reaction (RT-qPCR), and immunohistochemical analyses indicated that diphyodontic dentition formation might be related to FGF signal up-regulation and the Sostdc1-Wnt negative feedback loop. CONCLUSIONS Overall, our results indicated that the Shh signaling pathway may play an initial role in preventing further development of mouse RSDL in a time-dependent manner.
Collapse
Affiliation(s)
- Chuanqing Mao
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yongzhen Lai
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Caiyu Liao
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiangping Chen
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yuhang Hong
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chengyan Ren
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chengyong Wang
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Meng Lu
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Weihui Chen
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, China
| |
Collapse
|
11
|
Abramyan J, Geetha-Loganathan P, Šulcová M, Buchtová M. Role of Cell Death in Cellular Processes During Odontogenesis. Front Cell Dev Biol 2021; 9:671475. [PMID: 34222243 PMCID: PMC8250436 DOI: 10.3389/fcell.2021.671475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023] Open
Abstract
The development of a tooth germ in a precise size, shape, and position in the jaw, involves meticulous regulation of cell proliferation and cell death. Apoptosis, as the most common type of programmed cell death during embryonic development, plays a number of key roles during odontogenesis, ranging from the budding of the oral epithelium during tooth initiation, to later tooth germ morphogenesis and removal of enamel knot signaling center. Here, we summarize recent knowledge about the distribution and function of apoptotic cells during odontogenesis in several vertebrate lineages, with a special focus on amniotes (mammals and reptiles). We discuss the regulatory roles that apoptosis plays on various cellular processes during odontogenesis. We also review apoptosis-associated molecular signaling during tooth development, including its relationship with the autophagic pathway. Lastly, we cover apoptotic pathway disruption, and alterations in apoptotic cell distribution in transgenic mouse models. These studies foster a deeper understanding how apoptotic cells affect cellular processes during normal odontogenesis, and how they contribute to dental disorders, which could lead to new avenues of treatment in the future.
Collapse
Affiliation(s)
- John Abramyan
- Department of Natural Sciences, University of Michigan–Dearborn, Dearborn, MI, United States
| | | | - Marie Šulcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
12
|
Fraser GJ, Standing A, Underwood C, Thiery AP. The Dental Lamina: An Essential Structure for Perpetual Tooth Regeneration in Sharks. Integr Comp Biol 2021; 60:644-655. [PMID: 32663287 DOI: 10.1093/icb/icaa102] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In recent years, nonclassical models have emerged as mainstays for studies of evolutionary, developmental, and regenerative biology. Genomic advances have promoted the use of alternative taxa for the study of developmental biology, and the shark is one such emerging model vertebrate. Our research utilizes the embryonic shark (Scyliorhinus canicula) to characterize key developmental and regenerative processes that have been overlooked or not possible to study with more classic developmental models. Tooth development is a major event in the construction of the vertebrate body plan, linked in part with the emergence of jaws. Early development of the teeth and morphogenesis is well known from the murine model, but the process of tooth redevelopment and regeneration is less well known. Here we explore the role of the dental lamina in the development of a highly regenerative dentition in sharks. The shark represents a polyphyodont vertebrate with continuously repeated whole tooth regeneration. This is presented as a major developmental shift from the more derived renewal process that the murine model offers, where incisors exhibit continuous renewal and growth of the same tooth. Not only does the shark offer a study system for whole unit dental regeneration, it also represents an important model for understanding the evolutionary context of vertebrate tooth regeneration.
Collapse
Affiliation(s)
- Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, 32611, FL, USA
| | - Ariane Standing
- Department of Biology, University of Florida, Gainesville, 32611, FL, USA
| | - Charlie Underwood
- Department of Earth and Planetary Sciences, University of London, WC1E 7HX, Birkbeck, London, UK
| | - Alexandre P Thiery
- Department of Craniofacial Development and Stem Cell Biology, King's College London, SE1 9RT, London, UK
| |
Collapse
|
13
|
Karagic N, Meyer A, Hulsey CD. Phenotypic Plasticity in Vertebrate Dentitions. Integr Comp Biol 2021; 60:608-618. [PMID: 32544244 DOI: 10.1093/icb/icaa077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vertebrates interact directly with food items through their dentition, and these interactions with trophic resources could often feedback to influence tooth structure. Although dentitions are often considered to be a fixed phenotype, there is the potential for environmentally induced phenotypic plasticity in teeth to extensively influence their diversity. Here, we review the literature concerning phenotypic plasticity of vertebrate teeth. Even though only a few taxonomically disparate studies have focused on phenotypic plasticity in teeth, there are a number of ways teeth can change their size, shape, or patterns of replacement as a response to the environment. Elucidating the underlying physiological, developmental, and genetic mechanisms that generate phenotypic plasticity can clarify its potential role in the evolution of dental phenotypes.
Collapse
Affiliation(s)
- Nidal Karagic
- Department for Zoology and Evolutionary Biology, University of Konstanz, Universitätsstraße 10, Konstanz, 78467, Germany
| | - Axel Meyer
- Department for Zoology and Evolutionary Biology, University of Konstanz, Universitätsstraße 10, Konstanz, 78467, Germany
| | - C Darrin Hulsey
- Department for Zoology and Evolutionary Biology, University of Konstanz, Universitätsstraße 10, Konstanz, 78467, Germany
| |
Collapse
|
14
|
Karagic N, Schneider RF, Meyer A, Hulsey CD. A Genomic Cluster Containing Novel and Conserved Genes is Associated with Cichlid Fish Dental Developmental Convergence. Mol Biol Evol 2021; 37:3165-3174. [PMID: 32579214 DOI: 10.1093/molbev/msaa153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The two toothed jaws of cichlid fishes provide textbook examples of convergent evolution. Tooth phenotypes such as enlarged molar-like teeth used to process hard-shelled mollusks have evolved numerous times independently during cichlid diversification. Although the ecological benefit of molar-like teeth to crush prey is known, it is unclear whether the same molecular mechanisms underlie these convergent traits. To identify genes involved in the evolution and development of enlarged cichlid teeth, we performed RNA-seq on the serially homologous-toothed oral and pharyngeal jaws as well as the fourth toothless gill arch of Astatoreochromis alluaudi. We identified 27 genes that are highly upregulated on both tooth-bearing jaws compared with the toothless gill arch. Most of these genes have never been reported to play a role in tooth formation. Two of these genes (unk, rpfA) are not found in other vertebrate genomes but are present in all cichlid genomes. They also cluster genomically with two other highly expressed tooth genes (odam, scpp5) that exhibit conserved expression during vertebrate odontogenesis. Unk and rpfA were confirmed via in situ hybridization to be expressed in developing teeth of Astatotilapia burtoni. We then examined expression of the cluster's four genes in six evolutionarily independent and phylogenetically disparate cichlid species pairs each with a large- and a small-toothed species. Odam and unk commonly and scpp5 and rpfA always showed higher expression in larger toothed cichlid jaws. Convergent trophic adaptations across cichlid diversity are associated with the repeated developmental deployment of this genomic cluster containing conserved and novel cichlid-specific genes.
Collapse
Affiliation(s)
- Nidal Karagic
- Department for Zoology and Evolutionary Biology, University of Konstanz, Konstanz, Germany
| | - Ralf F Schneider
- Department for Zoology and Evolutionary Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Department for Zoology and Evolutionary Biology, University of Konstanz, Konstanz, Germany
| | - C Darrin Hulsey
- Department for Zoology and Evolutionary Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
15
|
Square TA, Sundaram S, Mackey EJ, Miller CT. Distinct tooth regeneration systems deploy a conserved battery of genes. EvoDevo 2021; 12:4. [PMID: 33766133 PMCID: PMC7995769 DOI: 10.1186/s13227-021-00172-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Vertebrate teeth exhibit a wide range of regenerative systems. Many species, including most mammals, reptiles, and amphibians, form replacement teeth at a histologically distinct location called the successional dental lamina, while other species do not employ such a system. Notably, a 'lamina-less' tooth replacement condition is found in a paraphyletic array of ray-finned fishes, such as stickleback, trout, cod, medaka, and bichir. Furthermore, the position, renewal potential, and latency times appear to vary drastically across different vertebrate tooth regeneration systems. The progenitor cells underlying tooth regeneration thus present highly divergent arrangements and potentials. Given the spectrum of regeneration systems present in vertebrates, it is unclear if morphologically divergent tooth regeneration systems deploy an overlapping battery of genes in their naïve dental tissues. RESULTS In the present work, we aimed to determine whether or not tooth progenitor epithelia could be composed of a conserved cell type between vertebrate dentitions with divergent regeneration systems. To address this question, we compared the pharyngeal tooth regeneration processes in two ray-finned fishes: zebrafish (Danio rerio) and threespine stickleback (Gasterosteus aculeatus). These two teleost species diverged approximately 250 million years ago and demonstrate some stark differences in dental morphology and regeneration. Here, we find that the naïve successional dental lamina in zebrafish expresses a battery of nine genes (bmpr1aa, bmp6, cd34, gli1, igfbp5a, lgr4, lgr6, nfatc1, and pitx2), while active Wnt signaling and Lef1 expression occur during early morphogenesis stages of tooth development. We also find that, despite the absence of a histologically distinct successional dental lamina in stickleback tooth fields, the same battery of nine genes (Bmpr1a, Bmp6, CD34, Gli1, Igfbp5a, Lgr4, Lgr6, Nfatc1, and Pitx2) are expressed in the basalmost endodermal cell layer, which is the region most closely associated with replacement tooth germs. Like zebrafish, stickleback replacement tooth germs additionally express Lef1 and exhibit active Wnt signaling. Thus, two fish systems that either have an organized successional dental lamina (zebrafish) or lack a morphologically distinct successional dental lamina (sticklebacks) deploy similar genetic programs during tooth regeneration. CONCLUSIONS We propose that the expression domains described here delineate a highly conserved "successional dental epithelium" (SDE). Furthermore, a set of orthologous genes is known to mark hair follicle epithelial stem cells in mice, suggesting that regenerative systems in other epithelial appendages may utilize a related epithelial progenitor cell type, despite the highly derived nature of the resulting functional organs.
Collapse
Affiliation(s)
- Tyler A Square
- Department of Molecular & Cell Biology, University of California, Berkeley, USA.
| | - Shivani Sundaram
- Department of Molecular & Cell Biology, University of California, Berkeley, USA
| | - Emma J Mackey
- Department of Molecular & Cell Biology, University of California, Berkeley, USA
| | - Craig T Miller
- Department of Molecular & Cell Biology, University of California, Berkeley, USA.
| |
Collapse
|
16
|
Bertonnier-Brouty L, Viriot L, Joly T, Charles C. Gene expression patterns associated with dental replacement in the rabbit, a new model for the mammalian dental replacement mechanisms. Dev Dyn 2021; 250:1494-1504. [PMID: 33760336 DOI: 10.1002/dvdy.335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/28/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Unlike many vertebrates with continuous dental replacement, mammals have a maximum of two dental generations. Due to the absence of dental replacement in the laboratory mouse, the mechanisms of the mammalian tooth replacement system are poorly known. In this study, we use the European rabbit as a model for mammalian tooth development and replacement. RESULTS We provide data on some key regulators of tooth development. We detected the presence of SOX2 in both the replacement dental lamina and the rudimentary successional dental lamina of unreplaced molars, indicating that SOX2 may not be sufficient to initiate and maintain tooth replacement. We showed that Shh does not seem to be directly involved in tooth replacement. The transient presence of the rudimentary successional dental lamina in the molar allowed us to identify genes that could be essential for the initiation or the maintenance of tooth replacement. Hence, the locations of Sostdc1, RUNX2, and LEF1 vary between the deciduous premolar, the replacement premolar, and the molar, indicating possible roles in tooth replacement. CONCLUSION According to our observations, initiation and the maintenance of tooth replacement correlate with the presence of LEF1+ cells and the absence of both mesenchymal RUNX2 and epithelial Sostdc1+ cells.
Collapse
Affiliation(s)
- Ludivine Bertonnier-Brouty
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurent Viriot
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Laboratoire de Biologie tissulaire et Ingénierie thérapeutique, Université de Lyon, CNRS UMR5305, Université Claude Bernard Lyon 1, Lyon, France
| | - Thierry Joly
- Université de Lyon, VetAgro Sup Isara, Marcy l'Etoile, France
| | - Cyril Charles
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
17
|
Kavková M, Šulcová M, Dumková J, Zahradníček O, Kaiser J, Tucker AS, Zikmund T, Buchtová M. Coordinated labio-lingual asymmetries in dental and bone development create a symmetrical acrodont dentition. Sci Rep 2020; 10:22040. [PMID: 33328503 PMCID: PMC7745041 DOI: 10.1038/s41598-020-78939-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 11/26/2020] [Indexed: 11/09/2022] Open
Abstract
Organs throughout the body develop both asymmetrically and symmetrically. Here, we assess how symmetrical teeth in reptiles can be created from asymmetrical tooth germs. Teeth of lepidosaurian reptiles are mostly anchored to the jaw bones by pleurodont ankylosis, where the tooth is held in place on the labial side only. Pleurodont teeth are characterized by significantly asymmetrical development of the labial and lingual sides of the cervical loop, which later leads to uneven deposition of hard tissue. On the other hand, acrodont teeth found in lizards of the Acrodonta clade (i.e. agamas, chameleons) are symmetrically ankylosed to the jaw bone. Here, we have focused on the formation of the symmetrical acrodont dentition of the veiled chameleon (Chamaeleo calyptratus). Intriguingly, our results revealed distinct asymmetries in morphology of the labial and lingual sides of the cervical loop during early developmental stages, both at the gross and ultrastructural level, with specific patterns of cell proliferation and stem cell marker expression. Asymmetrical expression of ST14 was also observed, with a positive domain on the lingual side of the cervical loop overlapping with the SOX2 domain. In contrast, micro-CT analysis of hard tissues revealed that deposition of dentin and enamel was largely symmetrical at the mineralization stage, highlighting the difference between cervical loop morphology during early development and differentiation of odontoblasts throughout later odontogenesis. In conclusion, the early asymmetrical development of the enamel organ seems to be a plesiomorphic character for all squamate reptiles, while symmetrical and precisely orchestrated deposition of hard tissue during tooth formation in acrodont dentitions probably represents a novelty in the Acrodonta clade.
Collapse
Affiliation(s)
- M Kavková
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - M Šulcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
| | - J Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - O Zahradníček
- Department of Radiation Dosimetry, Nuclear Physics Institute, Czech Academy of Sciences, Prague, Czech Republic
| | - J Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - A S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, Floor 27 Guy's Tower, Guy's Hospital, London Bridge, London, UK
| | - T Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - M Buchtová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic. .,Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic.
| |
Collapse
|
18
|
Hulsey CD, Cohen KE, Johanson Z, Karagic N, Meyer A, Miller CT, Sadier A, Summers AP, Fraser GJ. Grand Challenges in Comparative Tooth Biology. Integr Comp Biol 2020; 60:563-580. [PMID: 32533826 PMCID: PMC7821850 DOI: 10.1093/icb/icaa038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Teeth are a model system for integrating developmental genomics, functional morphology, and evolution. We are at the cusp of being able to address many open issues in comparative tooth biology and we outline several of these newly tractable and exciting research directions. Like never before, technological advances and methodological approaches are allowing us to investigate the developmental machinery of vertebrates and discover both conserved and excitingly novel mechanisms of diversification. Additionally, studies of the great diversity of soft tissues, replacement teeth, and non-trophic functions of teeth are providing new insights into dental diversity. Finally, we highlight several emerging model groups of organisms that are at the forefront of increasing our appreciation of the mechanisms underlying tooth diversification.
Collapse
Affiliation(s)
- C Darrin Hulsey
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Karly E Cohen
- Friday Harbor Laboratories, School of Aquatic and Fishery Sciences, Department of Biology, University of Washington, WA 98195, USA
| | - Zerina Johanson
- Department of Earth Sciences, Natural History Museum, London SW7 5HD, UK
| | - Nidal Karagic
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Alexa Sadier
- Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, CA 90032, USA
| | - Adam P Summers
- Friday Harbor Laboratories, School of Aquatic and Fishery Sciences, Department of Biology, University of Washington, WA 98195, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
19
|
Qiu T, Teshima THN, Hovorakova M, Tucker AS. Development of the Vestibular Lamina in Human Embryos: Morphogenesis and Vestibule Formation. Front Physiol 2020; 11:753. [PMID: 32765288 PMCID: PMC7378788 DOI: 10.3389/fphys.2020.00753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/11/2020] [Indexed: 01/06/2023] Open
Abstract
The vestibular lamina (VL) is a transient developmental structure that forms the lip furrow, creating a gap between the lips/cheeks and teeth (oral vestibule). Surprisingly, little is known about the development of the VL and its relationship to the adjacent dental lamina (DL), which forms the teeth. In some congenital disorders, such as Ellis-van Creveld (EVC) syndrome, development of the VL is disrupted and multiple supernumerary frenula form, physically linking the lips and teeth. Here, we assess the normal development of the VL in human embryos from 6.5 (CS19) to 13 weeks of development, showing the close relationship between the VL and DL, from initiation to differentiation. In the anterior lower region, the two structures arise from the same epithelial thickening. The VL then undergoes complex morphogenetic changes during development, forming a branched structure that separates to create the vestibule. Changing expression of keratins highlight the differentiation patterns in the VL, with fissure formation linked to the onset of filaggrin. Apoptosis is involved in removal of the central portion of the VL to create a broad furrow between the future cheek and gum. This research forms an essential base to further explore developmental defects in this part of the oral cavity.
Collapse
Affiliation(s)
- Tengyang Qiu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Tathyane H. N. Teshima
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Maria Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University in Prague, Prague, Czechia
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
20
|
Wu J, Tian Y, Han L, Liu C, Sun T, Li L, Yu Y, Lamichhane B, D'Souza RN, Millar SE, Krumlauf R, Ornitz DM, Feng JQ, Klein O, Zhao H, Zhang F, Linhardt RJ, Wang X. FAM20B-catalyzed glycosaminoglycans control murine tooth number by restricting FGFR2b signaling. BMC Biol 2020; 18:87. [PMID: 32664967 PMCID: PMC7359594 DOI: 10.1186/s12915-020-00813-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/17/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The formation of supernumerary teeth is an excellent model for studying the molecular mechanisms that control stem/progenitor cell homeostasis needed to generate a renewable source of replacement cells and tissues. Although multiple growth factors and transcriptional factors have been associated with supernumerary tooth formation, the regulatory inputs of extracellular matrix in this regenerative process remains poorly understood. RESULTS In this study, we present evidence that disrupting glycosaminoglycans (GAGs) in the dental epithelium of mice by inactivating FAM20B, a xylose kinase essential for GAG assembly, leads to supernumerary tooth formation in a pattern reminiscent of replacement teeth. The dental epithelial GAGs confine murine tooth number by restricting the homeostasis of Sox2(+) dental epithelial stem/progenitor cells in a non-autonomous manner. FAM20B-catalyzed GAGs regulate the cell fate of dental lamina by restricting FGFR2b signaling at the initial stage of tooth development to maintain a subtle balance between the renewal and differentiation of Sox2(+) cells. At the later cap stage, WNT signaling functions as a relay cue to facilitate the supernumerary tooth formation. CONCLUSIONS The novel mechanism we have characterized through which GAGs control the tooth number in mice may also be more broadly relevant for potentiating signaling interactions in other tissues during development and tissue homeostasis.
Collapse
Affiliation(s)
- Jingyi Wu
- Southern Medical University Hospital of Stomatology, Guangzhou, 510280, Guangdong, China.,Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Ye Tian
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.,West China Hospital of Stomatology, Sichuan University, Chengdu, 610000, Sichuan, China
| | - Lu Han
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.,West China Hospital of Stomatology, Sichuan University, Chengdu, 610000, Sichuan, China
| | - Chao Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.,Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Tianyu Sun
- Southern Medical University Hospital of Stomatology, Guangzhou, 510280, Guangdong, China.,Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Ling Li
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yanlei Yu
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Bikash Lamichhane
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Rena N D'Souza
- School of Dentistry, University of Utah, Salt Lake City, UT, 84108, USA
| | - Sarah E Millar
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Ophir Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, 94143, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Hu Zhao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.
| |
Collapse
|
21
|
Fraser GJ, Hulsey CD. Biology at the Cusp: Teeth as a Model Phenotype for Integrating Developmental Genomics, Biomechanics, and Ecology. Integr Comp Biol 2020. [DOI: 10.1093/icb/icaa104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - C Darrin Hulsey
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| |
Collapse
|
22
|
Baranova J, Büchner D, Götz W, Schulze M, Tobiasch E. Tooth Formation: Are the Hardest Tissues of Human Body Hard to Regenerate? Int J Mol Sci 2020; 21:E4031. [PMID: 32512908 PMCID: PMC7312198 DOI: 10.3390/ijms21114031] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
With increasing life expectancy, demands for dental tissue and whole-tooth regeneration are becoming more significant. Despite great progress in medicine, including regenerative therapies, the complex structure of dental tissues introduces several challenges to the field of regenerative dentistry. Interdisciplinary efforts from cellular biologists, material scientists, and clinical odontologists are being made to establish strategies and find the solutions for dental tissue regeneration and/or whole-tooth regeneration. In recent years, many significant discoveries were done regarding signaling pathways and factors shaping calcified tissue genesis, including those of tooth. Novel biocompatible scaffolds and polymer-based drug release systems are under development and may soon result in clinically applicable biomaterials with the potential to modulate signaling cascades involved in dental tissue genesis and regeneration. Approaches for whole-tooth regeneration utilizing adult stem cells, induced pluripotent stem cells, or tooth germ cells transplantation are emerging as promising alternatives to overcome existing in vitro tissue generation hurdles. In this interdisciplinary review, most recent advances in cellular signaling guiding dental tissue genesis, novel functionalized scaffolds and drug release material, various odontogenic cell sources, and methods for tooth regeneration are discussed thus providing a multi-faceted, up-to-date, and illustrative overview on the tooth regeneration matter, alongside hints for future directions in the challenging field of regenerative dentistry.
Collapse
Affiliation(s)
- Juliana Baranova
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, Vila Universitária, São Paulo 05508-000, Brazil;
| | - Dominik Büchner
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Werner Götz
- Oral Biology Laboratory, Department of Orthodontics, Dental Hospital of the University of Bonn, Welschnonnenstraße 17, 53111 Bonn, NRW, Germany;
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| |
Collapse
|
23
|
Häfner SJ. Bargain with the tooth fairy - The savings accounts for dental stem cells. Biomed J 2020; 43:99-106. [PMID: 32333995 PMCID: PMC7195095 DOI: 10.1016/j.bj.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the hard times COVID-19 has imposed on us, the Biomedical Journal strives to provide fresh and compelling reading material - to be enjoyed safely from home. In this issue, we glance behind the scenes of dental stem cell preservation for potential therapeutic use, and discover that cancer cells hijack podoplanin expression to induce thrombosis. Moreover, we learn how the helicase DDX17 promotes tumour stemness, how genetic defects in meiosis and DNA repair cause premature ovarian insufficiency, and that the brain-derived neurotrophic factor is associated with several psychiatric diseases. Further accounts relate the role of miR-95-3p in colorectal cancer, the protective power of eggplants against mercury poisoning, and the predictive value of inhibin A for premature delivery. Finally, the very rare case of adenoid cystic carcinoma in the external auditory canal receives some attention, and we get to read up on how 3D imaging and modelling combines functional and aesthetic repair of cleft lip and palate cases.
Collapse
Affiliation(s)
- Sophia Julia Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Anders Lund Group, Copenhagen, Denmark.
| |
Collapse
|
24
|
Abstract
The tooth provides an excellent system for deciphering the molecular mechanisms of organogenesis, and has thus been of longstanding interest to developmental and stem cell biologists studying embryonic morphogenesis and adult tissue renewal. In recent years, analyses of molecular signaling networks, together with new insights into cellular heterogeneity, have greatly improved our knowledge of the dynamic epithelial-mesenchymal interactions that take place during tooth development and homeostasis. Here, we review recent progress in the field of mammalian tooth morphogenesis and also discuss the mechanisms regulating stem cell-based dental tissue homeostasis, regeneration and repair. These exciting findings help to lay a foundation that will ultimately enable the application of fundamental research discoveries toward therapies to improve oral health.
Collapse
Affiliation(s)
- Tingsheng Yu
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
Morphological features of tooth development and replacement in the rabbit Oryctolagus cuniculus. Arch Oral Biol 2019; 109:104576. [PMID: 31593891 DOI: 10.1016/j.archoralbio.2019.104576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Dental development mechanisms in mammals are highly studied using the mouse as a biological model. However, the mouse has a single, unreplaced, set of teeth. Features of mammalian tooth replacement are thus poorly known. In this paper, we study mammalian tooth development and replacement using the European rabbit, Oryctolagus cuniculus, as a new model. Using 3D-reconstructions associated with histological sections, we obtained the complete description of the histo-morphological chronology of dental development and replacement in rabbit. We also describe in the dentin the presence of holes opening the pulp cavity in newborns. These holes are quickly repaired with a new and fast apposition of dentin from the pre-existing odontoblasts. The detailed dental morphogenesis chronology presented allows us to propose the rabbit Oryctolagus cuniculus as a suitable model to study mammalian tooth replacement.
Collapse
|
26
|
Li L, Tang Q, Wang A, Chen Y. Regrowing a tooth: in vitro and in vivo approaches. Curr Opin Cell Biol 2019; 61:126-131. [PMID: 31493737 DOI: 10.1016/j.ceb.2019.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/11/2019] [Accepted: 08/04/2019] [Indexed: 12/25/2022]
Abstract
Biologically oriented regenerative dentistry in an attempt to regrow a functional tooth by harnessing the natural healing capabilities of dental tissues has become a recent trend challenging the current dental practice on repairing the damaged or missing tooth. In this review, we outline the conceptual development on the in situ revitalization of the tooth replacement capability lost during evolution, the updated progress in stem-cell-based in vivo repair of the damaged tooth, and the recent endeavors for in vitro generation of an implantable bioengineered tooth germ. Thereafter, we summarize the major challenges that need to be overcome in order to provide the rationale and directions for the success of fully functional tooth regeneration in the near future.
Collapse
Affiliation(s)
- Liwen Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.
| | - Qinghuang Tang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Amy Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
27
|
Salomies L, Eymann J, Khan I, Di-Poï N. The alternative regenerative strategy of bearded dragon unveils the key processes underlying vertebrate tooth renewal. eLife 2019; 8:47702. [PMID: 31418691 PMCID: PMC6744223 DOI: 10.7554/elife.47702] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022] Open
Abstract
Deep understanding of tooth regeneration is hampered by the lack of lifelong replacing oral dentition in most conventional models. Here, we show that the bearded dragon, one of the rare vertebrate species with both polyphyodont and monophyodont teeth, constitutes a key model for filling this gap, allowing direct comparison of extreme dentition types. Our developmental and high-throughput transcriptomic data of microdissected dental cells unveils the critical importance of successional dental lamina patterning, in addition to maintenance, for vertebrate tooth renewal. This patterning process happens at various levels, including directional growth but also gene expression levels, dynamics, and regionalization, and involves a large number of yet uncharacterized dental genes. Furthermore, the alternative renewal mechanism of bearded dragon dentition, with dual location of slow-cycling cells, demonstrates the importance of cell migration and functional specialization of putative epithelial stem/progenitor niches in tissue regeneration, while expanding the diversity of dental replacement strategies in vertebrates. All multicellular organisms, from lizards to humans, must be able to repair and regrow damaged tissue. This includes not only healing after an injury, but also replacing parts of the body that suffer wear and tear. For example, many animals shed and replace worn out teeth throughout their life, but the number of times this occurs varies greatly between species. Much of the understanding about how teeth grow and develop has come from researching mice. However, mice only develop one set of teeth, making them a poor ‘model’ for studying how species such as fish and reptiles can re-grow and replace their teeth. Recent studies of these species has shown that regenerating teeth relies on a specialised structure known as the dental lamina. In mice, the dental lamina forms but then quickly disappears, preventing new sets of teeth from developing. In most animals that regrow their teeth, however, the dental lamina keeps growing beyond the most recently produced tooth to create an area where its replacement will emerge. Now, Salomies et al. have identified other strategies involved in tooth replacement from studying the bearded dragon lizard, a rare example of an animal that continuously regenerates some, but not all, of its teeth. Analysing the cells in different parts of the re-growing teeth from bearded dragon lizards revealed new features of the dental lamina. Specifically, Salomies et al. found that a previously uncharacterized set of genes within the dental lamina could determine whether or not a tooth will be replaced. Further experiments using microscope imaging revealed that bearded dragon lizards use two distinct groups of stem cells – specialised cells that have the potential to develop into various cell types in the body – to re-grow their teeth. These experiments demonstrate how the bearded dragon lizard uses a previously unknown mechanism to regenerate its teeth, combining elements used by gecko lizards and sharks. These findings are an important step towards understanding the different strategies animals can use to maintain and regenerate their teeth. The knowledge gained could one day help design better therapies for patients suffering from inherited dental disorders or tooth loss.
Collapse
Affiliation(s)
- Lotta Salomies
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Julia Eymann
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Imran Khan
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nicolas Di-Poï
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
The people behind the papers - Elena Popa and Abigail Tucker. Development 2019; 146:146/3/dev176313. [PMID: 30737241 DOI: 10.1242/dev.176313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While many vertebrates have multiple sets of teeth over their lifetime, some, like humans, have just a single set of replacement teeth (diphydonty), while others, like mice, manage with a single set (monophydonty). This diversity raises both evolutionary questions - how did different tooth replacement strategies evolve? - and developmental ones - what mechanisms prevent replacement teeth in animals that have lost them? A new paper in this issue of Development tackles these questions with a molecular analysis of mouse tooth development. We caught up with first author Elena Popa and her supervisor Abigail Tucker, Professor of Development and Evolution at King's College London, to find out more about the work.
Collapse
|