1
|
Loycano MA, Pienta KJ, Amend SR. Temporal myc dynamics permit mitotic bypass, promoting polyploid phenotypes. Cancer Lett 2025; 613:217526. [PMID: 39909233 PMCID: PMC11924244 DOI: 10.1016/j.canlet.2025.217526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
High Myc phenotypes are extensively documented in the hyperproliferative cell cycle of cancer cells, as well as non-proliferative endoreplication cycles engaged during normal development and stress response. Notably, endoreplication in cancer produces chemotherapy resistant polyploid cells, necessitating a clearer understanding of altered cell cycle regulation that uncouples DNA replication and mitotic cell division. The c-Myc oncogene is a well-established transcriptional regulator of cell cycle progression and has been extensively published as an essential driver of the G1/S transition. Beyond S phase, Myc transcriptionally activates the proteins that drive mitotic entry. Sustained activation of Myc through the cell cycle transcriptionally couples DNA replication and mitotic cell division. Based on the literature in this field, we propose a new model of temporal regulation of Myc activity that serves to either couple or uncouple these two processes, determining cell cycle fate - proliferation or polyploidy. The mitotic cell cycle requires two pulses of Myc activity - the first driving the G1/S transition and the second driving the G2/M transition. During mitosis, Myc activity must be silenced to achieve high-fidelity division. Absence of the second activity pulse during G2 results in the downregulation of the proteins essential for mitotic entry and permits premature activation of APC/C, inducing mitotic bypass. A subsequent rise of Myc activity following mitotic bypass permits genome re-replication, driving polyploid phenotypes. This model serves to provide a new level of understanding to the global regulation of S phase-mitosis coupling, as well as a new lens to view low Myc phenotypes.
Collapse
Affiliation(s)
- Michael A Loycano
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA; Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Kenneth J Pienta
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA; Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sarah R Amend
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA; Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Yang Q, Wijaya F, Kapoor R, Chandrasekaran H, Jagtiani S, Moran I, Hime GR. Unusual modes of cell and nuclear divisions characterise Drosophila development. Biochem Soc Trans 2024; 52:2281-2295. [PMID: 39508395 PMCID: PMC11668308 DOI: 10.1042/bst20231341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
The growth and development of metazoan organisms is dependent upon a co-ordinated programme of cellular proliferation and differentiation, from the initial formation of the zygote through to maintenance of mature organs in adult organisms. Early studies of proliferation of ex vivo cultures and unicellular eukaryotes described a cyclic nature of cell division characterised by periods of DNA synthesis (S-phase) and segregation of newly synthesized chromosomes (M-phase) interspersed by seeming inactivity, the gap phases, G1 and G2. We now know that G1 and G2 play critical roles in regulating the cell cycle, including monitoring of favourable environmental conditions to facilitate cell division, and ensuring genomic integrity prior to DNA replication and nuclear division. M-phase is usually followed by the physical separation of nascent daughters, termed cytokinesis. These phases where G1 leads to S phase, followed by G2 prior to M phase and the subsequent cytokinesis to produce two daughters, both identical in genomic composition and cellular morphology are what might be termed an archetypal cell division. Studies of development of many different organs in different species have demonstrated that this stereotypical cell cycle is often subverted to produce specific developmental outcomes, and examples from over 100 years of analysis of the development of Drosophila melanogaster have uncovered many different modes of cell division within this one species.
Collapse
Affiliation(s)
- Qiaolin Yang
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Fernando Wijaya
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ridam Kapoor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Harshaa Chandrasekaran
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Siddhant Jagtiani
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Izaac Moran
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gary R. Hime
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
3
|
Damschroder D, Sun J, McDonald KO, Buttitta L. Cell cycle re-entry in the aging Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609689. [PMID: 39253469 PMCID: PMC11383271 DOI: 10.1101/2024.08.26.609689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The brain is an organ comprised mostly of long-lived, quiescent cells that perform vital functions throughout an animal's life. Due to the brain's limited regenerative ability, these long-lived cells must engage unique mechanisms to cope with accumulated damage over time. We have shown that a subset of differentiated neuronal and glial cells in the fruit fly brain become polyploid during adulthood. Cell cycle re-entry in the brain has previously been associated with neurodegeneration, but there may be a more complex relationship between polyploidy and cell fitness in the brain. Here, we examine how known lifespan modifiers influence the accumulation of polyploidy in the aging fly brain. Flies aged at a low temperature, or with a low protein diet, accumulate polyploid cells in the brain more slowly than expected if this phenotype were solely regulated by lifespan mechanisms. Despite the slower accumulation of polyploid cells, animals under conditions that extend lifespan eventually reach similar levels of polyploidy in the brain as controls. Our work suggests known lifespan modifiers can influence the timing of cell cycle re-entry in the adult brain, indicating there is a flexible window of cell cycle plasticity in the aging brain.
Collapse
Affiliation(s)
| | - Jenny Sun
- University of Michigan, MCDB, Ann Arbor, MI 48109
| | | | | |
Collapse
|
4
|
Box AM, Ramesh NA, Nandakumar S, Church SJ, Prasad D, Afrakhteh A, Taichman RS, Buttitta L. Cell cycle variants during Drosophila male accessory gland development. G3 (BETHESDA, MD.) 2024; 14:jkae089. [PMID: 38683731 PMCID: PMC11228851 DOI: 10.1093/g3journal/jkae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
The Drosophila melanogaster male accessory gland (AG) is a functional analog of the mammalian prostate and seminal vesicles containing two secretory epithelial cell types, termed main and secondary cells. This tissue is responsible for making and secreting seminal fluid proteins and other molecules that contribute to successful reproduction. The cells of this tissue are binucleate and polyploid, due to variant cell cycles that include endomitosis and endocycling during metamorphosis. Here, we provide evidence of additional cell cycle variants in this tissue. We show that main cells of the gland are connected by ring canals that form after the penultimate mitosis, and we describe an additional post-eclosion endocycle required for gland maturation that is dependent on juvenile hormone signaling. We present evidence that the main cells of the D. melanogaster AG undergo a unique cell cycle reprogramming throughout organ development that results in step-wise cell cycle truncations culminating in cells containing two octoploid nuclei with under-replicated heterochromatin in the mature gland. We propose this tissue as a model to study developmental and hormonal temporal control of cell cycle variants in terminally differentiating tissues.
Collapse
Affiliation(s)
- Allison M Box
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Navyashree A Ramesh
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Shyama Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Samuel Jaimian Church
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Dilan Prasad
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Ariana Afrakhteh
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| | - Russell S Taichman
- Department of Periodontology, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 1105 N. University Ave. Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Nguyen YDH, Pham TLA, Nishihara T, Kamei K, Tran DB. Depletion of lipid storage droplet-1 delays endoreplication progression and induces cell death in Drosophila salivary gland. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22132. [PMID: 38993002 DOI: 10.1002/arch.22132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/15/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
Perilipins are evolutionarily conserved from insects to mammals. Drosophila lipid storage droplet-1 (LSD-1) is a lipid storage droplet membrane surface-binding protein family member and a counterpart to mammalian perilipin 1 and is known to play a role in lipolysis. However, the function of LSD-1 during specific tissue development remains under investigation. This study demonstrated the role of LSD-1 in salivary gland development. Knockdown of Lsd-1 in the salivary gland was established using the GAL4/UAS system. The third-instar larvae of knockdown flies had small salivary glands containing cells with smaller nuclei. The null mutant Drosophila also showed the same phenotype. The depletion of LSD-1 expression induced a delay of endoreplication due to decreasing CycE expression and increasing DNA damage. Lsd-1 genetically interacted with Myc in the third-instar larvae. These results demonstrate that LSD-1 is involved in cell cycle and cell death programs in the salivary gland, providing novel insight into the effects of LSD-1 in regulating salivary gland development and the interaction between LSD-1 and Myc.
Collapse
Affiliation(s)
- Yen D H Nguyen
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan
| | - Tuan L A Pham
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan
| | - Taisei Nishihara
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan
| | - Kaeko Kamei
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan
| | - Duy Binh Tran
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
6
|
White J, Hutson MS, Page-McCaw A. Wounding increases nuclear ploidy in wound-proximal epidermal cells of the Drosophila pupal notum. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001067. [PMID: 38495588 PMCID: PMC10943363 DOI: 10.17912/micropub.biology.001067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
After injury, tissues must replace cell mass and genome copy number. The mitotic cycle is one mechanism for replacement, but non-mitotic strategies have been observed in quiescent tissues to restore tissue ploidy after wounding. Here we report that nuclei of the mitotically capable Drosophila pupal notum enlarged following nearby laser ablation. Measuring DNA content, we determined that nuclei within 100 µm of a laser-wound increased their ploidy to ~8C, consistent with one extra S-phase. These data indicate non-mitotic repair strategies are not exclusively utilized by quiescent tissues and may be an underexplored wound repair strategy in mitotic tissues.
Collapse
Affiliation(s)
- James White
- Dept. Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
- Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - M. Shane Hutson
- Dept. Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, United States
- Dept. Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States
| | - Andrea Page-McCaw
- Dept. Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
- Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
7
|
Dehn AS, Duhaime L, Gogna N, Nishina PM, Kelley K, Losick VP. Epithelial mechanics are maintained by inhibiting cell fusion with age in Drosophila. J Cell Sci 2023; 136:jcs260974. [PMID: 37732459 PMCID: PMC10651104 DOI: 10.1242/jcs.260974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
A characteristic of normal aging and age-related diseases is the remodeling of the cellular organization of a tissue through polyploid cell growth. Polyploidy arises from an increase in nuclear ploidy or the number of nuclei per cell. However, it is not known whether age-induced polyploidy is an adaption to stressors or a precursor to degeneration. Here, we find that abdominal epithelium of the adult fruit fly becomes polyploid with age through generation of multinucleated cells by cell fusion. Inhibition of fusion does not improve the lifespan of the fly, but does enhance its biomechanical fitness, a measure of the healthspan of the animal. Remarkably, Drosophila can maintain their epithelial tension and abdominal movements with age when cell fusion is inhibited. Epithelial cell fusion also appears to be dependent on a mechanical cue, as knockdown of Rho kinase, E-cadherin or α-catenin is sufficient to induce multinucleation in young animals. Interestingly, mutations in α-catenin in mice result in retina pigment epithelial multinucleation associated with macular disease. Therefore, we have discovered that polyploid cells arise by cell fusion and contribute to the decline in the biomechanical fitness of the animal with age.
Collapse
Affiliation(s)
- Ari S. Dehn
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Levi Duhaime
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Navdeep Gogna
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Patsy M. Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Kristina Kelley
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Vicki P. Losick
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| |
Collapse
|
8
|
Jaber Y, Netanely Y, Naamneh R, Saar O, Zubeidat K, Saba Y, Georgiev O, Kles P, Barel O, Horev Y, Yosef O, Eli-Berchoer L, Nadler C, Betser-Cohen G, Shapiro H, Elinav E, Wilensky A, Hovav AH. Langerhans cells shape postnatal oral homeostasis in a mechanical-force-dependent but microbiota and IL17-independent manner. Nat Commun 2023; 14:5628. [PMID: 37699897 PMCID: PMC10497507 DOI: 10.1038/s41467-023-41409-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
The postnatal interaction between microbiota and the immune system establishes lifelong homeostasis at mucosal epithelial barriers, however, the barrier-specific physiological activities that drive the equilibrium are hardly known. During weaning, the oral epithelium, which is monitored by Langerhans cells (LC), is challenged by the development of a microbial plaque and the initiation of masticatory forces capable of damaging the epithelium. Here we show that microbial colonization following birth facilitates the differentiation of oral LCs, setting the stage for the weaning period, in which adaptive immunity develops. Despite the presence of the challenging microbial plaque, LCs mainly respond to masticatory mechanical forces, inducing adaptive immunity, to maintain epithelial integrity that is also associated with naturally occurring alveolar bone loss. Mechanistically, masticatory forces induce the migration of LCs to the lymph nodes, and in return, LCs support the development of immunity to maintain epithelial integrity in a microbiota-independent manner. Unlike in adult life, this bone loss is IL-17-independent, suggesting that the establishment of oral mucosal homeostasis after birth and its maintenance in adult life involve distinct mechanisms.
Collapse
Affiliation(s)
- Yasmin Jaber
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Yasmine Netanely
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Reem Naamneh
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Or Saar
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel; Department of Periodontology, Hadassah Medical Center, Jerusalem, Israel
| | - Khaled Zubeidat
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Yasmin Saba
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Olga Georgiev
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Paz Kles
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel; Department of Periodontology, Hadassah Medical Center, Jerusalem, Israel
| | - Or Barel
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Yael Horev
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel; Department of Periodontology, Hadassah Medical Center, Jerusalem, Israel
| | - Omri Yosef
- The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Luba Eli-Berchoer
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Chen Nadler
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
- Department of Oral Medicine, Sedation & Maxillofacial Imaging, Hadassah Medical Center, Jerusalem, Israel
| | - Gili Betser-Cohen
- Division of Identification and Forensic Science, Police National HQ, Jerusalem, Israel
| | - Hagit Shapiro
- System Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- System Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Microbe & Cancer Division, DKFZ, Heidelberg, Germany
| | - Asaf Wilensky
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel; Department of Periodontology, Hadassah Medical Center, Jerusalem, Israel
| | - Avi-Hai Hovav
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
9
|
Singh VP, Hassan H, Deng F, Tsuchiya D, McKinney S, Ferro K, Gerton JL. Myc promotes polyploidy in murine trophoblast cells and suppresses senescence. Development 2023; 150:dev201581. [PMID: 37278344 PMCID: PMC10309589 DOI: 10.1242/dev.201581] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
The placenta is essential for reproductive success. The murine placenta includes polyploid giant cells that are crucial for its function. Polyploidy occurs broadly in nature but its regulators and significance in the placenta are unknown. We have discovered that many murine placental cell types are polyploid and have identified factors that license polyploidy using single-cell RNA sequencing. Myc is a key regulator of polyploidy and placental development, and is required for multiple rounds of DNA replication, likely via endocycles, in trophoblast giant cells. Furthermore, MYC supports the expression of DNA replication and nucleotide biosynthesis genes along with ribosomal RNA. Increased DNA damage and senescence occur in trophoblast giant cells without Myc, accompanied by senescence in the neighboring maternal decidua. These data reveal Myc is essential for polyploidy to support normal placental development, thereby preventing premature senescence. Our study, combined with available literature, suggests that Myc is an evolutionarily conserved regulator of polyploidy.
Collapse
Affiliation(s)
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Fengyan Deng
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Kevin Ferro
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
10
|
Variability of polyteny of giant chromosomes in Drosophila melanogaster salivary glands. Genetica 2023; 151:75-86. [PMID: 36163579 DOI: 10.1007/s10709-022-00168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/13/2022] [Indexed: 02/01/2023]
Abstract
Polyteny is an effective mechanism for accelerating growth and enhancing gene expression in eukaryotes. The purpose of investigation was to study the genetic variability of polyteny degree of giant chromosomes in the salivary glands of Drosophila melanogaster Meig. in relation to the differential fitness of different genotypes. 16 strains, lines and hybrids of fruit flies were studied. This study demonstrates the significant influence of hereditary factors on the level of polytenization of giant chromosomes in Drosophila. This is manifested in the differences between strains and lines, the effect of inbreeding, chromosome isogenization, hybridization, adaptively significant selection, sexual differences, and varying degrees of individual variability of a trait in different strains, lines, and hybrids. The genetic component in the variability of the degree of chromosome polyteny in Drosophila salivary glands was 45.3%, the effect of sex was 9.5%. It has been shown that genetic distances during inbreeding, outbreeding or hybridization, which largely determine the selective value of different genotypes, also affect polyteny patterns. Genetic, humoral, and epigenetic aspects of endocycle regulation, which may underlie the variations in the degree of chromosome polyteny, as well as the biological significance of the phenomenon of endopolyploidy, are discussed.
Collapse
|
11
|
Polyploidy and Myc Proto-Oncogenes Promote Stress Adaptation via Epigenetic Plasticity and Gene Regulatory Network Rewiring. Int J Mol Sci 2022; 23:ijms23179691. [PMID: 36077092 PMCID: PMC9456078 DOI: 10.3390/ijms23179691] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploid cells demonstrate biological plasticity and stress adaptation in evolution; development; and pathologies, including cardiovascular diseases, neurodegeneration, and cancer. The nature of ploidy-related advantages is still not completely understood. Here, we summarize the literature on molecular mechanisms underlying ploidy-related adaptive features. Polyploidy can regulate gene expression via chromatin opening, reawakening ancient evolutionary programs of embryonality. Chromatin opening switches on genes with bivalent chromatin domains that promote adaptation via rapid induction in response to signals of stress or morphogenesis. Therefore, stress-associated polyploidy can activate Myc proto-oncogenes, which further promote chromatin opening. Moreover, Myc proto-oncogenes can trigger polyploidization de novo and accelerate genome accumulation in already polyploid cells. As a result of these cooperative effects, polyploidy can increase the ability of cells to search for adaptive states of cellular programs through gene regulatory network rewiring. This ability is manifested in epigenetic plasticity associated with traits of stemness, unicellularity, flexible energy metabolism, and a complex system of DNA damage protection, combining primitive error-prone unicellular repair pathways, advanced error-free multicellular repair pathways, and DNA damage-buffering ability. These three features can be considered important components of the increased adaptability of polyploid cells. The evidence presented here contribute to the understanding of the nature of stress resistance associated with ploidy and may be useful in the development of new methods for the prevention and treatment of cardiovascular and oncological diseases.
Collapse
|
12
|
Yalçın B, Güneş M, Kurşun AY, Kaya N, Marcos R, Kaya B. Genotoxic hazard assessment of cerium oxide and magnesium oxide nanoparticles in Drosophila. Nanotoxicology 2022; 16:393-407. [PMID: 35818303 DOI: 10.1080/17435390.2022.2098072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The use of metal oxide nanoparticles (NPs) is steadily spreading, leading to increased environmental exposures to many organisms, including humans. To improve our knowledge of this potential hazard, we have evaluated the genotoxic risk of cerium oxide (CeO2NPs) and magnesium oxide (MgONPs) nanoparticle exposures using Drosophila as an in vivo assay model. In this study, two well-known assays, such as the wing somatic mutation and recombination test (wing-spot assay) and the single-cell gel electrophoresis test (comet assay) were used. As a novelty, and for the first time, changes in the expression levels of a wide panel of DNA repair genes were also evaluated. Our results indicate that none of the concentrations of CeO2NPs increased the total spot frequency in the wing-spot assay, while induction was observed at the highest dose of MgONPs. Regarding the comet assay, both tested NPs were unable to induce single DNA strand breaks or oxidative damage in DNA bases. Nevertheless, exposure to CeO2NPs induced significant increases in the expression levels of the Mlh1 and Brca2 genes, which are involved in the double-strand break repair pathway, together with a decrease in the expression levels of the MCPH1 and Rad51D genes. Regarding the effects of MgONPs exposure, the expression levels of the Ercc1, Brca2, Rad1, mu2, and stg genes were significantly increased, while Mlh1 and MCPH1 genes were decreased. Our results show the usefulness of our approach in detecting mild genotoxic effects by evaluating changes in the expression of a panel of genes involved in DNA repair pathways.
Collapse
Affiliation(s)
- Burçin Yalçın
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Merve Güneş
- Department of Biology, Akdeniz University, Antalya, Turkey
| | | | - Nuray Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Ricard Marcos
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès (Barcelona), Antalya, Spain
| | - Bülent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
13
|
Abstract
Adult tissues in Metazoa dynamically remodel their structures in response to environmental challenges including sudden injury, pathogen infection, and nutritional fluctuation, while maintaining quiescence under homoeostatic conditions. This characteristic, hereafter referred to as adult tissue plasticity, can prevent tissue dysfunction and improve the fitness of organisms in continuous and/or severe change of environments. With its relatively simple tissue structures and genetic tools, studies using the fruit fly Drosophila melanogaster have provided insights into molecular mechanisms that control cellular responses, particularly during regeneration and nutrient adaptation. In this review, we present the current understanding of cellular mechanisms, stem cell proliferation, polyploidization, and cell fate plasticity, all of which enable adult tissue plasticity in various Drosophila adult organs including the midgut, the brain, and the gonad, and discuss the organismal strategy in response to environmental changes and future directions of the research.
Collapse
Affiliation(s)
- Hiroki Nagai
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - Masayuki Miura
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - Yu-Ichiro Nakajima
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Clay DE, Fox DT. DNA Damage Responses during the Cell Cycle: Insights from Model Organisms and Beyond. Genes (Basel) 2021; 12:1882. [PMID: 34946831 PMCID: PMC8701014 DOI: 10.3390/genes12121882] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Genome damage is a threat to all organisms. To respond to such damage, DNA damage responses (DDRs) lead to cell cycle arrest, DNA repair, and cell death. Many DDR components are highly conserved, whereas others have adapted to specific organismal needs. Immense progress in this field has been driven by model genetic organism research. This review has two main purposes. First, we provide a survey of model organism-based efforts to study DDRs. Second, we highlight how model organism study has contributed to understanding how specific DDRs are influenced by cell cycle stage. We also look forward, with a discussion of how future study can be expanded beyond typical model genetic organisms to further illuminate how the genome is protected.
Collapse
Affiliation(s)
- Delisa E. Clay
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Donald T. Fox
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
15
|
Losick VP, Duhaime LG. The endocycle restores tissue tension in the Drosophila abdomen post wound repair. Cell Rep 2021; 37:109827. [PMID: 34644579 PMCID: PMC8567445 DOI: 10.1016/j.celrep.2021.109827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023] Open
Abstract
Polyploidy frequently arises in response to injury, aging, and disease. Despite its prevalence, major gaps exist in our understanding of how polyploid cells alter tissue function. In the adult Drosophila epithelium, wound healing is dependent on the generation of multinucleated polyploid cells resulting in a permanent change in the epithelial architecture. Here, we study how the wound-induced polyploid cells affect tissue function by altering epithelial mechanics. The mechanosensor nonmuscle myosin II is activated and upregulated in wound-induced polyploid cells and persists after healing completes. Polyploidy enhances relative epithelial tension, which is dependent on the endocycle and not cell fusion post injury. Remarkably, the enhanced epithelial tension mimics the relative tension of the lateral muscle fibers, which are permanently severed by the injury. As a result, we found that the wound-induced polyploid cells remodel the epithelium to maintain fly abdominal movements, which may help compensate for lost tissue tension. Losick and Duhaime show that the generation of polyploid cells by the endocycle induces myosin expression resulting in enhanced epithelial tension after wound repair. This change in epithelial mechanics appears to compensate for the permanent loss of muscle fibers, which is necessary for efficient abdominal bending in the fruit fly.
Collapse
Affiliation(s)
- Vicki P Losick
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA.
| | - Levi G Duhaime
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
16
|
Bailey EC, Kobielski S, Park J, Losick VP. Polyploidy in Tissue Repair and Regeneration. Cold Spring Harb Perspect Biol 2021; 13:a040881. [PMID: 34187807 PMCID: PMC8485745 DOI: 10.1101/cshperspect.a040881] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyploidy is defined as a cell with three or more whole genome sets and enables cell growth across the kingdoms of life. Studies in model organisms have revealed that polyploid cell growth can be required for optimal tissue repair and regeneration. In mammals, polyploid cell growth contributes to repair of many tissues, including the liver, heart, kidney, bladder, and eye, and similar strategies have been identified in Drosophila and zebrafish tissues. This review discusses the heterogeneity and versatility of polyploidy in tissue repair and regeneration. Polyploidy has been shown to restore tissue mass and maintain organ size as well as protect against oncogenic insults and genotoxic stress. Polyploid cells can also serve as a reservoir for new diploid cells in regeneration. The numerous mechanisms to generate polyploid cells provide an unlimited resource for tissues to exploit to undergo repair or regeneration.
Collapse
Affiliation(s)
- Erin C Bailey
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Sara Kobielski
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - John Park
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Vicki P Losick
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
17
|
Kirillova A, Han L, Liu H, Kühn B. Polyploid cardiomyocytes: implications for heart regeneration. Development 2021; 148:271050. [PMID: 34897388 DOI: 10.1242/dev.199401] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Terminally differentiated cells are generally thought to have arrived at their final form and function. Many terminally differentiated cell types are polyploid, i.e. they have multiple copies of the normally diploid genome. Mammalian heart muscle cells, termed cardiomyocytes, are one such example of polyploid cells. Terminally differentiated cardiomyocytes are bi- or multi-nucleated, or have polyploid nuclei. Recent mechanistic studies of polyploid cardiomyocytes indicate that they can limit cellular proliferation and, hence, heart regeneration. In this short Spotlight, we present the mechanisms generating bi- and multi-nucleated cardiomyocytes, and the mechanisms generating polyploid nuclei. Our aim is to develop hypotheses about how these mechanisms might relate to cardiomyocyte proliferation and cardiac regeneration. We also discuss how these new findings could be applied to advance cardiac regeneration research, and how they relate to studies of other polyploid cells, such as cancer cells.
Collapse
Affiliation(s)
- Anna Kirillova
- Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15219, USA
| | - Lu Han
- Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA.,Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA
| | - Honghai Liu
- Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA.,Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA
| | - Bernhard Kühn
- Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA.,Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, 4401 Penn Ave, Pittsburgh, PA 15224, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
18
|
Nandakumar S, Rozich E, Buttitta L. Cell Cycle Re-entry in the Nervous System: From Polyploidy to Neurodegeneration. Front Cell Dev Biol 2021; 9:698661. [PMID: 34249947 PMCID: PMC8264763 DOI: 10.3389/fcell.2021.698661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Terminally differentiated cells of the nervous system have long been considered to be in a stable non-cycling state and are often considered to be permanently in G0. Exit from the cell cycle during development is often coincident with the differentiation of neurons, and is critical for neuronal function. But what happens in long lived postmitotic tissues that accumulate cell damage or suffer cell loss during aging? In other contexts, cells that are normally non-dividing or postmitotic can or re-enter the cell cycle and begin replicating their DNA to facilitate cellular growth in response to cell loss. This leads to a state called polyploidy, where cells contain multiple copies of the genome. A growing body of literature from several vertebrate and invertebrate model organisms has shown that polyploidy in the nervous system may be more common than previously appreciated and occurs under normal physiological conditions. Moreover, it has been found that neuronal polyploidization can play a protective role when cells are challenged with DNA damage or oxidative stress. By contrast, work over the last two and a half decades has discovered a link between cell-cycle reentry in neurons and several neurodegenerative conditions. In this context, neuronal cell cycle re-entry is widely considered to be aberrant and deleterious to neuronal health. In this review, we highlight historical and emerging reports of polyploidy in the nervous systems of various vertebrate and invertebrate organisms. We discuss the potential functions of polyploidization in the nervous system, particularly in the context of long-lived cells and age-associated polyploidization. Finally, we attempt to reconcile the seemingly disparate associations of neuronal polyploidy with both neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
| | | | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Burbridge K, Holcombe J, Weavers H. Metabolically active and polyploid renal tissues rely on graded cytoprotection to drive developmental and homeostatic stress resilience. Development 2021; 148:dev197343. [PMID: 33913484 PMCID: PMC8214761 DOI: 10.1242/dev.197343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/29/2021] [Indexed: 12/26/2022]
Abstract
Body tissues are frequently exposed to stress, from toxic byproducts generated during cellular metabolism through to infection or wounding. Although it is well-established that tissues respond to exogenous injury by rapidly upregulating cytoprotective machinery, how energetically demanding tissues - vulnerable to persistent endogenous insult - withstand stress is poorly understood. Here, we show that the cytoprotective factors Nrf2 and Gadd45 act within a specific renal cell subtype, the energetically and biosynthetically active 'principal' cells, to drive stress resilience during Drosophila renal development and homeostasis. Renal tubules lacking Gadd45 exhibit striking morphogenetic defects (with cell death, inflammatory infiltration and reduced ploidy) and accumulate significant DNA damage in post-embryonic life. In parallel, the transcription factor Nrf2 is active during periods of intense renal physiological activity, where it protects metabolically active renal cells from oxidative damage. Despite its constitutive nature, renal cytoprotective activity must be precisely balanced and sustained at modest sub-injury levels; indeed, further experimental elevation dramatically perturbs renal development and function. We suggest that tissues requiring long-term protection must employ restrained cytoprotective activity, whereas higher levels might only be beneficial if activated transiently pre-emptive to exogenous insult.
Collapse
Affiliation(s)
| | | | - Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
20
|
Besen-McNally R, Gjelsvik KJ, Losick VP. Wound-induced polyploidization is dependent on Integrin-Yki signaling. Biol Open 2021; 10:bio.055996. [PMID: 33355119 PMCID: PMC7860123 DOI: 10.1242/bio.055996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A key step in tissue repair is to replace lost or damaged cells. This occurs via two strategies: restoring cell number through proliferation or increasing cell size through polyploidization. Studies in Drosophila and vertebrates have demonstrated that polyploid cells arise in adult tissues, at least in part, to promote tissue repair and restore tissue mass. However, the signals that cause polyploid cells to form in response to injury remain poorly understood. In the adult Drosophila epithelium, wound-induced polyploid cells are generated by both cell fusion and endoreplication, resulting in a giant polyploid syncytium. Here, we identify the integrin focal adhesion complex as an activator of wound-induced polyploidization. Both integrin and focal adhesion kinase are upregulated in the wound-induced polyploid cells and are required for Yorkie-induced endoreplication and cell fusion. As a result, wound healing is perturbed when focal adhesion genes are knocked down. These findings show that conserved focal adhesion signaling is required to initiate wound-induced polyploid cell growth.
Collapse
Affiliation(s)
- Rose Besen-McNally
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 0×4469, USA
| | - Kayla J Gjelsvik
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 0×4469, USA.,Kathryn W. Davis Center for Regenerative Biology and Aging, MDI Biological Laboratory, Bar Harbor, ME, 04609, USA
| | - Vicki P Losick
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
21
|
Erenpreisa J, Salmina K, Anatskaya O, Cragg MS. Paradoxes of cancer: Survival at the brink. Semin Cancer Biol 2020; 81:119-131. [PMID: 33340646 DOI: 10.1016/j.semcancer.2020.12.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022]
Abstract
The fundamental understanding of how Cancer initiates, persists and then progresses is evolving. High-resolution technologies, including single-cell mutation and gene expression measurements, are now attainable, providing an ever-increasing insight into the molecular details. However, this higher resolution has shown that somatic mutation theory itself cannot explain the extraordinary resistance of cancer to extinction. There is a need for a more Systems-based framework of understanding cancer complexity, which in particular explains the regulation of gene expression during cell-fate decisions. Cancer displays a series of paradoxes. Here we attempt to approach them from the view-point of adaptive exploration of gene regulatory networks at the edge of order and chaos, where cell-fate is changed by oscillations between alternative regulators of cellular senescence and reprogramming operating through self-organisation. On this background, the role of polyploidy in accessing the phylogenetically pre-programmed "oncofetal attractor" state, related to unicellularity, and the de-selection of unsuitable variants at the brink of cell survival is highlighted. The concepts of the embryological and atavistic theory of cancer, cancer cell "life-cycle", and cancer aneuploidy paradox are dissected under this lense. Finally, we challenge researchers to consider that cancer "defects" are mostly the adaptation tools of survival programs that have arisen during evolution and are intrinsic of cancer. Recognition of these features should help in the development of more successful anti-cancer treatments.
Collapse
Affiliation(s)
| | - Kristine Salmina
- Latvian Biomedical Research and Study Centre, Riga, LV-1067, Latvia
| | | | - Mark S Cragg
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
22
|
Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin Cancer Biol 2020; 81:145-159. [PMID: 33276091 DOI: 10.1016/j.semcancer.2020.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Unusually large cancer cells with abnormal nuclei have been documented in the cancer literature since 1858. For more than 100 years, they have been generally disregarded as irreversibly senescent or dying cells, too morphologically misshapen and chromatin too disorganized to be functional. Cell enlargement, accompanied by whole genome doubling or more, is observed across organisms, often associated with mitigation strategies against environmental change, severe stress, or the lack of nutrients. Our comparison of the mechanisms for polyploidization in other organisms and non-transformed tissues suggest that cancer cells draw from a conserved program for their survival, utilizing whole genome doubling and pausing proliferation to survive stress. These polyaneuploid cancer cells (PACCs) are the source of therapeutic resistance, responsible for cancer recurrence and, ultimately, cancer lethality.
Collapse
|
23
|
Anatskaya OV, Vinogradov AE, Vainshelbaum NM, Giuliani A, Erenpreisa J. Phylostratic Shift of Whole-Genome Duplications in Normal Mammalian Tissues towards Unicellularity Is Driven by Developmental Bivalent Genes and Reveals a Link to Cancer. Int J Mol Sci 2020; 21:ijms21228759. [PMID: 33228223 PMCID: PMC7699474 DOI: 10.3390/ijms21228759] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Tumours were recently revealed to undergo a phylostratic and phenotypic shift to unicellularity. As well, aggressive tumours are characterized by an increased proportion of polyploid cells. In order to investigate a possible shared causation of these two features, we performed a comparative phylostratigraphic analysis of ploidy-related genes, obtained from transcriptomic data for polyploid and diploid human and mouse tissues using pairwise cross-species transcriptome comparison and principal component analysis. Our results indicate that polyploidy shifts the evolutionary age balance of the expressed genes from the late metazoan phylostrata towards the upregulation of unicellular and early metazoan phylostrata. The up-regulation of unicellular metabolic and drug-resistance pathways and the downregulation of pathways related to circadian clock were identified. This evolutionary shift was associated with the enrichment of ploidy with bivalent genes (p < 10−16). The protein interactome of activated bivalent genes revealed the increase of the connectivity of unicellulars and (early) multicellulars, while circadian regulators were depressed. The mutual polyploidy-c-MYC-bivalent genes-associated protein network was organized by gene-hubs engaged in both embryonic development and metastatic cancer including driver (proto)-oncogenes of viral origin. Our data suggest that, in cancer, the atavistic shift goes hand-in-hand with polyploidy and is driven by epigenetic mechanisms impinging on development-related bivalent genes.
Collapse
Affiliation(s)
- Olga V. Anatskaya
- Department of Bioinformatics and Functional Genomics, Institute of Cytology, Russian Academy of sciences, 194064 St. Petersburg, Russia
- Correspondence: (O.V.A.); (A.E.V.); (J.E.)
| | - Alexander E. Vinogradov
- Department of Bioinformatics and Functional Genomics, Institute of Cytology, Russian Academy of sciences, 194064 St. Petersburg, Russia
- Correspondence: (O.V.A.); (A.E.V.); (J.E.)
| | - Ninel M. Vainshelbaum
- Department of Oncology, Latvian Biomedical Research and Study Centre, Cancer Research Division, LV-1067 Riga, Latvia;
- Faculty of Biology, University of Latvia, LV-1586 Riga, Latvia
| | | | - Jekaterina Erenpreisa
- Department of Oncology, Latvian Biomedical Research and Study Centre, Cancer Research Division, LV-1067 Riga, Latvia;
- Correspondence: (O.V.A.); (A.E.V.); (J.E.)
| |
Collapse
|
24
|
Nandakumar S, Grushko O, Buttitta LA. Polyploidy in the adult Drosophila brain. eLife 2020; 9:e54385. [PMID: 32840209 PMCID: PMC7447450 DOI: 10.7554/elife.54385] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Long-lived cells such as terminally differentiated postmitotic neurons and glia must cope with the accumulation of damage over the course of an animal's lifespan. How long-lived cells deal with ageing-related damage is poorly understood. Here we show that polyploid cells accumulate in the adult fly brain and that polyploidy protects against DNA damage-induced cell death. Multiple types of neurons and glia that are diploid at eclosion, become polyploid in the adult Drosophila brain. The optic lobes exhibit the highest levels of polyploidy, associated with an elevated DNA damage response in this brain region. Inducing oxidative stress or exogenous DNA damage leads to an earlier onset of polyploidy, and polyploid cells in the adult brain are more resistant to DNA damage-induced cell death than diploid cells. Our results suggest polyploidy may serve a protective role for neurons and glia in adult Drosophila melanogaster brains.
Collapse
Affiliation(s)
- Shyama Nandakumar
- Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Olga Grushko
- Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Laura A Buttitta
- Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
25
|
Bailey EC, Dehn AS, Gjelsvik KJ, Besen-McNally R, Losick VP. A Drosophila Model to Study Wound-induced Polyploidization. J Vis Exp 2020. [PMID: 32597839 DOI: 10.3791/61252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Polyploidy is a frequent phenomenon whose impact on organismal health and disease is still poorly understood. A cell is defined as polyploid if it contains more than the diploid copy of its chromosomes, which is a result of endoreplication or cell fusion. In tissue repair, wound-induced polyploidization (WIP) has been found to be a conserved healing strategy from fruit flies to vertebrates. WIP has several advantages over cell proliferation, including resistance to oncogenic growth and genotoxic stress. The challenge has been to identify why polyploid cells arise and how these unique cells function. Provided is a detailed protocol to study WIP in the adult fruit fly epithelium where polyploid cells are generated within 2 days after a puncture wound. Taking advantage of D. melanogaster's extensive genetic tool kit, the genes required to initiate and regulate WIP, including Myc, have begun to be identified. Continued studies using this method can reveal how other genetic and physiological variables including sex, diet, and age regulate and influence WIP's function.
Collapse
Affiliation(s)
| | | | - Kayla J Gjelsvik
- Graduate School of Biomedical Sciences and Engineering and Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, University of Maine
| | | | | |
Collapse
|